
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TIMESQUEEZE: DYNAMIC PATCHING FOR EFFICIENT
TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in time series forecasting has produced large foundation models
with strong generalization across domains. However, many of these models rely
on transformer backbones, making their effectiveness constrained by the cost of
processing the input context. The quadratic computational complexity with respect
to sequence length imposes a fundamental trade-off on existing designs: they must
either preserve high-frequency information using point-wise embeddings, which is
computationally expensive for long sequences, or employ patch-based embeddings
to reduce sequence length at the risk of discarding critical temporal details. To over-
come this limitation, we present TimeSqueeze, a hybrid forecasting architecture
that combines the strengths of both point and patch embeddings through dynamic
time series compression. TimeSqueeze introduces a novel two-stage hybrid repre-
sentation: (1) a lightweight state-space encoder processes the full-resolution time
series with point-wise embeddings to extract fine-grained temporal features, and
(2) an adaptive patching module intelligently prunes these features using variable-
sized patches, assigning smaller patches to information-rich regions and larger
patches to redundant segments. This hybrid approach yields a variable-resolution
representation that preserves critical temporal details while reducing computational
overhead. By retaining the fidelity of point embeddings and the efficiency of patch
embeddings, the resulting compressed sequence enables the Transformer backbone
to substantially reduce the input length without sacrificing forecasting accuracy.
Extensive experiments demonstrate that TimeSqueeze achieves state-of-the-art
forecasting performance while delivering substantial computational advantages,
including up to 8× improvement in pretraining data efficiency and up to 20×
reduction in pretraining time compared to equivalent point-embedding models.

1 INTRODUCTION

Accurate time-series forecasting is crucial across numerous domains, including energy, finance,
climate, and healthcare. Historically, forecasting has relied on narrow, task-specific statistical models;
however, recent advances in deep learning have enabled the development of versatile, generalist
models capable of cross-domain transfer. In particular, time-series foundation models trained on
heterogeneous datasets offer flexible zero-shot and few-shot generalization across a wide range of
forecasting tasks.

Effective pretraining of these foundation models necessitates modeling long historical contexts, often
extending to thousands of timesteps, which creates formidable computational and memory constraints.
Recent studies demonstrate that increasing context length during pretraining yields substantial
improvements in downstream inference performance (Gao et al., 2024; Liu et al., 2024). Therefore,
designing architectures that remain scalable and computationally efficient under long-context regimes
is imperative for realizing the full potential of time series foundation models.

Central to addressing these scalability challenges is the design of an efficient tokenizer that effectively
represents input signals in an embedding space while managing computational complexity. Current
approaches predominantly adopt one of two strategies. The first approach involves independently
encoding each time point (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Ansari et al.,
2024; Shi et al., 2024), which preserves fine-grained temporal variations and accommodates data of
arbitrary frequency and seasonality. However, this point-wise encoding strategy suffers from limited
scalability as sequence length increases, which is precisely the bottleneck that impedes long-context
pretraining. The second approach, pioneered by Nie et al. (2022) and subsequently adopted by
numerous transformer-based forecasting models (Goswami et al., 2024; Das et al., 2024; Woo et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2024; Liu et al., 2024), employs fixed-size patching to compress multiple consecutive time points into
a single embedding. While this patching strategy significantly enhances computational scalability, it
introduces some limitations that compromise its effectiveness. First, determining the optimal patch
size is non-trivial and heavily dependent on dataset-specific characteristics such as sampling frequency
and seasonal patterns, typically requiring empirical evaluation across different patch sizes for each
dataset. Second, and perhaps more critically, many time series exhibit heterogeneous information
density across different temporal regions, with some segments displaying rapid variations while
others remaining relatively stable. This temporal heterogeneity renders uniform patching suboptimal,
as it fails to adapt the representational granularity to the local complexity of the signal.

Motivated by these requirements, we propose TimeSqueeze, a hybrid time-series foundation model
that combines the expressive power of point-embeddings with the computational efficiency of patch-
embeddings. First, a lightweight state-space encoder extracts local fine-grained features at full
resolution. Then, a dynamic patching module groups these embeddings into patches of varying sizes,
allocating smaller patches to information-rich regions and larger patches to redundant ones, yielding
a variable-resolution representation. This compressed sequence is processed by a Transformer
backbone, which operates on significantly fewer tokens while preserving salient temporal dynamics,
thereby overcoming fixed patch size limitations and enabling scalable, high-fidelity modeling.

Our contributions are as follows:

• We propose TimeSqueeze, the first hybrid forecasting architecture to incorporate dynamic,
content-aware patching for adaptive compression in time series.

• We demonstrate that TimeSqueeze integrates seamlessly with existing Transformer back-
bones (e.g., Time-MoE), enabling pretraining of large-scale time series foundation models
with substantially reduced training budgets.

• We validate TimeSqueeze across diverse zero-shot forecasting benchmarks, achieving
performance on par with state-of-the-art point embedding models while delivering up to
20× faster training and 10× faster inference.

2 RELATED WORKS.

Long-sequence architectures. While Transformer architectures (Vaswani et al., 2017) have shown
strong time series forecasting performance due to their expressivity and flexibility, their quadratic
computational and memory complexity with respect to sequence length limits their scalability to long
historical contexts. Innovations such as (Li et al., 2019; Wu et al., 2021; Zhou et al., 2021) have
adapted Transformers for long-term forecasting, but pretraining on extremely long contexts remains
challenging. Recently, time-series foundation models have demonstrated scalability to long contexts
supporting arbitrary forecasting horizons, while Time-MoE (Shi et al., 2024) leveraged Mixture-
of-Experts routing to enable the first billion-parameter model with tractable inference. Despite
these advances, the cost of long-context pretraining remains high due to the underlying Transformer
backbone. Although state space model (SSM) architectures Gu & Dao (2023) handle long contexts
more efficiently, they remain underexplored for time series forecasting, highlighting the need for
scalable methods for efficient long-context processing.

