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Abstract

Recent work on large language models relies
on the intuition that most natural language pro-
cessing tasks can be described via natural lan-
guage instructions.Language models trained on
these instructions show strong zero-shot per-
formance on several standard datasets. How-
ever, these models even though impressive can
still perform poorly on a wide range of tasks
outside of their respective training and evalu-
ation sets and/or can be prohibitively large.A
natural solution to address this limitation is
Continual Learning: a model that could keep
extending its knowledge and abilities, without
forgetting previous skills. In spite of the limited
success of Continual Learning we show that
fine-tuned language models can be continual
learners. Our resulting model Continual-TO
(CTO) is able to learn 8 different and diverse
tasks, while still achieving similar zero-shot
performance on TO evaluation tasks.As an ad-
ditional finding, we notice that CTO can gen-
eralize to instruction composition, being able
to combine instructions in ways it was never
trained for. !

1 Introduction

Recent work has shown that large language models
have the ability to perform zero-shot and few-shot
learning reasonably well (Brown et al., 2020; Rae
et al., 2021; Smith et al., 2022). A particularly
successful line of work relies on the intuition that
most natural language processing tasks can be de-
scribed via natural language instructions (Wei et al.,
2022; Sanh et al., 2022). For example, a summa-
rization task can be reformatted as a response to
a natural language input as shown in Table 1. No-
tably, Sanh et al. (2022) fine-tune a pre-trained
encoder-decoder model (Raffel et al., 2020) on a
multitask mixture of wide variety NLP datasets ex-
pressed via natural language prompts with diverse

'Our code is publicly available https://github.

com/XXX/TO0_continual_learning

The picture appeared on the wall of a
Poundland store on Whymark Avenue [...] How
would you rephrase that in a few words?
Graffiti artist Banksy is believed to be

behind [....]

Table 1: An instance from TO training set (Sanh et al.,
2022) where a summarization task is reformatted as a
natural language response to a natural language input

wording. Their model (TO) attains strong zero-
shot performance on several standard datasets. Wei
et al. (2022) show that fine-tuning models on a mas-
sive mixture of NLP datasets expressed via natural
language instructions (i.e., instruction tuning), im-
proves the zero-shot performance of large language
models. They refer to this instruction-tuned model
as FLAN (Finetuned Language Net).

While TO is able to achieve great performance
on some tasks, it is also limited to simple instruc-
tions and mainly natural language understanding
tasks. The zero-shot generalization does not hold
for most natural language generation tasks. FLAN
on the other hand, while showing impressive perfor-
mance on both zero-shot language understanding
and language generation tasks is not publicly avail-
able and it is also large in size (137B), limiting its
further use and reproducibility. Finally, however
impressive, these models can still perform poorly
on a wide range of tasks largely different from their
respective evaluation sets. To improve their ability
on new and diverse tasks, one needs to fine-tune
these models again. However, one key problem as-
sociated with fine-tuning is catastrophic forgetting
(French, 1999).

To overcome these limitations (i.e., lack of gen-
eralization to completely different tasks and catas-
trophic forgetting), an obvious solution is Contin-
ual Learning with rehearsal (Shin et al., 2017). In
this paper, we study Continual Learning of lan-
guage models fine-tuned on natural language in-
structions and investigate their ability to adapt to
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diverse tasks, while avoiding catastrophic forget-
ting on the older tasks. For this purpose, we pro-
pose Continual-TO (CT0), a TO model that uses
Continual Learning with rehearsal. Starting from
TO, we are able to teach progressively 8 new di-
verse tasks, maintaining almost 100% of their per-
formance, while using only 1% of data for mem-
ory buffer. Our final model, Continual-TO (CTO)
is able to perform as well as TO on TO zero-shot
tasks, but can also understand instructions about
several new tasks focused on language generation
problems such as writing a haiku, generating em-
pathetic responses in a dialogue, simplifying text,
summarizing an article with decoding constraints,
generating natural language explanations for NLI
tasks, adapting to stylometry on Twitter, or a new
domain QA task (COVID-19 QA). We also con-
duct an extensive analysis and show that our newly
learned instructions can be composed with other
instructions in ways never seen during training,
opening new potential for generalisation.

2 Related Work

Instruction tuning There has been a range of
work in the domain of instruction-tuning (Mishra
et al., 2021b; Sanh et al., 2022; Wei et al., 2022;
Mishra et al., 2021a; Ouyang et al., 2022) which
differs in training and evaluation data, formatting of
instructions, size of pre-trained models, and other
experimental details. A consistent finding across
these studies show how fine-tuning language mod-
els on a range of NLP tasks, with instructions, im-
proves their downstream performance on held-out
tasks, both in the zero-shot and few-shot settings.
We place our focus on whether we can keep im-
proving these models by teaching them new tasks
without forgetting their existing capabilities. It
should be noted, however, that several models in
these studies are not open-sourced limiting their
reproducibility. Hence we resort to TO (Sanh et al.,
2022) for our study.

