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Abstract: Recent years have seen a rise in techniques for modeling discontinuous
dynamics, such as rigid contact or switching motion modes, using deep learn-
ing. A common claim is that deep networks are incapable of accurately modeling
rigid-body dynamics without explicit modules for handling contacts, due to the
continuous nature of how deep networks are parameterized. Here we investigate
this claim with experiments on established real and simulated datasets and show
that general-purpose graph network simulators, with no contact-specific assump-
tions, can learn and predict contact discontinuities. Furthermore, contact dynam-
ics learned by graph network simulators capture real-world cube tossing trajecto-
ries more accurately than highly engineered robotics simulators, even when pro-
vided with only 8 – 16 trajectories. Overall, this suggests that rigid-body dynamics
do not pose a fundamental challenge for deep networks with the appropriate gen-
eral architecture and parameterization. Instead, our work opens new directions for
considering when deep learning-based models might be preferable to traditional
simulation environments for accurately modeling real-world contact dynamics.
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1 Introduction

Model-based control relies on the ability to predict how objects in the world are going to be affected
by an agent’s actions. Considerable effort has therefore been invested into building precise analyt-
ical models of physical dynamics, such that these can be used effectively and efficiently for safe
planning and control. However, some effects such as frictional contacts or temperature-dependence
in actuators are hard to model or to estimate via system identification, resulting in significant drift
when such analytical models are used to predict real-world dynamics (the “sim-to-real gap”). To
counteract these problems, the last few years have seen increased interest in learned dynamics mod-
els which can be directly fit to real data [1, 2], run on hardware accelerators to significantly speed up
policy, model training and inference [3, 4], and may side-step issues of inferring state representations
by operating directly at the pixel level [5, 6, 7].

With the increased attention on learned models, there is an incentive to understand which kinds of
models can accurately capture the different types of dynamics a robot may encounter. In particular,
many tasks in robotics, from locomotion to manipulation, require making and breaking contact with
rigid objects. This phenomenon is known to be discontinuous [8, 9], as the spatial and temporal
scales on which rigid bodies deform during contact are imperceptibly small. Recent work has sug-
gested that modelling contacts presents a fundamental challenge for deep learning models because
of their tendency toward smooth interpolation [10, 11], but also even for analytic robotics simulators
when compared to real-world data [12, 1].

To remedy these issues with rigid-body dynamics learning, several papers have proposed combining
deep learning with analytic rigid-body dynamics models to varying degrees [1, 2, 11, 13, 14, 15].
While such techniques can improve stability and prediction accuracy in some cases, they also come
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with some of the same drawbacks as analytical solvers: the analytical components may pose re-
strictions on the type of objects and dynamics that can be simulated, may be hard to parameterize
correctly, or may induce strict time-stepping limits. This precludes the more general use of these
models in a wider variety of physical phenomena, such as interactions between rigid bodies and flu-
ids or deformable objects, and might hamper generalization to more complex, real-world situations
in which e.g. contact forces are not perfectly preserved.
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Figure 1: (a) A 2D projection of a sample 3D trajectory from Pfrom-
mer et al. [2] of a cube being tossed onto a table (orange) and the pre-
dictions obtained by a Graph Network Simulator (GNS) (blue). The
cube contacts the table along an edge, bouncing into the air. The red
line shows the time of contact. (b) The GNS is capable of represent-
ing and correctly resolving the velocity discontinuity introduced by
the rigid contact event (dashed red line), closely matching the ground
truth. The shaded area shows 95% confidence interval across 10 seeds.

Here we show that there
are simple, general ways
to use deep learning to
accurately model discon-
tinuous contact dynamics
without specific rigid con-
tact parameterizations, and
which lead to better perfor-
mance for real-world tra-
jectory modeling. We find
that graph network simula-
tors [16, 3], are sufficient to
capture rigid body dynam-
ics on both simulated and
real world data with excel-
lent sample efficiency, out-
performing learned mod-
els with explicit handling
of rigid contacts [2]. For
modeling real world cube
tosses, graph network sim-

ulators can even outperform carefully tuned analytic simulators common in robotics, such as Drake
[17], Bullet [18], and MuJoCo [19]. We perform carefully controlled experiments on a variety
of rigid-body dynamics environments, and demonstrate the specific architectural choices for graph
network simulators that support discontinuous dynamics learning. These results demonstrate that
explicit modeling of rigid contacts is not necessary for deep learning methods to handle discontin-
uous dynamics; instead, we find that general-purpose, relational, translation-equivariant models are
equally or more capable of handling these events precisely.

