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Featured Application: This research demonstrates potential improvements in the effi- 7 
ciency and accuracy of geospatial data analytics, which may enhance national security 8 
(e.g., surveillance, border control, and threat detection), disaster response, environmen- 9 
tal conservation, urban planning, and resource management. 10 

Abstract: Geospatial data analysis is heavily reliant on human interpretation of large-scale 11 
imagery which leads to constraints in scalability. This study evaluates whether multi- 12 
modal models can assist in overhead image understanding by accurately interpreting im- 13 
agery and automating workflows. A hybrid machine learning solution using Over- 14 
sightML (OSML)—an open-source, cloud-based framework—is assessed for its ability to 15 
improve geospatial workflows. OSML integrates state-of-the-art computer vision with 16 
generative AI capabilities and streamlines preprocessing and detection aggregation. Re- 17 
sults indicate that combining domain-specific CV models with foundation models offers 18 
a scalable and efficient alternative to manual analysis workflows [5, 9, 10, 12–21]. 19 

Keywords: Large language models, retrieval-augmented generation, computer vision, 20 
geospatial analysis, automated imagery processing, contextual data enrichment. 21 
 22 

1. Introduction 23 

Geospatial data analysis is heavily dependent on manual workflows that are both 24 
inefficient and resource intensive. The rapidly expanding volume of remote sensing im- 25 
agery far exceeds the capacity for timely human analysis [8, 14]. Traditional methods pri- 26 
marily depend on analysts to manually interpret large-scale imagery, leading to bottle- 27 
necks, increased processing time, and higher operational costs. This reliance underscores 28 
the need for automated solutions capable of processing imagery quickly, accurately, and 29 
at scale. 30 

Recent advancements in artificial intelligence (AI) and machine learning (ML) tech- 31 
nologies offer promising solutions to these challenges. However, early automation efforts 32 
often involved rigid, rule-based systems requiring significant engineering effort and man- 33 
ual intervention for adjustments. These limitations have driven researchers and practi- 34 
tioners to explore more flexible, intelligent approaches. 35 

This study addresses whether recent innovations in multi-modal and foundational 36 
ML models can enhance the efficiency and accuracy of geospatial data analysis. Specifi- 37 
cally, it evaluates OSML, an open-source, cloud-based platform designed to automate and 38 
streamline remote sensing imagery analysis. OSML integrates advanced computer vision 39 
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(CV) technologies deployed via Amazon SageMaker and generative AI (GenAI) capabili- 40 
ties through Amazon Bedrock agents. This hybrid approach leverages pre-processing au- 41 
tomation, including image decomposition, object detection aggregation, and contextual 42 
analysis of detected features [6, 12]. 43 

By combining specialized CV models with foundational GenAI resources, OSML 44 
aims to reduce the analytical burden on human experts significantly. This research inves- 45 
tigates the potential for OSML to serve as a scalable, efficient alternative to manual work- 46 
flows, with substantial positive implications for national security, disaster response, envi- 47 
ronmental monitoring, urban planning, and resource management [5, 9, 10, 12, 13, 14, 15, 48 
16, 17, 18, 19, 20, 21]. 49 

1.1. Details of OSML  50 
OSML is an AI-powered, open-source geospatial toolkit designed to rapidly trans- 51 

form satellite and airborne sensor imagery into actionable insights. Built upon AWS’s 52 
SageMaker and Bedrock platforms, OSML offers comprehensive tools to enhance effi- 53 
ciency and reduce costs associated with analyzing extensive geospatial datasets. 54 

OSML includes several integrated components. The OSML Tile Server and Data Cat- 55 
alog provide efficient organization and retrieval of large imagery datasets stored in Am- 56 
azon S3, facilitating quick access and processing of extensive imagery archives. Special- 57 
ized pre-trained ML models, hosted on Amazon SageMaker, enable precise object detec- 58 
tion and scene segmentation tasks tailored specifically for overhead imagery analysis. 59 

The Distributed Computing Workflow, known as OSML Model Runner, manages the 60 
preprocessing of imagery data at scale. This component efficiently orchestrates thousands 61 
of SageMaker endpoint invocations, enabling comprehensive and rapid imagery analysis. 62 
Additionally, OSML Jupyter Extensions integrated within SageMaker Unified Studio of- 63 
fers intuitive tools for visualizing and interacting with geospatial imagery and data, 64 
streamlining user workflows and enhancing data interpretation. 65 

Leveraging Amazon Bedrock agents, OSML Geo-Agents enhance contextual inter- 66 
pretation by using GenAI to analyze detected objects within the context of historical rec- 67 
ords, past analyses, geospatial metadata, and real-time data streams. This capability ena- 68 
bles more precise and meaningful interpretations, significantly enriching the quality and 69 
depth of analytical outcomes. 70 

The open-source nature of OSML supports customization and adaptability, allowing 71 
users from various sectors such as national security, disaster response, environmental 72 
conservation, urban planning, and agriculture, to adapt and extend the toolkit according 73 
to their specific mission requirements. Users can easily integrate additional models and 74 
tools developed by academia, industry, or public sector labs, aided by comprehensive 75 
documentation, reference architectures, and benchmarks provided by AWS. This flexibil- 76 
ity ensures OSML remains scalable and responsive to diverse analytical needs. By utiliz- 77 
ing OSML, this study aims to demonstrate how an open-source, well-supported infra- 78 
structure can significantly enhance the efficiency and accuracy of geospatial data analysis. 79 