Continual Learning Current fine-tuned lan-
guage models are limited in continuously learning
without forgetting any previously acquired knowl-
edge and abilities. Research in this direction has in-
vestigated various strategies such as External Mem-
ory, Constraints and Model Plasticity (Parisi et al.,
2019). External Memory methods often simply
use rehearsal with a replay during training (Rebuffi
et al., 2017). de Masson D’ Autume et al. (2019)
also proposed local fine-tuning at inference time,

leveraging examples similar to the considered in-
put.

Through the lens of NLP tasks, Biesialska et al.
(2020) look at the problem of Continual Learn-
ing and discuss major challenges involved. Jin
et al. (2021) show Continual Learning algorithms
are effective for knowledge preservation. Their
study also infer that continual pretraining improves
temporal generalization. (Douillard et al., 2021)
proposed a a dynamic expansion of special tokens
with a transformer architecture. Mi et al. (2020)
and Madotto et al. (2021) perform Continual Learn-
ing for task oriented dialog systems by using replay
based strategy.Cao et al. (2021) propose a new Con-
tinual Learning framework for NMT models, while
Ke et al. (2021) proposes a novel capsule network
based model called B-CL (Bert based Continual
Learning) for sentiment classification tasks. Jin
et al. (2020) show how existing Continual Learning
algorithms fail at learning compositional phrases.

3 Continual Learning for Fine-tuned
Language Models

3.1 Continual Learning via Rehearsal (CLR)

Our objective is to maintain the model’s existing
learned skills, while progressively learning more
tasks. To prevent the model from catastrophic for-
getting, we rely on an external memory module,
storing a subset of previous data (Shin et al., 2017).
We define the sequence of tasks to be solved as a
task sequence T' = (11, T»,,Tn) of N tasks. D;
is the corresponding dataset for task 7;. Formally,
the training data augmented with rehearsal D is
defined as:

i—1
D; = D; +> (rD;) (1
j=1
where r is the rehearsal hyper-parameter that con-
trols the percentage of examples sampled from pre-
vious tasks 77, ...T;_1. We note that r = 0 corre-
sponds to no memory, and r = 1 is equivalent to a
multi-task setup using all the previous examples.

3.2 Continual-T0 (CTO0)

For all our experiments, we instantiate our model
with the TO model (Sanh et al., 2022). TOis a T5
model (Raffel et al., 2020) fine-tuned in a multitask
setting on more than 30 datasets, where the natural
language instructions corresponding to individual
tasks are used as the input. This allows the model



to perform well in a zero-shot setup, by leveraging
the information present only in the instructions.

Our initial model is TO_3B, the TO version with
(only) 3 Billions parameters for all our experiments.
We used the same hyper-parameters as the ones
reported in Sanh et al. (2022). The only new hyper-
parameter introduced in our paper is the rehearsal
proportion r. We explored r € [0,0.25%, 1%] as
reported in our first set of results (see Section 3).

For each task, we consider 100,000 examples
for training, such that 1% rehearsal corresponds to
1,000 examples from the memory buffer. Thus, for
datasets with fewer training examples, we upsam-
ple them and conversely for largest datasets like
Gigaword or Simplification, we limit to 100,000 ex-
amples. When we scaled our best setup to the 11B
parameters version of TO, TOpp, we observed insta-
bility in validation performance. Thus, we changed
the learning rate from 1e-3 to 1e-4 as well as the op-
timizer to AdamW instead of Adafactor for all our
11B experiments. All the other hyper-parameters
remain similar to the 3B model.

3.3 Tasks

In this section, we describe all the tasks 7" used
to progressively train and evaluate our model. For
all the new tasks (i.e., not the TO tasks), we also
designed instructions, as illustrated in Table 2.

3.3.1 TO Tasks

We use the same training and evaluation tasks as
described in the TO paper by Sanh et al. (2022).
Details about these task can be found in Appendix
A

3.3.2 New Tasks

All of our newly introduced tasks are language gen-
eration tasks in contrast to the TO evaluation tasks
and majority of the TO training tasks (all except
summarization).

Text Simplification (Simpl) Jiang et al. (2020)
provided WikiAuto, a set of 400,000 aligned sen-
tences from English Wikipedia and Simple English
Wikipedia as a resource to train sentence simpli-
fication systems. The test set contains 4,000 ex-
amples. In addition, we also evaluate our models
on a second Text Simplification dataset, ASSET
(Alva-Manchego et al., 2020). This is a dataset ded-
icated for the evaluation of sentence simplification

2See more details at https://huggingface.co/
bigscience/TO0pp

in English, providing 2,000 multiple references per
example, unlike previous simplification datasets.
Table 2 shows our designed instructions for this
task.