2 Related work

Dynamics with discontinuities, such as rigid-body collisions or frictional transitions, are challeng-
ing to learn due to the non-smooth and discontinuous nature of the dynamics involved [2, 10, 1].
Classical approaches model such behaviour via rigid [8] or approximately rigid contact mod-
els [20, 21, 22]. However, there is clear evidence that these methods struggle to capture the be-
haviour of real world rigid impacts [1, 12, 23].

Another approach is to learn a function that approximates the rigid-body dynamics directly from
data. For example, Gaussian processes (GPs) are a popular technique that has been used to control
robotic arms [24], learn slip-stick transitions [25] and model planar contact [1]. GPs are data-
efficient but include smoothness assumptions that do not generalize well to discontinuous dynamics.

To better capture discontinuities while still leveraging access to data, a variety of recent methods use
machine learning to augment analytic physics simulators. Some techniques parameterize contact
dynamics as a linear complementarity program, and provide differentiable solvers that can be cou-
pled with deep networks [13, 26]. Others incorporate a non-differentiable physics engine to make
predictions, but also learn a residual model to augment those such that they more closely reflect ob-
served dynamics [1, 14, 15]. Another class of approaches uses implicit models that embed analytic
equations and solvers within end-to-end techniques [2, 11]. In all cases, these techniques explicitly
encode rigid-body interactions, which limits their application to richer physical phenomena.

Over the past several years, Graph Neural Networks (GNNs) have been increasingly applied to
physical simulation. These models explicitly learn interactions between entities parameterized with
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Figure 2: Graph Network Simulator (GNS) model for rigid shapes. We construct the input meshes
M tk by applying the object center of mass’s translation and rotation T tk to the undeformed object
shapeMU . The encoder build a graph fromM tk , and encodes relative positional features into graph
nodes and edges. Next, the processor computes L × K message passing steps on this graph. The
decoder outputs accelerations ai for each node, which are integrated into updated node positions.

neural networks. Early applications of GNNs modeled interactions between simple rigid entities
like bouncing billiards [27], and later work extended this to more complex domains like pushed and
falling shapes [28, 29], moving robot bodies [30, 31, 32], and even fluids and deformable meshes
[33, 16, 3]. Despite the successes of these models in many areas, there have been no careful analyses
of how they perform in settings with hard discontinuities. Furthermore, most results are shown
only in simulation relative to some ground truth simulator, which are themselves often inaccurate
[1, 12]. Exacerbating this concern, recent papers have implied that there are simple cases where deep
networks fail to learn accurate collision dynamics [34, 10, 11]. These results cast doubt on whether
end-to-end deep learning models, including GNNs, are generally a good fit for learning rigid-body
interactions, particularly if the rigid bodies are complex, volumetric objects like cubes or cylinders.

In this work, we show for the first time that GNN-based simulators, constructed with simple design
choices, are capable of capturing real-world rigid contacts for some object shapes as effectively or
better than analytic models [19, 18, 17] and learned models with explicit contact handling [2]. We
conduct a series of ablations and experiments to shed light on exactly which properties of GNNs
enable this high performance.

3 Approach

A rigid-body simulation, or real-world experiment, can be described by the object shapes (e.g. rep-
resented by an undeformed mesh MU with nodes corresponding to object vertices, and edges corre-
sponding to object faces), and sequence of rigid transformations T = (T t0 , . . . , T tk) consisting of
the translation and rotation at each time step t. Here we consider a GNN-based approach to simu-
lation, trained using sequences of meshesM = (M t0 , . . . ,M tk), where each mesh consists of the
absolute position {xi} for each node, as well as edges connecting these nodes. We can obtain such
a sequence by applying T to the initial object shape MU as (T t0(MU ), . . . , T tk(MU )).