1.2. Past and Current Efforts in CV and ML 80 
An ever-growing number of commercial and government-owned platforms have 81 

driven the geospatial community to adopt ML to help mine actionable information from 82 
the vast quantities of earth observation data. Past efforts have been primarily focused on 83 
training CV models to convert unstructured imagery into geographic features that repre- 84 
sent objects of interest. Human analysts then combine that information with additional 85 
data sources to answer key intelligence questions. The acceleration of Bedrock’s AI-pow- 86 
ered agents provides an opportunity to expand the role of ML in this community.  87 
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Initial experiments show that multi-modal foundation models (FMs) like Anthropic’s 88 
Claude 3.5 Sonnet v2 are not performing well on the core object detection and spatial rea- 89 
soning tasks used to analyze remote sensing imagery, and they are not ready to be applied 90 
at full scale. Bedrock currently has a non-adjustable limit of 250 invocations per minute 91 
for this model so even a single small 50Kx50K satellite image broken into 2048 tiles would 92 
occupy a full account’s regional capacity for several minutes [9, 10]. 93 

Image generators are too creative to produce maps with specific spatial/scale con- 94 
straints. Instead of invoking the Bedrock model directly, experts proposed a hybrid ap- 95 
proach where state-of-the-art CV is applied and hosted on SageMaker and Geographic 96 
Information System (GIS) technologies to augment the core GenAI capabilities.  97 

For this study, OSML performs the requisite preprocessing work by decomposing 98 
the image into chunks, orchestrating the thousands of SageMaker Endpoint invocations, 99 
then geolocating detections and aggregating results. The resulting detections are then 100 
clustered, and the areas of the image found to contain objects of interest are cropped and 101 
sent to Bedrock for additional analysis. This approach uses the CV model to focus the 102 
attention of the more expensive GenAI resources which are then used to analyze the 103 
meaning of multiple objects in context.  104 

2. Methods 105 

2.1. Study Design 106 
This study employs a hybrid approach to geospatial data analysis, integrating state- 107 

of-the-art CV alongside GIS technologies. The primary objective is to improve the effi- 108 
ciency and accuracy of processing and analyzing remote sensing imagery. 109 

2.2. Data Collection 110 
The data used in this study consists of imagery collected by satellites and unmanned 111 

aerial vehicles. These images are stored in Amazon S3 and are processed using new pre- 112 
trained ML models designed for object detection and scene segmentation. 113 

2.3. Image Preprocessing 114 
The preprocessing workflow involves decomposing the raw images into smaller tiles 115 

suitable for analysis. These tiles are then subjected to dynamic range adjustments, color 116 
balancing, and other operations to make them suitable for human review and visualiza- 117 
tion. The preprocessed tiles are stored in a common commercial format (PNG) and are 118 
used as input for the CV models. 119 

2.4. Model Training and Deployment 120 
The CV models are trained to take advantage of specific sensor features and incorpo- 121 

rate details from the geospatial metadata available with the tiles. These models are de- 122 
ployed on Amazon SageMaker, where they are used to perform object detection and scene 123 
segmentation tasks. 124 

2.5. Hybrid Approach 125 
This hybrid approach involves using CV models to focus the attention of more ex- 126 

pensive GenAI resources [5, 6, 12]. The CV models perform initial object detection and 127 
scene segmentation, while the GenAI models analyze the meaning of multiple objects in 128 
context. This approach leverages the strengths of both CV and GIS technologies to provide 129 
a comprehensive solution for geospatial data analysis. 130 
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2.6. Workflow Orchestration 131 
The OSML solution orchestrates the entire workflow, from image preprocessing to 132 

model inference and result aggregation. This includes the use of new OSML-agent-tools 133 
containers, integration with Bedrock Agents, and extensions to the SageMaker Unified 134 
Studio managed Jupyter environment. 135 

2.7. Evaluation 136 
The performance of the hybrid approach is evaluated through a series of experiments 137 

[12, 13, 14]. These experiments assess the accuracy and efficiency of the CV and GenAI 138 
models in detecting and analyzing objects in remote sensing imagery. The results are com- 139 
pared with traditional methods to determine the effectiveness of the proposed solution. 140 

2.8. New OSML Features 141 
OSML supports a range of opportunities through the delivery of robust reusable 142 

components versus being focused on a single customer end-to-end workflow. The 143 
roadmap below illustrates the components supporting multiple areas of a typical image 144 
analysis enterprise.  145 

 146 

 147 
 148 

Figure 1. OSML Roadmap 149 
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2.9. Steps Used To Integrate System Into Workflow   150 
The integration of OSML into the geospatial workflow follows a structured process 151 

designed to streamline remote sensing imagery analysis: 152 
Initially, imagery data is managed through cloud-based image caching, creating op- 153 

timized tiled image pyramids for efficient processing. These image tiles are accessed 154 
through a Tiled Image Access component, facilitating rapid retrieval and management. 155 

Next, imagery Application Programming Interface (API) adapters are employed, 156 
which, together with a Task Manager and a Feature Database or Knowledge Base, inter- 157 
face with custom visual analytics or desktop tools. These steps ensure the imagery is sys- 158 
tematically prepared for advanced analytical tasks. 159 

The Task Manager directs image tiles to an Inference Engine designed specifically for 160 
remote sensing imagery analysis. This engine orchestrates the execution of pre-trained CV 161 
models hosted within a Model/Container Repository. 162 

Upon execution, CV models detect and cluster relevant features within the imagery. 163 
The system then generates cropped image segments representing clusters of detected fea- 164 
tures. These segments are subsequently processed by multi-modal FMs which provide 165 
advanced analysis of object appearance and spatial arrangements. 166 

