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Abstract

Recent work on large language models relies001
on the intuition that most natural language pro-002
cessing tasks can be described via natural lan-003
guage instructions.Language models trained on004
these instructions show strong zero-shot per-005
formance on several standard datasets. How-006
ever, these models even though impressive can007
still perform poorly on a wide range of tasks008
outside of their respective training and evalu-009
ation sets and/or can be prohibitively large.A010
natural solution to address this limitation is011
Continual Learning: a model that could keep012
extending its knowledge and abilities, without013
forgetting previous skills. In spite of the limited014
success of Continual Learning we show that015
fine-tuned language models can be continual016
learners. Our resulting model Continual-T0017
(CT0) is able to learn 8 different and diverse018
tasks, while still achieving similar zero-shot019
performance on T0 evaluation tasks.As an ad-020
ditional finding, we notice that CT0 can gen-021
eralize to instruction composition, being able022
to combine instructions in ways it was never023
trained for. 1024

1 Introduction025

Recent work has shown that large language models026

have the ability to perform zero-shot and few-shot027

learning reasonably well (Brown et al., 2020; Rae028

et al., 2021; Smith et al., 2022). A particularly029

successful line of work relies on the intuition that030

most natural language processing tasks can be de-031

scribed via natural language instructions (Wei et al.,032

2022; Sanh et al., 2022). For example, a summa-033

rization task can be reformatted as a response to034

a natural language input as shown in Table 1. No-035

tably, Sanh et al. (2022) fine-tune a pre-trained036

encoder-decoder model (Raffel et al., 2020) on a037

multitask mixture of wide variety NLP datasets ex-038

pressed via natural language prompts with diverse039

1Our code is publicly available https://github.
com/XXX/T0_continual_learning

The picture appeared on the wall of a
Poundland store on Whymark Avenue [...] How
would you rephrase that in a few words?
Graffiti artist Banksy is believed to be
behind [....]

Table 1: An instance from T0 training set (Sanh et al.,
2022) where a summarization task is reformatted as a
natural language response to a natural language input

wording. Their model (T0) attains strong zero- 040

shot performance on several standard datasets.Wei 041

et al. (2022) show that fine-tuning models on a mas- 042

sive mixture of NLP datasets expressed via natural 043

language instructions (i.e., instruction tuning), im- 044

proves the zero-shot performance of large language 045

models. They refer to this instruction-tuned model 046

as FLAN (Finetuned Language Net). 047

While T0 is able to achieve great performance 048

on some tasks, it is also limited to simple instruc- 049

tions and mainly natural language understanding 050

tasks. The zero-shot generalization does not hold 051

for most natural language generation tasks. FLAN 052

on the other hand, while showing impressive perfor- 053

mance on both zero-shot language understanding 054

and language generation tasks is not publicly avail- 055

able and it is also large in size (137B), limiting its 056

further use and reproducibility. Finally, however 057

impressive, these models can still perform poorly 058

on a wide range of tasks largely different from their 059

respective evaluation sets. To improve their ability 060

on new and diverse tasks, one needs to fine-tune 061

these models again. However, one key problem as- 062

sociated with fine-tuning is catastrophic forgetting 063

(French, 1999). 064

To overcome these limitations (i.e., lack of gen- 065

eralization to completely different tasks and catas- 066

trophic forgetting), an obvious solution is Contin- 067

ual Learning with rehearsal (Shin et al., 2017). In 068

this paper, we study Continual Learning of lan- 069

guage models fine-tuned on natural language in- 070

structions and investigate their ability to adapt to 071
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diverse tasks, while avoiding catastrophic forget-072