3.1 Learning Forward Dynamics

We define the Graph Network simulator (GNS) model sθ, which given M t and a short history of
states {M t−1, ...,M t−h} (we use h = 2), outputs a next state mesh prediction M̃ t+1. This model
can be iteratively applied for k steps to predict a trajectory (M t0 , M̃ t1 , ..., M̃ tk) (Figure 2). sθ is
represented by an Encode-Process-Decode GNN [3, 16, 35], adapted to rigid bodies. Below we
describe the model components. We specifically consider the case of an object interacting with the
floor, but multi-object collisions can be treated analogously using world edges as in [3].

Encoder The encoder constructs a graph G = (V, E) from the input mesh M t, using the mesh
vertices as nodes V , and mesh edges as graph edges E . Each node has features Vi = {vFD

i , bi}, where
vFD
i = (xti − xt−1i , . . . ,xt−h+1

i − xt−hi ) is the node’s finite-difference (FD) velocity over the input
history, and bi is the distance to the domain boundaries (here, the floor). The boundary distance bi is
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clipped to the range [0, 0.5] as in [16], to prevent overfitting for states far away from contact. An edge
from node i to j has features eij = {dij , ||dij ||,dU

ij , ||dU
ij ||}, where dij = xi − xj is a vector

of the relative displacement between the nodes i and j. Similarly, dUij denotes the displacement
between these nodes on the undeformed initial mesh MU , which can help the model to retain the
rigid shape. We note that this is a local and translation-equivariant encoding of the simulation state,
which is particularly important in the data-sparse setting. We also consider the commonly used
absolute position encoding [33, 29, 28, 30], in which Vi = {vFD

i ,xi,x
U
i }, Eij = {}, which does

not have these properties. All node and edges features, respectively, are concatenated and passed to
encoder multi-layer perceptrons (MLPs) that produce latent vectors of size 128 for each node and
edge in the graph.

Processor After encoding features, the processor computes several steps of message-passing
amongst the nodes in the graph as in [16]. In each message-passing step, each latent edge Eij
and node feature Vi is updated to E′ij and V ′i respectively according to:

E′ij ← ρE` (Eij , Vi, Vj), V ′i ← ρV` (Vi,
∑

j
E′ij) (1)

with ρE` and ρV` implemented as MLPs. A message passing block consists of L message passing
updates with unshared weights for all ρ`. Each step, this block is repeated K times, resulting in
L×K updates with O(L) weights.

Decoder The decoder MLP δV decodes the node latent features after the last message passing
step to predict the per-node finite-difference acceleration estimate ai for each node i. Compared to
predicting absolution position, this is a soft bias for inertial dynamics.

Model training and data augmentation We compute the loss as the per-node mean-squared-error
on acceleration prediction, and train the model using the Adam optimizer. The ground-truth accel-
eration is estimated from the position data using finite differences. While the model is translation-
equivariant by design, we can exploit an additional symmetry of the problem: during data loading of
a training pair, we rotate both input and target around the z (up) direction with an angle uniformly
sampled from [−π, π]. This decreases overfitting without requiring additional data.

Updater To generate simulation trajectories at test time, the model is applied iteratively. After
each step, the updater integrates the per-node acceleration predictions with an Euler integrator to
compute the next-step position as xt+1

i = ai + 2xti − xt−1i . For long rollouts, positional error
can accumulate and deform the object shape. As the only architectural distinction from Pfaff et al.
[3], we prevent this by using shape matching [36] during rollout. That is, after each step we fit a
transformation to the predicted node positions, and re-project the nodes to the transformed mesh
to enforce shape consistency (see Appendix B for details). We do not use shape matching during
training and compute the loss directly on network predictions.

4 Results

Rigid-body dynamics introduce two unique challenges for learning dynamics models: (1) discon-
tinuous dynamics during rigid collisions, and (2) extreme sensitivity to initial conditions. Our
experiments in this section provide a qualitative evaluation of the capabilities of GNS models
to handle the aforementioned problems, as well as quantitative comparisons with models encod-
ing rigid contact-specific priors. For videos of rollouts and access to code, please see https:
//sites.google.com/view/gnn-rigids/home.

