
MimicGen: A Data Generation System for Scalable
Robot Learning using Human Demonstrations

Anonymous Author(s)
Affiliation
Address
email

Abstract: Imitation learning from a large set of human demonstrations has proved1

to be an effective paradigm for building capable robot agents. However, the2

demonstrations can be extremely costly and time-consuming to collect. We intro-3

duce MimicGen, a system for automatically synthesizing large-scale, rich datasets4

from only a small number of human demonstrations by adapting them to new5

contexts. We use MimicGen to generate over 50K demonstrations across 186

tasks with diverse scene configurations, object instances, and robot arms from7

just ∼200 human demonstrations. We show that robot agents can be effectively8

trained on this generated dataset by imitation learning to achieve strong perfor-9

mance in long-horizon and high-precision tasks, such as multi-part assembly and10

coffee preparation, across broad initial state distributions. We further demon-11

strate that the effectiveness and utility of MimicGen data compare favorably to12

collecting additional human demonstrations, making it a powerful and economi-13

cal approach towards scaling up robot learning. Videos and additional results at14

https://sites.google.com/view/corl2023mimicgen.15

Keywords: Imitation Learning, Manipulation16

1 Introduction17

Imitation learning from human demonstrations has become an effective paradigm for training robots18

to perform a wide variety of manipulation behaviors. One popular approach is to have human op-19

erators teleoperate robot arms through different control interfaces [1,2], resulting in several demon-20

strations of robots performing various manipulation tasks, and consequently to use the data to train21

the robots to perform these tasks on their own. Recent attempts have aimed to scale this paradigm22

by collecting more data with a larger group of human operators over a broader range of tasks [3–6].23

These works have shown that imitation learning on large diverse datasets can produce impressive24

performance, allowing robots to generalize toward new objects and unseen tasks. This suggests that25

a critical step toward building generally capable robots is collecting large and rich datasets.26

However, this success does not come without costly and time-consuming human labor. Consider27

a case study from robomimic [7], in which the agent is tasked with moving a coke can from one28

bin into another. This is a simple task involving a single scene, single object, and single robot;29

however, a relatively-large dataset of 200 demonstrations was required to achieve a modest success30

rate of 73.3%. Recent efforts at expanding to settings with diverse scenes and objects have required31

orders of magnitude larger datasets spanning tens of thousands of demonstrations. For example, [3]32

showed that a dataset of over 20,000 trajectories enables generalization to tasks with modest changes33

in objects and goals. The nearly 1.5-year data collection effort from RT-1 [5] spans several human34

operators, months, kitchens, and robot arms to produce policies that can rearrange, cleanup, and35

retrieve objects with a 97% success rate across a handful of kitchens. Yet it remains unclear how36

many years of data collection would be needed to deploy such a system to kitchens in the wild.37

We raise the question — how much of this data actually contains unique manipulation behaviors?38

Large portions of these datasets may contain similar manipulation skills applied in different con-39

texts or situations. For example, human operators may demonstrate very similar robot trajecto-40

ries to grasp a mug, regardless of its location on one countertop or another. Re-purposing these41

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://sites.google.com/view/corl2023mimicgen


trajectories in new contexts can be a way to generate diverse data without much human effort.42

In fact, several recent works build on this intuition and propose imitation learning methods that43

replay previous human demonstrations [8–11] (more related work discussion in Appendix D).44

Small set of human 
demonstrations

Large, broad dataset generated 
automatically with MimicGen

MimicGen

Demo 1

Demo 2

Demo 3

…

Diverse robot hardware

…

Diverse scene configurations

…

Diverse objects

Figure 1: MimicGen Overview. We introduce a
data generation system that can produce large diverse
datasets from a small number of human demonstrations
by re-purposing the demonstrations to make them appli-
cable in new settings. We apply MimicGen to generate
data across diverse scene configurations, objects, and
robot hardware.

While promising, these methods make as-45

sumptions about specific tasks and algorithms46

that limit their applicability. Instead, we seek47

to develop a general-purpose system that can48

be integrated seamlessly into existing imita-49

tion learning pipelines and improve the perfor-50

mance of a wide spectrum of tasks.51

In this paper, we introduce a novel data col-52

lection system that uses a small set of hu-53

man demonstrations to automatically gener-54

ate large datasets across diverse scenes. Our55

system, MimicGen, takes a small number56

of human demonstrations and divides them57

into object-centric segments. Then, given a58

new scene with different object poses, it se-59

lects one of the human demonstrations, spa-60

tially transforms each of its object-centric seg-61

ments, stitches them together, and has the62

robot follow this new trajectory to collect a63

new demonstration. While simple, we found64

that this method is extremely effective at generating large datasets across diverse scenes and that the65

datasets can be used to train capable agents through imitation learning.66

We make the following contributions:67

• We introduce MimicGen, a system for generating large diverse datasets from a small number of68

human demonstrations by adapting the human demonstrations to novel settings.69

• We demonstrate that MimicGen is able to generate high-quality data to train proficient agents via70

imitation learning across diverse scene configurations, object instances, and robot arms, all of which71

are unseen in the original demos (see Fig. 1). MimicGen is broadly applicable to a wide range of72

long-horizon and high-precision tasks that require different manipulation skills, such as pick-and-73

place, insertion, and interacting with articulated objects. We generated 50K+ new demonstrations74

for 18 tasks across 2 simulators and a physical robot arm using only ∼200 source human demos.75

• Our approach compares favorably to the alternative of collecting more human demonstrations —76

using MimicGen to generate an equal amount of synthetic data (e.g. 200 demos generated from77

10 human vs. 200 human demos) results in comparable agent performance — this raises important78

questions about when it is actually necessary to request additional data from a human.79

2 Related Work80

Some robot data collection efforts have employed trial-and-error [12–17] and pre-programmed81

demonstrators in simulation [18–22], but it can be difficult to scale these approaches to more com-82

plex tasks. One popular data source is human demonstrators that teleoperate robot arms [2–6,23–27],83

but collecting large datasets can require extensive human time, effort, and cost. Instead, MimicGen84

tries to make effective use of a small set of human samples to generate large datasets. We train85

policies from our generated data using imitation learning, which has been used extensively in prior86

work [1,19,25,28–34]. Some works have used offline data augmentation to increase the dataset size87

for learning policies [7,35–45] — in this work we generate new datasets online. Our data generation88

method employs a similar mechanism to replay-based imitation approaches [8–11, 46–48], which89

solve tasks by having the robot replay prior demonstrations. More discussion in Appendix D.90

3 Problem Setup91

Imitation Learning. We consider each robot manipulation task as a Markov Decision Process92

(MDP), and aim to learn a robot manipulation policy π that maps the state space S to the action space93

A. The imitation dataset consists of N demonstrations D = {(si0, ai0, si1, ai1, ..., siHi
)}Ni=1 where94

each si0 ∼ D(·) is sampled from the initial state distribution D. In this work, we use Behavioral95

Cloning [28] to train the policy with the objective argminθ E(s,a)∼D[− log πθ(a|s)].96

2



Parse source demonstrations into segments

Demo N

. . .

Subtask 1 Subtask 2 . . . Subtask M

Demo 2

Demo 1

Pipeline for generating new trajectories
Obtain reference segment to mimic

Generate segmentExecute segment

Transform segmentInterpolate to start

Current Observation

Figure 2: MimicGen System Pipeline. (left) MimicGen first parses the demos from the source dataset into
segments, where each segment corresponds to an object-centric subtask (Sec. 4.1). (right) Then, to generate
new demonstrations for a new scene, MimicGen generates and follows a sequence of end-effector target poses
for each subtask by (1) choosing a segment from a source demonstration (chosen segments shown with blue
border in figure above), (2) transforming it for the new scene, and (3) executing it (Sec. 4.2).

Problem Statement and Assumptions. Our goal is to use a source dataset Dsrc that consists of97

a small set of human demonstrations collected on a task M and use it to generate a large dataset98

D on either the same task or task variants (where the initial state distribution D, the objects, or99

the robot arm can change). To generate a new demo: (1) a start state is sampled from the task we100

want to generate data for, (2) a demonstration τ ∈ Dsrc is chosen and adapted to produce a new101

robot trajectory τ ′, (3) the robot executes the trajectory τ ′ on the current scene, and if the task is102

completed successfully, the sequence of states and actions is added to the generated dataset D (see103

Sec. 4 for details of each step). We next outline some assumptions that our system leverages.104

Assumption 1: delta end effector pose action space. The action space A consists of delta-pose105

commands for an end-effector controller and a gripper open/close command. This is a common106

action space used in prior work [3–7, 33]. This gives us an equivalence between delta-pose actions107

and controller target poses, and allows us to treat the actions in a demonstration as a sequence of108

target poses for the end effector controller (Appendix M).109

Assumption 2: tasks consist of a known sequence of object-centric subtasks. Let O =110

{o1, ..., oK} be the set of objects in a task M. As in Di Palo et al. [11], we assume that tasks111

consist of a sequence of object-centric subtasks (S1(oS1
), S2(oS2

), ..., SM (oSM
)), where the ma-112

nipulation in each subtask Si(oSi) is relative to a single object’s coordinate frame (oSi ∈ O). We113

assume this sequence is known (it is typically easy for a human to specify — see Appendix J).114

Assumption 3: object poses can be observed at the start of each subtask during data collection.115

We assume that we can observe the pose of the relevant object oSi
at the start of each subtask Si(oSi

)116

during data collection (not, however, during policy deployment).117

4 Method118

We describe how MimicGen generates new demonstrations using a small source dataset of human119

demonstrations (see Fig. 2 for an overview). MimicGen first parses the source dataset into segments120

— one for each object-centric subtask in a task (Sec. 4.1). Then, to generate a demonstration for a121

new scene, MimicGen generates and executes a trajectory (sequence of end-effector control poses)122

for each subtask, by choosing a reference segment from the source demonstrations, transforming it123

according to the pose of the object in the new scene, and then executing the sequence of target poses124

using the end effector controller (Sec. 4.2).125

4.1 Parsing the Source Dataset into Object-Centric Segments126

Each task consists of a sequence of object-centric subtasks (Assumption 2, Sec. 3) — we would127

like to parse every trajectory τ in the source dataset into segments {τi}Mi=1, where each segment128

τi corresponds to a subtask Si(oSi). In this work, to parse source demonstrations into segments129

for each subtask, we assume access to metrics that allow the end of each subtask to be detected130

automatically (see Appendix J for full details). After this step, every trajectory τ ∈ Dsrc has been131

split into a contiguous sequence of segments τ = (τ1, τ2, ..., τM ), one per subtask.132

3



(a) Stack Three (b) Square (c) Threading (d) 3 Pc. Assembly (e) Pick Place

(f) Kitchen (g) Coffee Prep (h) Mobile Kitchen (i) Gear Assembly (j) Frame Assembly

Figure 3: Tasks. We use MimicGen to generate demonstrations for several tasks — these are a subset. They
span a wide variety of behaviors including pick-and-place, insertion, interacting with articulated objects, and
mobile manipulation, and include long-horizon tasks requiring chaining several behaviors together.

4.2 Transforming Source Data Segments for a New Scene133

To generate a task demonstration for a new scene, MimicGen generates and executes a segment for134

each object-centric subtask in the task. As shown in Fig. 2 (right), this consists of three key steps135

for each subtask: (1) choosing a reference subtask segment in the source dataset, (2) transforming136

the subtask segment for the new context, and (3) executing the segment in the scene.137

Choosing a reference segment: Recall that MimicGen parses the source dataset into segments that138

correspond to each subtask Dsrc = {(τ j1 , τ
j
2 , ..., τ

j
M )}Nj=1 where N = |Dsrc|. At the start of each139

subtask Si(oSi
), MimicGen chooses a corresponding segment from the set {τ ji }Nj=1. These segments140

can be chosen at random or by using the relevant object poses (more details in Appendix M).141

Transforming the source subtask segment: We can consider the chosen source subtask segment142

τi for subtask Si(oSi
) as a sequence of target poses for the end effector controller (Assumption143

1, Sec. 3). Let TA
B be the homogeneous 4×4 matrix that represents the pose of frame A with144

respect to frame B. Then we can write τi = (TC0

W , TC1

W , ..., TCK

W ) where Ct is the controller target145

pose frame at timestep t, W is the world frame, and K is the length of the segment. Since this146

motion is assumed to be relative to the pose of the object oSi (frame O0 with pose TO0

W ) at the147

start of the segment, we will transform τi according to the new pose of the corresponding object148

in the current scene (frame O′
0 with pose T

O′
0

W ) so that the relative poses between the target pose149

frame and the object frame are preserved at each timestep (TCt

O0
= T

C′
t

O′
0
) resulting in the transformed150

sequence τ ′i = (T
C′

0

W , T
C′

1

W , ..., T
C′

K

W ) where TC′
t

W = TO0

W (T
O′

0

W )−1TCt

W (derivation in Appendix L). As151

an example, see how the source segment and transformed segment in the right side of Fig. 2 approach152

the mug in consistent ways. However, the first target pose of the new segment TC′
0

W might be far from153

the current end-effector pose of the robot in the new scene TE′
0

W (where E is the end-effector frame).154

Consequently, MimicGen adds an interpolation segment at the start of τ ′i to interpolate linearly155

from the current end-effector pose (TE′
0

W ) to the start of the transformed segment TC′
0

W .156

Executing the new segment: Finally, MimicGen executes the new segment τ ′i by taking the target157

pose at each timestep, transforming it into a delta pose action (Assumption 1, Sec. 3), pairing it with158

the appropriate gripper open/close action from the source segment, and executing the new action.159

The steps above repeat for each subtask until the final segment has been executed. However, this160

process can be imperfect — small trajectory deviations due to control and arm kinematics issues can161

result in task failure. Thus, MimicGen checks for task success after executing all segments, and only162

keeps successful demonstrations. We refer to the ratio between the number of successfully generated163

trajectories and the total number of attempts as the data generation rate (reported in Appendix O).164

This pipeline only depends on object frames and robot controller frames — this enables data gener-165

ation to take place across tasks with different initial state distributions, objects (assuming they have166

canonical frames defined), and robot arms (assuming they share a convention for the end effector167

control frame). In our experiments, we designed task variants for each robot manipulation task168

where we vary either the initial state distribution (D), an object in the task (O), or the robot arm (R),169

and showed that MimicGen enables data collection and imitation learning across these variants.170

4



5 Experiment Setup171

We applied MimicGen to a broad range of tasks (see Fig. 3) and task variants, in order to showcase172

how it can generate useful data for imitation learning across a diverse set of manipulation behaviors,173

including pick-and-place, contact-rich interactions, and articulation.174

Tasks and Task Variants. Each task has a default reset distribution (D0) (all source datasets were175

collected on this task variant), a broader reset distribution (D1), and some have another (D2), meant176

to pose even higher difficulty for data generation and policy learning. Consider the Threading task177

shown in Fig. 5 — in the D0 variant, the tripod is always initialized in the same location, while in178

the D1 variant, both the tripod and needle can move, and in the D2 variant, the tripod and needle are179

randomized in novel regions of the workspace. In some experiments, we also applied MimicGen to180

task variants with a different robot arm (R) or different object instances (O) within a category.181

We group the tasks into categories and summarize them below (full tasks and variants in Ap-182

pendix K). Some tasks are implemented with the robosuite framework [49] (MuJoCo backend [50])183

and others are implemented in Factory [51] (Isaac Gym [52] backend). Basic Tasks (Stack, Stack184

Three): a set of box stacking tasks. Contact-Rich Tasks (Square, Threading, Coffee, Three Piece185

Assembly, Hammer Cleanup, Mug Cleanup): a set of tasks that involve contact-rich behaviors such186

as insertion or drawer articulation. Long-Horizon Tasks (Kitchen, Nut Assembly, Pick Place, Cof-187

fee Preparation): require chaining multiple behaviors together. Mobile Manipulation Tasks (Mo-188

bile Kitchen): requires base and arm motion. Factory Tasks (Nut-Bolt-Assembly, Gear Assembly,189

Frame Assembly): a set of high-precision assembly tasks in Factory [51].190

Data Generation and Imitation Learning Methodology. For each task, one human operator col-191

lected a source dataset of 10 demonstrations on the default variant (D0) using a teleoperation sys-192

tem [2,23] (with the exception of Mobile Kitchen, where we used 25 demos due to the large number193

of object variants, and Square, where we used 10 demos from the robomimic Square PH dataset [7]).194