ting on the older tasks. For this purpose, we pro-073

pose Continual-T0 (CT0), a T0 model that uses074

Continual Learning with rehearsal. Starting from075

T0, we are able to teach progressively 8 new di-076

verse tasks, maintaining almost 100% of their per-077

formance, while using only 1% of data for mem-078

ory buffer. Our final model, Continual-T0 (CT0)079

is able to perform as well as T0 on T0 zero-shot080

tasks, but can also understand instructions about081

several new tasks focused on language generation082

problems such as writing a haiku, generating em-083

pathetic responses in a dialogue, simplifying text,084

summarizing an article with decoding constraints,085

generating natural language explanations for NLI086

tasks, adapting to stylometry on Twitter, or a new087

domain QA task (COVID-19 QA). We also con-088

duct an extensive analysis and show that our newly089

learned instructions can be composed with other090

instructions in ways never seen during training,091

opening new potential for generalisation.092

2 Related Work093

Instruction tuning There has been a range of094

work in the domain of instruction-tuning (Mishra095

et al., 2021b; Sanh et al., 2022; Wei et al., 2022;096

Mishra et al., 2021a; Ouyang et al., 2022) which097

differs in training and evaluation data, formatting of098

instructions, size of pre-trained models, and other099

experimental details. A consistent finding across100

these studies show how fine-tuning language mod-101

els on a range of NLP tasks, with instructions, im-102

proves their downstream performance on held-out103

tasks, both in the zero-shot and few-shot settings.104

We place our focus on whether we can keep im-105

proving these models by teaching them new tasks106

without forgetting their existing capabilities. It107

should be noted, however, that several models in108

these studies are not open-sourced limiting their109

reproducibility. Hence we resort to T0 (Sanh et al.,110

2022) for our study.111

Continual Learning Current fine-tuned lan-112

guage models are limited in continuously learning113

without forgetting any previously acquired knowl-114

edge and abilities. Research in this direction has in-115

vestigated various strategies such as External Mem-116

ory, Constraints and Model Plasticity (Parisi et al.,117

2019). External Memory methods often simply118

use rehearsal with a replay during training (Rebuffi119

et al., 2017). de Masson D’Autume et al. (2019)120

also proposed local fine-tuning at inference time,121

leveraging examples similar to the considered in- 122

put. 123

Through the lens of NLP tasks, Biesialska et al. 124

(2020) look at the problem of Continual Learn- 125

ing and discuss major challenges involved. Jin 126

et al. (2021) show Continual Learning algorithms 127

are effective for knowledge preservation. Their 128

study also infer that continual pretraining improves 129

temporal generalization. (Douillard et al., 2021) 130

proposed a a dynamic expansion of special tokens 131

with a transformer architecture. Mi et al. (2020) 132

and Madotto et al. (2021) perform Continual Learn- 133

ing for task oriented dialog systems by using replay 134

based strategy.Cao et al. (2021) propose a new Con- 135

tinual Learning framework for NMT models, while 136

Ke et al. (2021) proposes a novel capsule network 137

based model called B-CL (Bert based Continual 138

Learning) for sentiment classification tasks. Jin 139

et al. (2020) show how existing Continual Learning 140

algorithms fail at learning compositional phrases. 141

3 Continual Learning for Fine-tuned 142

Language Models 143

3.1 Continual Learning via Rehearsal (CLR) 144

Our objective is to maintain the model’s existing 145

learned skills, while progressively learning more 146

tasks. To prevent the model from catastrophic for- 147

getting, we rely on an external memory module, 148

storing a subset of previous data (Shin et al., 2017). 149

We define the sequence of tasks to be solved as a 150

task sequence T = (T1, T2, , TN ) of N tasks. Di 151

is the corresponding dataset for task Ti. Formally, 152

the training data augmented with rehearsal Dr
i is 153

defined as: 154

Dr
i = Di +

i−1∑
j=1

(rDj) (1) 155

where r is the rehearsal hyper-parameter that con- 156

trols the percentage of examples sampled from pre- 157

vious tasks T1, ...Ti−1. We note that r = 0 corre- 158

sponds to no memory, and r = 1 is equivalent to a 159

multi-task setup using all the previous examples. 160

3.2 Continual-T0 (CT0) 161

For all our experiments, we instantiate our model 162

with the T0 model (Sanh et al., 2022). T0 is a T5 163

model (Raffel et al., 2020) fine-tuned in a multitask 164

setting on more than 30 datasets, where the natural 165

language instructions corresponding to individual 166

tasks are used as the input. This allows the model 167
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to perform well in a zero-shot setup, by leveraging168