Throughout the workflow, an ML Operations Engineer or Research Scientist facili- 167 
tates iterative development and model refinement, allowing scientists and researchers to 168 
enhance the analytical capability continuously. This workflow ensures efficient integra- 169 
tion and utilization of advanced machine learning techniques, significantly improving ge- 170 
ospatial imagery analysis. 171 

 172 

 173 
 174 

Figure 2. Steps Used for Integration 175 
 176 

2.10. New OSML Agent Tools 177 
New OSML-agent-tools-containers were created which host a Lambda runtime envi- 178 

ronment. The container utilizes a Python/GDAL environment and implements a single 179 
handler capable of responding to Bedrock Agent Events. Each event message contains 180 
agent, action group, and function name attributes, which are used to route the event to a 181 
specific tool handler. This architecture allows a single Lambda deployment to provide 182 
multiple tools for use. The implementation includes partial development of multiple tools 183 
required for an end-to-end image analysis workflow. 184 

 185 
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1. List-models: This tool lets the agent discover what SageMaker endpoints are available 186 
to analyze imagery. Perishable/account specific information of this kind cannot be 187 
trained into a model so it must be provided by a dynamic external source. For this 188 
study, a list of models was hard coded with each result containing a model name and 189 
a short one-sentence description of the model capabilities. (An actual implementation 190 
would query SM Endpoints or a model registry to find active endpoints that match 191 
selection criteria.) This part of the solution was judged to be low risk so there was no 192 
further effort applied. 193 

 194 
2. Run-model: This tool allows an agent to run a CV model on an overhead image. Bed- 195 

rock Agents have a limit of 25K characters on the Lambda response so this tool must 196 
summarize the raw GeoJSON results into a compact format that is suitable for analysis 197 
by the FMs. This effort prototyped an approach using density-based clustering of ob- 198 
jects of like-type and then returning the count, type, and bboxes (both geo and image) 199 
as the result. For this study, the actual invocation of the model using OSML was 200 
skipped in favor of reading an example GeoJSON result from an external run. There 201 
is still some investigation to be done to understand how the ModelRunner invoke 202 
timelines align with these agents. As a fallback this processing might be a query into 203 
a feature store of existing results [9, 10]. 204 
 205 

3. Enrich-detections: This tool takes in the clustered detection results and invokes a 206 
multi-modal FM to analyze each group of detections. The invoke message for each 207 
group contains a crop of the image from the tile server along with the summary de- 208 
tections and prompt information used before. The call can be enhanced to include 209 
filters for a geospatial knowledge base (geospatial and temporal bounds taken from 210 
the image and cluster bounds). 211 
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 212 
Figure 3: OSML Agent Tools 213 

2.11. Image Preprocessing and Model Expectations 214 
An important aspect of this study’s solution is that the image pixels analyzed by the 215 

CV model and the image pixels processed by the multi-modal FM may have very different 216 
preprocessing steps. OSML sends raw unprocessed tiles from the original image to the CV 217 
model and these tiles are often of different types and bit depths (e.g., 11-bit per pixel pan- 218 
chromatic imagery, 32-bit 2-band floating point complex SAR data, 8-band multi-spectral 219 
imagery, etc.) This means that CV models can be trained to take advantage of specific 220 
sensor features and incorporate details from the geospatial metadata available with the 221 
NITF/SICD/SIDD tiles. 222 

The tiles created by the TileServer have been preprocessed to either an 8-bit per pixel 223 
grayscale or a 3-band RGB image and they use a common commercial format (PNG). Part 224 
of this preprocessing involves operations such as dynamic range adjustments, and color 225 
balancing, necessary to make the original raw pixels suitable for human review and visu- 226 
alization. These tiles are similar to what the multi-modal foundation models may have 227 
seen in their generalized training sets, so they are provided instead of the scientific im- 228 
agery fed to the CV model [9, 10]. 229 

2.12. Additional Steps in Integration  230 
For this study, the following steps were taken to integrate the multimodal model. 231 
   232 
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1. CM control of the OSML-agent-tools hackathon prototype was established and 233 
brought up to the quality standards of our code baseline. An internal git repository 234 
was created to store the code, review the module structure, add comments, unit tests, 235 
and more.  236 

2. List-models query to SageMaker Endpoints was implemented to identify models 237 
available in the account. A very simple Model Registry was investigated using tags 238 
on the endpoint for resources to be built. For this step, tag values were limited to 256 239 
characters, so content had to be very terse. Longer values may need to be stored in S3 240 
or some other external knowledge store to provide enough context for an FM to match 241 
a model to a task. 242 

3. Run-model invocation of ModelRunner was implemented. CLIP/endpoint-based pull 243 
epics was prioritized and an option to send JSON requests was added instead of full 244 
tiles to SM endpoints. This was to make the ModelRunner process lightweight enough 245 
to be run within the tool Lambda. The GPU-based J2K decoding and GDAL-free NITF 246 
metadata parsing epic was implemented to help accelerate processing of the end- 247 
points which already run on a graphics processing unit (GPU) and make it more effi- 248 
cient for the ModelRunner to parse the metadata necessary to calculate tiles/geolocate 249 
results. 250 

4. Enrich-detections were improved by linking in the geospatial knowledge base to help 251 
interpret results in the last step. This was completed because the current workflow 252 
appeared to be using information trained directly into FM which was not current.  253 

5. Size checks and prioritization were implemented and the number of groups processed 254 
during enrich-detections were limited. The flow is successful only if a relatively small 255 
number of clusters is of interest on any given image. Uninteresting types or low scor- 256 
ing detections were filtered out.  257 