MimicGen was used to generate 1000 demonstrations for each task variant, using each task’s source195

dataset (full details in Appendix M). Since data generation is imperfect, each data generation at-196

tempt is not guaranteed to result in a task success. Attempts that did not achieve task success were197

discarded, and data collection kept proceeding for each task variant until 1000 task successes were198

collected. Each generated dataset was then used to train policies using Behavioral Cloning with199

an RNN policy [7]. We also adopt the convention from Mandlekar et al. [7] for reporting policy200

performance — the maximum success rate across all policy evaluations, across 3 different seeds201

(full training details in Appendix N). All policy learning results are shown on image-based agents202

trained with RGB observations (see Appendix P for low-dim agent results).203

6 Experiments204

We present experiments that (1) highlight the diverse array of situations that MimicGen can generate205

data for, (2) show that MimicGen compares favorably to collecting additional human demonstra-206

tions, both in terms of effort and downstream policy performance on the data, (3) offer insights into207

different aspects of the system, and (4) show that MimicGen can work on real-world robot arms.208

6.1 Applications of MimicGen209

We outline a number of applications that showcase useful properties of MimicGen.210

MimicGen data vastly improves agent performance on the source task. A straightforward ap-211

plication of MimicGen is to collect a small dataset on some task of interest and then generate more212

data for that task. Comparing the performance of agents trained on the small source datasets vs.213

those trained on D0 datasets generated by MimicGen, we see that there is substantial improvement214

across all our tasks (see Fig. 4). Some particularly compelling examples include Square (11.3% to215

90.7%), Threading (19.3% to 98.0%), and Three Piece Assembly (1.3% to 82.0%).216

MimicGen data can produce performant agents across broad initial state distributions. As217

shown in Fig. 4), agents trained using datasets generated on broad initial state distributions (D1,218

D2) are performant (42% to 99% on D1), showing that MimicGen generates valuable datasets on219

new initial state distributions. In several cases, certain objects in the 10 source demonstrations never220

moved (the peg in Square, the tripod in Threading, the base in Three Piece Assembly, etc), but221

5



Task Source D0 D1 D2

Stack 26.0± 1.6 100.0± 0.0 99.3± 0.9 -
Stack Three 0.7± 0.9 92.7± 1.9 86.7± 3.4 -

Square 11.3± 0.9 90.7± 1.9 73.3± 3.4 49.3± 2.5
Threading 19.3± 3.4 98.0± 1.6 60.7± 2.5 38.0± 3.3
Coffee 74.0± 4.3 100.0± 0.0 90.7± 2.5 77.3± 0.9
Three Pc. Assembly 1.3± 0.9 82.0± 1.6 62.7± 2.5 13.3± 3.8
Hammer Cleanup 59.3± 5.7 100.0± 0.0 62.7± 4.7 -
Mug Cleanup 12.7± 2.5 80.0± 4.9 64.0± 3.3 -

Kitchen 54.7± 8.4 100.0± 0.0 76.0± 4.3 -
Nut Assembly 0.0± 0.0 53.3± 1.9 - -
Pick Place 0.0± 0.0 50.7± 6.6 - -
Coffee Preparation 12.7± 3.4 97.3± 0.9 42.0± 0.0 -

Mobile Kitchen 2.0± 0.0 46.7± 18.4 - -

Nut-and-Bolt Assembly 8.7± 2.5 92.7± 2.5 81.3± 8.2 72.7± 4.1
Gear Assembly 14.7± 5.2 98.7± 1.9 74.0± 2.8 56.7± 1.9
Frame Assembly 10.7± 6.8 82.0± 4.3 68.7± 3.4 36.7± 2.5

Square (T0) Square (T1) Square (T2) TPA (T0) TPA (T1) TPA (T2)
Task

0

50

100

S
uc

ce
ss

 R
at

e

Source Dataset Size Comparison

1 demo 10 demos 50 demos 200 demos

Stack Three (D1) Square (D0) Square (D2) TPA (D0) Threading (D1)
Task

0

25

50

75

S
uc

ce
ss

 R
at

e

Policy Training Data Comparison

200 human 200 MG 1000 MG 5000 MG

Figure 4: (left) Agent Performance on Source and Generated Datasets. Success rates (3 seeds) of image-
based agents trained with BC on the 10 source demos and each 1000 demo MimicGen dataset. There is large
improvement across all tasks on the default distribution (D0) and agents are performant on the broader distribu-
tions (D1, D2). (top-right) MimicGen with more source human demonstrations. We found that using larger
source datasets to generate MimicGen data did not result in significant agent improvement. (bottom-right) Pol-
icy Training Dataset Comparison. Image-based agent performance is comparable on 200 MimicGen demos
and 200 human demos, despite MimicGen only using 10 source human demos. MimicGen can produce im-
proved agents by generating larger datasets (200, 1000, 5000 demos), but there are diminishing returns.

data was generated (and policies consequently were trained) on regimes where the objects move in222

substantial regions of the robot workspace.223

MimicGen can generate data for different objects. The source dataset in the Mug Cleanup task224

contains just one mug, but we generate demonstrations with MimicGen for an unseen mug (O1)225

and for a set of 12 mugs (O2). Policies trained on these datasets have substantial task success rates226

(90.7% and 75.3% respectively) (full results in Appendix F).227

MimicGen can generate data for diverse robot hardware. We apply MimicGen to the Square228

and Threading source datasets (which use the Panda arm) and generate datasets for the Sawyer,229

IIWA, and UR5e across the D0 and D1 reset distribution variants. Interestingly, although the data230

generation rates differ greatly per arm (range 38%-74% for Square D0), trained policy performance231

is remarkably similar across the 4 robot arms (80%-91%, full results in Appendix E). This shows232

the potential for using human demonstrations across robot hardware using MimicGen, an exciting233

prospect, as teleoperated demonstrations are typically constrained to a single robot.234

Applying MimicGen to mobile manipulation. In the Mobile Kitchen task MimicGen yields a235

gain from 2.0% to 46.7% (image, Fig. 4) and 2.7% to 76.7% success rate (low-dim, Table P.1 in236

Appendix), highlighting that our method can be applied to tasks beyond static tabletop manipulation.237

MimicGen is simulator-agnostic. We show that MimicGen is not limited to just one simulation238

framework by applying it to high-precision tasks (requiring millimeter precision) in Factory [51],239

a simulation framework built on top of Isaac Gym [52] to accurately simulate high-precision ma-240

nipulation. We generate data for and train performant policies on the Nut-and-Bolt Assembly, Gear241

Assembly, and Frame Assembly tasks. Policies achieve excellent results on the nominal tasks (D0)242

(82%-99%), a significant improvement over policies trained on the source datasets (9%-15%), and243

are also able to achieve substantial performance on wider reset distributions (D1, D2) (37%-81%).244

MimicGen can use demonstrations from inexperienced human operators and different tele-245

operation devices. Surprisingly, policies trained on these MimicGen datasets have comparable246

performance to those in Fig. 4. See Appendix H for the full set of results.247

6.2 Comparing MimicGen to using more human data248

In this section, we contextualize the performance of agents trained on MimicGen data.249

Comparing task performance to prior works. Zhu et al. [53] introduced the Hammer Cleanup250

and Kitchen tasks and reported agent performance on 100 human demonstrations for their method251

called BUDS. On Hammer Cleanup, BUDS achieved 68.6% (D0), while BC-RNN achieves 59.3%252

on our 10 source demos, 100.0% on our generated 1000 D0 demos, and 62.7% on the D1 variant253

where both the hammer and drawer move substantially. On Kitchen, BUDS achieved 72.0% (D0),254

6



while BC-RNN achieves 54.7% on our 10 source demos, 100.0% on our generated D0 data, and255

76.0% on the D1 variant, where all objects move in wider regions. This shows that using MimicGen256

to make effective use of a small number of human demonstrations can improve the complexity of257

tasks that can be learned with imitation learning. As another example, Mandlekar et al. [2] collected258

over 1000 human demos across 10 human operators on both the Nut Assembly and Pick Place tasks,259

but only managed to train proficient policies for easier, single-stage versions of these tasks using a260

combination of reinforcement learning and demonstrations. By contrast, in this work we are able to261

make effective use of just 10 human demonstrations to generate a set of 1000 demonstrations and262

learn proficient agents from them (76.0% and 58.7% low-dim, 53.3% and 50.7% image).263

Agent performance on data generated by MimicGen can be comparable to performance on an264

equal amount of human demonstrations. We collect 200 human demonstrations on several tasks265

and compare agent performance on those demonstrations to agent performance on 200 demonstra-266

tions generated by MimicGen (see Fig. 4). In most cases, agent performance is similar, despite the267

200 MimicGen demos being generated from just 10 human demos — a small number of human268

demos can be as effective (or even more) than a large number of them when used with MimicGen.269

MimicGen can also easily generate more demonstrations to improve performance (see Sec. 6.3),270

unlike the time-consuming nature of collecting more human data. This result also raises important271

questions on whether soliciting more human demonstrations can be redundant and not worth the272

labeling cost, and where to collect human demonstrations given a finite labeling bandwidth.273

6.3 MimicGen Analysis274

We analyze some practical aspects of the system, including (1) whether the number of source demon-275

strations used impacts agent performance, (2) whether the choice of source demonstrations matters,276

(3) whether agent performance can keep improving by generating more demonstrations, and (4)277

whether the data generation success rate and trained agent performance are correlated.278

Can dataset quality and agent performance be improved by using more source human demon-279

strations? We used 10, 50, and 200 source human demonstrations on the Square and Three Piece280

Assembly tasks, and report the policy success rates in Fig. 4. We see that performance differences281

are modest (ranging from 2% to 21%). We also tried using just 1 human demo — in some cases282

performance was much worse (e.g. Square), while in others, there was no significant performance283

change (e.g. Three Piece Assembly). It is possible that performance could improve with more source284

human demos if they are curated in an intelligent manner, but this is left for future work.285

Does the choice of source human demonstrations matter? For each generated dataset, we logged286

which episode came from which source human demonstration — in certain cases, this distribution287

can be very non-uniform. As an example, the generated Factory Gear Assembly task (D1) had over288

850 of the 1000 episodes come from just 3 source demonstrations. In the generated Threading task289

(D0), one source demo had over 170 episodes while another had less than 10 episodes. In both290

cases, the number of attempted episodes per source demonstration was roughly uniform (since we291

picked them at random — details in Appendix M), but some were more likely to generate successful292

demonstrations than others. Furthermore, we found the source demonstration segment selection293

technique (Sec. 4.2) to matter for certain tasks (Appendix M). This indicates that both the initial294

set of source demos provided to MimicGen (Dsrc), and how segments from these demos are chosen295

during each generation attempt (τi for each subtask, see Sec. 4.1) can matter.296

Can agent performance keep improving by generating more demonstrations? In Fig. 4, we297

train agents on 200, 1000, and 5000 demos generated by MimicGen across several tasks. There is a298

large jump in performance from 200 to 1000, but not much from 1000 to 5000, showing that there299

can be diminishing returns on generating more data.300

Are the data generation success rate and trained agent performance correlated? It is tempting301

to think that data generation success rate and trained agent performance are correlated, but we found302

that this is not necessarily true — there are datasets that had low dataset generation success rates303

(and consequently took a long time to generate 1000 successes) but had high agent performance after304

training on the data (Appendix O). A few examples are Object Cleanup (D0) (29.5% generation rate,305

82.0% agent rate), Three Piece Assembly (D0) (35.6% generation rate, 74.7% agent rate), Coffee306

(D2) (27.7% generation rate, 76.7% agent rate), and Factory Gear Assembly (D1) (8.2% generation307

rate, 76.0% agent rate). These results showcase the value of using replay-based mechanisms for data308

collection instead of directly using them to deploy as policy as in prior works [8, 11].309

7



(a) D0 (b) D1 (c) D2

Figure 5: (left) Reset Distributions. Each task has a default reset distribution for the objects (D0), a broader
one (D1), and some had a more challenging one (D2). The figure shows the sampling regions for the tripod
and needle in the Threading task. The tripod is at a fixed location in D0, and D2 swaps the relative locations
of the tripod and needle. We generate data across diverse scene configurations by taking source demos from
D0 and generating data for all variants. (right) Real Robot Tasks. We apply MimicGen to two real robot tasks
— Stack (top row) and Coffee (bottom row). In the first column, the blue and orange regions show the source
(D0) and generated (D1) reset distributions for each task. We use 10 source demos per task, and generate 100
successful demos — MimicGen has a data generation success rate of 82.3% for Stack and 52.1% for Coffee.

6.4 Real Robot Evaluation310

We validate that MimicGen can be applied to real-world robot arms and tasks. We collect 10 source311

demonstrations for each task in narrow regions of the workspace (D0) and then generate demon-312

strations (200 for Stack, 100 for Coffee) for large regions of the workspace (D1) (see Fig. 5). The313

generation success rate was 82.3% for Stack (243 attempts) and 52.1% for Coffee (192 attempts),314

showing that MimicGen works in the real world with a reasonably high success rate. We then315

trained visuomotor agents using a front-facing RealSense D415 camera and a wrist-mounted Re-316

alSense D435 camera (120×160 resolution). Over 50 evaluations, our Stack agent had 36% success317

rate and Coffee had 14% success rate (pod grasp success rate of 60% and pod insertion success rate318

of 20%). The lower numbers than from simulation might be due to the larger number of interpola-319

tion steps we used in the real world for hardware safety (50 total instead of 5) — these motions are320

difficult for the agent to imitate since there is little association between the intermediate motion and321

observations (see Appendix G for more experiments and discussion).322

We also compared to agents trained on the source datasets (10 demos) in the narrow regions (orange323

regions in Fig. 5) where the source data came from — the Stack source agent had 0% success rate324

and the Coffee source agent had 0% success rate (with an insertion rate of 0% and pod grasp rate of325

94%). The Coffee (D0) task in particular has barely any variation (the pod can move vertically in326

a 5cm region) compared to the D1 task, which is substantially harder (pod placed anywhere in the327

right half of the workspace). Agents trained with MimicGen data compare favorably to these agents,328

as they achieve non-zero success rates on broader task reset distributions.329

7 Limitations330

See Appendix C for full set of limitations and discussion. MimicGen assumes knowledge of the331

object-centric subtasks in a task and requires object pose estimates at the start of each subtask during332

data generation (Assumption 3, Sec. 3). MimicGen only filters data generation attempts based on333

task success, so generated datasets can be biased (Appendix Q). MimicGen uses linear interpolation334

between human segments (Appendix M.2), which does not guarantee collision-free motion, and can335

potentially hurt agent performance (Appendix G). MimicGen was demonstrated on quasi-static tasks336

with rigid objects, and novel objects were assumed to come from the same category.337

8 Conclusion338

We introduced MimicGen, a data generation system that can use small amounts of human demon-339

strations to generate large datasets across diverse scenes, object instances, and robots, and applied it340

to generate over 50K demos across 18 tasks from less than 200 human demos, including tasks involv-341

ing long-horizon and high-precision manipulation. We showed that agents learning from this data342

can achieve strong performance. We further found that agent performance on MimicGen data can be343

comparable to performance on an equal number of human demos — this surprising result motivates344

further investigation into when to solicit additional human demonstrations instead of making more345

effective use of a small number, and whether human operator time would be better spent collecting346

data in new regions of the workspace. We hope that MimicGen motivates and enables exploring a347

more data-centric perspective on imitation learning in future work.348

8



References349

[1] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel, “Deep imitation350

learning for complex manipulation tasks from virtual reality teleoperation,” arXiv preprint351

arXiv:1710.04615, 2017.352

[2] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,353

E. Orbay, S. Savarese, and L. Fei-Fei, “RoboTurk: A Crowdsourcing Platform for Robotic354

Skill Learning through Imitation,” in Conference on Robot Learning, 2018.355

[3] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn, “Bc-356

z: Zero-shot task generalization with robotic imitation learning,” in Conference on Robot357

Learning. PMLR, 2022, pp. 991–1002.358

[4] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,359

K. Hausman, A. Herzog et al., “Do as i can, not as i say: Grounding language in robotic360

affordances,” arXiv preprint arXiv:2204.01691, 2022.361

[5] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan,362

K. Hausman, A. Herzog, J. Hsu et al., “Rt-1: Robotics transformer for real-world control363

at scale,” arXiv preprint arXiv:2212.06817, 2022.364

[6] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn,365

and S. Levine, “Bridge data: Boosting generalization of robotic skills with cross-domain366

datasets,” arXiv preprint arXiv:2109.13396, 2021.367

[7] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,368

Y. Zhu, and R. Martı́n-Martı́n, “What matters in learning from offline human demonstrations369

for robot manipulation,” in Conference on Robot Learning (CoRL), 2021.370

[8] B. Wen, W. Lian, K. Bekris, and S. Schaal, “You only demonstrate once: Category-level371

manipulation from single visual demonstration,” in Robotics: Science and Systems (RSS),372