4.1 Diagnostic qualitative results

We first perform a qualitative evaluation of whether a GNS can capture discontinuous dynamics and
its sensitivity to initial conditions. The GNS in Figure 1 was trained on 256 real cube tossing trajec-
tories from [2], while the GNS for Figure 3 was trained on 8096 simulated MuJoCo trajectories from
[10]. All figures show projections of 3D trajectories. See details on the training data in Appendix A.

4

https://sites.google.com/view/gnn-rigids/home
https://sites.google.com/view/gnn-rigids/home


(a) (b) (c) (d)

Figure 4: (a) Real world cube throwing dataset (Figure 3 from Pfrommer et al. [2]). (b) - (d):
performance metrics from [2] indicating positional error, rotation error, and predicted penetration
between the cube and the table. Lower is better. GNS (blue) is more accurate than the ContactNets-
Polytope method [2] (red) for > 64 training trajectories, and outperforms simulation with analytical
solvers with between 8 and 128 trajectories (dotted lines).

Discontinuous dynamics Consider the scenario shown in Figure 1(a). In this simple setup, a cube
is thrown onto the ground such that it contacts the floor along one of its edges. This contact produces
a sharp discontinuity in the velocity as the cube bounces upwards. In Figure 1(b), the graph network
simulator is able to capture the discontinuities on each bounce accurately, matching the real data
closely (even across 10 separate training seeds). This runs counter to prevailing belief (e.g. [10])
which suggests that deep networks struggle to learn such discontinuities.

= 44.75 = 45.25

(a) (b)

(c)

Time

Figure 3: Graph Network Simulators
learn to be appropriately sensitive to ini-
tial conditions, including capturing dis-
continuities. A cube is correctly pre-
dicted to fall to the left when angled <
45◦ respective to the floor, and right for
angles > 45◦.

Sensitivity to initial conditions Next, consider the sce-
nario shown in Figure 3. In this setup, a cube is falling di-
rectly downwards with a rotation θ close to 45◦. For any
angle θ < 45◦, the cube will fall to the left, while for any
angle θ > 45◦, the cube will fall to the right. Here the
model must be acutely sensitive to rotations differing by
fractions of a degree, as these will significantly affect the
final position of the cube. We see that the graph network
simulator closely captures the discontinuous behavior in
this diagnostic scenario: even for barely perceptible devi-
ations of 0.25◦, the simulator correctly predicts the final
position of the block (Figure 3a,b). This further under-
scores the ability of the learned model to handle sharp
discontinuities and multi-modal dynamics without pro-
ducing smoothed interpolations of the training data.

4.2 Quantitative accuracy comparisons

In this section, we measure the performance of Graph
Network Simulators on two established cube tossing
datasets from the robotics community designed to capture

challenges in rigid-body dynamics: a real-world cube tossing dataset from Pfrommer et al. [2], and
a MuJoCo-simulated cube tossing dataset from Parmar et al. [10]. We also investigate performance
on a subset of the more complex Kubric MOVi-A dataset [37].

Experiment setup The datasets from [2, 10] provide the center position and the rotation of the
cube at each time point, T tk(·). We convert these data into the positions for each node M tk , as our
model operates over nodes instead of center/rotation. We follow the experimental setup from [2, 10],
and compute the following metrics: Positional error: mean-squared error (MSE) over the position of
the cube center as a percentage of the cube width; Rotational error: the angle between the ground-
truth rotation and the prediction in degrees; Penetration: the distance of cube penetration through
the floor as a percentage of the cube width; all averaged over the simulation trajectory. Following
[2, 10], we train the model on a subset of trajectories from the dataset and show how the error on the
test set changes as a function of the training set size.