Patch-based compression. Introduced in PatchTST (Nie et al., 2022), patch-based compression
has emerged as a fundamental technique for scaling time series foundation models. By embedding
contiguous sub-sequences (patches) rather than individual time points, this approach reduces the
effective sequence length while preserving essential local temporal patterns. Subsequent foundation
models, including TimesFM (Das et al., 2024), Moment (Goswami et al., 2024), Moirai (Woo et al.,
2024), and Timer-XL (Liu et al., 2024), have adopted this paradigm, collectively demonstrating that
patching enables more efficient training and inference. However, these approaches utilize a fixed
patch size for a given sequence, limiting their application to real-world data with high temporal
variance, underscoring the need for dynamic, data-driven compression strategies that can adjust
patching to varying temporal structures within a series.

Insights from language modeling. Similar challenges arise in large language models (LLMs), where
the choice of input representation has a direct impact on scalability and fidelity. Conventional tok-
enization introduces systematic biases and brittle dependencies, motivating tokenizer-free models that
operate at the byte level. Yet, naïve byte-level processing leads to prohibitively long input sequences

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

SSM Encoder

MoE Transformer

SSM Decoder

residual
connection

abstract
features

fine-grained
features

patching

upsampled
features

unpatching

pooled
positions

multi-horizon
forecasting heads

1 2 K

Router

Figure 1: Architectural overview of TimeSqueeze. An SSM encoder first processes the raw series at full
resolution to extract fine-grained features. Dynamic patching then adaptively compresses the sequence, selecting
the salient subset of embeddings. A Transformer backbone performs contextual modeling on the downsampled
features, and an unpatching module upsamples the signal to the original resolution while preserving causality.
Finally, an SSM decoder combines the compressed and fine-grained features, passing the hybrid features to
multi-horizon heads, thereby improving efficiency without sacrificing temporal fidelity.

(Slagle, 2024), straining attention-based architectures. To overcome this, adaptive compression
techniques have been proposed. The Byte Latent Transformer (BLT) dynamically merges predictable
byte spans into compact latent tokens using entropy-guided segmentation (Pagnoni et al., 2024), while
H-Net (Hwang et al., 2025), inspired by U-Net (Ronneberger et al., 2015) and its broad adaptation
in vision (Child, 2021; Ho et al., 2020; Wu et al., 2025), compresses and reconstructs sequences in
various resolutions, and uses a state-space model for more efficient byte-level processing. These
approaches highlight a key principle: efficiency and accuracy can be jointly achieved by allocating
higher granularity to information-dense regions and applying more aggressive compression where
redundancy dominates.

3 METHODOLOGY

Problem Statement. The fundamental objective in time-series forecasting is to predict future
values based on historical observations. Given a sequence of T historical data points, X1:T =
(x1, x2, . . . , xT) ∈ RT , the goal is to estimate the next H values of the series. This is formalized via
a model fθ that maps the historical context to future predictions, i.e., X̂T+1:T+H = fθ(X1:T) ∈ RH .
Adopting the channel independence principle of Nie et al. (2022), the model can flexibly process
multivariate time series by decomposing inputs into collections of univariate series. This general
formulation enables time-series foundation models to address forecasting tasks with arbitrary input
dimensionality, thereby supporting broad applicability across diverse, real-world domains.

3.1 ARCHITECTURAL OVERVIEW

To combine the expressivity of point-embeddings with the computational efficiency of patch em-
beddings, TimeSqueeze employs a hybrid multi-resolution architecture with four key components:
(1) a lightweight encoder-decoder pair operating at full input resolution to capture fine-grained
local features, (2) adaptive patching modules that dynamically select salient features for efficient
downsampling and upsampling, (3) a decoder-only MoE Transformer backbone for modeling causal

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

dependencies at scale, and (4) a multi-horizon forecasting head that jointly optimizes predictions
across multiple time horizons to support both short- and long-term forecasting, as shown in Figure 1.

Formally, the end-to-end model can be described as

H1:T = E(X1:T), Z1:P = M(P(H1:T)), Y1:T = D(H1:T ,U(Z1:P)) , (1)

where E is the encoder, P is the patching module, M is the MoE Transformer backbone, U is the
unpatching module, and D is the decoder. Here, X1:T ∈ RT denotes the original input sequence,
H1:T ∈ RT×D denotes the D-dimensional encoder embeddings, Z1:P ∈ RP×D denotes the patch-
level latent representation after P and M, and Y1:T ∈ RT×D denotes the decoder embeddings that
serve as the final representation for downstream forecasting.

3.1.1 STATE-SPACE ENCODER AND DECODER

The encoder and decoder modules operate directly on input time series at native resolution to preserve
fine-grained temporal details essential for accurate forecasting, particularly in high-frequency data.
To handle long, uncompressed sequences efficiently while generating representations suitable for
subsequent patching, both modules are constructed using Mamba layers (Gu & Dao, 2023).

Mamba offers nearly linear computational scaling with respect to sequence length, enabling extraction
of intricate local patterns from extended contexts by the encoder, without the quadratic complexity of
traditional Transformer architectures. Further, the decoder uses the same architecture to efficiently
combines outputs from the Transformer backbone with residual embeddings from the encoder to
produce final representations for forecasting, creating a rich multi-scale feature space that captures
both local fine-grained patterns and global contextual dependencies.

3.1.2 DYNAMIC PATCHING AND UNPATCHING

After the encoder produces fine-grained representations, the patching module compresses the sequence
of embeddings before passing them to the Transformer backbone. The objective is to allocate
computational resources efficiently by employing a dynamic patching strategy that adapts to the
local complexity of the input signal. This strategy forms larger patches to compress regions of low
information density while using smaller patches to preserve detail in regions of high information
content. A visualization of the patch boundaries for different datasets is provided in Appendix H.