2022.373

[9] E. Johns, “Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demon-374

stration,” ICRA, 2021.375

[10] E. Valassakis, G. Papagiannis, N. Di Palo, and E. Johns, “Demonstrate once, imitate imme-376

diately (dome): Learning visual servoing for one-shot imitation learning,” in 2022 IEEE/RSJ377

International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 8614–378

8621.379

[11] N. Di Palo and E. Johns, “Learning multi-stage tasks with one demonstration via self-replay,”380

in Conference on Robot Learning. PMLR, 2022, pp. 1180–1189.381

[12] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye coordination for382

robotic grasping with large-scale data collection,” in ISER, 2016, pp. 173–184.383

[13] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50k tries and384

700 robot hours,” in Robotics and Automation (ICRA), 2016 IEEE Int’l Conference on. IEEE,385

2016.386

[14] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,387

M. Kalakrishnan, V. Vanhoucke et al., “Qt-opt: Scalable deep reinforcement learning for388

vision-based robotic manipulation,” arXiv preprint arXiv:1806.10293, 2018.389

[15] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine,390

and K. Hausman, “Mt-opt: Continuous multi-task robotic reinforcement learning at scale,”391

arXiv preprint arXiv:2104.08212, 2021.392

[16] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million ways to be pushed.393

a high-fidelity experimental dataset of planar pushing,” in Int’l Conference on Intelligent394

Robots and Systems, 2016.395

[17] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine,396

and C. Finn, “Robonet: Large-scale multi-robot learning,” arXiv preprint arXiv:1910.11215,397

2019.398

[18] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The robot learning benchmark &399

learning environment,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3019–3026,400

2020.401

9

https://arxiv.org/abs/2105.06411
https://arxiv.org/abs/2105.06411
https://arxiv.org/abs/2105.06411


[19] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,402

D. Duong, V. Sindhwani et al., “Transporter networks: Rearranging the visual world for403

robotic manipulation,” arXiv preprint arXiv:2010.14406, 2020.404

[20] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,405

and L. Fan, “Vima: General robot manipulation with multimodal prompts,” arXiv preprint406

arXiv:2210.03094, 2022.407

[21] J. Gu, F. Xiang, X. Li, Z. Ling, X. Liu, T. Mu, Y. Tang, S. Tao, X. Wei, Y. Yao et al.,408

“Maniskill2: A unified benchmark for generalizable manipulation skills,” arXiv preprint409

arXiv:2302.04659, 2023.410

[22] M. Dalal, A. Mandlekar, C. Garrett, A. Handa, R. Salakhutdinov, and D. Fox, “Imitating task411

and motion planning with visuomotor transformers,” arXiv preprint arXiv:2305.16309, 2023.412

[23] A. Mandlekar, J. Booher, M. Spero, A. Tung, A. Gupta, Y. Zhu, A. Garg, S. Savarese, and413

L. Fei-Fei, “Scaling robot supervision to hundreds of hours with roboturk: Robotic manip-414

ulation dataset through human reasoning and dexterity,” arXiv preprint arXiv:1911.04052,415

2019.416

[24] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese, “Human-in-the-417

loop imitation learning using remote teleoperation,” arXiv preprint arXiv:2012.06733, 2020.418

[25] A. Tung, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese,419

“Learning multi-arm manipulation through collaborative teleoperation,” arXiv preprint420

arXiv:2012.06738, 2020.421

[26] J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese, and R. Martı́n-Martı́n,422

“Error-aware imitation learning from teleoperation data for mobile manipulation,” in Confer-423

ence on Robot Learning. PMLR, 2022, pp. 1367–1378.424

[27] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Armstrong, and P. Florence,425

“Interactive language: Talking to robots in real time,” arXiv preprint arXiv:2210.06407, 2022.426

[28] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in Advances in427

neural information processing systems, 1989, pp. 305–313.428

[29] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with nonlinear dynamical429

systems in humanoid robots,” Proceedings 2002 IEEE International Conference on Robotics430

and Automation, vol. 2, pp. 1398–1403 vol.2, 2002.431

[30] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual imitation learning via432

meta-learning,” in Conference on robot learning. PMLR, 2017, pp. 357–368.433

[31] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming by demonstration,”434

in Springer Handbook of Robotics, 2008.435

[32] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. Billard, “Learning and re-436

production of gestures by imitation,” IEEE Robotics and Automation Magazine, vol. 17, pp.437

44–54, 2010.438

[33] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and L. Fei-Fei, “Learning to generalize439

across long-horizon tasks from human demonstrations,” arXiv preprint arXiv:2003.06085,440

2020.441

[34] C. Wang, R. Wang, D. Xu, A. Mandlekar, L. Fei-Fei, and S. Savarese, “Generalization442

through hand-eye coordination: An action space for learning spatially-invariant visuomotor443

control,” arXiv preprint arXiv:2103.00375, 2021.444

[35] P. Mitrano and D. Berenson, “Data augmentation for manipulation,” arXiv preprint445

arXiv:2205.02886, 2022.446

[36] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas, “Reinforcement learning447

with augmented data,” arXiv preprint arXiv:2004.14990, 2020.448

[37] I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all you need: Regularizing449

deep reinforcement learning from pixels,” arXiv preprint arXiv:2004.13649, 2020.450

[38] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto, “Visual imitation made451

easy,” arXiv e-prints, pp. arXiv–2008, 2020.452

[39] A. Zhan, P. Zhao, L. Pinto, P. Abbeel, and M. Laskin, “A framework for efficient robotic453

manipulation,” arXiv preprint arXiv:2012.07975, 2020.454

10



[40] S. Sinha, A. Mandlekar, and A. Garg, “S4rl: Surprisingly simple self-supervision for offline455

reinforcement learning in robotics,” in Conference on Robot Learning. PMLR, 2022, pp.456

907–917.457

[41] S. Pitis, E. Creager, and A. Garg, “Counterfactual data augmentation using locally factored458

dynamics,” Advances in Neural Information Processing Systems, vol. 33, pp. 3976–3990,459

2020.460

[42] S. Pitis, E. Creager, A. Mandlekar, and A. Garg, “Mocoda: Model-based counterfactual data461

augmentation,” arXiv preprint arXiv:2210.11287, 2022.462

[43] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and V. Kumar, “Cacti: A463

framework for scalable multi-task multi-scene visual imitation learning,” arXiv preprint464

arXiv:2212.05711, 2022.465

[44] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Per-466

alta, B. Ichter et al., “Scaling robot learning with semantically imagined experience,” arXiv467

preprint arXiv:2302.11550, 2023.468

[45] Z. Chen, S. Kiami, A. Gupta, and V. Kumar, “Genaug: Retargeting behaviors to unseen469

situations via generative augmentation,” arXiv preprint arXiv:2302.06671, 2023.470

[46] V. Vosylius and E. Johns, “Where to start? transferring simple skills to complex environ-471

ments,” arXiv preprint arXiv:2212.06111, 2022.472

[47] A. Chenu, O. Serris, O. Sigaud, and N. Perrin-Gilbert, “Leveraging sequentiality in reinforce-473

ment learning from a single demonstration,” arXiv preprint arXiv:2211.04786, 2022.474

[48] J. Liang, B. Wen, K. Bekris, and A. Boularias, “Learning sensorimotor primitives of sequen-475

tial manipulation tasks from visual demonstrations,” in 2022 International Conference on476

Robotics and Automation (ICRA). IEEE, 2022, pp. 8591–8597.477

[49] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n, “robosuite: A modular simulation478

framework and benchmark for robot learning,” in arXiv preprint arXiv:2009.12293, 2020.479

[50] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in480

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 5026–5033.481

[51] Y. Narang, K. Storey, I. Akinola, M. Macklin, P. Reist, L. Wawrzyniak, Y. Guo, A. Mora-482

vanszky, G. State, M. Lu et al., “Factory: Fast contact for robotic assembly,” arXiv preprint483

arXiv:2205.03532, 2022.484

[52] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller,485

N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High performance gpu-based physics486

simulation for robot learning,” arXiv preprint arXiv:2108.10470, 2021.487

[53] Y. Zhu, P. Stone, and Y. Zhu, “Bottom-up skill discovery from unsegmented demonstrations488

for long-horizon robot manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 2,489

pp. 4126–4133, 2022.490

[54] S. Nasiriany, T. Gao, A. Mandlekar, and Y. Zhu, “Learning and retrieval from prior data for491

skill-based imitation learning,” in Conference on Robot Learning (CoRL), 2022.492

[55] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard, “Calvin: A benchmark for language-493

conditioned policy learning for long-horizon robot manipulation tasks,” IEEE Robotics and494

Automation Letters, vol. 7, no. 3, pp. 7327–7334, 2022.495

[56] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial, review,496

and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.497

[57] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of robotic498

control with dynamics randomization,” in 2018 IEEE international conference on robotics499

and automation (ICRA). IEEE, 2018, pp. 3803–3810.500

[58] M. Kaspar, J. D. M. Osorio, and J. Bock, “Sim2real transfer for reinforcement learning501

without dynamics randomization,” in 2020 IEEE/RSJ International Conference on Intelligent502

Robots and Systems (IROS). IEEE, 2020, pp. 4383–4388.503

[59] A. Allshire, M. MittaI, V. Lodaya, V. Makoviychuk, D. Makoviichuk, F. Widmaier,504

M. Wüthrich, S. Bauer, A. Handa, and A. Garg, “Transferring dexterous manipulation from505

gpu simulation to a remote real-world trifinger,” in 2022 IEEE/RSJ International Conference506

on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 11 802–11 809.507

11



[60] M. Khansari, D. Ho, Y. Du, A. Fuentes, M. Bennice, N. Sievers, S. Kirmani, Y. Bai, and508

E. Jang, “Practical imitation learning in the real world via task consistency loss,” arXiv509

preprint arXiv:2202.01862, 2022.510

[61] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,511

K. Van Wyk, A. Zhurkevich, B. Sundaralingam et al., “Dextreme: Transfer of agile in-hand512

manipulation from simulation to reality,” arXiv preprint arXiv:2210.13702, 2022.513

[62] O. Khatib, “A unified approach for motion and force control of robot manipulators: The514

operational space formulation,” IEEE Journal on Robotics and Automation, vol. 3, no. 1, pp.515

43–53, 1987.516

[63] S. Dasari, J. Wang, J. Hong, S. Bahl, Y. Lin, A. Wang, A. Thankaraj, K. Chahal, B. Calli,517

S. Gupta et al., “Rb2: Robotic manipulation benchmarking with a twist,” arXiv preprint518

arXiv:2203.08098, 2022.519

[64] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-world: A520

benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on521

robot learning. PMLR, 2020, pp. 1094–1100.522

[65] T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su, “Maniskill:523

Generalizable manipulation skill benchmark with large-scale demonstrations,” arXiv preprint524

arXiv:2107.14483, 2021.525

[66] J. Zhang and K. Cho, “Query-efficient imitation learning for end-to-end autonomous driving,”526

arXiv preprint arXiv:1605.06450, 2016.527

[67] R. Hoque, A. Balakrishna, C. Putterman, M. Luo, D. S. Brown, D. Seita, B. Thananjeyan,528

E. Novoseller, and K. Goldberg, “Lazydagger: Reducing context switching in interactive529

imitation learning,” in 2021 IEEE 17th International Conference on Automation Science and530

Engineering (CASE). IEEE, 2021, pp. 502–509.531

[68] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and K. Goldberg,532

“Thriftydagger: Budget-aware novelty and risk gating for interactive imitation learning,”533

arXiv preprint arXiv:2109.08273, 2021.534

[69] S. Dass, K. Pertsch, H. Zhang, Y. Lee, J. J. Lim, and S. Nikolaidis, “Pato: Policy assisted535

teleoperation for scalable robot data collection,” arXiv preprint arXiv:2212.04708, 2022.536

[70] Y. Zhang, H. Ling, J. Gao, K. Yin, J.-F. Lafleche, A. Barriuso, A. Torralba, and S. Fidler,537

“Datasetgan: Efficient labeled data factory with minimal human effort,” in Proceedings of538

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10 145–539

10 155.540

[71] D. Li, H. Ling, S. W. Kim, K. Kreis, S. Fidler, and A. Torralba, “Bigdatasetgan: Synthesiz-541

ing imagenet with pixel-wise annotations,” in Proceedings of the IEEE/CVF Conference on542

Computer Vision and Pattern Recognition, 2022, pp. 21 330–21 340.543

[72] A. Kar, A. Prakash, M.-Y. Liu, E. Cameracci, J. Yuan, M. Rusiniak, D. Acuna, A. Torralba,544

and S. Fidler, “Meta-sim: Learning to generate synthetic datasets,” in Proceedings of the545

IEEE/CVF International Conference on Computer Vision, 2019, pp. 4551–4560.546

[73] J. Devaranjan, A. Kar, and S. Fidler, “Meta-sim2: Unsupervised learning of scene structure547

for synthetic data generation,” in Computer Vision–ECCV 2020: 16th European Conference,548

Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16. Springer, 2020, pp. 715–733.549

[74] S. W. Kim, J. Philion, A. Torralba, and S. Fidler, “Drivegan: Towards a controllable high-550

quality neural simulation,” in Proceedings of the IEEE/CVF Conference on Computer Vision551

and Pattern Recognition, 2021, pp. 5820–5829.552

[75] D. Paschalidou, A. Kar, M. Shugrina, K. Kreis, A. Geiger, and S. Fidler, “Atiss: Autoregres-553

sive transformers for indoor scene synthesis,” Advances in Neural Information Processing554

Systems, vol. 34, pp. 12 013–12 026, 2021.555

[76] S. Tan, K. Wong, S. Wang, S. Manivasagam, M. Ren, and R. Urtasun, “Scenegen: Learning to556

generate realistic traffic scenes,” in Proceedings of the IEEE/CVF Conference on Computer557

Vision and Pattern Recognition, 2021, pp. 892–901.558

[77] C. Chamzas, C. Quintero-Pena, Z. Kingston, A. Orthey, D. Rakita, M. Gleicher, M. Toussaint,559

and L. E. Kavraki, “Motionbenchmaker: A tool to generate and benchmark motion planning560

datasets,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 882–889, 2021.561

12



[78] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet, “Learning562

latent plans from play,” in Conference on Robot Learning, 2019.563

[79] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim, “Demonstration-guided reinforcement learning with564

learned skills,” in Conference on Robot Learning, 2021.565

[80] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum, “Opal: Offline primitive discov-566

ery for accelerating offline reinforcement learning,” in International Conference on Learning567

Representations, 2021.568

[81] K. Hakhamaneshi, R. Zhao, A. Zhan, P. Abbeel, and M. Laskin, “Hierarchical few-shot imita-569

tion with skill transition models,” in International Conference on Learning Representations,570

2021.571

[82] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine, “Pre-training for robots: Of-572

fline rl enables learning new tasks from a handful of trials,” arXiv preprint arXiv:2210.05178,573

2022.574

[83] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fit-575

ting with applications to image analysis and automated cartography,” Communications of the576

ACM, vol. 24, no. 6, pp. 381–395, 1981.577

[84] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering578

clusters in large spatial databases with noise.” in kdd, vol. 96, no. 34, 1996, pp. 226–231.579

[85] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE580

international conference on computer vision, 2017, pp. 2961–2969.581

[86] M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and K. Goldberg, “Segmenting582

unknown 3d objects from real depth images using mask r-cnn trained on synthetic data,”583

in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.584

7283–7290.585

[87] B. Wen, C. Mitash, S. Soorian, A. Kimmel, A. Sintov, and K. E. Bekris, “Robust, occlusion-586

aware pose estimation for objects grasped by adaptive hands,” in 2020 IEEE International587

Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 6210–6217.588

[88] Z. Zhang, “Iterative point matching for registration of free-form curves and surfaces,” Inter-589

national journal of computer vision, vol. 13, no. 2, pp. 119–152, 1994.590

[89] B. Wen and K. Bekris, “Bundletrack: 6d pose tracking for novel objects without instance or591

category-level 3d models,” in IROS, 2021.592

[90] T. Lee, J. Tremblay, V. Blukis, B. Wen, B.-U. Lee, I. Shin, S. Birchfield, I. S. Kweon, and593

K.-J. Yoon, “Tta-cope: Test-time adaptation for category-level object pose estimation,” in594

CVPR, 2023.595

[91] Y. Liu, Y. Wen, S. Peng, C. Lin, X. Long, T. Komura, and W. Wang, “Gen6d: Generalizable596

model-free 6-dof object pose estimation from rgb images,” in Computer Vision–ECCV 2022:597