Real cubes Pfrommer et al. [2] introduce a real cube tossing dataset, providing cube positions and
orientations at each time step. We compare Graph Network Simulators to the implicit ContactNets
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(a) (b) (c)

Figure 5: Impact of different architectural choices for GNS. Lack of relative encoding (yellow)
causes unstable predictions; the method is however relatively robust to other changes, with ablations
decreasing performance but still allowing for better predictions than ContactNets at 256 trajectories.

model (which uses rigid-contact specific priors [2]) trained on this real data. We find that the GNS
outperforms ContactNets across all the presented metrics: rotational and position error, as well as
penetration depth. Perhaps more surprisingly, we find that the GNS outperforms carefully hard-
coded physics engines (Drake [17], PyBullet [18] and Mujoco [19]) in predicting the outcomes of
held-out real cube tosses. To compare the real data to these engines, Acosta et al. [12] used system
identification to determine the best fitting parameters for each engine to match the real cube tossing
experiment. Their results are shown as the dashed horizontal lines in Figure 4 (penetration was
not reported). The GNS trained on real cube data is able to outperform all analytic simulators in
predicting position and rotation (requiring 256 trajectories for superior position prediction, and as
few as 64 for rotation prediction). This suggests that the GNS, in certain circumstances, may be a
better choice for real-world transfer than physics simulation engines. For example, a GNS may be
preferable to circumvent error-prone system identification, or to adapt to eccentricities of the real
world setup which may not be explicitly modeled by analytical simulators.

Ablations In order to understand the contribution of different components of the Graph Network
Simulator, we conduct a series of ablations (Figure 5) on this dataset. These include encoding
and predicting absolute positions on node positions instead of encoding relative displacement and
predicting accelerations (GNS [abs]), removing shape matching (GNS [-sm]), limiting message-
passing steps to 1 (GNS [1-mp]), and removing data augmentation (GNS [-aug]). GNS [abs] shows
the largest difference: without the bias for inertial motion, the model has to make predictions on a
much larger dynamic range. Breaking translational equivariance also increases overfitting, leading
to unstable rollouts. Intriguingly, almost all ablations still perform better than or comparably to
ContactNets on the Penetration depth metric, reinforcing the observation that graph networks can
learn to resolve rigid collisions without explicit contact priors using very few training trajectories.
Further ablations can be found in Appendix C.

Robustness to noise Finally, we performed two experiments to investigate the robustness of the
GNS model to different types of noise. First, to simulate imperfect shape recovery from sensors,
we add Gaussian noise with standard deviation σ individually to the corners of the cube during
training. There is a graceful degradation of the positional and rotational error as noise is increased
(Figure 7a). Second, to simulate imperfect object tracking, we add noise to the cube’s tracked

(a) (b) (c)

Figure 6: (a) Renders from MuJoCo with different levels of ground penetration: hard, medium and
soft (Figure 3 from Parmar et al. [10]). (b), (c): performance metrics from [10] indicating positional
and rotation error between the cube and the table. GNS (blue) shows significantly lower error rates
than GRU [10], and better sample efficiency, for all stiffness levels.
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Figure 7: Testing the model’s robustness to noise. (a) Shape/Mesh noise is modeled by jittering the
positions of the vertices in the cube with Gaussian noise centered at 0 with standard deviation σ
(x-axis; σ relative to cube side length of 2.0). (b) Position noise is modeled by jittering the position
of the cube at each time-point in the trajectory relative to its current velocity. Noise is reported as a
fraction of the cube’s change in position between time-steps. Details in Appendix E.

position independently for each time-step of the trajectory during training. There is similarly a
graceful degradation in the rollout error for both cube position and rotation as noise is increased
(Figure 7b). In both cases, performance is better or comparable to ContactNets even for moderate
amounts of noise.

Simulated cubes with different stiffness In contrast to other rigid-body solvers, MuJoCo uses
a “soft” penalty-based contact model, with the contact stiffness determining how rigid the contacts
will be. Parmar et al. [10] explicitly vary this stiffness parameter in Mujoco to investigate the
ability of deep learning systems to model rigid vs. soft contacts. They show that a gated recurrent
neural network (GRU) performs worse when the data is generated using stiff contacts than when it is
generated using soft contacts, and note that this isolates one of the fundamental challenges for deep
learning models of rigid-body dynamics.

Here we show that GNSs are not very sensitive to the rigidity with which contacts are simulated.
As in Parmar et al. [10], we train the GNS on up to 10,000 trajectories (a total of 1e6 time steps)
for each of the three stiffness levels provided, and compare the GNS to the GRU reported in Parmar
et al. [10] in Figure 6b,c. The GNS not only outperforms the GRU, but more importantly shows
little difference in its ability to model soft, medium or hard contacts, particularly as the number of
training trajectories grows.