Patching. Unlike language models that operate on discrete token sequences, time series data exist
in continuous space and exhibit rich statistical properties. This continuous nature makes time
series particularly amenable to characterization via statistical measures such as local variance or
power, without relying on external metrics for guidance (Pagnoni et al., 2024). We leverage this by
tracking the absolute difference between consecutive samples, comparing it to the average signal
power within a predetermined lookback window, and then computing the patch boundaries in the
original signal space rather than the embedding space. Formally, we maintain a sliding window
Wi = {xi−L, . . . , xi−1} of length L to compute the local average power as

Pi =
1

L

i−1∑
j=i−L

x2
j .

Our adaptive patching mechanism declares a patch boundary at timestep i if the absolute difference
between consecutive samples exceeds a threshold scaled by the local power, which we refer to as
relative deviation-based patching:

bi =

{
1 if |xi − xi−1| > τ

√
Pi

0 otherwise
.

Here, τ > 0 is a tunable threshold parameter controlling patch sensitivity and the average compression
ratio. Using

√
Pi normalizes the threshold with respect to signal amplitude, allowing the method

to adapt dynamically across varying signal magnitudes and variances. Once patch boundaries are
determined, the embeddings within each patch are compressed by retaining only the boundary
embeddings and discarding intermediate ones (Figure 1). Note that retaining only the boundary
embeddings helps preserve causality for the subsequent unpatching step.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Unpatching. The unpatching module restores the compressed embeddings to the original sequence
length while maintaining causal consistency. After backbone processing of boundary embeddings,
each updated embedding is repeated across all timesteps within its corresponding patch. Since
boundary embeddings represent the start of each patch, the reconstructed output at timestep t depends
only on inputs from times ≤ t, preventing leakage of future information.

Positional Information. Unlike language models, which predict the next discrete token, time series
forecasting models demands more nuanced objective during pretraining. Forecasting must occur at a
specified frequency within the original continuous signal space, not within the compressed embedding
space. Prior works on tokenizer-free language modeling, such as BLT (Pagnoni et al., 2024) and
Dynamic Chunking (Hwang et al., 2025), do not retain the original positional indices and restrict the
attention mechanism to relative positional information post-downsampling. In contrast, TimeSqueeze
explicitly preserves the position IDs of embeddings before downsampling and utilizes these absolute
positions to compute attention after compression.

3.1.3 MIXTURE-OF-EXPERTS TRANSFORMER BACKBONE

Due to its modular design, our hybrid feature extraction framework is compatible with any existing
time-series forecasting backbone. In this work, we adopt the Time-MoE backbone (Shi et al.,
2024), a scalable decoder-only Transformer augmented with a sparse MoE routing mechanism.
Time-MoE incorporates several enhancements to improve training stability and forecast accuracy: it
employs RMSNorm for layer normalization and replaces absolute positional encodings with Rotary
Positional Embeddings (RoPE), facilitating better handling of variable sequence lengths and improved
extrapolation. Following established design patterns, the standard feed-forward network (FFN) is
replaced by an MoE layer containing a pool of N non-shared experts alongside one shared expert
that consolidates common knowledge. For each input token, a routing mechanism selects the top K
non-shared experts to process the signal, enabling efficient scaling to billions of parameters while
maintaining manageable inference costs.

3.1.4 MULTI-HORIZON FORECASTING

To enhance forecasting flexibility and robustness, we employ a multi-horizon forecasting head as
introduced in (Shi et al., 2024). This approach enables simultaneous prediction across multiple future
horizons rather than restricting the model to a single forecast length. Specifically, it consists of
multiple single-layer FFNs, each dedicated to a distinct forecasting horizon. The model is trained
using a composite loss aggregating errors from all horizons, which improves generalization. During
inference, a simple scheduling strategy selects the appropriate horizon-specific output, enabling the
model to produce forecasts of arbitrary length flexibly.

3.2 MODEL TRAINING

Pretraining Dataset. Efficient pretraining of a foundation model necessitates a large and diverse
dataset. For this purpose, we employ the Time-300B dataset (Shi et al., 2024), a high-quality,
open-access dataset composed of time series from numerous public sources across various sectors,
including weather, transportation, and finance, which is further expanded with synthetic data. It
consists of a broad range of frequencies, ranging from seconds to yearly, and a massive scale of over
300 billion time points, making it well-suited for pretraining large-scale models.

Loss Formulation. Following Shi et al. (2024), our training objective is a composite loss function
that combines a primary forecasting loss with an auxiliary term for load balancing, which enables a
fair comparison against the point-embedding baseline Time-MoE. The primary auto-regressive loss,
Lar, is the Huber Loss (Huber, 1992), chosen for its robustness against outliers:

Lar(xt, x̂t) =

{
1
2 (xt − x̂t)

2, if |xt − x̂t| ≤ δ,

δ
(
|xt − x̂t| − 1

2δ
)
, otherwise,

(2)

where δ is a hyperparameter that balances the quadratic (L2) and linear (L1) penalties.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To ensure balanced expert utilization and prevent routing collapse, we incorporate an auxiliary loss,
Laux, as proposed in Fedus et al. (2022):

Laux = N

N∑
i=1

firi, (3)

where fi is the fraction of tokens dispatched to expert i, and ri is the average router probability
assigned to the expert. The final training loss, L, averages the auto-regressive loss across K multi-
resolution projections and combines it with the weighted auxiliary loss:

L =
1

K

K∑
j=1

Lar

(
Xt+1:t+pj

, X̂t+1:t+pj

)
+ αLaux, (4)

where pj is the forecast horizon for the j-th projection and α is a scaling coefficient.

Model Configuration. We consider two model sizes in this work, demonstrating the scalability
of our approach. TimeSqueeze base has a total of 117M parameters with 54M active parameters,
while TimeSqueeze large contains 469M total parameters with 216M active parameters. Both models
are trained for 100,000 steps with a batch size of 256 and a maximum context length of 2048,
corresponding to 500K time points per iteration and a total of 50B time steps during pretraining.
Finally, for the patching and unpatching modules, we target an average compression rate of 4 in
TimeSqueeze by setting the threshold factor τ = 0.3, and limiting the maximum patch size to 8,
balancing computational savings and information preservation. Further configuration details are
provided in Appendix A.