the information present only in the instructions.169

Our initial model is T0_3B, the T0 version with170

(only) 3 Billions parameters for all our experiments.171

We used the same hyper-parameters as the ones172

reported in Sanh et al. (2022)2. The only new hyper-173

parameter introduced in our paper is the rehearsal174

proportion r. We explored r ∈ [0, 0.25%, 1%] as175

reported in our first set of results (see Section 3).176

For each task, we consider 100,000 examples177

for training, such that 1% rehearsal corresponds to178

1,000 examples from the memory buffer. Thus, for179

datasets with fewer training examples, we upsam-180

ple them and conversely for largest datasets like181

Gigaword or Simplification, we limit to 100,000 ex-182

amples. When we scaled our best setup to the 11B183

parameters version of T0, T0pp, we observed insta-184

bility in validation performance. Thus, we changed185

the learning rate from 1e-3 to 1e-4 as well as the op-186

timizer to AdamW instead of Adafactor for all our187

11B experiments. All the other hyper-parameters188

remain similar to the 3B model.189

3.3 Tasks190

In this section, we describe all the tasks T used191

to progressively train and evaluate our model. For192

all the new tasks (i.e., not the T0 tasks), we also193

designed instructions, as illustrated in Table 2.194

3.3.1 T0 Tasks195

We use the same training and evaluation tasks as196

described in the T0 paper by Sanh et al. (2022).197

Details about these task can be found in Appendix198

A199

3.3.2 New Tasks200

All of our newly introduced tasks are language gen-201

eration tasks in contrast to the T0 evaluation tasks202

and majority of the T0 training tasks (all except203

summarization).204

Text Simplification (Simpl) Jiang et al. (2020)205

provided WikiAuto, a set of 400,000 aligned sen-206

tences from English Wikipedia and Simple English207

Wikipedia as a resource to train sentence simpli-208

fication systems. The test set contains 4,000 ex-209

amples. In addition, we also evaluate our models210

on a second Text Simplification dataset, ASSET211

(Alva-Manchego et al., 2020). This is a dataset ded-212

icated for the evaluation of sentence simplification213

2See more details at https://huggingface.co/
bigscience/T0pp

in English, providing 2,000 multiple references per 214

example, unlike previous simplification datasets. 215

Table 2 shows our designed instructions for this 216

task. 217

Headline Generation with Constraint (HGen). 218

While writing a title for a news article, it can be 219

very useful to add additional constraints, such as 220

the presence of certain words. However, traditional 221

decoding strategies like the BeamSearch often fail 222

to achieve this goal as discussed in 4. Gigaword is 223

one of T0 training dataset. Our new task consists 224

of generating a title given a news article with addi- 225

tional constraints. Towards this goal, for a given 226

document D and an input keyword X we design the 227

following three instructions: [Make a title for this 228

article, starting with / ending with / that contains 229

“X” : D where X is a word we want to be present 230

in the output text at the beginning/end/anywhere, 231

and D the source document, as illustrated in Table 232

2. To create the training data, we simply leverage 233

the gold-reference to select the word X, such that 234

our model is trained with consistent and plausible 235

instructions. Gigaword contains millions of train- 236

ing examples. The original test set is composed of 237

1,951 examples, so we convert it to 3 sets of 1,951 238

examples for our Start/End/Contain instructions, 239

respectively. 240

Haiku Generation (Haiku). For the task of 241

haiku generation, we crawl 10,718 haikus with at 242

least 1 up-vote from the Subreddit haiku, 3 and split 243

it in 9,742 and 974 example for the train and test 244

sets, respectively. Table 2 shows an example in- 245

struction for Haiku Generation about a given topic. 246

Covid QA (CQA) Möller et al. (2020) created 247

COVID-QA, a Question Answering dataset con- 248

sisting of 2,019 question/answer pairs annotated 249

by volunteer biomedical experts on scientific arti- 250

cles related to COVID-19. We consider this dataset 251

since to the best of our knowledge, T0 has never 252

been exposed to any COVID-19 related data. In its 253

original version, the dataset is framed as SQuAD 254

(Rajpurkar et al., 2016), with triplets (context, ques- 255

tion, answer), where the context contains the an- 256

swer. Because T0 has been extensively trained on 257

QA dataset, CovidQA in its original format simply 258

requires domain transfer. To make the task more 259

challenging, we propose to provide only the ques- 260

tion as an input, now framing the task as “learn 261

the answer by heart” in an encyclopedia style task. 262

3https://www.reddit.com/r/haiku/
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Text
Smpfl(Simp)

Instruction Make this text simpler: "A Georgian inscription around the drum attests his name."
Output A Georgian writing on the drum is his name.

Headline
Generation
(HGen)

Instruction
Make a title for this article that begins with "protesters": police arrested five
anti-nuclear protesters thursday after they sought to disrupt loading of a french
antarctic research and supply vessel , a spokesman for the protesters said .

Output protesters target french research ship

Haiku
Gen (Haiku)

Instruction Generate a haiku about ’Seagulls crying high’
Output Seagulls crying high / the air smelling of sea salt / Or is it my tears?

Covid QA
(CQA)

Instruction
In the context of the COVID pandemic,who is at greater risk of dying
from COVID19?

Output patients with underlying medical conditions and the elderly

Inquisitive
Question
Gen(InqQG)

Instruction
Given the following text, write the possible curious question it answers: "Positrons
do not travel backwards in time. Positron-electron annihilation ....... So, we know
they collide frequently enough to light up the galaxy in that part of the spectrum

Output How often do electrons and positrons collide in nature?

Empathetic
Dialog
Generation
(EmDg)

Instruction

The associated emotion is "disappointed" and the input prompt is "Had to cancel our
family vacation coming up next month. My husband’s work said he couldn’t go
after they already approved the time off.". Now what would be your response, given
the following dialogue context:=== - I had to cancel our family vacation coming
up next month.

Output I am really sorry to hear that. I hope everything is alright.

Explanation
Generation
(Exp)

Instruction
Explain why the two following sentences are unrelated: "Sentence 1: Two women are
observing something together."; Sentence 2: "Two women are looking at a flower
together."

Output
Just because two women are observing something together it does not mean they
are looking at a flower.