17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXII.598

Springer, 2022, pp. 298–315.599

[92] J. Sun, Z. Wang, S. Zhang, X. He, H. Zhao, G. Zhang, and X. Zhou, “Onepose: One-shot600

object pose estimation without cad models,” in Proceedings of the IEEE/CVF Conference on601

Computer Vision and Pattern Recognition, 2022, pp. 6825–6834.602

[93] B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Muller, A. Evans, D. Fox, J. Kautz, and S. Birch-603

field, “Bundlesdf: Neural 6-dof tracking and 3d reconstruction of unknown objects,” CVPR,604

2023.605

[94] E. Valassakis, N. Di Palo, and E. Johns, “Coarse-to-fine for sim-to-real: Sub-millimetre pre-606

cision across wide task spaces,” in 2021 IEEE/RSJ International Conference on Intelligent607

Robots and Systems (IROS). IEEE, 2021, pp. 5989–5996.608

[95] P.-L. Guhur, S. Chen, R. G. Pinel, M. Tapaswi, I. Laptev, and C. Schmid, “Instruction-driven609

history-aware policies for robotic manipulations,” in Conference on Robot Learning. PMLR,610

2023, pp. 175–187.611

[96] H. Ha, P. Florence, and S. Song, “Scaling up and distilling down: Language-guided robot612

skill acquisition,” arXiv preprint arXiv:2307.14535, 2023.613

13



[97] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion in challenging terrains614

using egocentric vision,” in Conference on Robot Learning. PMLR, 2023, pp. 403–415.615

[98] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization616

for transferring deep neural networks from simulation to the real world,” in 2017 IEEE/RSJ617

international conference on intelligent robots and systems (IROS). IEEE, 2017, pp. 23–30.618

[99] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion policy:619

Visuomotor policy learning via action diffusion,” arXiv preprint arXiv:2303.04137, 2023.620

[100] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Had-621

sell, N. de Freitas et al., “Reinforcement and imitation learning for diverse visuomotor skills,”622

arXiv preprint arXiv:1802.09564, 2018.623

[101] A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg, and D. Fox, “Iris: Im-624

plicit reinforcement without interaction at scale for learning control from offline robot manip-625

ulation data,” in IEEE International Conference on Robotics and Automation (ICRA). IEEE,626

2020, pp. 4414–4420.627

[102] L. Chen, R. Paleja, and M. Gombolay, “Learning from suboptimal demonstration via self-628

supervised reward regression,” in Conference on robot learning. PMLR, 2021, pp. 1262–629

1277.630

[103] D. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating beyond suboptimal demon-631

strations via inverse reinforcement learning from observations,” in International conference632

on machine learning. PMLR, 2019, pp. 783–792.633

[104] R. Jeong, J. T. Springenberg, J. Kay, D. Zheng, Y. Zhou, A. Galashov, N. Heess,634

and F. Nori, “Learning dexterous manipulation from suboptimal experts,” arXiv preprint635

arXiv:2010.08587, 2020.636

[105] H. Xu, X. Zhan, H. Yin, and H. Qin, “Discriminator-weighted offline imitation learning from637

suboptimal demonstrations,” in International Conference on Machine Learning. PMLR,638

2022, pp. 24 725–24 742.639

[106] M. Yang, S. Levine, and O. Nachum, “Trail: Near-optimal imitation learning with suboptimal640

data,” arXiv preprint arXiv:2110.14770, 2021.641

[107] A. S. Morgan, B. Wen, J. Liang, A. Boularias, A. M. Dollar, and K. Bekris, “Vision-driven642

compliant manipulation for reliable, high-precision assembly tasks,” RSS, 2021.643

14



Appendix644

A Overview645

We present several additional results in the Appendix.646

• FAQ (Appendix B): answers to some common questions647

• Limitations (Appendix C): more thorough list and discussion of MimicGen limitations648

• Full Related Work (Appendix D): more thorough discussion on related work649

• Robot Transfer (Appendix E): full set of results for generating data across robot arms650

• Object Transfer (Appendix F): full set of results for generating data across objects651

• Real Robot Results (Appendix G): additional details and discussion on the real robot ex-652

periments, including an explanation for the lower training results in the real world653

• Different Demonstrators (Appendix H): results that show MimicGen works just as well654

when using source demos from suboptimal demonstrators and from different teleoperation655

devices656

• Motivation for MimicGen over Alternative Methods (Appendix I): motivation for Mim-657

icGen over offline data augmentation and replay-based imitation658

• Additional Details on Object-Centric Subtasks (Appendix J): more details and intuition659

on subtasks, including examples660

• Tasks and Task Variants (Appendix K): detailed descriptions all tasks and task variants661

• Derivation of Subtask Segment Transform (Appendix L): derivation of how MimicGen662

transforms subtask segments from the source data663

• Data Generation Details (Appendix M): in-depth details on how MimicGen generates664

data665

• Policy Training Details (Appendix N): details of how policies were trained from Mimic-666

Gen datasets via imitation learning667

• Data Generation Success Rates (Appendix O): data generation success rates for each of668

our generated datasets669

• Low-Dim Policy Training Results (Appendix P): full results for agents trained on low-dim670

observation spaces (image agents presented in main text)671

• Bias and Artifacts in Generated Data (Appendix Q): discussion on some undesirable672

properties of MimicGen data673

• Using More Varied Source Demonstrations (Appendix R): investigation on whether hav-674

ing source demonstrations collected on a more varied set of task initializations is helpful675

• Data Generation with Multiple Seeds (Appendix S): results that show there is very little676

variance in empirical results across different data generation seeds677

• Tolerance to Pose Estimation Error (Appendix T): investigation of MimicGen’s tolerance678

to pose error679

15



B FAQ680

1. What are some limitations of MimicGen?681

See Appendix C for a discussion.682

2. Why are policy learning results worse in the real world than in simulation?683

See Appendix G for discussion and an additional experiment.684

3. Since data generation relies on open-loop replay of source human data, it seems like685

MimicGen only works for low-precision pick-and-place tasks.686

We demonstrated that MimicGen can work for a large variety of manipulation tasks and be-687

haviors beyond standard pick-and-place tasks. This includes tasks with non-trivial contact-688

rich manipulation (Gear Assembly has 1mm insertion tolerance, and Picture Frame As-689

sembly needs alignment of 4 holes with 4mm tolerance each), long-horizon manipula-690

tion (up to 8 subtasks), and behaviors beyond pick-and-place such as insertion, pushing,691

and articulation — see Appendix K for full details. The tasks also have pose variation well692

beyond typical prior works using BC from human demos [1, 3–7, 30, 33, 54, 55].693

4. Is MimicGen robust to noisy object pose estimates during data generation?694

In the real world, we use the initial RGBD image to estimate object poses (see Appendix G).695

Thus, MimicGen is compatible with pose estimation methods and has some tolerance to696

pose error. We further investigated tolerance to pose estimate errors in simulation (see Ap-697

pendix T) and found that while data generation rates can decrease (so data collection will698

take longer), policies trained on the generated data maintained the same level of perfor-699

mance.700

5. Several recent works apply offline data augmentation to existing datasets to create701

more data. What are the advantages of generating new data online like MimicGen702

does?703

Offline data augmentation can be effective for generating larger dataset for robot manip-704

ulation [7, 35–45]; however, it can be difficult to generate plausible interactions without705

prior knowledge of physics [35] or causal dependencies [41,42], especially for new scenes,706

objects, or robots. In contrast, by generating new datasets through environment interaction,707

MimicGen data is guaranteed to be physically-consistent. Additionally, in contrast to many708

offline data augmentation methods, MimicGen is easy to implement and apply in practice,709

since only a small number of assumptions are needed (see Sec. 3). See more discussion in710

Appendix I.2.711

6. What is the advantage of using replay-based imitation for data generation and then712

training a policy with BC (like MimicGen does) over using it as the final agent?713

Replay-based imitation learning methods are promising for learning manipulation tasks us-714

ing a handful of demonstrations [8–11, 46–48], but they have some limitations compared715

to MimicGen, which uses similar mechanisms during data generation, but trains an end-716

to-end closed-loop agent from the generated data. First, replay-based agents generally717

conform to a specific policy architecture, while MimicGen datasets allow full compatibil-718

ity with a wide spectrum of offline policy learning algorithms [56]. Second, replay-based719

methods are typically open-loop, since they consist of replaying a demonstration blindly,720

while agents trained on MimicGen datasets can have closed-loop, reactive behavior, since721

the agent can respond to changes in observations. Finally, as we saw in Sec. 6 (and Ap-722

pendix O), in many cases, the data generation success rate (a proxy for the performance of723

replay-based methods) can be significantly lower than the performance of trained agents.724

See more discussion in Appendix I.1.725

7. Why might a data generation attempt result in a failure?726

One reason is that the interpolation segments are unaware of the geometry in the scene and727

consist of naive linear interpolation (see Appendix M.2), so these segments might result728

in unintended collisions. Another is that the way source segments are transformed do not729

consider arm kinematics, so the end effector poses where segments start might be difficult730

to reach. A third reason is that certain source dataset motions might be easier for the731

controller to track than others.732

8. When can MimicGen be applied to generate data for new objects?733

16



We demonstrated results on geometrically similar rigid-body objects from the same cate-734

gory (e.g. mugs, carrots, pans) with similar scales. We also assumed aligned canonical735

coordinate frames for all objects in a category, and that the objects are well-described by736

their poses (e.g. rigid bodies, not soft objects). Extending the system for soft objects or737

more geometrically diverse objects is left for future work.738

9. Can MimicGen data contain undesirable characteristics?739

See Appendix Q for a discussion.740

10. Give a breakdown of how MimicGen was used to generate 50K demos from 200 hu-741

man demos.742

Here is the breakdown. It should be noted that this breakdown does not include our real743

robot demonstrations (200 demos generated from 20 source demos) or any extra datasets744

generated for additional experiments and analysis presented in the appendix.745

• 175 source demos: 10 source demos for each of 16 simulated tasks in Fig. 4 (except746

Mobile Kitchen, which has 25)747

• 36K generated demos: 1000 demos for each of the 36 task variants in Fig. 4748

• 12K generated demos: robot transfer experiment (Appendix E) had 2 tasks, each of749

which had 2 variants (D0, D1) and 3 new robot arms for 12× 1000 demos.750

• 2K generated demos: object transfer experiment (Appendix F) had 1000 demos for751

the O1 (new mug) and O2 (12 mugs) variants.752

17



C Limitations753

In this section, we discuss limitations of MimicGen that can motivate and inform future work.754

1. Known sequence of object-centric subtasks. MimicGen assumes knowledge of the755

object-centric subtasks in a task (which object is involved at each subtask) and also as-756

sumes that this sequence of subtasks does not change (Assumption 2, Sec. 3).757

2. Known object poses at start of each subtask during data generation. During data gener-758

ation, at the start of each object-centric subtask, MimicGen requires an object pose estimate759

of the reference object for that subtask (Assumption 3, Sec 3). However, we demonstrated760

that we can run MimicGen in the real world, using pose estimation methods (Sec. 6.4 and761

Appendix G), and has some tolerance to errors in pose estimates (Appendix T). Another av-762

enue for real world deployment is to generate data and train policies in simulation (where763

object poses are readily available) and then deploy simulation-trained agents in the real764

world [57–61] — this is left for future work.765

3. One reference object per subtask. MimicGen assumes each task is composed of a se-766

quence of subtasks that are each relative to exactly one object (Assumption 2, Sec. 3).767

Being able to support subtasks where the motion depends on more than one object (for768

example, placing an object relative to two objects, or on a cluttered shelf) is left for future769

work.770

4. Naive filtering for generated data. MimicGen has a naive way to filter data generation771

attempts (just task success rates). However, this does not prevent the generated datasets772

from being biased, or having artifacts (see discussion in Appendix Q). Developing better773

filtering mechanisms is left for future work.774

5. Naive interpolation scheme and no guarantee on collision-free motion. MimicGen uses775

a naive linear interpolation scheme to connect transformed human segments together (Ap-776

pendix M.2). However, this method is not aware of scene geometry, and consequently can777

result in unintended collisions if objects happen to be in the way of the straight line path.778

We opted for this simple approach to avoid the complexity of integrating a planner and779

ensuring it uses the same action space (Operational Space Control [62]). We also saw that780

longer interpolation segments could be harmful to policy learning from generated data (Ap-781

pendix G). Similarly, ensuring that motion plans are not harmful to policy learning could be782

non-trivial. Developing better-quality interpolation segments (e.g. potentially with motion783

planning) that are both amenable to downstream policy learning and safer for real-world784

operation is left for future work.785

6. Object transfer limitations. While MimicGen can generate data for manipulating differ-786

ent objects (Appendix F), we only demonstrated results on geometrically similar rigid-body787

objects from the same category (e.g. mugs, carrots, pans) with similar scales. We also as-788

sumed aligned canonical coordinate frames for all objects in a category, and that the objects789

are well-described by their poses (e.g. rigid bodies, not soft objects). Extending the system790

for soft objects or more geometrically diverse objects is left for future work.791

7. Task limitations. MimicGen was demonstrated on quasi-static tasks — it is unlikely to792

work on dynamic, non quasi-static tasks in its current form. However, a large number of793

robot learning works and benchmarks use quasi-static tasks [1,3–7,14,18,19,22,30,33,51,794

54, 55, 63–65], making the system broadly applicable. We also did not apply MimicGen795

to tasks where objects had different dynamics from the source demonstrations (e.g. new796

friction values). However, there is potential for MimicGen to work, depending on the797

task. Recall that on each data generation attempt, MimicGen tracks a target end effector798

pose path (Sec. 4.2) — this allows data generation for robot arms with different dynamics799

(Appendix E), and could potentially allow it to work for different object dynamics (e.g.800

pushing a cube across different table frictions).801

8. Mobile manipulation limitations. In Sec. 6.1, we presented results for MimicGen on the802

Mobile Kitchen task, which requires mobile manipulation (base and arm motion). Our803

current implementation has some limitations. First, it assumes that the robot does not804

move the mobile base and arm simultaneously. Second, we simply copy the mobile base805

actions from the reference segment rather than transforming it like we do for end effector806

actions. We found this simple approach sufficient for the Mobile Kitchen task (more details807

18



in Appendix M.5). Future work could integrate more sophisticated logic for generating base808

motion (e.g. defining and using a reference frame for each base motion segment, like the809

object-centric subtasks used for arm actions, and/or integrating a motion planner for the810

base).811

9. No support for multi-arm tasks. MimicGen only works for single arm tasks — extending812

it to generate datasets for multi-manual manipulation [25] is left for future work.813

19



D Full Related Work814

This section presents a more thorough discussion of related work than the summary presented in the815

main text.816

Data Collection for Robot Learning. There have been several data collection efforts to try and817

address the need for large-scale data in robotics. Some efforts have focused on self-supervised818

data collection where robots gather data on tasks such as grasping through trial-and-error [12–17].819

RoboTurk [2, 23–26] is a system for crowdsourcing task demonstrations from human operators us-820

ing smartphone-based teleoperation and video streams provided in web browsers. Several related821

efforts [3–6, 27] also collect large datasets (e.g. 1000s of demonstrations) by using a large number822

of human operators over extended periods of time. In contrast, MimicGen tries to make effective823

use of a small number of human demonstrations (e.g. 10) to generate large datasets. Some works824

have collected large datasets using pre-programmed demonstrators in simulation [18–22]; however,825

it can be difficult to scale these approaches up to more complex tasks, while we show that Mimic-826

Gen can be applied to a broad range of tasks. Prior work has also attempted to develop systems that827

can selectively query humans for demonstrations when they are needed, in order to reduce human828

operator time and burden [66–69]. In contrast, MimicGen only needs an operator to collect a few829

minutes of demonstrations at the start of the process. Generating large synthetic datasets has been830

a problem of great interest in other domains as well [70–76], and has also been used as a tool for831

benchmarking motion planning [77].832

Imitation Learning for Robot Manipulation. Imitation Learning (IL) seeks to train policies from833

a set of demonstrations. Behavioral Cloning (BC) [28] is a standard method for learning policies834

offline, by training the policy to mimic the actions in the demonstrations. It has been used extensively835

in prior work for robot manipulation [1,19,25,29–34] — in this work, we use BC to train single-task836

policies from datasets generated by MimicGen. However, MimicGen can also be used to generate837

datasets for a wide range of existing offline learning algorithms that learn from diverse multi-task838

datasets [53, 54, 78–82]. Some works have used offline data augmentation to increase the dataset839

size for learning policies [7, 35–45] — in this work we collect new datasets.840

Replay-Based Imitation Learning. While BC is simple and effective, it typically requires several841

demonstrations to learn a task [7]. To alleviate this, many recent imitation learning methods try to842

learn policies from only a handful of demonstrations by replaying demonstrations in new scenes [8–843

11, 46–48]. Some methods [9–11] use trained networks that help the robot end effector approach844

poses from which a demonstration can be replayed successfully. In particular, Di Palo et al. [11]845

proposes an approach to replay parts of a single demonstration to solve multi-stage tasks — this is846

similar to the way MimicGen generates new datasets. However they make a number of assumptions847

that we do not (4D position and yaw action space vs. our 6-DoF action space, a single wrist camera848

view to enable spatial generalization). Furthermore, this work and others use demonstration replay849

as a component of the final trained agent — in contrast, we use it as a data generation mechanism.850

Consequently, these prior approaches are complementary to our data generation system, and in851

principle, could be used as a part of alternative schemes for data generation. In this work, we852

focus on the general framework of using such demonstration replay mechanisms to generate data853

that can be seamlessly integrated into existing imitation learning pipelines, and opt for an approach854

that emphasizes simplicity (more discussion in Appendix I). Our experiments also show that there855

can be a large benefit from collecting large datasets and training agents from them, instead of directly856

deploying a replay-based agent.857

20



E Robot Transfer858

In Sec. 6, we summarized results that show MimicGen can generate data for diverse robot hardware.859

Recall that we took the source datasets from the Square and Threading tasks (which use the Panda860

arm) and generated datasets for the Sawyer, IIWA, and UR5e robots across the D0 and D1 reset861

distribution variants (see Fig. E.1). Here, we present the complete set of results.862

Notice that although the data generation rates have a large spread across robots (range 20%-74% for863

D0, see Table E.1), the policy success rates are significantly higher and remarkably similar across864

robots (for example, 80%-91% on Square D0 and 89%-98% on Threading D0 — see the full image-865

based agent results in Table E.2 and low-dim agent results in Table E.3). This shows the potential866

for using human demonstrations across robot hardware using MimicGen, an exciting prospect, as867

teleoperated demonstrations are typically constrained to a single robot.868

Panda Sawyer IIWA UR5e

Figure E.1: Robots used in Robot Transfer Experiment. The figure shows the robot arms used for data
generation. Source datasets were collected on the Panda arm (blue border) and used to generate data for the
Sawyer, IIWA, and UR5e arms (orange border).