4 EXPERIMENTAL RESULTS

Baselines. Our primary objective is to demonstrate the efficiency and performance improvements of
TimeSqueeze over point embedding models through dynamic context compression. We use TimeMoE
as our baseline, and pretrain TimeSqueeze following the training scheme of Shi et al. (2024), but
using 8× lesser data and ≈ 20× less train time, as shown in Figure 2a. We forecast on four prediction
horizons {96, 192, 336, 720} but use the same context length of 512 in all cases. While, we study the
point-forecasting performance of TimeSqueeze, but it can easily be extended to provide probabilistic
forecasts by substituting the model’s linear projection head with a probabilistic head. We assess
model performance using the mean squared error (MSE) and mean absolute error (MAE), computed
between the predicted values and the ground truth. For completeness, we also compare against
Moirai-large (Woo et al., 2024), TimesFM (Das et al., 2024), Moment (Ansari et al., 2024), and
Chronos (Goswami et al., 2024), with results taken from Shi et al. (2024).

4.1 ZERO-SHOT FORECASTING

We first compare the zero-shot performance of TimeSqueeze base and TimeSqueeze large against
Time-MoEbase and large on the well-studied long-term forecasting benchmarks (Zhou et al., 2021) and
the Weather data (Wu et al., 2021). These datasets were not included in the Time-300B dataset and
not used for training the TimeSqueeze. Detailed zero-shot forecasting results are presented in Table 1,
demonstrating that TimeSqueeze performs remarkably well, achieving a performance similar to that
of Time-MoE. Further results for higher compression rates are provided in Appendix D.

Additional comparisons for TimeSqueeze against Time-MoE are presented in Section E. We note
that the performance of TimeSqueeze large is slightly worse than TimeSqueeze base in some scenarios,
likely due to the limited training budget.

4.2 IN-DISTRIBUTION FORECASTING

We now measure the full-shot performance by finetuning TimeSqueeze on the train split of the
same benchmarks. For finetuning, we choose a learning rate of 1e-4 and fine-tune the pretrained
model for just one epoch. We compare the full-shot performance against Liu et al. (2023); Wang
et al. (2024); Wu et al. (2022); Nie et al. (2022); Zeng et al. (2023), in addition to the finetuned
version of Time-MoEbase. As seen from Table 2, TimeSqueeze still performs close to Time-MoE, and
outperforms all other baselines considered.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of zero-shot forecasting. Bold for best and underscore for 2nd best.

Models Metrics TimeSqueeze base TimeSqueeze large Time-MoEbase Time-MoElarge Moiraibase TimesFM Moment Chronoslarge

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.359 0.385 0.360 0.379 0.357 0.381 0.350 0.382 0.376 0.392 0.414 0.404 0.688 0.557 0.441 0.390
192 0.400 0.410 0.402 0.407 0.388 0.412 0.384 0.404 0.417 0.413 0.465 0.434 0.688 0.560 0.502 0.424
336 0.420 0.423 0.423 0.412 0.411 0.430 0.411 0.434 0.433 0.428 0.503 0.456 0.675 0.563 0.576 0.467
720 0.428 0.446 0.441 0.448 0.427 0.455 0.449 0.477 0.447 0.444 0.511 0.481 0.683 0.585 0.835 0.583
Avg. 0.402 0.416 0.407 0.414 0.394 0.419 0.400 0.420 0.417 0.419 0.473 0.443 0.683 0.566 0.588 0.466

ETTh2

96 0.282 0.346 0.290 0.355 0.305 0.359 0.302 0.354 0.294 0.330 0.315 0.349 0.342 0.396 0.320 0.345
192 0.349 0.394 0.368 0.413 0.351 0.386 0.364 0.385 0.365 0.375 0.388 0.395 0.354 0.402 0.406 0.399
336 0.379 0.422 0.405 0.447 0.391 0.418 0.417 0.425 0.376 0.390 0.422 0.427 0.356 0.407 0.492 0.453
720 0.444 0.471 0.445 0.441 0.419 0.454 0.537 0.496 0.416 0.433 0.443 0.454 0.395 0.434 0.603 0.511
Avg. 0.363 0.408 0.377 0.414 0.366 0.404 0.405 0.415 0.362 0.382 0.392 0.406 0.361 0.409 0.455 0.427

ETTm1

96 0.312 0.344 0.304 0.334 0.338 0.368 0.309 0.357 0.363 0.356 0.361 0.370 0.654 0.527 0.457 0.403
192 0.372 0.385 0.358 0.367 0.353 0.388 0.346 0.381 0.388 0.375 0.414 0.405 0.662 0.532 0.530 0.450
336 0.435 0.425 0.403 0.396 0.381 0.413 0.373 0.408 0.416 0.392 0.445 0.429 0.672 0.537 0.577 0.481
720 0.547 0.494 0.486 0.444 0.504 0.493 0.475 0.477 0.460 0.418 0.512 0.471 0.692 0.551 0.660 0.526
Avg. 0.417 0.412 0.388 0.385 0.394 0.415 0.376 0.406 0.406 0.385 0.433 0.418 0.670 0.536 0.555 0.465

ETTm2

96 0.181 0.275 0.179 0.272 0.201 0.291 0.197 0.286 0.205 0.273 0.202 0.270 0.260 0.335 0.197 0.271
192 0.248 0.323 0.251 0.325 0.258 0.334 0.250 0.322 0.275 0.316 0.289 0.321 0.289 0.350 0.254 0.314
336 0.310 0.363 0.319 0.368 0.324 0.373 0.337 0.375 0.329 0.350 0.360 0.366 0.324 0.369 0.313 0.353
720 0.431 0.437 0.425 0.428 0.488 0.464 0.480 0.461 0.437 0.411 0.462 0.430 0.394 0.409 0.416 0.415
Avg. 0.292 0.349 0.294 0.348 0.317 0.365 0.316 0.361 0.311 0.337 0.328 0.346 0.316 0.365 0.295 0.338