Twitter
Stylometry
(TwSt)

Instruction Write a tweet about #WelcomeToNewYork, in the style of taylorswift13

Output
GUYS. #WelcomeToNewYork will be up on iTunes any minute now.
This is not a drill!! GO GO GO

Table 2: Example Instructions with their respective ground-truth for 8 new tasks learned continually from the T0
checkpoint.

This way the task framing can be seen as a new263

strategy to incorporating knowledge and prevent-264

ing the model from concept drift.265

Inquisitive Question Generation (InqQG) To266

foster long form question answering Fan et al.267

(2019) created the ELI5 dataset that comprises268

270,000 English-language threads from the Red-269

dit forum of the same name, 4 where an online270

community provides answers to questions intended271

to be comprehensible by five-year-olds. Table 2272

shows an example instruction in order to gener-273

ate inquisitive questions. As opposed to standard274

Question Generation based on SQuAD, ELI5 en-275

ables open-ended questions, closer to human-style276

questions (Scialom and Staiano, 2020). We filtered277

out the Reddit threads to keep only well formed278

questions,5 resulting in 61,710 and 1,681 examples279

4https://www.reddit.com/r/
ExplainLikeImfive/

5I.e, starting in “W” or “H” and finishing with a ques-
tion mark. See the code for the exact implementation, class

for the training and test set, respectively. 280

Empathetic Dialogue Generation (EmDg) 281

Rashkin et al. (2019) proposed a benchmark for 282

empathetic dialogue generation by creating a 283

dataset of conversations grounded in emotional 284

situations. Each example in the dataset contains an 285

input emotion, situation in which dialogue appears 286

and the entire conversation. We display in Table 287

2 the corresponding instruction. At the example 288

level, our training and test datasets contain 58,770 289

and 8,396 examples, respectively. 290

Explanation Generation (Exp). The Stanford 291

Natural Language Inference dataset consists of a 292

classification task, where given a Premise(P) and 293

an Hypothesis(H), the model has to chose between 294

3 options: entailed, contradiction or not related. 295

Camburu et al. (2018) extend this NLI dataset by 296

annotating the explanations of the label in natural 297

language. In our paper, we consider as input the 298

ELI5promptFormat in data_handler.py.

4
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Premise(P), the Hypothesis(H), and the label, and299