6. A geocoder was implemented, along with find-image tools, to convert well known 258 
place names to geographic coordinates and to find images in a Spatial Temporal Asset 259 
Catalog (STAC) matching geo-temporal criteria. Adding these tools allows analysts 260 
to start with prompts that use place names and times instead of specific image IDs. 261 
Utilities should be converted into image IDs to the S3 image URLs needed to task 262 
ModelRunner, but the prototype in this study did not require this because the results 263 
were hardcoded. A real system would need to determine the physical location of the 264 
image asset and may also need to create viewpoints for the data so it can be accessed 265 
via TileServer APIs. 266 

7. Normally, the detection Internalized Resource Identifier (IRI) for each object type 267 
would have been mapped to a more human readable format with the run-model tool 268 
retrieving this information from the model registry. However, this step wasn’t neces- 269 
sary in our prototype because the IRIs produced by our test model were human read- 270 
able (e.g., “airplane”) whereas real IRIs would not be suitable for use as-is and would 271 
need to be converted. 272 

8. A demo-UI combining a geospatial viewer with a chat bot UI was created. This step 273 
presents an opportunity to visualize the geospatial results of these workflows.  274 

9. Bedrock agents advanced prompting support was investigated to better relay the in- 275 
dividual group summaries/URLs in the final output.   276 
 277 

2.13. Evaluation via Example Execution of a Single Image 278 
Shown below are the example results of asking Anthropic Claude 3.5 Sonnet v2 to analyze 279 
the following image.  280 
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 281 
Figure 4: Sample Aerial Image 282 

 283 
Result for Bedrock Agent Using OSML-agent-tools: 284 
 285 

“This image appears to be an aerial view of what looks like an aircraft storage 286 
or maintenance facility. There are multiple commercial aircraft visible in the 287 
image, appearing to be in a white and dark color scheme. The aircraft are 288 
parked at various angles around a large rectangular building structure with 289 
what appears to be a partially white roof.  290 

 291 
The facility includes: 292 
A main building/hangar structure 293 
A paved tarmac area 294 
Several parked vehicles in what appears to be a parking lot 295 
Multiple commercial aircraft (approximately 7-8 visible in the frame) 296 
Some smaller structures or equipment on the ground 297 
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 298 
The image is taken from directly above (likely by drone or aircraft), giving a 299 
clear bird’s eye view of the entire facility. The ground appears to be concrete 300 
or asphalt in a grayish tone, and there’s some green vegetation visible at the 301 
edges of the frame. 302 

 303 
The aircraft appear to be of similar size and model, suggesting this might be 304 
a maintenance or storage facility for a specific airline or aircraft type. The 305 
layout suggests this is likely part of an airport or aviation facility, though the 306 
image only shows this particular section“ 307 
 308 

Note that while the URLs mentioned were not actually included in the result, they were 309 
generated and are visible in the conversational history. Going forward, it will be necessary 310 
to adjust the prompts and/or agent guidance to ensure they are included in the output 311 
along with specific summaries of each area. 312 

2.14. Evaluation via Prompt 313 

 314 
Figure 5: Bedrock Agent Prompt 315 

 316 
The trace information below is from the Bedrock Agent orchestrated tasks in re- 317 

sponse to the prompt shown above. 318 
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Step 1: Execute List-Models 319 

 320 
 321 

 322 
 323 

 324 

Step 2: Execute Run-Model 325 
The invocation input of this step demonstrates that the orchestration model picked a rea- 326 
sonable model from the list of results based on the original prompt. “I am mostly inter- 327 
ested in airplanes.” → “osml-airoob: Model for detecting aircraft and other air order of 328 
battle objects in EO imagery.” The model successfully pulled the model name and image 329 
ID parameters from the text and passed those to RunImage. 330 
 331 

 332 
 333 

 334 
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 335 
These are the summary results generated by the run-model agent. Each line repre- 336 

sents a cluster of like-type objects with the following fields. It may be more appropriate to 337 
return these as a structured values since the FM seems to be well trained on XML. 338 

 339 
COUNT: <# in cluster>  340 
TYPE: <obj type>  341 
GEOBBOX: <min_lon, min_lat, max_lon, max_lat>  342 

IMAGEBBOX: <min_x, min_y, max_x, max_y> 343 
 344 

 345 

Step 3: Execute Enrich-Detections 346 

 347 
 348 

 349 
 350 

In this example, experiments with the structured outputs and each cluster have been 351 
enriched. They included the following: 352 

 353 
<detectionSummary> 354 
  <tagline> COUNT: ## TYPE: ... </tagline> 355 
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  <url>https://tile-server.com/viewpoints/{image_id}/image/crop/{im- 356 
agebbox}.PNG</url> 357 

  <summary> Text from the FM analysis of the cropped region. </summary> 358 
</detectionSummary> 359 
 360 

 361 

2.15. Preprocessor to Enable Spatio-Temporal Knowledge Bases 362 
Retrieval-augmented generation (RAG) solutions are a common way to use infor- 363 

mation from data stores to augment the embedded knowledge of FMs trained on public 364 
information. Bedrock provides a Knowledge Base feature that helps manage the chunking 365 
and indexing of documents that is fully integrated with Bedrock hosted models and 366 
agents through API calls like RetrieveAndGenerate. In this example, each document por- 367 
tion is indexed by a combination of an embedding vector and an optional set of metadata 368 
properties. The embedding vector will handle the generic text matching, while the 369 
metadata attributes allow users to filter requests down to a specific geo-temporal region 370 
of interest. 371 

 372 
Adding a containerized application can run as a SageMaker Processing Job to OSML-data- 373 
intake to extract geospatial and temporal metadata from documents and output the 374 
metadata.json files needed to feed a Bedrock Knowledge Store. 375 
 376 
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 377 
 378 