Weather

96 0.1671 0.2172 0.170 0.221 0.160 0.214 0.159 0.213 0.220 0.217 - - 0.243 0.255 0.194 0.235
192 0.2188 0.2690 0.224 0.275 0.210 0.260 0.215 0.266 0.271 0.259 - - 0.278 0.329 0.249 0.285
336 0.278 0.315 0.292 0.326 0.274 0.309 0.291 0.322 0.286 0.297 - - 0.306 0.346 0.302 0.327
720 0.364 0.372 0.409 0.396 0.418 0.405 0.419 0.400 0.373 0.354 - - 0.350 0.374 0.372 0.378
Avg. 0.257 0.293 0.274 0.305 0.265 0.297 0.271 0.300 0.287 0.281 - - 0.294 0.326 0.279 0.306

Average 0.346 0.376 0.348 0.373 0.347 0.380 0.352 0.380 0.357 0.361 0.407 0.403 0.465 0.440 0.434 0.400

4.3 EFFICIENCY COMPARISON

We now compare the training and inference efficiency of TimeSqueeze base with the point-embedding
baseline Time-MoEbase model in terms of GPU hours and memory utilization. All experiments were
conducted on 2× NVIDIA A100 80GB GPUs.

(a) (b)

Figure 2: Computational efficiency comparison between TimeSqueeze base and Time-MoE: (a) Training memory
and time requirements across different batch sizes and context lengths. TimeSqueeze achieves comparable
performance while reducing memory usage by 3.4× and training time by ≈ 20×. (b) Inference throughput
across prediction horizons. TimeSqueeze delivers up to 10.5× higher throughput for longer prediction horizons.

In Figure 2a, we plot the pretraining time and memory required for different (batch size, con-
text length) for Time-MoE and TimeSqueeze, when trained for 100, 000 iterations. When using
(1024, 4096), we see that TimeSqueeze uses 2.6× less memory and 2.4× less compute compared to
Time-MoE. Furthermore, when running on a smaller budget, TimeSqueeze is trained with (256, 2048),
which uses 3.4× less memory and 19.25× less training time while still achieving performance com-
parable to Time-MoE, as shown in Table 1.

In Figure 2b, we plot the inference throughput for different forecasting horizons. We use a context
length of 512 for TimeSqueeze and the original context lengths from (Shi et al., 2024) for Time-MoE.
We see that TimeSqueeze scales more gracefully with respect to context length, showing up to 10.5×

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of full-shot forecasting. Bold for best and underscore for 2nd best.

Models Metrics TimeSqueeze base Time-MoEbase iTransformer TimeMixer TimesNet PatchTST DLinear

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.354 0.384 0.345 0.375 0.386 0.405 0.375 0.400 0.384 0.402 0.414 0.419 0.423 0.448
192 0.397 0.412 0.372 0.396 0.441 0.436 0.436 0.429 0.421 0.429 0.460 0.445 0.471 0.474
336 0.418 0.427 0.389 0.412 0.487 0.458 0.484 0.458 0.491 0.469 0.501 0.466 0.570 0.546
720 0.423 0.454 0.410 0.443 0.503 0.491 0.498 0.482 0.521 0.500 0.500 0.488 0.653 0.621
Avg. 0.398 0.419 0.379 0.406 0.454 0.447 0.448 0.442 0.454 0.450 0.468 0.454 0.529 0.522

ETTh2

96 0.274 0.336 0.276 0.340 0.297 0.349 0.289 0.341 0.340 0.374 0.302 0.348 0.745 0.584
192 0.337 0.379 0.331 0.371 0.380 0.400 0.372 0.392 0.402 0.414 0.388 0.400 0.877 0.656
336 0.373 0.408 0.373 0.402 0.428 0.432 0.386 0.414 0.452 0.541 0.426 0.433 1.043 0.731
720 0.417 0.449 0.404 0.431 0.427 0.445 0.412 0.434 0.462 0.657 0.431 0.446 1.104 0.763
Avg. 0.350 0.393 0.346 0.386 0.383 0.406 0.364 0.395 0.414 0.496 0.386 0.406 0.942 0.683

ETTm1

96 0.289 0.332 0.286 0.334 0.334 0.368 0.320 0.357 0.338 0.375 0.329 0.367 0.404 0.426
192 0.344 0.366 0.307 0.358 0.377 0.391 0.360 0.381 0.374 0.387 0.367 0.385 0.450 0.451
336 0.398 0.396 0.354 0.390 0.426 0.420 0.390 0.404 0.410 0.411 0.399 0.410 0.532 0.515
720 0.502 0.451 0.433 0.445 0.491 0.459 0.454 0.441 0.478 0.450 0.454 0.439 0.666 0.589
Avg. 0.383 0.386 0.345 0.381 0.407 0.409 0.381 0.395 0.400 0.405 0.387 0.400 0.513 0.495

ETTm2

96 0.168 0.256 0.172 0.265 0.180 0.264 0.175 0.258 0.187 0.267 0.175 0.259 0.287 0.366
192 0.225 0.298 0.228 0.306 0.250 0.309 0.237 0.299 0.249 0.309 0.241 0.302 0.414 0.392
336 0.278 0.335 0.281 0.345 0.311 0.348 0.298 0.340 0.321 0.351 0.305 0.343 0.597 0.542
720 0.366 0.395 0.403 0.424 0.412 0.407 0.391 0.396 0.408 0.403 0.402 0.400 1.730 1.042
Avg. 0.259 0.321 0.271 0.335 0.288 0.332 0.275 0.323 0.291 0.332 0.280 0.326 0.757 0.610

Weather

96 0.152 0.199 0.151 0.203 0.154 0.208 0.163 0.209 0.172 0.220 0.177 0.218 0.158 0.230
192 0.201 0.249 0.195 0.246 0.202 0.251 0.208 0.250 0.219 0.261 0.225 0.259 0.206 0.277
336 0.259 0.297 0.247 0.288 0.252 0.287 0.251 0.287 0.280 0.306 0.278 0.297 0.272 0.335
720 0.360 0.372 0.352 0.366 0.302 0.376 0.339 0.341 0.365 0.359 0.354 0.348 0.308 0.418
Avg. 0.243 0.279 0.236 0.275 0.250 0.280 0.240 0.271 0.259 0.286 0.258 0.280 0.258 0.315

Average 0.327 0.360 0.315 0.357 0.356 0.375 0.342 0.365 0.364 0.394 0.356 0.373 0.600 0.525

faster inference for longer prediction horizons, making TimeSqueeze more suitable for on-device
inference.