train our model to generate the explanation. The300

dataset is composed of 100,000 and 9,824 train and301

test examples, respectively.302

Twitter Stylometry (TwSt) Tareaf (2017) ex-303

tracted tweets from the top 20 most followed users304

in Twitter social platform, including singers such as305

Katy Perry or Selena Gomez, as well as the official306

account of Barack Obama when he was president of307

the USA. The style for tweets largely differs from308

one account to an another, e.g. @BarackObama:309

“It’s time to #ActOnClimate” vs. @KimKardashian:310

“makes me want to go back blonde but i’m scared311

it will ruin my hair :-(”. We define the Stylome-312

try task as generating a relevant tweet given i) a313

hashtag, and ii) the tweet’s author. We thus se-314

lected only tweets containing hashtags (#) from the315

original dataset, resulting in a total of 13,041 and316

250 examples for train and test sets, respectively.317

We display at the bottom of Table 2 an example318

instruction for this task.319

3.4 Automatic Metrics320

T0 zero-shot evaluation set (see Section 3.3) only321

contains tasks framed as classification. For T0322

evaluation, Sanh et al. (2022) compute the loglike-323

lihood of each of the target options, and the option324

with the highest log-likelihood is selected as the325

prediction. This strategy holds when restricting326

the evaluation to classification tasks. However, in327

the context of an open-ended model able to per-328

form NLG tasks, a user is interested in the actual329

output of the model rather than probabilities. We330

therefore report the accuracy of the prediction com-331

pared to the ground-truth answer for all those tasks.332

This measure is more conservative, as it requires333

an exact match.334

In the context of Continual Learning, we also335

suspect that using only a comparison of the log-336

likelihood of respective classes would not reflect337

the actual model’s memory, since the decoders are338

known to suffer from catastrophic forgetting more339

than the encoders (Riabi et al., 2021).340

Standard NLG Metrics. For the standard tasks,341

we rely on widely used metrics: ROUGE (Lin,342

2004) for Summarization; BLEU (Papineni et al.,343

2002) and SARI (Xu et al., 2016) for Simplifica-344

tion. In this paper, we also include open-domain345

NLG tasks, such as Dialogue or Explanation gen-346

eration. The space of possible correct outputs is347

too large in this case to rely on n-gram based met- 348

rics like BLEU or ROUGE. For this reason, we 349

report BERTScore (Zhang et al., 2020) to measure 350

the similarity between a prediction and its gold- 351

reference in those tasks.6 352

When possible, we also designed customized 353

metrics that are better suited for the task.7 354

Customized NLG Metrics. 355

• Constraint: For our prompts with constraint, 356

such as “Write a text that starts/contains/ends 357

with [some word]”, we also report the accuracy 358

of respecting the constraint. Concretely, an out- 359

put is correct only if it contains the [word] at the 360

right location: the beginning for start, the end for 361

end; any location for contain. 362

• First Word Distribution (1Tok). In ELI5, the ques- 363

tions are supposed to be inquisitive, not factual 364

like in SQuAD. Therefore, the distribution of the 365

first words is very informative. For instance, the 366

percentage of questions starting with “why/how” 367

is more important than “what”. We therefore rely 368

on the Jensen Shannon Divergence between the 369

first words distributions of the ground truth ex- 370

amples and our predictions. We report its inverse, 371

so the higher the better. 372

• Author Classification (Clf) In Twitter Stylome- 373

try, the author is part of the input, so the gener- 374

ated tweet is aligned with the author’s style. To 375

measure this condition, we train a classifier on 376

the dataset, with the tweets as inputs, and the 377

corresponding author names as target categories. 378

We trained a Ridge Classifier using scikit-learn 379

(Pedregosa et al., 2011), and obtained 0.81% ac- 380

curacy. This high accuracy allows this Clf metric 381

to be informative enough. 382

• Hcust Haiku is a type of short form poetry orig- 383

inally from Japan as illustrated in the Table 2. 384

In general, it contains only 17 syllables, broken 385

up into three lines. We calculate two differences 386

between the prediction and the ground-truth: i) 387

for the number of lines, and ii) for the number 388

of syllables. Hcust corresponds to the average of 389

these two differences, BLEU and the Constraint 390

satisfiability (i.e., if the generated haiku contains 391

the topic phrase X that was present in the instruc- 392

tion). 393

6We used BERTScore based on deberta-mnli that is shown
to have high correlation with human judgements.

7All those metrics implementations are available in the
publicly released code.
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4 Results394
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Figure 1: Rehearsal ablation with 0.0, 0.25 and 1.0% of
training data showing target task performance along
with T0 zero-shot performance(T0zs) with Relative
Gain in Y axis vs Number of training steps in X axis

4.1 Learning Only a New Task395

First, we test Continual Learning via rehearsal inde-396

pendently on three tasks, by varying the rehearsal397

hyper-parameter between 0%, 0.25% and 1%, re-398

spectively. We report the results in Figure 1. We399

observe that for the three tasks (Headline Gener-400

ation with Constraint, Simplification, and Haiku),401

the rehearsal value does not affect the task result:402

all the blue curves are consistent. Conversely, the403

rehearsal value has a dramatic impact on the T0 404

zero-shot results (green curves). At 0% rehearsal, 405

the model catastrophically forgets the T0 zero-shot 406

tasks. Conversely, with only 0.25% rehearsal we 407

observe an almost perfect stability. Finally, with 408

1% rehearsal (solid line), T0 zero-shot results are 409

stationary, indicating that our model is able to main- 410

tain its performance on those tasks, while learning 411

a new task. 412

4.2 Learning a Sequence of New Tasks 413

As observed from our previous experiments using 414

Continual Learning via rehearsal we can learn a 415

new task without catastrophic forgetting, with just 416

a very little rehearsal percent. As a next step, we 417

propose to measure if fine-tuned language models 418

can progressively learn more and more tasks, with- 419

out catastrophic forgetting. This is an important di- 420

rection as it would allow the models to continually 421

increase their knowledge and capabilities without 422

forgetting the knowledge already acquired. 423

To test this hypothesis, we progressively train 424

our model on a sequence of 8 new language gen- 425

eration tasks (see Section 3.3.2 and Table 2 for 426

description of those tasks) using Continual Learn- 427

ing via rehearsal (r = 1%).We call our final model 428

CT0. The task order has been selected 1) randomly 429

among the three first tasks, and 2) in light of the 430

actual success, we progressively kept adding new 431

tasks. This setup corresponds to a realistic usage 432

of our proposed method, where future tasks were 433

thus unknown even for us. To assess a potential 434

impact of the order, we also conduct an alternative 435

experiment with our 3B model, where the order is 436

reversed. 437

In Figure 3 in Appendix A we display our fi- 438

nal sequential learning with 1% rehearsal on the 8 439

tasks. We learn a new task, starting from the model 440

fine-tuned on the previous task, and add to our re- 441

hearsal buffer 1% of the data of the learned task. 442

We observe an improvement of the relative gain 443

progressively for each task, that is our model keeps 444

learning new tasks. At the same time, the perfor- 445

mance is preserved for the other tasks, indicating 446

the success of our CLR method in a sequential 447

learning setup through more than 1000 gradient 448

steps over 8 different tasks. 449

In Table 3, we report the results for the last check- 450

points of our model after progressively learning 451

each task. We also report the results for the base- 452

line, T0pp and T0_3B, as well as the performance 453
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of the last checkpoint after sequentially teaching454