Figure 6: Retrieval-augmented generation (RAG) 379 
 380 
These metadata files will contain new attributes such as geoCellIndex, startTime, and 381 

endTime, for each document allows the use of Bedrock, startsWith, in, greaterThanOrE- 382 
quals, and lessThanOrEquals filter operators to limit the retrieved context to a specific 383 
geo-temporal region. This makes explicit use of the hierarchical nature of many geospatial 384 
cell indexing schemes (e.g., H3) which allows the use of a prefix search to identify docu- 385 
ments linked to a parent and all child cells. In these schemes, the length of the prefix de- 386 
termines the requested resolution level (i.e., a longer prefix defines a narrower geospatial 387 
region) so documents and searches can be executed at a zoom level appropriate to the 388 
information. 389 

 390 
{ 391 
  "metadataAttributes": { 392 
    "geoCellIndex": "1210340...", 393 
    "startTime": 1719329636, 394 
    "endTime": 9999999999 395 
  } 396 
} 397 
 398 
Above: The provided JSON snippet represents metadata attributes typically stored 399 

in a Bedrock Knowledge Base for use in geo-temporal retrieval tasks: 400 
• geoCellIndex ("1210340..."): This is a reference to the H3 hexagonal grid cell 401 

identifier. It specifies a particular geographic region associated with stored 402 
data. Each cell index uniquely identifies a discrete area on Earth's surface. 403 

• startTime (1719329636): This is a Unix timestamp indicating the beginning of 404 
the temporal range during which the referenced data or event is valid or rel- 405 
evant. 406 

• endTime (9999999999): Another Unix timestamp, marking the end of the 407 
valid temporal range for the data. The provided large number (9999999999) 408 
generally indicates a far-future date, meaning the data has indefinite or on- 409 
going validity. 410 

Together, these attributes enable the retrieval of contextually relevant documents or 411 
data based on specific geographic and temporal parameters. The structured nature of this 412 
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metadata facilitates precise, efficient queries within Bedrock Knowledge Base, allowing 413 
users to rapidly access data relevant to specific locations and time periods. 414 

 415 
Below: The H3 hexagonal grid index is utilized within OSML to efficiently manage and 416 
query geo-temporal metadata. Each hexagonal cell represents a discrete geographic area 417 
with a unique identifier, enabling structured and scalable data indexing. In practice, a ge- 418 
ographic query region—indicated by a red boundary—intersects multiple H3 cells, each 419 
containing geo-temporally indexed documents or datasets. Bedrock RetrievalFilters can 420 
then leverage these H3 cell identifiers (e.g., 12101, 12102, 12103) to precisely retrieve doc- 421 
uments relevant to specific geographic areas and timeframes. This structured approach 422 
enhances the speed and accuracy of spatial queries and data analysis within geospatial 423 
workflows. 424 
 425 

 426 
 427 

Figure 7: Example of H3 hexagonal grid index showing document location and the 428 
cells intersecting a sample query region. 429 

 430 
 431 

{ 432 
   "andAll": [ { 433 
     "orAll": [ { 434 
       "startsWith": { 435 
         "key": "geoCellIndex", 436 
         "value": "12103" 437 
       }}, { 438 
       "startsWith": { 439 
         "key": "geoCellIndex", 440 
         "value": "12101" 441 
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       }}, ... # Remaining cell IDs omitted for brevity 442 
     ], { 443 
     "greaterThanOrEquals": { 444 
       "key": "startTime", 445 
       "value": 1719329636 446 
     }}, { 447 
     "lessThanOrEquals": { 448 
       "key": "endTime", 449 
       "value": 1719400000 450 
     }} 451 
   ]  452 
 } 453 

2.16. Library of Geospatial Agents 454 
Augmenting geospatial workflows with ML actions is essential to automate routine 455 

processing steps, significantly advancing geospatial data analytics. The OSML-geospatial- 456 
agents library implements a suite of geospatial tools accessible through Bedrock agents.  457 

This library includes the core software implementations and Lambda function han- 458 
dlers required for the seamless operation and interaction of geospatial analysis tools. 459 

 460 
• The Gazetteer Tool translates textual place names into precise geographic coordi- 461 

nates, enabling seamless transitions between descriptive text and spatial data rep- 462 
resentations. 463 

• The Atlas Tool allows users to execute advanced queries against Spatio-Temporal 464 
Asset Catalogs, retrieving information based on specific spatial and temporal con- 465 
straints to facilitate precise and contextually accurate analyses. 466 

• The Detection Tool facilitates the selection and execution of computer vision mod- 467 
els hosted on the OSML platform, accurately identifying and localizing objects of 468 
interest within remote sensing imagery. 469 

• The Enrichment Tool enhances the value of detected geospatial features by inte- 470 
grating supplementary properties extracted from structured GIS datasets and un- 471 
structured textual information sources, greatly enriching the contextual depth 472 
and analytical relevance. 473 

• The Spatial Reasoning Tool provides robust capabilities for organizing, grouping, 474 
and analyzing geospatial features based on their spatial relationships and contex- 475 
tual attributes, supporting basic spatial comparisons and potentially extending to 476 
dynamic motion modeling. 477 

• Finally, the Map and Image Annotation Tool generates visual annotations and 478 
custom maps, making it straightforward for users to visualize, interpret, and re- 479 
port analytical findings through geospatial graphics and annotations. 480 
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 481 
Figure 8: OversightML Architecture for Automated Geospatial Analysis. 482 