Tossing other objects Finally, we train a model on the Kubric MOVi-A dataset [37] which pro-
vides trajectories of complex shapes being tossed on the floor. This dataset is more diverse, consist-
ing of three object shapes (a cube with beveled edges, cylinder, sphere) with 51–64 vertices each,
two object sizes, and two sets of material properties (friction and restitution coefficients). Example
rollouts are shown in Figure 8(b). For this dataset, we additionally append the friction and restitu-
tion coefficients σ as node features, to allow the model to distinguish materials. We train a single
model for all object shapes and variants, and observe that we can achieve similarly low error rates of
14.6% position error and 17.2◦ rotational error even in this more complicated domain (Figure 8(c)).
The dataset was generated using Bullet, which uses hard collision constraints; the model can learn
to replicate this behavior, showing an extremely low penetration error of 0.016% in this domain.

(a) (b) (c)

Figure 8: Tossing geometric objects with 51–64 vertices (a) from the Kubric MOVi-A dataset [37].
Even in this complicated setup with multiple shapes and friction coefficients, GNS is able to produce
accurate rollouts (b, blue: prediction, green: Bullet [18] ground truth), and low error rates (c, blue).
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In general, we see similar trends in ablation experiments as for the cube datasets – e.g. GNS [abs]
also leads to unstable rollouts. We do however note a few differences: as seen in Figure 8(c), the
model benefits from more message passing steps (L = 10, K = 3, blue) vs (L = 5, K = 1, gray),
to compute collision response on these more detailed shapes. Due to the higher shape complexity,
we observe some (small) benefits from including rest position features (dUij). And finally, while one
might suspect that it would be harder to retain object rigidity for diverse shapes with more vertices,
we observe very little shape deformation in this dataset, and model variants with and without shape
matching perform equally well. This suggests that even the limited biases we built in to enforce
rigidity may be lifted with more data diversity, paving the way for more general, unified simulation
models involving rigid and deformable objects.

5 Discussion

We showed that Graph Network Simulators can precisely and accurately capture rigid-body dynam-
ics, including discontinuities introduced by contact. A trained GNS outperforms not only other end-
to-end approaches, but also other learning approaches with explicit contact assumptions [2]. Our
model, trained with sufficient real-world data, is on average more accurate than real-to-sim using
analytical physics engines (Drake [17], PyBullet [18] and MuJoCo [19]), matched to the same real-
world experiment setup. In simulation, GNSs perform equally well on data simulated with variable
levels of stiffness, and can also model other shapes, like cylinders, spheres, and beveled cubes.

We found that all aspects of the graph network simulator were necessary for best performance,
especially when few trajectories were available. Remarkably, with as few as 8 real world trajectories,
graph network simulators performed on par with a tuned MuJoCo model for predicting held-out real
world samples (64-256 trajectories were required to outperform Bullet [18] and Drake [17]). This
suggests that, at least in certain circumstances, graph network simulators may actually be a more
appropriate model of real-world physical dynamics than specialized hard-coded simulators.

The effectiveness of graph network simulators for rigid contact stems from two factors: (1) operating
on the explicit mesh geometry, which makes it easier to reason about contact and learn effective
collision detection, and (2) a set of very general physical inductive biases, such as inertial motion and
translational equivariance. Notably, these biases are not specific to rigid bodies, allowing methods
with similar architectures to be applied to e.g. deformable objects. Contrary to prior claims that
deep models struggle with discontinuous dynamics, Graph Network Simulators seem able to model
discontinuities in rigid body motion after training on very few sample trajectories. We emphasize
that there are still settings for which one might want to learn simulation models that exactly respect
analytical contact equations, as in [2, 11, 13]. However, for real-world data with dynamics which are
hard to model analytically, or estimate parameters for, Graph Network Simulators are an attractive
option for accurately learning dynamics end-to-end.