T0_3B 8 tasks in the reverse order (rev_final). Col-455

umn T0zs in Table 3 shows that our continually456

fine-tuned models are able to retain the perfor-457

mance on the T0 zero-shot evaluation set. As458

expected, the best performance for a task Tt is often459

obtained at step t , ∀t ∈ (1, 8) (as indicated by the460

results in bold for the large model T0pp and under-461

line for the small 3B T0model). Still, the final per-462

formance for the different tasks after learning all of463

them, remains very close to the best performances464

at step t. Overall, the performance maintain 99.8%465

for T0pp and 98.0% for T0_3B, indicating the ef-466

ficiency of the CLR method. No task suffers a467

decrease in performance more than 2% for T0pp.468

Finally our Continual Learning with rehearsal ap-469

proach is task order invariant as demonstrated by470

rev_final results.471

Table 5 in Appendix A shows how the CT0472

model remembers and retains knowledge from473

tasks trained at very early stages of the Contin-474

ual Learning process. It should also be noted that475

the T0pp model fails to generalize for most NLG476

tasks, while our CT0 model shows very strong per-477

formance. For instance it can generate a haiku that478

has a perfect syllable count of 17 given an unseen479

topic of ‘mountain winds haunt’. It can also gener-480

ate reasonable natural language explanations that481

often comply with our commonsense. Moreover,482

CT0 obtains a new state-of-the-art on the ASSET483

evaluation set, improving over MUSS (Martin et al.,484

2020): 85.9 BLEU4 Vs 72.98 and 46.6 SARI Vs485

44.15, and despite not using all the training data486

available.487

5 Discussion488

5.1 Zero-shot Instruction Combinations489

Our CT0 model has learned effectively to process490

different instructions in specific contexts: word491

level constraint in the context of headline genera-492

tion, or an emotional tone in the context of dialogue.493

Does CT0 understand these instructions in differ-494

ent contexts? To answer this question, and explore495

whether CT0 can learn the compositionality of the496

instructions, we conduct several experiments.497

In Table 4 we explore how our model succeeds498

in understanding constraint instructions beyond the499

one it was exposed during training. Our model was500

trained on Headline Generation with Constraint501

(HGen) instructions with only one match, such as502

Make a title for this article containing “X”. In503

our current experiment to test generalization, we 504

prompt our CT0 model with unseen instructions 505

with 2 and 3 matches, such as Make a title for this 506

article containing “X” and “Y", or Make a title 507

for this article containing “X” and “Y" and “Z". 508

We also compose instructions from constraint and 509

Twitter Stylometry resulting in instructions such as 510

Write a tweet about X, in the style of Y, containing 511

Z. 512

Zero-Shot Constraint. CT0 respects the Contain 513

constraint 77% for n = 1. The score naturally 514

drops when n > 1, however the satisfiablity is still 515

50% of the time for n = 2 and 40% for n = 3. 516

As expected, the ROUGE-1 score also improves: 517

NoCons: 30.2, #Cons=1: 38.9, #Cons=2: 43.9 518

and #Cons=3: 47.4. When we compose HGen 519

and TwSt, CT0 also performs significantly better 520

compared to CT0NoCons (46.4 Vs 10.7). These 521

results demonstrate CT0’s ability to comprehend 522

instructions as well as to satisfy compositionality. 523
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Figure 2: Emotion Generalization: Percentage of Haiku
classified as positive, when adding emotion specific con-
straints to the Haiku instruction like dialogue (EmDg).
We used an open source binary sentiment analysis clas-
sifier.8

Zero-Shot Emotional Haiku. We explore 524

whether combining an emotion with the Haiku 525

instructions would help control the haiku gener- 526

ation. Note that during training, only the task of 527

Empathetic Dialogue has been exposed to emotion. 528

Our results, reported in Figure 2, indicate that CT0 529

is able to combine an emotion with the Haiku 530

instructions in a zero-shot setting. For instance, 531

given the following input Generate a haiku 532

about “held my hand”. The associated emotion 533

is “faithful”., our model output is “He held my 534

hand through thick and thin, Through sickness 535
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T0zs ASSET Simp HGen Haiku CQA InqQG EmDg Exp TwSt

Acc B4/SARI B4/SARI R1/Cons Hcust BS 1Tok/BS BS BS Clf/BS

T0_3B 48.2 70.1/41.0 12.8/41.1 33.6/32.2 34.2 47.6 2.1/58.7 48.6 32.7 54.4/38.0

T0pp (11B) 65.6 56.5/37.7 11.7/40.1 34.9/35.9 31.6 46.0 2.4/59.8 49.7 37.2 66.4/45.1

+Simp 3B 48.9 79.9/45.2 13.8/44.6 30.3/31.0 30.9 43.9 2.0/56.1 40.2 34.9 50.8/42.5