 483 
The diagram illustrates the high-level system architecture of OSML, an open-source 484 

toolkit developed by AWS to automate geospatial imagery analysis using a hybrid of CV 485 
and GenAI tools. On the left, analysts and imagery ingestion workflows interact with 486 
OSML via analyst tools and automated pipelines. Central to the system is a Bedrock-man- 487 
aged knowledge base and agent layer, which enables interaction with downstream ser- 488 
vices and tools. The system uses a Bedrock Agent to mediate access to a suite of geospatial 489 
processing tools deployed as AWS Lambda functions. These tools interface with a data 490 
catalog and tile service to provide indexed access to imagery stored in S3, as well as a 491 
model runner service responsible for orchestrating calls to hosted CV models. The outputs 492 
from these services are made available to CV model endpoints, allowing for scalable exe- 493 
cution of object detection and scene segmentation tasks. This architecture enables end-to- 494 
end orchestration of geospatial workflows, reducing analyst burden while allowing flexi- 495 
ble integration of custom models and knowledge sources. 496 

2.17. Map Generation Using Q 497 
Many wrongly assume that image generation models are capable of being used in 498 

the generation of maps. This assumption is incorrect because most generators are too im- 499 
aginative and imprecise to generate an accurate spatial representation. Instead, it is nec- 500 
essary to reframe the problem as a code generation task, using Amazon Q to generate 501 
XML/JSON/SVG that can be rendered as a map from descriptive prompts and feature sets. 502 
Some of these cases may already be supported as-is; the example below is a real result 503 
generated from an Amazon Q service without any special tuning. 504 

 505 
Example Prompt:  506 

To render object detection results over base imagery, this study uses Scalable Vector 507 
Graphics (SVG) as a lightweight overlay format. SVG offers native support for resolution- 508 
independent graphics, semantic tagging, and DOM-level interactivity, making it suitable 509 
for integration with browser-based and geospatial rendering engines. 510 

In the proposed OSML workflow, each detection is represented as a <circle> element 511 
positioned by its pixel coordinates in the tile reference frame. These graphical markers are 512 
grouped by object type using the <g> tag to facilitate interactive rendering and styling 513 
(e.g., toggling object layers). To support geospatial integration, each element may include 514 
custom attributes (e.g., data-lat, data-lon, data-type) that encode real-world metadata 515 
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extracted from the model outputs or geospatial transformation layers. This metadata is 516 
useful for downstream services that generate tooltips, link to external records, or filter 517 
detections based on spatial queries. 518 

The example below demonstrates a minimal SVG output used to visualize three de- 519 
tection points over a 512×512 image tile. The red markers represent detected aircraft with 520 
metadata included for integration into the rendering stack:  521 

<svg width="512" height="512" viewBox="0 0 512 512"  522 
     xmlns="http://www.w3.org/2000/svg">  523 
  <defs> 524 
    <pattern id="background"  525 
             patternUnits="userSpaceOnUse"  526 
             width="512" height="512">  527 
      <image  528 
        href="https://dummyimage.com/512x512/000/fff.png" 529 
        x="0" y="0" width="512" height="512" /> 530 
    </pattern> 531 
  </defs> 532 
  <rect width="512" height="512" fill="url(#background)" />  533 
  <circle cx="20" cy="45" r="5" fill="red" />  534 
  <circle cx="249" cy="250" r="5" fill="red" />  535 
  <circle cx="145" cy="42" r="5" fill="red" /> 536 

</svg> 537 
 538 

 539 
Figure 9: Example image result generated by sending the response through an SVG 540 

image renderer. 541 
 542 
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Combining these capabilities with existing OSML tile and object detection services 543 
should yield some demonstrable level of map generation capabilities built on top of Q. 544 
Some engineering capacity should be reserved to evaluate and explore the limits of this 545 
approach and recommend future fine tuning and customization efforts that can be under- 546 
taken later in the roadmap. 547 

3. Results 548 

The results of this study suggest the latest generation of multi-modal FMs is showing 549 
promise and, as a result, hybrid solutions that combine purpose-built CV models with 550 
GenAI technologies are likely to become more widely studied and adopted. While some 551 
engineering effort will be required to move beyond prototype systems to quantify the cost 552 
and infrastructure for operational scale deployments, the new OSML prototype allows 553 
GenAI, RAG’s and Large Language Models (LLMs) to be added to a geospatial imagery 554 
processing workflow [9, 10]. 555 

3.1. Proposed Capability Demonstrations 556 
The overall goal is to increase the efficiency of end user geospatial analysts, allowing 557 

them to assess a larger volume of data and make decisions more quickly than they can 558 
using traditional methods. Demonstrations should illustrate the following features. 559 

  560 
1. Improved Detections: Today’s leading models are only considering pixels and 561 

metadata and are therefore missing a key opportunity to include information from 562 
past observations when analyzing a new image. The proposed Spatio-Temporal 563 
Knowledge Base solutions provide an opportunity to tap into existing knowledge 564 
stores to enrich detections produced by state-of-the-art CV algorithms. Traditional ob- 565 
ject detection models will be used to localize the objects of interest (i.e., the where) 566 
while new GenAI-based components will provide additional details (i.e., the what and 567 
why). Overall, CV detections will demonstrate improvement in quality and accuracy, 568 
which may alter the plans for future model training efforts. Specifically, this may allow 569 
the community to use more generic object detectors instead of retraining new models 570 
for deep object type hierarchies. 571 
 572 

2. Automated Reporting: Current ML workflows convert imagery into large GIS feature 573 
layers that analysts need to consume. ML is not actually helping analysts analyze the 574 
content or generate reports. New Geospatial Agents and Map Generation tools inte- 575 
grated into an analytic front end will allow analysts to automate steps in the report 576 
generation process. The analyst will guide the overall reasoning process while letting 577 
ML provide automation for repetitive steps. Overall, this should result in a reduction 578 
in the manual effort required from human analysts, resulting in a direct time savings 579 
when compared to current tradecraft.  580 