Task Variant Panda Sawyer IIWA UR5e

Square (D0) 73.7 55.8 37.7 64.7
Square (D1) 48.9 38.8 26.5 34.1

Threading (D0) 51.0 28.8 20.4 21.4
Threading (D1) 39.2 23.7 11.5 18.5

Table E.1: Data Generation Rates on Different Robot Hardware. The success rates of data generation are
different across different robot arms (yet agents trained on these datasets achieve similar task success rates).

Task Variant Panda Sawyer IIWA UR5e

Square (D0) 90.7± 1.9 86.0± 1.6 80.0± 4.3 84.7± 0.9
Square (D1) 73.3± 3.4 60.7± 2.5 48.0± 3.3 56.0± 4.3

Threading (D0) 98.0± 1.6 88.7± 7.5 94.0± 3.3 91.3± 0.9
Threading (D1) 60.7± 2.5 50.7± 3.8 49.3± 4.1 60.7± 2.5

Table E.2: Agent Performance on Different Robot Hardware. We use MimicGen to produce datasets across
different robot arms using the same set of 10 source demos (collected on the Panda arm) and train image-based
agents on each dataset (3 seeds). The success rates are comparable across the different robot arms, indicating
that MimicGen can generate high-quality data across robot hardware.

Task Variant Panda Sawyer IIWA UR5e

Square (D0) 98.0± 1.6 87.3± 1.9 79.3± 2.5 82.0± 1.6
Square (D1) 80.7± 3.4 69.3± 2.5 55.3± 1.9 67.3± 3.4

Threading (D0) 97.3± 0.9 96.7± 2.5 93.3± 0.9 96.0± 1.6
Threading (D1) 72.0± 1.6 73.3± 2.5 67.3± 4.7 80.0± 4.9

Table E.3: Low-Dim Agent Performance on Different Robot Hardware. We use MimicGen to produce
datasets across different robot arms using the same set of 10 source demos (collected on the Panda arm) and train
agents on each dataset (3 seeds). The success rates are comparable across the different robot arms, indicating
that MimicGen can generate high-quality data across robot hardware.

21



F Object Transfer869

In Sec. 6, we summarized results that show MimicGen can generate data for different objects. Recall870

that we took the source dataset from the Mug Cleanup task and generated data with MimicGen for871

an unseen mug (O1) and for a set of 12 mugs (O2). Here, we present the complete set of results872

(Table F.1) and also visualize the mugs used for this experiment (Fig. F.1).873

The Mobile Kitchen task that we generated data for also had different object variants — we show874

the 3 pans and 3 carrots in Fig. F.2. Results for this task are in Fig. 4 (image-based agents) and in875

Table P.1 (low-dim agents).876

While these results are promising, we only demonstrated results on geometrically similar rigid-body877

objects from the same category (e.g. mugs, carrots, pans) with similar scales. We also assumed878

aligned canonical coordinate frames for all objects in a category, and that the objects are well-879

described by their poses (e.g. rigid bodies, not soft objects). Extending the system for soft objects880

or more geometrically diverse objects is left for future work.881

Task D0 O1 O2

Mug Cleanup (DGR) 29.5 31.0 24.5

Mug Cleanup (SR, image) 80.0± 4.9 90.7± 1.9 75.3± 5.2
Mug Cleanup (SR, low-dim) 82.0± 2.8 88.7± 4.1 66.7± 2.5

Table F.1: Object Transfer Results. We present data generation rates (DGR) and success rates (SR) of trained
agents on the O1 and O2 variants of the Mug Cleanup task, which have an unseen mug, and a set of 12 mugs
(a new mug per episode) respectively.

Figure F.1: Objects used in Object Transfer Experiment. The figure shows the mug used in the Mug Cleanup
D0 task (blue border), the unseen one in the O1 task (orange border), and the complete set of mugs in the O2

task.

Figure F.2: Objects used in Mobile Kitchen task. The figure shows the 3 pans and 3 carrots used in the
Mobile Kitchen task. On each episode a random pan and carrot are selected and initialized in the scene.

22



G Real Robot Results882

Stack (D1) Square (D1) TPA (D1) Coffee (D1) Threading (D1) PickPlace (D0)
Task

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

Interpolation Comparison

Num Steps
5      
50      

Figure G.1: Effect of Increasing Interpolation Steps. Comparing the effort of interpolation steps on trained
image-based agents. Using an increased amount of interpolation can cause agent performance to decrease
significantly. This could explain the gap between real-world and simulation agent performance.

In this section, we first provide further details on how we applied MimicGen to the real world tasks883

in Fig. 5, then we provide additional experiment results that help to explain the gap in trained policy884

performance between simulation and real.885

Real Robot Data Collection Details. Recall that during data generation, MimicGen requires pose886

estimates at the start of each object-centric subtask (Assumption 3, Sec. 3). To do this, we use a887

front-view Intel RealSense D415 camera which has been calibrated (e.g. known extrinsics). We888

first convert the RGBD image to a point cloud and remove the table plane via RANSAC [83]. We889

then apply DBSCAN [84] clustering to identify object segments of interest, though alternative seg-890

mentation methods such as [85, 86] are also applicable. In the Stack task, the cube instances are891

distinguished by their color. In the Coffee task, the coffee machine and the pod are distinguished892

based on the segment dimensions. Finally for each identified object segment, we leverage [87] for893

global pose initialization, followed by ICP [88] refinement. Note that while the current pose esti-894

mation pipeline works reasonably well, our framework is not specific to certain types of perception895

methods. Recent [89–93] and future advances in state estimation could be used to apply MimicGen896

in real-world settings with less assumptions about the specific objects.897

Gap in Policy Performance between Sim and Real. While we saw a significantly high data col-898

lection success rate (82.3% for Stack, 52.1% for Coffee), we saw much lower policy success rate on899

these tasks than in simulation (36% vs. 100% for Stack, and 14% vs. ∼90% for Coffee), as described900

in Sec. 6). While there was considerably less data in the real world due to the time-consuming nature901

of real-world data collection (100 demos instead of 1000 demos), there were also other factors that902

could explain this gap.903

As a safety consideration, our real-world tasks used much larger interpolation segments of ninterp =904

25, nfixed = 25 instead of the simulation default (ninterp = 5, nfixed = 0) (see Appendix M.2 and905

Appendix M.6). We hypothesized that the increased duration of the interpolation segments made906

them difficult to imitate, since there was little association between the motion and what the agent sees907

in the observations (the motions are slow, and do not generally move towards regions of interest).908

To further investigate this, we ran an experiment in simulation where we used the same settings for909

interpolation for a subset of our tasks. The results are presented in Fig. G.1.910

We see that for certain tasks, the larger interpolation segments cause agent performance to decrease911

significantly — for example image-based agents on Stack D1 decrease from 99.3% success to 68.7%912

success, and image based agents on Pick Place decrease from 50.7% to 11.3%. These results confirm913

that the larger segments (together with the smaller dataset size) may have been responsible for lower914

real world performance. Developing better-quality interpolation segments that are both safe for915

real-world operation and amenable to downstream policy learning is left for future work.916

Combining MimicGen with sim-to-real policy deployment methods [57–61, 94–97] is another ex-917

citing avenue for future work —simulation does not suffer from the same bottlenecks as real-world918

data collection (slow and time-consuming, requiring multiple arms and human supervisors to reset919

23



the task), making simulation an ideal setting for MimicGen to generate large-scale diverse datasets.920

Recent sim2real efforts have been very promising — several works [60, 94–97] have been able to921

transfer policies trained via imitation learning from sim to real. Furthermore, MimicGen is entirely922

complementary to domain randomization techniques [98], which could also be applied to assist in923

transferring policies to the real world.924

Improved Performance with More Flexible Policy Models. One promising avenue to improve925

real-world learning results is to develop and/or apply imitation learning algorithms that can better926

deal with multimodal and heterogeneous trajectories. We trained Diffusion Policy [99], a recent927

state-of-the-art imitation learning model, on our real-world Stack dataset. The new agent achieved928

a success rate of 76% across 50 evaluations – a significant improvement over the 36% success rate929

achieved by BC-RNN. This result provides an optimistic outlook on producing capable agents from930

real-world MimicGen data.931

24



H Different Demonstrators932

Task D0 D1 D2

Stack Three (Op. A, image) 92.7± 1.9 86.7± 3.4 -
Stack Three (Op. B, image) 86.0± 0.0 69.3± 5.0 -

Threading (Op. A, image) 98.0± 1.6 60.7± 2.5 38.0± 3.3
Threading (Op. B, image) 98.0± 1.6 58.0± 4.3 38.0± 8.6

Three Pc. Assembly (Op. A, image) 82.0± 1.6 62.7± 2.5 13.3± 3.8
Three Pc. Assembly (Op. B, image) 76.0± 1.6 54.7± 6.8 5.3± 1.9

Stack Three (Op. A, low-dim) 88.0± 1.6 90.7± 0.9 -
Stack Three (Op. B, low-dim) 82.7± 0.9 84.0± 3.3 -

Threading (Op. A, low-dim) 97.3± 0.9 72.0± 1.6 60.7± 6.2
Threading (Op. B, low-dim) 97.3± 0.9 76.0± 4.3 70.0± 1.6

Three Pc. Assembly (Op. A, low-dim) 74.7± 3.8 61.3± 1.9 38.7± 4.1
Three Pc. Assembly (Op. B, low-dim) 77.3± 2.5 65.3± 7.4 46.0± 9.1

Table H.1: MimicGen with Different Demonstrators. We show that policies trained on MimicGen data
can achieve similar performance even when the source demonstrations come from different demonstrators.
Operator B used a different teleoperation device than Operator A, but policy training results on generated
datasets are comparable for both image-based and low-dim agents.

Task D0 D1 D2

Square (Better, image) 90.7± 1.9 73.3± 3.4 49.3± 2.5
Square (Okay, image) 90.0± 1.6 64.0± 7.1 50.0± 2.8
Square (Worse, image) 90.7± 0.9 59.3± 2.5 45.3± 4.1

Square (Better, low-dim) 98.0± 1.6 80.7± 3.4 58.7± 1.9
Square (Okay, low-dim) 95.3± 0.9 82.0± 1.6 60.7± 1.9
Square (Worse, low-dim) 95.3± 0.9 76.7± 5.0 52.7± 1.9

Table H.2: MimicGen with Lower Quality Demonstrators. We show that policies trained on MimicGen data
can achieve similar performance even when the source demonstrations come from lower quality demonstrators.
We compare across source datasets from the ”Better”, ”Okay”, and ”Worse” subsets of the robomimic Square-
MH dataset [7], which was collected by operators of different proficiency. Policy training results on generated
datasets are comparable for both image-based and low-dim agents.

While most of our experiments use datasets from one particular operator, we show that Mimic-933

Gen can easily use demonstrations from different operators of mixed quality. We first collected 10934

source demonstrations from a different operator on the Stack Three, Threading, and Three Piece935

Assembly tasks — this operator also used a different teleoperation device (3D mouse [49, 100]).936

We also used 10 demonstrations from one of the “Okay” operators and one of the “Worse” opera-937

tors in the robomimic Square-MH dataset [7] to see if MimicGen could use lower-quality datasets.938

These source datasets were then provided to MimicGen to generate 1000 demonstrations for all939

task variants, and subsequently train policies — the results are summarized in Table H.1 (different940

demonstrator with different teleoperation device) and Table H.2 (lower quality demonstrators).941

Interestingly, the operator using a different teleoperation interface produced policies that were ex-942

tremely similar in performance to our original results (deviations of 0% to 17%). Furthermore,943

the policies produced from the datasets generated with the “Worse” and “Okay” operator data are944

also extremely similar in performance (deviations of 0% to 14%). This is quite surprising, as the945

robomimic study [7] found that there can be significant difficulty in learning from datasets produced946

by less experienced operators. Our results suggest that in the large data regime, the harmful ef-947

fects of low-quality data might be mitigated. This is an interesting finding that can inform future948

work into learning from suboptimal human demonstrations [101–106].949

25



I Motivation for MimicGen over Alternative Methods950

In this section, we expand on the motivation for using data generation with MimicGen over two951

alternatives — replay-based imitation learning and offline data augmentation.952

I.1 Replay-Based Imitation Learning953

Several recent works learn policies using only a handful of demonstrations by replaying the demon-954

strations in new scenes [8–11, 46–48]. While these methods are promising, there are some limita-955

tions. One limitation is that their learned policy usually uses demonstration replay as a part of their956

agent. This means that the policy is often composed of hybrid stages (such as a self-supervised net-957

work that learns to move the arm to configurations from which replay will be successful and a replay958

stage). By contrast, MimicGen uses a similar mechanism to generate datasets — this allows full959

compatibility with a wide spectrum of offline policy learning algorithms [56]. These datasets also960

allow for evaluating different design decisions (such as different observation spaces and learning961

methods), including the potential for multi-task benchmarks consisting of high-quality human data.962

Furthermore, by easily allowing datasets to be created and curated, MimicGen can facilitate future963

work to investigate how dataset composition can influence learned policy proficiency.964

Another limitation is that replay-based imitation methods are typically open-loop, since they consist965

of replaying a demonstration blindly (the trajectory executed by the robot cannot adapt to small966

errors). By contrast, agents trained on MimicGen datasets can have closed-loop, reactive behavior,967

since the agent can respond to changes in observations.968

Finally, as we saw in Sec. 6 (and Appendix O), in many cases, the data generation success rate (a969

proxy for the performance of replay-based methods) can be significantly lower than the performance970

of trained agents (one reason for this might be because of only training the policy on the successful971

data generation attempts, and another might be due to agent generalization).972

I.2 Offline Data Augmentation973

Several works have used offline data augmentation to increase the dataset size for learning poli-974

cies [7, 35–45]. Since this process is offline, it can greatly increase the size of the dataset. In fact,975

this can be complementary to MimicGen— we leverage pixel shift randomization [7, 36–39] when976

training image-based agents on MimicGen data.977

However, because data augmentation is offline, it can be difficult to generate plausible interactions978

without prior knowledge of physics [35] or causal dependencies [41,42], especially for new scenes,979

objects, or robots. Instead, MimicGen opts for generating new datasets through environment in-980

teraction by re-purposing existing human demonstrations — this automatically leads to physically-981

consistent data, since generation is online. In contrast to many offline data augmentation methods,982

MimicGen is easy to implement and apply in practice, since only a small number of assumptions983

are needed (see Sec. 3).984

Similar to MimicGen, some recent works [43–45] have also shown an ability to create datasets with985

new objects, but these works typically change distractor objects that are not involved in manipu-986

lation — this leads to encouraging behavioral invariances (e.g. tell the policy to apply the same987

actions, even if the background and irrelevant objects are changed). By contrast, MimicGen gener-988

ates datasets with new objects that are a critical part of the manipulation task — it seeks to generate989

data by adapting behavior to new contexts.990

26



J Additional Details on Object-Centric Subtasks991

Subtasks Figures

Start Mug Grasp
(reference: mug)

Mug Place
(reference: machine)

Pod Grasp
(reference: pod)

Pod Insert
(reference: machine)

Figure J.1: Illustrative Example of Object-Centric Subtasks. In this example, the robot must prepare a cup
of coffee by placing the mug on the machine, and the coffee pod into the machine. This task is easily broken
down into a sequence of object-centric subtasks — this figure shows the end of each subtask, and the relevant
object for each subtask. There is a mug grasping subtask (motion relative to mug), a mug placement subtask
(motion relative to machine), a pod grasping subtask (motion relative to pod), and a pod insertion subtask
(motion relative to machine). The robot can solve this task by sequencing motions relative to each object frame
(one per subtask).