+Simp 11B 66.7 85.3/46.1 15.0/44.8 34.9/36.1 33.0 47.2 2.1/59.0 48.1 39.2 68.8/47.6

+HGen 3B 46.9 81.4/44.9 14.1/43.9 39.7/81.0 33.7 44.2 2.5/55.9 45.9 55.2 19.6/37.3

+HGen 11B 65.5 84.5/46.1 15.3/44.8 41.9/86.9 35.9 46.6 2.9/59.7 48.9 36.4 69.6/48.1

+Haiku 3B 48.8 81.6/45.0 14.6/43.9 39.0/78.2 62.6 43.0 2.3/54.9 47.2 39.0 65.6/44.5

+Haiku 11B 64.6 83.5/46.1 14.9/45.1 41.1/83.0 63.9 46.0 2.9/59.9 48.9 37.5 66.4/46.2

+CQA 3B 48.5 79.7/44.4 14.0/43.8 37.6/75.4 62.2 90.0 2.0/54.4 42.5 38.7 66.4/45.3

+CQA 11B 64.6 84.3/46.1 14.5/44.9 40.9/83.7 63.6 90.0 2.9/59.2 48.5 42.7 67.2/47.3

+InqQG 3B 47.4 65.2/41.2 14.6/43.8 37.9/77.7 60.4 89.6 5.3/63.3 46.8 34.2 59.2/45.4

+InqQG 11B 65.5 85.5/46.3 14.9/44.8 40.6/81.7 64.5 89.9 4.9/65.7 49.2 47.7 61.2/45.9

+EmDg 3B 48.6 73.9/43.8 15.0/43.7 38.0/77.7 62.9 88.6 4.7/62.7 55.7 35.2 53.6/42.7

+EmDg 11B 66.4 85.3/46.3 15.1/44.7 40.9/84.1 65.0 89.9 5.3/65.5 56.6 37.0 61.6/45.8

+Exp 3B 47.4 74.6/44.0 14.2/43.5 37.9/80.9 60.9 86.5 4.9/62.3 55.2 71.8 54.8/43.4

+Exp 11B 65.0 85.6/46.5 14.9/44.7 40.7/84.6 64.5 89.8 4.8/65.5 56.5 73.5 63.6/46.3

+TwSt 3B 46.6 78.0/44.5 14.6/43.7 37.3/77.5 60.4 86.8 5.2/61.9 55.3 72.4 74.8/56.5

+TwSt 11B 64.4 85.9/46.6 14.6/44.7 40.7/85.5 65.8 89.8 4.8/65.2 56.2 73.0 74.4/57.9

rev_final 48.8 83.3/45.4 14.6/43.9 39.0/81.6 61.2 88.6 4.4/61.9 55.0 72.4 73.2/57.3

Table 3: 3B and 11B results for continual training set up with best 3B results underlined & best 11B results bolded.
T0zs denotes T0 zero-shot and is the average accuracy obtained on 12 eval datasets. B4, R1, BS denote BLEU-4,
ROUGE-1 and BERTScore.

HGen TwSt
# Cons 1 2 3 1

CT0 77.0 56.4 39.5 46.4
CT0NoCons 33.6 15.4 8.1 10.7

Table 4: Table showing Constraint generalisation i.e
% of instructions completely respected, when provid-
ing constraints for unseen prompts. CT0NoCons corre-
sponds to providing the same input without constrain.

and health, through life and death”. A qualitative536

analysis also shows that CT0 understands subtle537

nuances; for instance given as input Generate538

a haiku about “Seagulls crying high”. The539

associated emotion is “nostalgic”. our model540

output is “Seagulls crying high, A familiar scene,541

from a childhood Now ”.542

6 Conclusion543

We explored for the first time Continual Learning544

for instruction-based models. Our results indicate545

that fine-tuned language models are efficient con- 546

tinual learners: 1% rehearsal is enough to maintain 547

a high performance on previously learned tasks, 548

while learning new ones. Additionally, we show 549

that our model CT0 is able to comprehend the com- 550

positionality of the instructions, and understand 551

new combinations. The current technique to learn 552

multiple tasks is to train a model from scratch. 553

We hope this work paves the way toward a new 554

paradigm where models do not have to be retrained 555

all over again. We believe our experimental find- 556

ings will contribute to the effectiveness of large 557

language models, enabling them to progressively 558

adapt to new concepts and acquire more and more 559

abilities. As an analogy with Software Develop- 560

ment, this could be seen as learning new features. 561

New checkpoints are like new versions of a model. 562

In this context, Continual Learning will help to- 563

ward the Call to Build Models Like We Build Open- 564

Source Software.9 565

9https://tinyurl.com/3b7b2nrc
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A Example Appendix821