 581 
3. Workflow Optimization: Current systems apply CV models broadly to imagery using 582 

simple rules-based orchestration to task inference engines. Using LLMs to work back- 583 
wards from a key analysis question, experts will determine which datasets and models 584 
to run to answer key intelligence questions. This will demonstrate a more efficient al- 585 
location of computing resources through as-needed execution of models based on mis- 586 
sion needs.  587 

3.2. Key Technical Risks 588 
Geocoding Service: This approach builds on an assumption that the geo-temporal 589 

context cab be extracted from a document necessary to populate attributes in the RAG 590 
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metadata.json file. In some cases, this information is readily available as structured data 591 
in an existing knowledge base. In these cases, integration partners (e.g., ProServe or 3rd 592 
party LSIs) should be able to write an ETL process to produce the documents and 593 
metadata.json files that will match proposed conventions. In situations where larger col- 594 
lections of raw documents are presented, a geocoding service that can convert place 595 
names and coordinate references mentioned in the unstructured text to geographic coor- 596 
dinates will be required. 597 

This geocoding problem is an area where current generations of generic LLMs are 598 
still behind their more traditional counterparts. Amazon Location Service provides basic 599 
lookup, but their SearchPlaceIndexForText API only accepts 200 characters of text, and 600 
the expectation is that this is an already extracted place name or address. The limitations 601 
of both traditional service offerings and current GenAI solutions leaves this as an oppor- 602 
tunity for OSML to provide additional geospatial solutions. 603 

Current state-of-the-art solutions are using smaller task-specific NLP models in con- 604 
junction with customer supplied gazetteers of canonical place names. One should be pre- 605 
pared to take contributions from the open-source community, adapt them to the data for- 606 
mats and conventions, then deliver a pre-packaged solution capable of filling this gap. 607 
This is a traditionally complex problem requiring incremental refinement of a solution 608 
over an extended period. 609 

 610 
Model Fine-Tuning / Extensive Prompt Optimization: This approach attempts to 611 

work within any limitations imposed by the current generation of FMs provided by Bed- 612 
rock and Amazon Q. As these capabilities are developed, there may be limits of the generic 613 
models which would make further progress dependent on model fine-tuning and more 614 
science driven prompt analysis tasking.  615 

 616 
Alternatives Considered: This proposal was deliberately built atop the existing Bed- 617 

rock service APIs instead of pursuing a more generic solution based on completely open- 618 
source alternatives (e.g., LiteLLM Proxy, LangChain Agents, OpenAI Model APIs, etc.).  619 

4. Discussion 620 

The findings of this study highlight the potential of integrating state-of-the-art CV 621 
and GIS technologies to enhance geospatial data analysis. The hybrid approach proposed 622 
in this research, which combines CV models with GenAI resources, has shown promise in 623 
addressing the inefficiencies of traditional methods. 624 

4.1. Interpretation of Results 625 
The initial experiments demonstrated that while multi-modal foundation models like 626 

Anthropic’s Claude 3.5 Sonnet v2 are not yet performing well on core object detection 627 
tasks, the hybrid approach that integrates CV and GIS technologies holds significant po- 628 
tential1. By leveraging CV models to perform initial object detection and scene segmenta- 629 
tion and then using GenAI models to analyze the meaning of multiple objects in context, 630 
the proposed solution offers a more efficient and accurate method for geospatial data anal- 631 
ysis [9, 10]. 632 

4.2. Implications for Geospatial Workflows 633 
The implementation of the OSML solution has the potential to revolutionize geospa- 634 

tial workflows. By automating routine processing steps, human analysts can focus on 635 
more complex tasks, thereby increasing overall efficiency. This approach also allows for 636 
the integration of new pre-trained ML models for object detection and scene segmenta- 637 
tion, which can be deployed on Amazon SageMaker. The fully managed, distributed 638 
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computing workflow and extensions to the SageMaker Unified Studio managed Jupyter 639 
environment further enhance the capabilities of the solution. 640 

4.3. Limitations 641 
Despite the promising results, there are limitations to the current approach. The per- 642 

formance of multi-modal foundation models is still not at the level required for full-scale 643 
deployment. Additionally, the Bedrock model has a non-adjustable limit of 250 invoca- 644 
tions per minute, which can be a bottleneck when processing large satellite images. Fur- 645 
ther research and development are needed to address these limitations and improve the 646 
scalability of the solution [9, 10]. 647 

4.4. Future Research 648 

The integration of multi-modal ML techniques into geospatial data analysis presents a 649 
multitude of avenues for future exploration. Building upon the current study, several 650 
key research directions are proposed: 651 

1. Development of Scalable FMs for Geospatial Data 652 

The advent of FMs—large-scale, pre-trained models adaptable to various tasks—has 653 
revolutionized natural language processing and CV. Extending this paradigm to geospa- 654 
tial data involves creating models capable of understanding and processing diverse data 655 
types, including satellite imagery, hyperspectral data, and spatial-temporal datasets. 656 
Recent work has introduced architectures such as the Low-rank Efficient Spatial-Spectral 657 
Vision Transformer (LESS ViT) [10, 11] which is designed to handle the unique chal- 658 
lenges of multi-modal and hyperspectral geospatial data. LESS ViT approximates high- 659 
dimensional spatial-spectral attention through low-dimensional components, offering a 660 
promising direction for scalable geospatial analysis. 661 