4.4 ABLATION STUDIES

We conduct systematic ablation studies to quantify the contributions of key components in
TimeSqueeze. We use TimeSqueeze base for all ablation studies, which were trained using the
same approach as described in Section 3.2. During inference, we use a context length of 512 for
TimeSqueeze and the original context lengths used in (Shi et al., 2024) for Time-MoE.

4.4.1 MODEL COMPONENTS

Dynamic vs. Fixed Patching. We compare our proposed relative deviation-based dynamic patching
approach with fixed patching. For the fixed patching baseline with patch size 4, embeddings are
uniformly downsampled by retaining every 4th element. Results show that dynamic patching consis-
tently outperforms fixed patching by effectively focusing computational resources on information-rich
segments rather than optimizing only for a compression rate at the risk of discarding critical inter-
mediate samples. This underscores the importance of dynamic compression strategies for handling
temporal heterogeneity in time-series data.

Mamba vs. Linear Encoder. To assess the importance of our SSM encoder-decoder, we replace
it with simple linear embedding layers akin to the architectures used in Moirai (Woo et al., 2024)
and TimesFM (Das et al., 2024). The SSM-based encoder achieves substantial gains over linear
projections, confirming its suitability for capturing fine-grained temporal features and its inductive
bias, which is beneficial for sequential compression.

Importance of Fine-Grained Features. We evaluate the contribution of preserving detailed temporal
information by ablating the residual connection illustrated in Figure 1, relying solely on compressed
features for forecasting. This modification results in noticeable performance degradation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Positional Encoding Analysis. We investigate the role of preserving positional information by
comparing absolute position embeddings of boundary elements with relative positional encodings
applied to compressed embeddings. Removing absolute positional cues results in notable performance
drops, highlighting the necessity of absolute temporal positioning to maintain temporal coherence in
the reconstructed sequences.

Observation. Figure 3a shows the summary of these ablations, by plotting the average MSE across
the five benchmarking datasets for a prediction horizon of 96. The results clearly indicate that the
inductive bias of SSM, combined with the dynamic context-aware pruning of SSM embeddings,
is crucial to achieving optimal performance, while the residual connection and the use of absolute
position IDs play a minor role. The full results are included in Appendix F, Table 6.

4.4.2 LONG-CONTEXT PRETRAINING

Recent studies show that pretraining with longer context lengths can improve inference performance
even when using shorter contexts during deployment (Liu et al., 2024). We investigate this by training
TimeSqueeze with different maximum pretraining context lengths under a fixed token budget of
approximately 50B tokens. All models are trained for 100,000 steps, with batch sizes adjusted to
account for context length differences, while maintaining an inference context length of 512 tokens.

Figure 3b demonstrates that longer pretraining contexts consistently improve inference performance
even when using a shorter inference context pf 512 always. This indicates that exposure to extended
sequences during pretraining enables TimeSqueeze to develop more robust temporal representations
that effectively transfer to shorter inference contexts. Notably, unlike Time-MoE, TimeSqueeze
achieves strong inference performance with short contexts, despite being pretrained on longer
sequences, significantly reducing computational overhead during deployment.

(a) (b)

Figure 3: Model analysis: (a) Average MSE across five benchmark datasets for prediction horizon 96 with
different model components. (b) Effect of Pretraining Context Length on Forecasting Performance. Longer
pretraining context translates to improved performance, even when the inference context remains fixed at 512.

5 CONCLUSION

We present TimeSqueeze, the first time-series forecasting model to explore dynamic input compres-
sion using a content-aware patching mechanism, which combines the temporal fidelity of point em-
bedding models with the computational efficiency of patch-based approaches. Our relative deviation-
based metric enables data-driven patching, producing representations that optimally allocate com-
putational resources to where they provide the most significant benefit for forecasting. TimeSqueeze
achieves performance comparable to the baseline point embedding model Time-MoE, while achieving
8× improvement in pretraining data efficiency and up to 20× reduction in pretraining time.

Our work opens several promising research directions focusing on variable-rate patching and compres-
sion for time series forecasting. Despite the relative threshold-based patching being scale independent,
it still requires hyperparameter tuning in terms of threshold factor τ . Alternatively, patch boundaries
could be learned end-to-end in embedding spaces (Hwang et al., 2025) or use an auxiliary model for
guidance (Pagnoni et al., 2024). In addition, TimeSqueeze could benefit from scaling the number of
parameters in the backbone and the amount of training data, similar to Time-MoE (Shi et al., 2024),
while supporting multiple context compression rates with a single model.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Song Chen. Beijing multi-site air-quality data. UCI Machine Learning Repository, 10:C5RK5G,
2019.

Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on images.
In International Conference on Learning Representations, 2021.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context language
models (effectively). arXiv preprint arXiv:2410.02660, 2024.

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman, and Pablo Montero-
Manso. Monash time series forecasting archive. arXiv preprint arXiv:2105.06643, 2021.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology
and distribution, pp. 492–518. Springer, 1992.

Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical
sequence modeling. arXiv preprint arXiv:2507.07955, 2025.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer-xl: Long-context
transformers for unified time series forecasting. arXiv preprint arXiv:2410.04803, 2024.

Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen,
Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, et al. Subsea-
sonalclimateusa: A dataset for subseasonal forecasting and benchmarking. Advances in Neural
Information Processing Systems, 36:7960–7992, 2023.

Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, and Aditya Grover. Climatelearn: Bench-
marking machine learning for weather and climate modeling. Advances in Neural Information
Processing Systems, 36:75009–75025, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer: Patches
scale better than tokens. arXiv preprint arXiv:2412.09871, 2024.

Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and Nils
Thuerey. Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of
Advances in Modeling Earth Systems, 12(11):e2020MS002203, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
moe: Billion-scale time series foundation models with mixture of experts. arXiv preprint
arXiv:2409.16040, 2024.

Kevin Slagle. Spacebyte: Towards deleting tokenization from large language modeling. Advances in
Neural Information Processing Systems, 37:124925–124950, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv preprint
arXiv:2405.14616, 2024.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Yulun Wu, Louis McConnell, and Claudia Iriondo. Counterfactual generative modeling with varia-
tional causal inference. In The Thirteenth International Conference on Learning Representations,
2025.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Yu Zheng, Xiuwen Yi, Ming Li, Ruiyuan Li, Zhangqing Shan, Eric Chang, and Tianrui Li. Forecasting
fine-grained air quality based on big data. In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 2267–2276, 2015.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference on
machine learning, pp. 27268–27286. PMLR, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PRETRAINING CONFIGURATION

The training configuration follows the same as Time-MoE: forecasting horizons are set to
{1, 8, 32, 64} in the output projection, and the auxiliary loss weighting factor α is 0.02. We optimize
with AdamW using initial learning rate 1 × 10−3, weight decay 0.1, β1 = 0.9, and β2 = 0.95.
The learning rate scheduler employs a linear warmup for the first 10,000 steps, followed by cosine
annealing to a minimum learning rate of 5× 10−5. Training is performed on 2 NVIDIA A100 80GB
GPUs using BF16 precision, and the configurations for each model are described in detail in Table 3.

Table 3: Model configurations.

Enc. Layers Dec. Layers dmodel dstate dconv expand Params

TimeSqueeze base 2 2 384 128 4 4 4M
TimeSqueeze large 2 2 768 128 4 4 16M

(a) Mamba encoder–decoder.

Model Layers Heads Experts K dmodel dff dexpert Activated Params Total Params

TimeSqueeze base 12 12 8 2 384 1536 192 50M 113M
TimeSqueeze large 12 12 8 2 768 3072 384 200M 453M

(b) Transformer backbone.

B DOWNSAMPLING OF PRETRAINING DATASET

The original Time-300B dataset is heavily skewed by the Nature domain, which contributed to more
than 90% of the dataset, as shown in Table 4.

Table 4: Key statistics of the pre-training dataset Time-300B from various domains.

Energy Finance Healthcare Nature Sales Synthetic Transport Web Other Total

Seqs. 2,875,335 1,715 1,752 31,621,183 110,210 11,968,625 622,414 972,158 40,265 48,220,929
Obs. 15.981 B 413.696 K 471.040 K 279.724 B 26.382 M 9.222 B 2.130 B 1.804 B 20.32 M 309.09 B
Percent % 5.17% 0.0001% 0.0001% 90.50% 0.008% 2.98% 0.69% 0.58% 0.006% 100%

And within the Nature domain, the 3 largest domains datasets contribute the most, as seen in Table 5.

Table 5: Key properties of Nature dataset from Time-300B..

Dataset Domain Freq. # Time Series # Obs. Source
Weatherbench (Hourly) Nature H 3,984,029 74,630,250,518 (Rasp et al., 2020)
Weatherbench (Daily) Nature D 301,229 3,223,513,345 (Rasp et al., 2020)
Weatherbench (Weekly) Nature W 226,533 462,956,049 (Rasp et al., 2020)
Beijing Air Quality Nature H 4,262 2,932,657 (Chen, 2019)
China Air Quality Nature H 17,686 4,217,605 Zheng et al. (2015)
CMIP6 Nature 6H 14,327,808 104,592,998,400 Nguyen et al. (2023)
ERA5 Nature H 11,940,789 93,768,721,472 Nguyen et al. (2023)
Oikolab Weather Nature H 309 615,574 (Godahewa et al., 2021)
Saugeen Nature D 38 17,311 (Godahewa et al., 2021)
Subseasonal Nature D 17,604 51,968,498 (Mouatadid et al., 2023)
Subseasonal Precipitation Nature D 13,467 4,830,284 (Mouatadid et al., 2023)
Sunspot Nature D 19 45,312 (Godahewa et al., 2021)
Temperature Rain Nature D 13,226 3,368,098 (Godahewa et al., 2021)
Weather Nature D 9,525 26,036,234 (Ansari et al., 2024)

In order to reduce the bias from these 3 datasets, we downsample the top 3 datasets by 30% at random
during pretraining, bringing down the total number of samples in the pretraining dataset from 309B
to ≈120B.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C TRAINING TOKENS VS PERFORMANCE

Figure 4 demonstrates that TimeSqueeze exhibits favorable scaling behavior, with performance
consistently improving as the training budget increases from 10B to 50B tokens. This scaling trend
aligns with observations in (Shi et al., 2024), indicating that TimeSqueeze can effectively leverage
larger datasets and computational resources. The consistent performance gains across different
training scales suggest that TimeSqueeze exhibits similar scaling behavior to Time-MoE but with
significantly improved data and compute efficiency, positioning it as a promising candidate for even
larger-scale pretraining regimes.

Figure 4: Performance scaling with training data size: Average MSE for 96-horizon forecasting across five
benchmarks shows consistent improvement with increased training tokens.