Object-centric subtasks (Assumption 2 in Sec. 3) are a key part of how MimicGen generates new992

demonstrations. In this section, we provide more details on how they are defined, and how sub-993

task segments are parsed from the source demonstrations. We also show some examples to build994

intuition.995

J.1 How Tasks can be broken up into Object-Centric Subtasks996

We first restate Assumption 2 — we assume that tasks consist of a known sequence of997

object-centric subtasks. Let O = {o1, ..., oK} be the set of objects in a task M. As998

in Di Palo et al. [11], we assume that tasks consist of a sequence of object-centric subtasks999

(S1(oS1
), S2(oS2

), ..., SM (oSM
)), where the manipulation in each subtask Si(oSi

) is relative to1000

a single object’s (oSi
∈ O) coordinate frame. We assume this sequence is known.1001

Specifying the sequence of object-centric subtasks is generally easy and intuitive for a human to do.1002

As a first example, consider the coffee preparation task shown in Fig. J.1 (and Fig. 2). A robot must1003

prepare a cup of coffee by grasping a mug, placing it on the coffee machine, grasping a coffee pod,1004

inserting the pod into the machine, and closing the machine lid. This task can be broken down into1005

a sequence of object-centric subtasks: a mug-grasping subtask (motion is relative to mug), a mug-1006

placement subtask (motion relative to machine), a pod-grasping subtask (motion relative to pod),1007

and a final pod-insertion and lid-closing subtask (motion relative to machine). Consequently, the1008

robot can solve this task by sequencing several object-centric motions together. This is the key idea1009

behind how MimicGen data generation works — it takes a set of source human demos, breaks them1010

up into segments (where each segment solves a subtask), and then applies each subtask segment in1011

a new scene. The subtasks are visualized in Fig. J.1.1012

We also emphasize that a wide variety of tasks can be broken down into object-centric subtasks (e.g.1013

Assumption 2 applies to a wide variety of tasks, especially those that are commonly considered in1014

the robot learning community). Fig. J.2 illustrates subtasks for some of our tasks (more discussion1015

in Appendix J.3 below).1016

J.2 Parsing the Source Dataset into Object-Centric Subtask Segments1017

We now provide more details on the parsing procedure described in Sec. 4.1. Recall that we would1018

like to parse every trajectory τ in the source dataset into segments {τi}Mi=1, where each segment τi1019

corresponds to a subtask Si(oSi
). We assume access to metrics that allow the end of each subtask1020

to be detected automatically. In our running example from Fig. 2, this would correspond to metrics1021

that use the state of the robot and objects to detect when the mug grasp, mug placement, pod grasp,1022

and machine lid close occurs. This information is usually readily available in simulation, as it1023

is often required for checking task success. With these metrics, we can easily run through the1024

set of demonstrations, detect the end of each subtask sequentially, and use those as the subtask1025

27



Start Grasp
(ref: nut)

Insert
(ref: peg)

Start

Start

Start

Start

Grasp
(ref: needle)

Thread
(ref: tripod)

Grasp
(ref: gear)

Insert and Crank
(ref: base)

Grasp
(ref: red cube)

Place
(ref: green cube)

Place
(ref: red cube)

Grasp
(ref: blue cube)

Grasp
(ref: piece 1)

Insert
(ref: base)

Grasp
(ref: piece 2)

Insert
(ref: piece 1)

Three Piece Assembly

Stack Three

Gear Assembly

Threading

Square

Figure J.2: Object-Centric Subtasks for Selected Tasks This figure shows the end of each object-centric
subtask (and the reference object) for a subset of the tasks in the main text. MimicGen assumes that this subtask
structure is known for each task; however, specifying this subtask structure is generally easy and intuitive for a
human.

boundaries, to end up with every trajectory τ ∈ Dsrc split into a contiguous sequence of segments1026

τ = (τ1, τ2, ..., τM ), one per subtask.1027

However, another alternative that requires no privileged information (and hence is suitable1028

for real world settings) is to have a human manually annotate the end of each subtask. As the1029

number of source demonstrations is usually small, this is easy for a human operator to do, either1030

while collecting each demonstration or annotating them afterwards. In this work, we opted for the1031

former method (automated subtask end metrics) because they were readily available for our tasks or1032

easy to craft.1033

J.3 Specific Examples1034

We provide some examples in this section of how some tasks are broken up into object-centric sub-1035

tasks. The examples are provided in Fig. J.2. For each task below, we outline the object-centric1036

subtasks, and the subtask end detection metrics used for parsing the source human demos into seg-1037

ments that correspond to each subtask. Note that these metrics are only used for parsing the source1038

human demos and are not assumed to be available during policy execution.1039

Square. There are 2 subtasks — grasping the nut (motion relative to nut) and inserting the nut1040

onto the peg (motion relative to peg). To detect the end of the grasp subtask, we check for contact1041

between the robot fingers and the nut. For the insertion subtask, we just use the task success check.1042

Threading. There are 2 subtasks — grasping the needle (motion relative to needle) and threading1043

the needle into the tripod (motion relative to tripod). To detect the end of the grasp subtask, we1044

check for contact between the robot fingers and the needle. For the threading subtask, we just use1045

the task success check.1046

28



Gear Assembly. There are 2 subtasks — grasping the gear (motion relative to gear) and inserting1047

the gear into the base and turning the crank (motion relative to base). To detect the end of the grasp1048

subtask, we check if the gear has been lifted by a threshold. For the insertion subtask, we just use1049

the task success check.1050

Stack Three. There are 4 subtasks — grasping the red block (motion relative to red block), placing1051

the red block onto the green block (motion relative to green block), grasping the blue block (motion1052

relative to blue block), and placing the blue block onto the red block (motion relative to red block).1053

To detect the end of each grasp subtask we check for contact between the robot fingers and the1054

relevant block. For each place subtask, we check that the relevant block has been lifted and is in1055

contact with the block that should be underneath it.1056

Three Piece Assembly. There are 4 subtasks — grasping the first piece (motion relative to first1057

piece), inserting the first piece into the base (motion relative to base), grasping the second piece1058

(motion relative to second piece), and inserting the second piece onto the first piece (motion relative1059

to first piece). To detect the end of each grasp subtask, we check for contact between the robot1060

fingers and the relevant piece. For each insertion subtask, we re-use the insertion check from the1061

task success check.1062

29



K Tasks and Task Variants1063

(a) Stack (b) Stack Three (c) Square (d) Coffee

(e) Threading (f) Three Pc. Assembly (g) Hammer Cleanup (h) Mug Cleanup

(i) Pick Place (j) Nut Assembly (k) Kitchen (l) Coffee Preparation

(m) Mobile Kitchen (n) Nut-Bolt Assembly (o) Gear Assembly (p) Frame Assembly

Figure K.1: Tasks (all). We show all of the simulation tasks in the figure above. They span a wide variety of
behaviors including pick-and-place, precise insertion and articulation, and mobile manipulation, and include
long-horizon tasks requiring chaining several behaviors together.

In this section, we provide more detailed descriptions of each of our tasks and task variants. The1064

tasks (Fig. K.1) and task variants (especially their reset distributions) are best appreciated on the1065

website (https://sites.google.com/view/corl2023mimicgen/home). We group1066

the tasks into categories as in Sec. 5 and describe the goal, the variants, and the object-centric1067

subtasks in each task. As mentioned in Sec. 3 and Appendix. M.1, the tasks have a delta-pose action1068

space (implemented with an Operational Space Controller [62]). Control happens at 20 hz.1069

Basic. A basic set of box stacking tasks.1070

• Stack [49] Stack a red block on a green one. Blocks are initialized in a small (0.16m1071

x 0.16m) region (D0) and a large (0.4m x 0.4m) region (D1) with a random top-down1072

rotation. There are 2 subtasks (grasp red block, place onto green). We also develop a1073

version of this task in the real-world (Fig. 5) , where the D0 region is a 0.21m x 0.30m box1074

and the D1 region is a 0.44m x 0.85m box.1075

• Stack Three. Same as Stack, but additionally stack a blue block on the red one. Blocks are1076

initialized in a small (0.20m x 0.20m) region (D0) and a large (0.4m x 0.4m) region (D1)1077

with a random top-down rotation. There are 4 subtasks (grasp red block, place onto green,1078

grasp blue block, place onto red).1079

Contact-Rich. A set of tasks that involve contact-rich behaviors such as insertion or drawer articu-1080

lation. In each D0 variant, at least one object never moves.1081

• Square [7]. Pick a square nut and place on a peg. (D0) Peg never moves, nut is placed in1082

small (0.005m x 0.115m) region with a random top-down rotation. (D1) Peg and nut move1083

in large regions, but peg rotation fixed. Peg is initialized in 0.4m x 0.4m box and nut is1084

initialized in 0.23m x 0.51m box. (D2) Peg and nut move in larger regions (0.5m x 0.5m1085

box of initialization for both) and peg rotation also varies. There are 2 subtasks (grasp nut,1086

place onto peg).1087

• Threading [24]. Pick a needle and thread through a hole on a tripod. (D0) Tripod is fixed,1088

needle moves in modest region (0.15m x 0.1m box with 60 degrees of top-down rotation1089

variation). (D1) Tripod and needle move in large regions on the left and right portions of1090

the table respectively. The needle is initialized in a 0.25m x 0.1m box with 240 degrees1091

30

https://sites.google.com/view/corl2023mimicgen/home


of top-down rotation variation and the tripod is initialized in a 0.25m x 0.1m box with 1201092

degrees of top-down rotation variation. (D2) Tripod and needle are initialized on the right1093

and left respectively (reversed from D1). The size of the regions is the same as D1. There1094

are 2 subtasks (grasp needle, thread into tripod).1095

• Coffee [24]. Pick a coffee pod, insert into coffee machine, and close the machine hinge.1096

(D0) Machine never moves, pod moves in small (0.06m x 0.06m) box. (D1) Machine1097

and pod move in large regions on the left and right portions of the table respectively. The1098

machine is initialized in a 0.1m x 0.1m box with 90 degrees of top-down rotation variation1099

and the pod is initialized in a 0.25m x 0.13m box. (D2) Machine and pod are initialized1100

on the right and left respectively (reversed from D1). The size of the regions is the same1101

as D1. We also develop a version of this task in the real-world (Fig. 5) – in D0, the pod1102

is initialized in a 0.05m vertical strip and in D1, the pod is initialized in a 0.44m x 0.35m1103

box. There are 2 subtasks (grasp pod, insert-into and close machine).1104

• Three Piece Assembly. Pick one piece, insert it into the base, then pick the second piece,1105

and insert into the first piece to assemble a structure. (D0) base never moves, both pieces1106

move around base with fixed rotation in a 0.44m x 0.44m region. (D1) All three pieces1107

move in workspace (0.44m x 0.44m region) with fixed rotation. (D2) All three pieces can1108

rotate (the base has 90 degrees of top-down rotation variation, and the two pieces have 1801109

degrees of top-down rotation variation). There are 4 subtasks (grasp piece 1, place into1110

base, grasp piece 2, place into piece 2).1111

• Hammer Cleanup [53]. Open drawer, pick hammer, and place into drawer, and close1112

drawer. (D0) Drawer is fixed, and hammer initialized in a small 0.08m x 0.07m box with1113

11 degrees of top-down rotation variation. (D1) Drawer and hammer both move in large1114

regions. The drawer is initialized in a 0.2m x 0.1m box with 60 degrees of top-down1115

rotation variation and the hammer is initialized in a 0.4m x 0.12m box with a random top-1116

down rotation. There are 3 subtasks (open drawer, grasp hammer, place into drawer and1117

close).1118

• Mug Cleanup. Similar to Hammer Cleanup but with a mug and with additional variants.1119

(D0) The drawer does not move and the mug moves in a 0.3m x 0.15m box with a random1120

top-down rotation. (D1) The mug moves in a 0.2m x 0.1m box with 60 degrees of top-1121

down rotation variation and the mug is initialized in a 0.4m x 0.15m box with a random1122

top-down rotation. (O1) A different mug is used. (O2) On each task reset, one of 12 mugs1123

is sampled. There are 3 subtasks as in Hammer Cleanup.1124

Long-Horizon. A set of tasks that require chaining multiple behaviors together.1125

• Kitchen [53]. Switch stove on, place pot onto stove, place bread into pot, place pot in front1126

of serving region and push it there, and turn off the stove. (D0) The bread is initialized1127

in a 0.03m x 0.06m region with fixed rotation and the pot is initialized in a 0.005m x1128

0.02m region with 11 degrees of top-down rotation variation. The other items do not move.1129

(D1) Bread, pot, stove, button, and serving region all move in wider regions. Bread: 0.2m1130

x 0.2m box with 180 degree top-down rotation variation, pot: 0.1m x 0.15m box with1131

60 degrees top-down rotation variation, stove: 0.17m x 0.1505m box with fixed rotation,1132

button: 0.26m x 0.15m box with fixed rotation, serving region: 0.15m horizontal strip.1133

There are 7 subtasks (turn stove on, grasp pot, place pot on stove, grasp bread, place bread1134

in pot, serve pot onto serving region, and turn stove off).1135

• Nut Assembly [49]. Similar to Square, but place both a square nut and round nut onto two1136

different pegs. (D0) Each nut is initialized in a small box (0.005m x 0.115m region with a1137

random top-down rotation). There are 4 subtasks (grasp each nut and place onto each peg).1138

• Pick Place [49]. Place four objects into four different bins. (D0) Objects are initialized1139

anywhere within the large box (0.29m x 0.39m). We use a slightly simpler version of this1140

task where the objects are initialized with top-down rotations between 0 and 90 degrees1141

(instead of any top-down rotation). There are 8 subtasks (grasp each obejct and place into1142

each bin).1143

• Coffee Preparation. A full version of Coffee — load mug onto machine, open machine,1144

retrieve coffee pod from drawer and insert into machine. (T0) The mug moves in modest1145

(0.15m x 0.15m) region with fixed top-down rotation and the pod inside the drawer moves1146

31



in a 0.06m x 0.08m region while the machine and drawer are fixed. (T1) The mug is1147

initialized in a larger region (0.35m x 0.2m box with uniform top-down rotation) and the1148

machine also moves in a modest region (0.1m x 0.05m box with 60 degrees of top-down1149

rotation variation). There are 5 subtasks (grasp mug, place onto machine and open lid, open1150

drawer, grasp pod, insert into machine and close lid).1151

Mobile Manipulation. Tasks involving mobile manipulation.1152

• Mobile Kitchen. Set up frying pan, by retrieving a pan from counter and placing onto1153

stove, followed by retrieving a carrot from sink and placing onto pan. (D0) The pan starts1154

in a 0.2m x 0.4m region in the center of the countertop (with 120 degrees of top-down1155

rotation variation) and the carrot starts in a 0.1m x 0.1m region inside the sink (with 601156

degrees of rotation variation). There are three possible pans and three possible carrots1157

sampled randomly for each episode. There are 4 subtasks (grasp gap, place pan, grasp1158

carrot, place carrot). The latter three stages involve operating the mobile base.1159