Headline Generation with Constraint (HGen).
While writing a title for a news article, it can be
very useful to add additional constraints, such as
the presence of certain words. However, traditional
decoding strategies like the BeamSearch often fail
to achieve this goal as discussed in 4. Gigaword is
one of TO training dataset. Our new task consists
of generating a title given a news article with addi-
tional constraints. Towards this goal, for a given
document D and an input keyword X we design the
following three instructions: [Make a title for this
article, starting with / ending with / that contains
“X” : D where X is a word we want to be present
in the output text at the beginning/end/anywhere,
and D the source document, as illustrated in Table
2. To create the training data, we simply leverage
the gold-reference to select the word X, such that
our model is trained with consistent and plausible
instructions. Gigaword contains millions of train-
ing examples. The original test set is composed of
1,951 examples, so we convert it to 3 sets of 1,951
examples for our Start/End/Contain instructions,
respectively.

Haiku Generation (Haiku). For the task of
haiku generation, we crawl 10,718 haikus with at
least 1 up-vote from the Subreddit haiku, * and split
it in 9,742 and 974 example for the train and test
sets, respectively. Table 2 shows an example in-
struction for Haiku Generation about a given topic.

Covid QA (CQA) Moller et al. (2020) created
COVID-QA, a Question Answering dataset con-
sisting of 2,019 question/answer pairs annotated
by volunteer biomedical experts on scientific arti-
cles related to COVID-19. We consider this dataset
since to the best of our knowledge, TO has never
been exposed to any COVID-19 related data. In its
original version, the dataset is framed as SQuUAD
(Rajpurkar et al., 2016), with triplets (context, ques-
tion, answer), where the context contains the an-
swer. Because TO has been extensively trained on
QA dataset, CovidQA in its original format simply
requires domain transfer. To make the task more
challenging, we propose to provide only the ques-
tion as an input, now framing the task as “learn
the answer by heart” in an encyclopedia style task.

*https://www.reddit.com/r/haiku/
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Text Instruction | Make this text simpler: "A Georgian inscription around the drum attests his name."
Smpfl(Simp) Output A Georgian writing on the drum is his name.

Make a title for this article that begins with "protesters": police arrested five
Headline Instruction | anti-nuclear protesters thursday after they sought to disrupt loading of a french
Generation antarctic research and supply vessel , a spokesman for the protesters said .
(HGen) Output protesters target french research ship
Haiku Instruction | Generate a haiku about ’Seagulls crying high’
Gen (Haiku) Output Seagulls crying high / the air smelling of sea salt / Or is it my tears?
Covid QA Instruction In the context of the COVID pandemic,who is at greater risk of dying
(CQA) from COVID19?

Output patients with underlying medical conditions and the elderly

Given the following text, write the possible curious question it answers: "Positrons
Inquisitive Instruction | do not travel backwards in time. Positron-electron annihilation ....... So, we know
Question they collide frequently enough to light up the galaxy in that part of the spectrum
Gen(IngQG) Output How often do electrons and positrons collide in nature?

The associated emotion is "disappointed" and the input prompt is "Had to cancel our

family vacation coming up next month. My husband’s work said he couldn’t go
Empathetic Instruction | after they already approved the time off.". Now what would be your response, given
Dialog the following dialogue context:=== - | had to cancel our family vacation coming
Generation up next month.
(EmDg) Output I am really sorry to hear that. I hope everything is alright.

Explain why the two following sentences are unrelated: "Sentence 1: Two women are
Explanation Instruction | observing something together."; Sentence 2: "Two women are looking at a flower
Generation together."
(Exp) Output Just because two women are observing something together it does not mean they

P are looking at a flower.

Twitter Instruction | Write a tweet about #WelcomeToNew York, in the style of taylorswift13
Stylometry Output GUYS. #WelcomeToNewYork will be up on iTunes any minute now.
(TwSt) P This is not a drill!! GO GO GO

Table 2: Example Instructions with their respective ground-truth for 8 new tasks learned continually from the TO

checkpoint.

This way the task framing can be seen as a new
strategy to incorporating knowledge and prevent-
ing the model from concept drift.