B T0 tasks822

B.1 Training Tasks:823

As detailed in Section 3.2, we instantiate our model824

with T0 (Sanh et al., 2022) weights. T0 is trained825

in a multi-task setting on a collection of 35 datasets826

spanning across Multiple Choice QA, Extractive827

QA, Closed Book QA, Sentiment Classification,828

Topic Classification, Structure to Text Generation,829

Summarization and Paraphrase Identification.830

B.2 Evaluation Tasks:831

To test zero-shot generalization, Sanh et al. (2022)832

hold out all constituent datasets of four tasks: Nat-833

ural language inference (NLI), Co-reference reso-834

lution, Sentence completion, and Word sense dis-835

ambiguation. Among Natural Language Inference836

tasks they evaluate models on the Adversarial NLI837

Instr

Make a title for this article, finishing with
"escalates": the sri lankan government
announced the closure of government
schools with immediate effect as a military
campaign against tamil separatists escalated
in the north of the country .

CT0 sri lanka closes schools as war with
tamils escalates

T0pp sri lanka closes schools as tamil
rebels advance

Instr Write a haiku about ‘mountain winds
haunt’

CT0 mountain winds haunt, the hollow of the
stones, voices echo there.

T0pp a lone tree in the mountains is haunted by
the wind

Instr

Explain why the two following sentences
do not entail each other: "Sentence 1: A
woman with a green headscarf, blue shirt
and a very big grin."; Sentence 2:"The
woman has been shot."

CT0 A woman cannot be smiling if she has
been shot.

T0pp No

Table 5: Outputs for HGen, Haiku and Exp from T0pp
and our continually learned final model CT0.

(ANLI) (Nie et al., 2020), Commitment Bank (CB) 838

(de Marneffe et al., 2019) and Recognizing Textual 839

Entailment (RTE) (Dagan et al., 2005) benchmarks. 840

For Co-reference resolution they use the data from 841

Winogrande Schema Challenge (WSC) (Levesque 842

et al., 2012) and the Adversarial Winogrande (Sak- 843

aguchi et al., 2020) benchmarks, for Word sense 844

disambiguation the Words in Context (WIC) (Pile- 845

hvar and Camacho-Collados, 2019), while for Sen- 846

tence completion the Choice Of Plausible Alter- 847

natives(COPA) (Gordon et al., 2012), HelloSwag 848

(Zellers et al., 2019) and StoryCloze (Mostafazadeh 849

et al., 2016) benchmarks. 850

C Data Efficiency 851

Our method based on rehearsal learning is simple 852

yet efficient. While the complexity in term of data 853

storage and training is not constant (O(1)), with 854

only 1% of the previous training data we are able 855

to retain model abilities.This result is still data and 856

computationally efficient, compared to the standard 857

approach of retraining the model from scratch on 858

all tasks. In cases where the number of tasks to 859

learn would grow by several order of magnitude, 860

more sophisticated methods could be explored. We 861

leave this for future research. 862
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Figure 3: Progressive results for CT0 (11B) during the sequential learning. The curves for tasks T0, ...T7 are
displayed respectively at step 0, ..., i such that only the first task, Simplification (green and orange) is present at step
0, then HGen (red) etc. The results are normalised w.r.t. the performance achieved by CT0 at the end of a training
so that 1 corresponds to the reference for any task, and results below 1 will indicate task forgetting.

D Scaling Laws863

Scaling Laws - Continual Learning Brown et al.864

(2020) shows that zero and few-shot capabilities of865

language models substantially improve for larger866

models, a result confirmed in (Wei et al., 2022),867

and (Sanh et al., 2022) where the 11B parame-868

ters model largely outperforms the 3B (65.6% vs.869

48.2% on T0zs). As expected, our results for CT0-870

11B are better than CTO-3B. We also analyze a871

potential effect of scaling laws on Continual Learn-872

ing. When comparing the 3B and 11B results of873

CT0, we observe less forgetting on the 11B version.874

This result may again indicate the effectiveness of875

larger models.876

Why could LLMs be lifelong learners? Litera-877

ture in Continual Learning has consistently look for878

a compromise between rigidity, i.e., encouraging879

similarity between the new model and its previous880

state, and plasticity, i.e. letting enough slack to881

learn new abilities. In line with the recent findings882

from Ramasesh et al. (2021), we hypothesise that883

our surprisingly good result is a consequence of the884

hyper-parameterization for large language models,885

making them continual learners.886

D.1 Toward Concept Drift 887

In the original CovidQA the task consists of an- 888

swering a question present in a given paragraph. In 889

this setup, one can arguably succeed into answer- 890

ing questions about COVID by transferring the task 891

knowledge, even without particular domain knowl- 892

edge about COVID. In our paper, we intentionally 893

chose to not provide the context for CQA but only 894

the question. This alternative setup corresponds 895

to learning by heart the answer to a question. Our 896

results in Table 3 show that while we framed CQA 897

as a new task to learn, our proposed setup also 898

opens new way to tackle concept drift, by directly 899

incorporating knowledge into a model. 900
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