D COMPRESSION RATE VS PERFORMANCE

For the main results, we choose a moderate compression rate of 4×. We now compare the performance
against two more variants of TimeSqueeze base trained with a target compression rate of 6× and 8×,
by adjusting the threshold factor to 0.4 and 0.45 respectively. And we plot the average MSE across
the five datasets for prediction horizon 96. As expected, while the computational efficiency increases
with higher compression, the performance also drops noticeably. techniques such as heirarchical
compression

Figure 5: Performance scaling with training data size: Average MSE for 96-horizon forecasting across five
benchmarks shows consistent improvement with increased training tokens.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

E PERFORMANCE FOR A FIXED CONTEXT LENGTH

TimeSqueeze offers two key advantages over Time-MoE: First is the reduced token count to the
Transformer backbone through dynamic compression. Further, TimeSqueeze also improves forecast-
ing capability over longer horizons using shorter historical contexts, compared to point embedding
models.

Our analysis demonstrates that for a fixed context length, TimeSqueeze significantly outperforms the
point embedding baseline Time-MoE when predicting long-horizon forecasts. Figure 6 shows that
for a given context length of 512, TimeSqueeze achieves a superior forecasting accuracy for the a
horizon of 336. This improvement stems from our adaptive patching mechanism, which enables the
model to extract more informative temporal patterns from limited historical data.

Figure 6: Performance comparison between TimeSqueeze and Time-MoE for a given context length for prediction
horizon 336. TimeSqueeze noticeably outperforms the point-embedding baseline when the available context is
limited.

F ADDITIONAL ABLATION RESULTS

Table 6 contains the full et of results for the ablation studies presented in Section 4.4.

Table 6: Ablation study on zero-shot forecasting performance for prediction horizon 96.

Model / Variation ETTh1 ETTh2 ETTm1 ETTm2 Weather Average

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

TimeSqueeze base 0.357 0.384 0.281 0.336 0.311 0.343 0.181 0.270 0.166 0.216 0.259 0.310
Time-MoEbase 0.357 0.381 0.305 0.359 0.338 0.368 0.201 0.291 0.160 0.214 0.272 (+5.0%) 0.323 (+4.2%)

TimeSqueeze w/ fixed patching 0.373 0.396 0.455 0.448 0.359 0.382 0.335 0.380 0.178 0.232 0.340 (+31.3%) 0.368 (+18.7%)
TimeSqueeze w/ linear patching (no SSM) 0.379 0.401 0.481 0.463 0.370 0.375 0.375 0.402 0.158 0.174 0.353 (+36.3%) 0.363 (+17.1%)
TimeSqueeze w/o fine-grained features 0.366 0.388 0.277 0.342 0.339 0.362 0.187 0.283 0.169 0.218 0.268 (+3.5%) 0.319 (+2.9%)
TimeSqueeze w/o original pos. IDs 0.375 0.393 0.291 0.358 0.346 0.363 0.191 0.293 0.169 0.219 0.274 (+5.8%) 0.325 (+4.8%)

F.1 INFERENCE CONTEXT LENGTH VS PERFORMANCE

While longer context lengths generally provide more historical information for forecasting, the
relationship between context length and performance is not monotonic. We investigate the effect of
varying inference context lengths on forecasting accuracy by evaluating TimeSqueeze with context
lengths ranging from 96 to 1536 tokens while keeping all other hyperparameters fixed.

Figure 7 reveals that performance initially improves as context length increases from 96 to 1536,
reaching optimal performance around 512. However, further increasing the context length beyond

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

this range leads to marginal performance degradation. This suggests that while additional historical
context can be beneficial up to a certain point, excessively long contexts may introduce noise or make
it harder for the model to focus on the most relevant patterns.

Figure 7: Forecasting performance improves with context length up to 512-800 tokens, then plateaus or slightly
degrades.

G VISUALIZATION OF PATCHING

We provide the visualization of dynamic patches computed for an example segment of 128 samples
from each of the evaluation datasets in Figures 8, 9, and 10. As we can see, weather dataset has
slower variation in data resulting in larger patch sizes, whereas ETTm data has several regions with
rapidly varying signal, resulting in much smaller patch sizes.

(a) ETTh1

(b) ETTh2

Figure 8: Example dynamic patch boundaries for ETTh1 and ETTh2 datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) ETTm1

(b) ETTm2

Figure 9: Example dynamic patch boundaries for ETTm1 and ETTm2 datasets.

(a) Weather

Figure 10: Example dynamic patch boundaries for Weather dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H PATCH DISTRIBUTION

We provide the visualization of patch size distributions for each of the eval datasets in Figures 11. As
we can see, weather dataset has slower variation in data resulting in larger avg patch size, whereas
ETTm2 data has several regions with rapidly varying signal, resulting in much smaller patch sizes.

Figure 11: Distribution of patch sizes across eval datasets.

I VISUALIZATION OF FORECASTS

We provide the visualization of forecasting results for an example segment of 128 samples from
each of the evaluation datasets in Figures 12, 13, and 14. As observed, the Weather dataset exhibits
relatively smooth and slowly varying dynamics, making forecasts easier to capture, whereas the
ETTm datasets contain regions with rapid fluctuations, which pose greater challenges for accurate
prediction.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) ETTh1

(b) ETTh2

Figure 12: Forecasting results on ETTh1 and ETTh2 datasets.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) ETTm1

(b) ETTm2

Figure 13: Forecasting results on ETTm1 and ETTm2 datasets.

(a) Weather

Figure 14: Forecasting results on the Weather dataset.

19

	Introduction
	Related Works.
	Methodology
	Architectural Overview
	State-Space Encoder and Decoder
	Dynamic Patching and Unpatching
	Mixture-of-Experts Transformer Backbone
	Multi-horizon forecasting

	Model Training

	Experimental Results
	Zero-shot forecasting
	In-distribution forecasting
	Efficiency Comparison
	Ablation Studies
	Model Components
	Long-Context Pretraining

	Conclusion
	Pretraining Configuration
	Downsampling of Pretraining dataset
	Training Tokens vs Performance
	Compression Rate vs Performance
	Performance for a Fixed Context Length
	Additional Ablation Results
	Inference Context Length vs Performance

	Visualization of patching
	Patch distribution
	Visualization of forecasts