Factory. A set of high-precision tasks in Factory [51].1160

• Nut-and-Bolt Assembly. Pick nut and align onto a bolt. (D0) Nut and bolt are initialized in1161

modest regions of size 0.2m x 0.2m with no rotation variation. (D1) Nut and bolt initialized1162

anywhere in workspace (0.35m x 0.8m box) with fixed rotation. (D2) Nut and bolt can1163

rotate (180 degrees of top-down rotation variation). There are 2 subtasks (pick nut and1164

place onto bolt)1165

• Gear Assembly. Pick a gear, insert it onto a shaft containing other gears, and turn the1166

gear crank to move the other gears. (D0) Base is fixed, and gear moves in modest region1167

(0.1m x 0.1m with no rotation variation). (D1) Base and gear move in larger regions (of1168

size 0.3m x 0.3m) with fixed rotation. (D2) Both move with rotations (180 degrees of top-1169

down variation for the gear and 90 degrees of top-down variation for the base). There are 21170

subtasks (grasp gear, insert into base and crank).1171

• Frame Assembly. Pick a picture frame border with 4 holes and insert onto a base with 41172

bolts rigidly attached. (D0) Frame border and base move in small regions of size 0.1m x1173

0.1m with fixed rotation. (D1) Frame border and base move in much larger regions of size1174

0.3m x 0.3m with fixed rotation. (D2) Both move with rotations (60 degrees of top-down1175

variation for both). There are 2 subtasks (grasp frame border and insert into base).1176

32



L Derivation of Subtask Segment Transform1177

In this section, we provide a complete derivation of the source subtask segment transformation1178

presented in Sec. 4.2. Recall that TA
B denotes a homogenous 4×4 matrix that represents the pose1179

of frame A with respect to frame B. We have chosen a source subtask segment consisting of target1180

poses for the end effector controller (Assumption 1, Sec. 3) τi = (TC0

W , TC1

W , ..., TCK

W ) where Ct1181

is the controller target pose frame at timestep t, W is the world frame, and K is the length of the1182

segment.1183

We would like to transform τi according to the new pose of the corresponding object in the current1184

scene (frame O′
0 with pose T

O′
0

W ) so that the relative poses between the target pose frame and the1185

object frame are preserved at each timestep (TC′
t

O′
0
= TCt

O0
). We can write T

C′
t

O′
0
= (T

O′
0

W )−1T
C′

t

W and1186

TCt

O0
= (TO0

W )−1TCt

W . Setting them equal, we have1187

(T
O′

0

W )−1T
C′

t

W = (TO0

W )−1TCt

W

Rearranging for TC′
t

W by left-multiplying by T
O′

0

W we obtain1188

T
C′

t

W = TO0

W (T
O′

0

W )−1TCt

W

which is the equation we use to transform the source segment.1189

33



M Data Generation Details1190

In this section, we provide additional details on how MimicGen generates data. We first pro-1191

vide additional details about components of MimicGen that were not discussed in the main text.1192

This includes further discussion on how MimicGen converts between delta-pose actions and con-1193

troller target poses (Appendix M.1), more details on how interpolation segments are generated (Ap-1194

pendix M.2), an overview of different ways the reference segment can be selected (Appendix M.3),1195

details on how transformed trajectories are executed with action noise (Appendix M.4), additional1196

details on our pipeline for mobile manipulation tasks (Appendix M.5), and finally, a list of the data1197

generation hyperparameters for each task (Appendix M.6).1198

M.1 Equivalence between delta-pose actions and controller target poses1199

We assume that the action space A consists of delta-pose commands for an end effector controller1200

(Assumption 1, Sec. 3). As in [7], we assume that actions are 7-dimensional, where the first 31201

components are the desired translation from the current end effector position, the next 3 components1202

represent the desired delta rotation from the current end effector rotation, and the final component1203

is the gripper open/close action. The delta rotation is represented in axis-angle form, where the1204

magnitude of the 3-vector gives the angle, and the unit vector gives the axis. The robot controller1205

converts the delta-pose action into an absolute pose target TC
W by adding the delta translation to the1206

current end effector position, and applying the delta rotation to the current end effector rotation.1207

Consequently, at each timestep in a demonstration {st, at}Tt=1, it is possible to convert each action1208

at to a controller pose target TCt

W by using the end effector pose at each timestep. MimicGen1209

uses this to represent each segment in the source demonstration as a sequence of controller poses.1210

MimicGen also uses this conversion to execute a new transformed segment during data generation1211

— it converts the sequence of controller poses in the segment to a delta-pose action at each timestep1212

during execution, using the current end effector position.1213

M.2 Details on Interpolation Segments1214

As mentioned in Sec. 4.2, MimicGen adds an interpolation segment at the start of each transformed1215

segment during data generation to interpolate from the current end effector pose TE′
0

W and the start of1216

the transformed segment TC′
0

W . There are two relevant hyperparameters for the interpolation segment1217

in each subtask segment — ninterp and nfixed. We first use simple linear interpolation between the1218

two poses (linear in position, and spherical linear interpolation for rotation) to add ninterp interme-1219

diate controller poses between T
E′

0

W and T
C′

0

W , and then we hold T
C′

0

W fixed for nfixed steps. These1220

intermediate poses are all added to the start of the transformed segment, and given to MimicGen to1221

execute one by one.1222

M.3 Reference Segment Selection1223

Recall that MimicGen parses the source dataset into segments that correspond to each subtask1224

Dsrc = {(τ j1 , τ
j
2 , ..., τ

j
M )}Nj=1 (Sec. 4.1). During data generation, at the start of each subtask Si(oSi

),1225

MimicGen must choose a corresponding segment from the set {τ ji }Nj=1 of N subtask segments in1226

Dsrc. It suffices to choose only one source demonstration j ∈ {1, 2...., N} since this uniquely iden-1227

tifies the subtask segment for the current subtask. We discuss some variants of how this selection1228

occurs.1229

Selection Frequency. As presented in the main text (Fig. 2), MimicGen can select a source demon-1230

stration j (and corresponding segment) at the start of each subtask. However, in many cases, this1231

can be undesirable, since different demonstrations might have used different strategies that are in-1232

compatible with each other. As an example, two demonstrations might have different object grasps1233

for the mug in Fig. 2 — each grasp might require a different placement strategy. Consequently,1234

we introduce a hyperparameter, per-subtask, which can toggle this behavior — if it is set to False,1235

MimicGen chooses a single source demonstration j at the start of a data generation episode and1236

holds it fixed (so all source subtask segments are from the same demonstration, (τ j1 , τ
j
2 , ..., τ

j
M )).1237

34



Task normal no noise replay w/ noise

Square (D0) (DGR) 73.7 80.5 88.1
Square (D1) (DGR) 48.9 50.7 -
Square (D2) (DGR) 31.8 33.4 -

Threading (D0) (DGR) 51.0 84.5 53.8
Threading (D1) (DGR) 39.2 50.8 -
Threading (D2) (DGR) 21.6 27.3 -

Square (D0) (SR, image) 90.7± 1.9 72.0± 3.3 42.0± 1.6
Square (D1) (SR, image) 73.3± 3.4 56.7± 0.9 -
Square (D2) (SR, image) 49.3± 2.5 42.7± 6.6 -

Threading (D0) (SR, image) 98.0± 1.6 59.3± 6.8 74.0± 3.3
Threading (D1) (SR, image) 60.7± 2.5 43.3± 9.3 -
Threading (D2) (SR, image) 38.0± 3.3 22.7± 0.9 -

Square (D0) (SR, low-dim) 98.0± 1.6 82.0± 1.6 60.7± 3.4
Square (D1) (SR, low-dim) 80.7± 3.4 70.0± 1.6 -
Square (D2) (SR, low-dim) 58.7± 1.9 55.3± 1.9 -

Threading (D0) (SR, low-dim) 97.3± 0.9 69.3± 0.9 34.7± 6.6
Threading (D1) (SR, low-dim) 72.0± 1.6 56.7± 5.0 -
Threading (D2) (SR, low-dim) 60.7± 6.2 46.0± 7.5 -

Table M.1: Effect of Action Noise. MimicGen adds Gaussian noise to actions when executing transformed
segments during data generation. These results show that removing the noise can increase the data generation
rate (as expected), but can cause agent performance to decrease significantly. They also show that just replaying
the same task instances from the source human data with action noise is not sufficient (although it does improve
results over just using the source human data).

The per-subtask hyperparameter determines how frequently source demonstration selection occurs1238

— we next discuss strategies for actually selecting the source demonstration.1239

Selection Strategy. We now turn to how the source demonstration j is selected. We found random1240

selection to be a simple and effective strategy in many cases — here, we simply select the source1241

demonstration j uniformly at random from {1, 2...., N}. We used this strategy for most of our1242

tasks. However, we found some tasks benefit from a nearest-neighbor selection strategy. Consider1243

selecting a source demonstration segment for subtask Si(oSi
). We compare the pose T

O′
0

W of object1244

oSi in the current scene with the initial object pose TO0

W at the start of each source demonstration1245

segment τ ji , and sort the demonstrations (ascending) according to the pose distance (to evaluate1246

the pose distance for each demonstration segment, we sum the L2 position distance with the angle1247

value of the delta rotation (in axis-angle form) between the two object rotations). We then select a1248

demonstration uniformly at random from the first nnk members of the sorted list.1249

M.4 Action Noise1250

When MimicGen executes a transformed segment during data generation, it converts the sequence of1251

target poses into delta-pose actions at at each timestep. We found it beneficial to apply additive noise1252

to these actions — we apply Gaussian noise N (0, 1) with magnitude σ in each dimension (excluding1253

gripper actuation). To showcase the value of including the noise we ran an ablation experiment1254

(presented in Table M.1) that shows how much data generation success rate and agent performance1255

changes when the datasets are not generated with action noise during execution (compared to our1256

default value of σ = 0.05).1257

As expected, the data generation success rate increases when using no noise, as noise can cause the1258

end effector motion to deviate from the expected subtask segment that is being followed (the most1259

significant example is an increase of 33% on Threading D0). However, agent performance suffers,1260

with performance drops as large as 30% on agents trained on low-dim observations, and up to 40%1261

on agents trained on image observations.1262

Another natural question is whether the benefits of MimicGen come purely from action noise in-1263

jection. To investigate this, we also ran a comparison (“replay w/ noise” in Table M.1) where we1264

took the 10 source demos, and replayed them with the same level of action noise (0.05) used in1265

our experiments until we collected 1000 successful demonstrations. We selected a random source1266

35



Task normal no NN no per-subtask no NN + no per-subtask

Square (D0) (DGR) 73.7 36.7 - -
Square (D1) (DGR) 48.9 30.6 - -
Square (D2) (DGR) 31.8 22.4 - -

Nut Assembly (D0) (DGR) 50.0 27.1 - -
Stack (D0) (DGR) 94.3 - 85.1 71.6
Stack (D1) (DGR) 90.0 - 76.3 63.3

Stack Three (D0) (DGR) 71.3 - 37.8 26.7
Stack Three (D1) (DGR) 68.9 - 36.0 27.5
Pick Place (D0) (DGR) 32.7 - 30.8 29.7

Square (D0) (SR, low-dim) 98.0± 1.6 94.7± 2.5 - -
Square (D1) (SR, low-dim) 80.7± 3.4 79.3± 2.5 - -
Square (D2) (SR, low-dim) 58.7± 1.9 57.3± 0.9 - -

Nut Assembly (D0) (SR, low-dim) 76.0± 1.6 64.7± 5.7 - -
Stack (D0) (SR, low-dim) 100.0± 0.0 - 99.3± 0.9 99.3± 0.9
Stack (D1) (SR, low-dim) 100.0± 0.0 - 100.0± 0.0 99.3± 0.9

Stack Three (D0) (SR, low-dim) 88.0± 1.6 - 84.0± 1.6 81.3± 2.5
Stack Three (D1) (SR, low-dim) 90.7± 0.9 - 78.7± 2.5 83.3± 0.9
Pick Place (D0) (SR, low-dim) 58.7± 7.5 - 52.0± 3.3 56.0± 5.9

Table M.2: Effect of Removing Selection Strategy. Some of our tasks used a nearest-neighbor selection
strategy and a per-subtask selection strategy for source demonstration segments. These results show the effect
of removing these selection strategies (e.g. using the default, random selection strategy). Interestingly, while
the data generation rates decrease significantly, agent performance does not decrease significantly for most
tasks.

demonstration at the start of each trial and reset the simulator state to its initial state before collec-1267

tion.1268

This comparison shows the value of using MimicGen to transform and interpolate source human1269

segments to collect data on new configurations, instead of purely using replay with noise on the1270

same configurations from the source data. Comparing the “replay w/ noise” column of Table M.1 to1271

Fig. 4, we see that there is an appreciable increase in the success rate on D0 compared to just using1272

the 10 source demos (Square increases from 11.3 to 42.0, and Threading increases from 19.3 to1273

74.0), but training on the MimicGen dataset still achieves better performance on D0 (Square: 90.7,1274

Threading: 98).1275

M.5 Data Generation for Mobile Manipulation Tasks1276

The process of transforming source segments differs slightly for mobile manipulation tasks. A1277

source segment may or may not contain mobile base actions. If the segment does not contain mobile1278

base actions we generate segments in the same manner as our method for manipulator-only environ-1279

ments. If a segment does contain mobile base actions we assume that the segment can be split into1280

three contiguous sub-segments: (1) a sub-segment involving manipulator actions, (2) a subsequent1281

sub-segment involving mobile base actions, and (3) a final sub-segment involving manipulator ac-1282

tions. We generate corresponding sub-segments for each of these phases. We generate sub-segments1283

for (1) and (3) in the same manner as our algorithm for manipulator-only environments, and we gen-1284

erate sub-segment (2) by simply copying the mobile base actions from the reference sub-segment.1285

We found this scheme to work sufficiently well for the mobile manipulation task in this work, but1286

future work improve the generation of sub-segment (2) (the robot base movement) to account for1287

different environment layouts in a scene, by defining and using a reference frame for each base1288

motion segment, like the object-centric subtasks used for arm actions, and/or integrating a motion1289

planner for the base. We highlight the limitations of our approach in Appendix C.1290

M.6 MimicGen Hyperparameters1291

In this section, we summarize the data generation hyperparameters (defined above) used for each1292

task. As several tasks had the same settings, we group tasks together wherever possible.1293

Default. Most of our tasks used a noise scale of σ = 0.05, interpolation steps of ninterp = 5,1294

nfixed = 0, and a selection strategy of random with per-subtask set to False. These tasks include1295

36



Threading, Coffee, Three Piece Assembly, Hammer Cleanup, Mug Cleanup, Kitchen, Coffee Prepa-1296

ration, Mobile Kitchen, Nut-and-Bolt Assembly, Gear Assembly, and Frame Assembly.1297

Nearest-Neighbor and Per-Subtask. Some of our tasks used the default values above, with the ex-1298

ception of using a nearest-neighbor selection strategy. The following tasks used nearest-neighbor1299

(nnk = 3) with per-subtask set to False: Square and Nut Assembly. Some tasks used nearest-1300

neighbor (nnk = 3) with per-subtask set to True: Stack, Stack Three, Pick Place. In general, we1301

found per-subtask selection to help for pick-and-place tasks. To showcase the value of using these1302

specific selection strategies, we ran an ablation experiment (presented in Table M.2) that shows how1303

much data generation success rate and agent performance changes when turning these strategies off1304

during data generation. Interestingly, while the data generation rates decrease significantly, agent1305

performance does not decrease significantly for most tasks.1306

Real. Our real robot tasks used different settings for safety considerations, and to ensure that data1307

could be collected in a timely manner (maintain high data generation rate). All tasks used a reduced1308

noise scale of σ = 0.02, and higher interpolation steps of ninterp = 25, nfixed = 25. The Stack1309

task used a selection strategy of nearest-neighbor (nnk = 3) with per-subtask set to True, and1310

the Coffee task used a selection strategy of random with per-subtask set to False, just like their1311

simulation counterparts.1312

37



N Policy Training Details1313

We describe details of how policies were trained via imitation learning. Several design choices are1314

the same as the robomimic study [7].1315

Observation Spaces. As in robomimic [7], we train policies on two observation spaces — “low-1316

dim” and “image”. While both include end effector poses and gripper finger positions, “low-dim”1317

includes ground-truth object poses, while “image” includes camera observations from a front-view1318

camera and a wrist-view camera. All tasks use images with 84x84 resolution with the exception of1319

the real world tasks (Stack, Coffee), which use an increased resolution of 120x160. For “image”1320

agents, we apply pixel shift randomization [7, 36–39] and shift image pixels by up to 10% of each1321

dimension each time observations are provided to the agent.1322

Training Hyperparameters. We use BC-RNN from robomimic [7] with the default hyperparam-1323

eters reported in their study, with the exception of an increased learning rate (1e-3 instead of 1e-4)1324

for policies trained on low-dim observations, as we found it to speed up policy convergence on large1325

datasets.1326

Policy Evaluation. As in [7], on simulation tasks, we evaluate policies using 50 rollouts per agent1327

checkpoint during training, and report the maximum success rate achieved by each agent across 31328

seeds. On the real world tasks, due to the time-consuming nature of policy evaluation, we take the1329

last policy checkpoint produced during training, and evaluate it over 50 episodes.1330