Limitations In this work, we focused on demonstrating that generic Graph Network Simulators
can accurately represent discontinuities arising from rigid-body collisions, but there are other aspects
to rigid-body dynamics as well. It would be interesting to train GNS models on larger, more com-
plex datasets beyond tossing single cubes, cylinders and spheres, including more complex shapes,
multiple interacting rigid objects, and complex robotic manipulation or locomotion data.

Robots rarely have access to precise state information (here, the locations and poses of all objects).
Instead, they have sensors that can provide haptic or visual information. The graph network sim-
ulators presented here rely on being able to extract the states of objects in the scene. While there
has been some progress coupling visual estimation with graph network simulation [38, 39, 40], it
remains unclear whether such combinations could support the level of precision needed to make
predictions about rigid body dynamics.

Finally, despite being good forward models of dynamics, this does not guarantee that Graph Network
Simulators will be useful for planning and control. Even when analytic differentiable rigid-body
physics simulators are available [41, 4, 42, 43, 13], planning through contact poses a variety of
challenges, such as combinatorics of local optima [44, 45, 8, 46] which can hamper finding a globally
optimal solution. While GNSs may be useful as differentiable models of more general physical
phenomena, they will not solve these particular challenges from planning and control directly.

8



Acknowledgments

We would like to thank Luis Piloto for reviewing an initial version of the paper and Yusuf Aytar for
helpful discussions.

References
[1] N. Fazeli, E. Donlon, E. Drumwright, and A. Rodriguez. Empirical evaluation of common

contact models for planar impact. In 2017 IEEE international conference on robotics and
automation (ICRA), pages 3418–3425. IEEE, 2017.

[2] S. Pfrommer, M. Halm, and M. Posa. Contactnets: Learning discontinuous contact dynamics
with smooth, implicit representations. Conference on Robot Learning (CoRL), 2020.

[3] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia. Learning mesh-based simula-
tion with graph networks. In International Conference on Learning Representations, 2021.

[4] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax–a differen-
tiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,
2021.

[5] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep
reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568,
2018.

[6] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through
video prediction. Advances in neural information processing systems, 29, 2016.

[7] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[8] P.-B. Wieber, R. Tedrake, and S. Kuindersma. Modeling and control of legged robots. In
Springer handbook of robotics, pages 1203–1234. Springer, 2016.

[9] M. Posa, M. Tobenkin, and R. Tedrake. Stability analysis and control of rigid-body systems
with impacts and friction. IEEE Transactions on Automatic Control (TAC), 61(6):1423–1437,
jun 2016.

[10] M. Parmar, M. Halm, and M. Posa. Fundamental challenges in deep learning for stiff contact
dynamics. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5181–5188. IEEE, 2021.

[11] Y. Jiang, J. Sun, and C. K. Liu. Data-augmented contact model for rigid body simulation. In
Learning for Dynamics and Control Conference, pages 378–390. PMLR, 2022.

[12] B. Acosta, W. Yang, and M. Posa. Validating robotics simulators on real-world impacts. IEEE
Robotics and Automation Letters, 2022.

[13] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. End-to-end
differentiable physics for learning and control. In Advances in Neural Information Processing
Systems 31, pages 7178–7189. Curran Associates, Inc., 2018.

[14] A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum, and A. Rodriguez.
Augmenting physical simulators with stochastic neural networks: Case study of planar pushing
and bouncing. In International Conference on Intelligent Robots and Systems (IROS), 2018.

[15] A. Kloss, S. Schaal, and J. Bohg. Combining learned and analytical models for predicting
action effects. CoRR, abs/1710.04102, 2017.

[16] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learning
to simulate complex physics with graph networks. In International Conference on Machine
Learning, pages 8459–8468. PMLR, 2020.

9



[17] R. Tedrake and the Drake Development Team. Drake: Model-based design and verification for
robotics, 2019. URL https://drake.mit.edu.

[18] E. Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, page 7.

[19] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[20] M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body contact problems with
friction as solvable linear complementarity problems. Nonlinear Dynamics, 14(3):231–247,
1997.

[21] D. Stewart and J. J. Trinkle. An implicit time-stepping scheme for rigid body dynamics with
Coulomb friction. International Journal for Numerical Methods in Engineering, 39(15):2673–
2691, 1996.
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