2. Enhancing Multi-Modal Alignment and Fusion Techniques 662 

Effectively integrating heterogeneous data sources—such as combining satellite imagery 663 
with textual reports or sensor data—remains a critical challenge. Advancements in 664 
multi-modal alignment and fusion, including the development of sophisticated attention 665 
mechanisms and transformer architectures, have shown potential in improving the accu- 666 
racy and applicability of geospatial models. Future research should focus on refining 667 
these techniques to better capture the complex relationships inherent in geospatial data. 668 

3. Addressing Data Scarcity and Bias in Geospatial AI 669 

The effectiveness of AI models is often hindered by limited or biased geospatial datasets. 670 
Emerging frameworks, such as graph neural networks and transformers, offer opportu- 671 
nities to learn from non-Euclidean relationships and perform parallel computations at 672 
scale. Future studies should prioritize the development of methods to mitigate data scar- 673 
city and bias, ensuring more robust and generalizable geospatial AI applications. 674 

4. Advancements in Deep Learning for Multi-Modal Remote Sensing Data Fusion 675 

Deep learning has significantly impacted the fusion of multi-modal remote sensing data, 676 
enabling more comprehensive analysis of complex geospatial phenomena. A compre- 677 
hensive review highlights the versatility of ML methods in addressing a wide range of 678 
geospatial analysis challenges, including traffic anomaly detection, image fusion, and 679 
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semantic segmentation. Future research should continue to explore and enhance deep 680 
learning techniques for integrating diverse remote sensing data sources. 681 

5. Integration of AI in Disaster Response and Urban Planning 682 

Artificial intelligence is increasingly utilized to enhance response and monitoring sys- 683 
tems for natural disasters, particularly in urban areas. Applications range from improv- 684 
ing forecasting accuracy and data collection to real-time disaster response and public 685 
alert systems. Future research should focus on integrating AI technologies into disaster 686 
preparedness and urban planning to improve resilience and response strategies. 687 

6. Development of Geospatial FMs 688 

The creation of large-scale, pre-trained models specifically designed for geospatial data, 689 
known as geospatial FMs, represents a promising research direction. These models aim 690 
to interpret complex patterns in location data, facilitating applications in environmental 691 
monitoring, urban planning, and disaster response. Future research should focus on de- 692 
veloping such models to fully harness their potential. 693 

7. Enhancing Explainability and Human-AI Interaction 694 

As AI systems become more complex, ensuring their decisions are interpretable is cru- 695 
cial, especially in critical applications such as disaster response and urban planning. Re- 696 
search into explainable AI aims to improve AI reasoning and allow human guidance to 697 
correct AI decisions, enhancing trust and collaboration between humans and AI sys- 698 
tems. Future research should focus on developing methods to enhance the explainability 699 
of AI systems and improve human-AI interaction. 700 

8. Advancements in Spatial Embedding Techniques 701 

Spatial embedding techniques, which involve representing spatial data in a continuous 702 
vector space, have shown promise in improving the performance of geospatial analyses. 703 
These techniques can effectively handle various data types, including text, images, and 704 
graphs, facilitating more accurate and efficient analyses. Future research should focus on 705 
advancing spatial embedding techniques to enhance geospatial data analysis. 706 

9. Integration of AI in Earth Sciences 707 

ML has been increasingly applied in earth sciences, enabling more accurate mapping, 708 
prediction, and analysis of geological phenomena. Applications include geological map- 709 
ping, mineral prospectivity mapping, and environmental monitoring. Future research 710 
should focus on integrating AI techniques into earth sciences to enhance our under- 711 
standing and management of geological processes. 712 

5. Conclusion 713 

This paper addresses the growing challenge of analyzing large-scale geospatial imagery 714 
by evaluating the use of multi-modal ML techniques in combination with domain-specific 715 
CV models. Through the implementation and assessment of OSML, an open-source, 716 
cloud-native toolkit developed on AWS, the study demonstrates a scalable and efficient 717 
alternative to traditional, labor-intensive geospatial workflows. 718 

OSML integrates pre-trained CV models deployed on Amazon SageMaker with GenAI 719 
capabilities from Bedrock agents to automate and augment the image analysis pipeline. 720 



FOR PEER REVIEW 23 of 24 
 

The system performs image tiling, object detection, and feature clustering before passing 721 
relevant regions to large foundation models for contextual enrichment. New geospatial 722 
agent tools and orchestration layers were developed to coordinate this hybrid workflow 723 
and interface with structured knowledge sources, tile servers, and inference engines. 724 

The study demonstrates that using CV to focus the attention of more resource-intensive 725 
foundation models can significantly reduce costs and improve analytical throughput. It 726 
also shows how RAG and agent-guided orchestration can add interpretability and context 727 
to raw object detections, increasing the utility of results for human analysts. 728 

This study develops and tests a prototype pipeline that successfully: 729 

• Decomposes remote sensing images into manageable tiles; 730 

• Executes detection models at scale using distributed orchestration; 731 

• Routes clustered detections into a generative analysis step; 732 

• Enables human-readable visualization and reporting via structured outputs and 733 
SVG overlays; and 734 

• Supports integration with spatio-temporal knowledge stores. 735 

These findings support the broader hypothesis that hybrid AI systems combining CV and 736 
GenAI components offer a practical path forward for high-volume geospatial workflows. 737 
This approach balances performance and cost, while preserving interpretability and ex- 738 
tensibility. As data volumes continue to increase, tools like OSML may offer the geospatial 739 
community a more sustainable way to process, analyze, and act on remote sensing im- 740 
agery at operational scale. 741 

Future research should focus on improving foundation model alignment with geospatial 742 
tasks, expanding model coverage for multi-sensor imagery, and refining orchestration 743 
tools for real-time and disconnected environments.  744 
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