Hardware. Each data generation run and training run used a machine (on a compute cluster) with1331

an NVIDIA Volta V100 GPU, 8 CPUs, 32GB of memory, and 128GB of disk space. In certain1332

cases, we batched multiple data generation runs and training runs on the same machine (usually 21333

to 4 runs). Real robot experiments were carried out on a machine with an NVIDIA GeForce RTX1334

3090 GPU, 36 CPUs, 32GB of memory, and 1 TB of storage.1335

38



O Data Generation Success Rates1336

In this section, we present data generation success rates for each of our generated datasets. Com-1337

paring the results in Table O.1 with our core image-based agent results (Fig. 4) and low-dim agent1338

results (Table P.1), we see that in many cases the agent performance is much higher than the data1339

generation success rate. An extreme example is the Gear Assembly task which has data generation1340

rates of 46.9% (D0), 8.2% (D1), and 7.1% (D2) but policy success rates of 92.7% (D0), 76.0%1341

(D1), and 64.0% (D2). We also saw much higher agent performance than the data generation rate1342

in our robot transfer experiment (see Appendix E).1343

Task D0 D1 D2

Stack 94.3 90.0 -
Stack Three 71.3 68.9 -

Square 73.7 48.9 31.8
Threading 51.0 39.2 21.6

Coffee 78.2 63.5 27.7
Three Pc. Assembly 35.6 35.5 31.3

Hammer Cleanup 47.6 20.4 -
Mug Cleanup 29.5 17.0 -

Kitchen 100.0 42.7 -
Nut Assembly 50.0 - -

Pick Place 32.7 - -
Coffee Preparation 53.2 36.1 -

Mobile Kitchen 20.7 - -

Nut-and-Bolt Assembly 66.0 59.4 47.6
Gear Assembly 46.9 8.2 7.1

Frame Assembly 45.3 32.7 28.9

Table O.1: Data Generation Rates. For each task that we generated data for, we report the data generation rate
(DGR) — which is the success rate of the data generation process (recall that not all data generation attempts are
successful, and MimicGen only keeps the attempts that result in task success). Comparing with Table P.1 and
Fig. 4, we can see that several tasks have significantly higher policy learning performance than data generation
rates.

39



P Low-Dim Policy Training Results1344

In the main text we focused on image observation spaces. In this section we present full results1345

for agents trained on low-dim observation spaces and show that these agents are equally perfor-1346

mant. Results on our main generated datasets are shown in Table P.1 (and can be compared to the1347

image-based agent results in Fig. 4), and the source dataset size comparison and policy training data1348

comparisons are shown in Fig. P.1 (and can be compared to Fig. 4).1349

Task Source D0 D1 D2

Stack 38.7± 4.1 100.0± 0.0 100.0± 0.0 -
Stack Three 2.7± 0.9 88.0± 1.6 90.7± 0.9 -

Square 18.7± 0.9 98.0± 1.6 80.7± 3.4 58.7± 1.9
Threading 9.3± 2.5 97.3± 0.9 72.0± 1.6 60.7± 6.2

Coffee 42.7± 4.1 100.0± 0.0 93.3± 2.5 76.7± 0.9
Three Pc. Assembly 2.7± 0.9 74.7± 3.8 61.3± 1.9 38.7± 4.1

Hammer Cleanup 64.7± 4.1 100.0± 0.0 74.0± 1.6 -
Mug Cleanup 8.0± 1.6 82.0± 2.8 54.7± 5.0 -

Kitchen 43.3± 3.4 100.0± 0.0 78.0± 2.8 -
Nut Assembly 0.0± 0.0 76.0± 1.6 - -

Pick Place 0.0± 0.0 58.7± 7.5 - -
Coffee Preparation 2.0± 0.0 76.0± 5.7 59.3± 3.4 -

Mobile Kitchen 6.7± 3.8 76.7± 10.5 - -

Nut-and-Bolt Assembly 2.0± 0.0 98.0± 1.6 96.0± 1.6 81.3± 3.8
Gear Assembly 12.0± 1.6 92.7± 1.9 76.0± 4.9 64.0± 3.3

Frame Assembly 9.3± 3.4 87.3± 2.5 70.7± 1.9 58.0± 5.7

Table P.1: Low-Dim Agent Performance on Source and Generated Datasets. For each task, we present the
success rates (3 seeds) of low-dim agents trained with BC on the 10 source demos and on each MimicGen
dataset (1000 demos for each reset distribution). There is a large improvement across all tasks on the default
distribution (D0) and agents are performant on the broader distributions (D1, D2).

Square (D0) Square (D1) Square (D2) TPA (D0) TPA (D1) TPA (D2)
Task

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

Source Dataset Size Comparison (low dim)

Num Source
Demos

1      
10      
50      
200      

Stack Three (D1) Square (D0) Square (D2) TPA (D0) Threading (D1)
Task

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

Policy Training Data Comparison (low dim)

Dataset
200 human
200 MG
1000 MG
5000 MG

Figure P.1: (left) MimicGen with more source human demonstrations. We found that using larger source
datasets to generate MimicGen data did not result in significant low-dim agent improvement. (right) Policy
Training Dataset Comparison. We compare agents trained on 200 MimicGen demos to 200 human demos —
remarkably, the performance is similar, despite MimicGen only using 10 source human demos. MimicGen can
also produce improved low-dim agents by generating datasets — we show a comparison between 200, 1000,
and 5000 above. However, there can be diminishing returns.

40



Q Bias and Artifacts in Generated Data1350

In this section, we discuss some undesirable properties of the generated data.1351

Are datasets generated by MimicGen biased towards certain scene configurations? This is1352

a natural question to ask, since MimicGen keeps trying to re-use the same small set of human1353

demonstrations on new scenes and only retains the successful traces. Indeed, there might be a limited1354

set of scene configurations where data generation works successfully, and some scene configurations1355

that are never included in the generated data. We conduct an initial investigation into whether such1356

bias exists by analyzing the set of initial states in a subset of our generated datasets. Specifically, we1357

take inspiration from [78], and discretize the set of possible object placements for each object in each1358

task into bins. Then, we simply maintain bin counts by taking the initial object placements for each1359

episode in a generated dataset, computing the bin it belongs to, and updating the bin count. Finally,1360

we estimate the support coverage of the reset distribution by counting the number of non-zero bins1361

and dividing by the total number of bins.1362

As a concrete example, consider the Threading D1 variant, where the needle and tripod are both1363

sampled from a region with bounds in x, y and θ, where θ is a top-down rotation angle (see Fig. 5).1364

If each dimension is discretized into n independent bins, there are a total of n6 bins (all combinations1365

of the dimensions). Due to this exponential scaling, we use a small number of bins (n = 3). Note1366

that when conducting this analysis, we had to be careful to ensure that the overall bin count was not1367

too small or too large. If it was too small, each bin would correspond to a large section of the object1368

configuration space, and the results would not be meaningful. Similarly, if it was too large, there is1369

no way for 1000 generated demonstrations to cover a meaningful portion of the support (since there1370

can only be 1000 bins covered at best).1371

We now present our results. For several environments, we found there to be a good amount of sup-1372

port coverage — for example, Coffee D1 (98.8%), Coffee D2 (89.3%), and Square D1 (92.6%).1373

However, we also found datasets that likely have significant amounts of bias — for example, Square1374

D2 (66.4%), Threading D1 (71%), Threading D2 (61.2%), Three Piece Assembly D0 (67.9%),1375

Three Piece Assembly D1 (43.5%), and Mug Cleanup D1 (64%). This analysis is certainly im-1376

perfect, as some datasets could still be biased towards containing certain object configurations than1377

others (e.g. having non-uniform bin counts across the support), and there could also be different1378

kinds of bias (such as repetitive motions). However, this analysis does confirm that there is certainly1379

bias in some of the generated datasets. A deeper investigation into the properties of the generated1380

data is left for future work.1381

Are there artifacts and other undesirable behavior characteristics in MimicGen datasets? Ar-1382

tifacts and other undesirable behavior characteristics are likely, for two reasons. One reason is1383

that MimicGen bridges transformed segments from the source dataset with interpolation segments.1384

These interpolation segments could result in long paths and unnatural motions that are difficult to1385

imitation. In fact, we found some evidence of this fact (see Appendix G). Another reason is that1386

MimicGen only checks for a successful task completion when deciding whether to accept a gen-1387

erated trajectory. This means that there might be undesirable behaviors such as collisions between1388

the robot and certain parts of the world (including objects that are not task-relevant). As we move1389

towards deploying robots trained through imitation learning, data curation efforts are of the utmost1390

importance — this is left for future work.1391

41



R Using More Varied Source Demonstrations1392

Task Source D0 D1 D2

Square (src D0) (DGR) - 73.7 48.9 31.8
Square (src D2) (DGR) - 54.4 51.7 52.3

Three Piece Assembly (src D0) (DGR) - 35.6 35.5 31.3
Three Piece Assembly (src D2) (DGR) - 26.9 29.1 23.9

Square (src D0) (SR, low-dim) 18.7± 0.9 98.0± 1.6 80.7± 3.4 58.7± 1.9
Square (src D2) (SR, low-dim) 2.0± 0.0 98.0± 1.6 84.7± 1.9 60.7± 2.5

Three Piece Assembly (src D0) (SR, low-dim) 2.7± 0.9 74.7± 3.8 61.3± 1.9 38.7± 4.1
Three Piece Assembly (src D2) (SR, low-dim) 0.0± 0.0 62.0± 4.9 57.3± 4.1 32.0± 2.8

Table R.1: Using More Varied Source Demonstrations. We present a comparison of data generation success
rates and policy success rates (3 seeds) across two choices of source datasets — the 10 source human demon-
strations collected on D0 (default used in main experiments) and 10 source human demonstrations collected
on the significantly more diverse D2 reset distribution. Interestingly, while the data generation success rates
differ, the policy success rates are comparable, suggesting that downstream agent performance can be invariant
to how much the task initializations of the source demonstrations vary.

Most of our experiments used 10 source human demonstrations collected on a narrow reset distri-1393

bution (D0) and generated demonstrations with MimicGen across significantly more varied reset1394

distributions (D0, D1, D2). In this section, we investigate whether having source demonstrations1395

collected on a more varied set of task initializations is helpful. We do this by collecting 10 source1396

human demonstrations on D2 and using it to generate data for all reset distributions (D0, D1, D2).1397

The results are presented in Table R.1. Interestingly, while the data generation success rates dif-1398

fer, the policy success rates are comparable, suggesting that downstream agent performance can be1399

invariant to how much the task initializations of the source demonstrations vary.1400

42



S Data Generation with Multiple Seeds1401

MimicGen’s data generation process has several sources of randomness, including the initial state of1402

objects for each data generation attempt (which is sampled from the reset distribution D), selecting1403

the source dataset segment that will be transformed (Appendix M.3), and the noise added to actions1404

during execution (Appendix M.4). In all of our experiments, we only used a single seed to generate1405

datasets (our policy learning results are reported across 3 seeds though). In this section, we justify1406

this decision, by showing that there is very little variance in empirical results across different data1407

generation seeds.1408

We generated 3 datasets (3 different seeds) for Stack Three (D0, D1) and Square (D0, D1, D2),1409

and train low-dim policies (3 seeds per generated results, so 9 seeds in total per task variant) and1410

summarize the results in Table S.1. The data generation success rates have very tight variance (less1411

than 1%) and do not deviate from our reported data generation rates (Appendix O) by more than1412

0.6%. Furthermore, the mean policy success rates are extremely close to our reported results for1413

low-dim agents in Table P.1 (less than 2% deviation).1414

Task D0 D1 D2

Stack Three (DGR) 71.7± 0.3 69.3± 0.4 -
Square (DGR) 74.4± 0.5 48.5± 0.7 32.0± 0.9

Stack Three (SR) 89.6± 2.1 92.4± 1.6 -
Square (SR) 96.7± 2.1 81.6± 4.5 58.0± 3.5

Table S.1: Data Generation with Multiple Seeds. We present data generation rates (DGR) and success rates
(SR) across 3 seeds of data generation, and 3 low-dim policy training seeds per dataset (9 seeds) total. The
results are very close to our reported results (less than 0.6% deviation in DGR, less than 2% deviation in SR)
despite our results only generating datasets with one seed.

43



T Tolerance to Pose Estimation Error1415

In the main text, we demonstrated that MimicGen is fully functional in real-world settings and can1416

operate with minimal assumptions (e.g. no special tags or pose trackers) by using pose estimation1417

methods (see Appendix G for details). Consequently, the data generation process has some tolerance1418

to pose error and can operate without having access to perfect pose estimates. In this section, we1419

further investigate this tolerance in simulation by adding 2 levels of uniform noise to object poses1420

- L1 is 5 mm position and 5 deg rotation noise and L2 is 10 mm position and 10 deg rotation1421

noise [107]. As shown in Table T.1, the data generation rate decreases (e.g. Square D0 decreases1422

from 73.7% to 60.9% for L1 and 30.5% for L2 and Square D2 decreases from 31.8% to 25.1%1423

for L1 and 14.5% for L2), but visuomotor policy learning results are relatively robust (Square D01424

decreases from 90.7% to 89.3% for L1 and 84.7% for L2, and Square D2 decreases from 49.3% to1425

47.3% for L1 and 39.3% for L2).1426

Task None Level 1 (5 mm / 5 deg) Level 2 (10 mm / 10 deg)

Stack Three (D1) (DGR) 68.9 62.3 38.7

Stack Three (D1) (SR) 86.7± 3.4 84.0± 2.8 80.7± 3.4

Square (D0) (DGR) 73.7 60.9 30.5
Square (D1) (DGR) 48.9 40.2 20.2
Square (D2) (DGR) 31.8 25.1 14.5

Square (D0) (SR) 90.7± 1.9 89.3± 2.5 84.7± 2.5
Square (D1) (SR) 73.3± 3.4 64.0± 1.6 62.0± 1.6
Square (D2) (SR) 49.3± 2.5 47.3± 6.8 39.3± 4.7

Coffee (D0) (DGR) 78.2 28.9 5.6
Coffee (D1) (DGR) 63.5 22.6 4.3

Coffee (D0) (SR) 100.0± 0.0 95.3± 2.5 79.3± 0.9
Coffee (D1) (SR) 90.7± 2.5 83.3± 2.5 77.3± 4.1

Threading (D0) (DGR) 51.0 17.6 5.2

Threading (D0) (SR) 98.0± 1.6 94.7± 0.9 86.7± 1.9

Table T.1: Tolerance to Noisy Pose Estimates. We investigate how the data generation success rates (DGR)
and visuomotor policy success rates (SR) change when adding uniform pose noise to the object poses in the
source demonstrations and the new scene during data generation. Although the data generation rates decrease,
policy success rates are robust. This shows that MimicGen can be tolerant to noisy object pose estimation, and
is suitable for real-world data collection.

44


	Introduction
	Related Work
	Problem Setup
	Method
	Parsing the Source Dataset into Object-Centric Segments
	Transforming Source Data Segments for a New Scene

	Experiment Setup
	Experiments
	Applications of MimicGen
	Comparing MimicGen to using more human data
	MimicGen Analysis
	Real Robot Evaluation

	Limitations
	Conclusion
	Overview
	FAQ
	Limitations
	Full Related Work
	Robot Transfer
	Object Transfer
	Real Robot Results
	Different Demonstrators
	Motivation for MimicGen over Alternative Methods
	Replay-Based Imitation Learning
	Offline Data Augmentation

	Additional Details on Object-Centric Subtasks
	How Tasks can be broken up into Object-Centric Subtasks
	Parsing the Source Dataset into Object-Centric Subtask Segments
	Specific Examples

	Tasks and Task Variants
	Derivation of Subtask Segment Transform
	Data Generation Details
	Equivalence between delta-pose actions and controller target poses
	Details on Interpolation Segments
	Reference Segment Selection
	Action Noise
	Data Generation for Mobile Manipulation Tasks
	MimicGen Hyperparameters

	Policy Training Details
	Data Generation Success Rates
	Low-Dim Policy Training Results
	Bias and Artifacts in Generated Data
	Using More Varied Source Demonstrations
	Data Generation with Multiple Seeds
	Tolerance to Pose Estimation Error