Inquisitive Question Generation (InqQG) To
foster long form question answering Fan et al.
(2019) created the ELI5 dataset that comprises
270,000 English-language threads from the Red-
dit forum of the same name, ¢ where an online
community provides answers to questions intended
to be comprehensible by five-year-olds. Table 2
shows an example instruction in order to gener-
ate inquisitive questions. As opposed to standard
Question Generation based on SQuAD, ELI5 en-
ables open-ended questions, closer to human-style
questions (Scialom and Staiano, 2020). We filtered
out the Reddit threads to keep only well formed
questions,’ resulting in 61,710 and 1,681 examples

‘https://www.reddit.com/r/
ExplainLikeImfive/

S1e, starting in “W” or “H” and finishing with a ques-
tion mark. See the code for the exact implementation, class

for the training and test set, respectively.

Empathetic Dialogue Generation (EmDg)
Rashkin et al. (2019) proposed a benchmark for
empathetic dialogue generation by creating a
dataset of conversations grounded in emotional
situations. Each example in the dataset contains an
input emotion, situation in which dialogue appears
and the entire conversation. We display in Table
2 the corresponding instruction. At the example
level, our training and test datasets contain 58,770
and 8,396 examples, respectively.

Explanation Generation (Exp). The Stanford
Natural Language Inference dataset consists of a
classification task, where given a Premise(P) and
an Hypothesis(H), the model has to chose between
3 options: entailed, contradiction or not related.
Camburu et al. (2018) extend this NLI dataset by
annotating the explanations of the label in natural
language. In our paper, we consider as input the

ELISpromptFormat in data_handler.py.
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Premise(P), the Hypothesis(H), and the label, and
train our model to generate the explanation. The
dataset is composed of 100,000 and 9,824 train and
test examples, respectively.

Twitter Stylometry (TwSt) Tareaf (2017) ex-
tracted tweets from the top 20 most followed users
in Twitter social platform, including singers such as
Katy Perry or Selena Gomez, as well as the official
account of Barack Obama when he was president of
the USA. The style for tweets largely differs from
one account to an another, e.g. @BarackObama:
“It’s time to #ActOnClimate” vs. @KimKardashian:
“makes me want to go back blonde but i’m scared
it will ruin my hair :-(”. We define the Stylome-
try task as generating a relevant tweet given i) a
hashtag, and ii) the tweet’s author. We thus se-
lected only tweets containing hashtags (#) from the
original dataset, resulting in a total of 13,041 and
250 examples for train and test sets, respectively.
We display at the bottom of Table 2 an example
instruction for this task.

3.4 Automatic Metrics

TO zero-shot evaluation set (see Section 3.3) only
contains tasks framed as classification. For TO
evaluation, Sanh et al. (2022) compute the loglike-
lihood of each of the target options, and the option
with the highest log-likelihood is selected as the
prediction. This strategy holds when restricting
the evaluation to classification tasks. However, in
the context of an open-ended model able to per-
form NLG tasks, a user is interested in the actual
output of the model rather than probabilities. We
therefore report the accuracy of the prediction com-
pared to the ground-truth answer for all those tasks.
This measure is more conservative, as it requires
an exact match.

In the context of Continual Learning, we also
suspect that using only a comparison of the log-
likelihood of respective classes would not reflect
the actual model’s memory, since the decoders are
known to suffer from catastrophic forgetting more
than the encoders (Riabi et al., 2021).

Standard NLG Metrics. For the standard tasks,
we rely on widely used metrics: ROUGE (Lin,
2004) for Summarization; BLEU (Papineni et al.,
2002) and SARI (Xu et al., 2016) for Simplifica-
tion. In this paper, we also include open-domain
NLG tasks, such as Dialogue or Explanation gen-
eration. The space of possible correct outputs is

too large in this case to rely on n-gram based met-
rics like BLEU or ROUGE. For this reason, we
report BERTScore (Zhang et al., 2020) to measure
the similarity between a prediction and its gold-
reference in those tasks.®

When possible, we also designed customized
metrics that are better suited for the task.’

Customized NLG Metrics.

* Constraint: For our prompts with constraint,
such as “Write a text that starts/contains/ends
with [some word]”, we also report the accuracy
of respecting the constraint. Concretely, an out-
put is correct only if it contains the [word] at the
right location: the beginning for start, the end for
end; any location for contain.

e First Word Distribution (1Tok). In ELIS, the ques-
tions are supposed to be inquisitive, not factual
like in SQuAD. Therefore, the distribution of the
first words is very informative. For instance, the
percentage of questions starting with “why/how’
is more important than “what”. We therefore rely
on the Jensen Shannon Divergence between the
first words distributions of the ground truth ex-
amples and our predictions. We report its inverse,
so the higher the better.

* Author Classification (CIf) In Twitter Stylome-
try, the author is part of the input, so the gener-
ated tweet is aligned with the author’s style. To
measure this condition, we train a classifier on
the dataset, with the tweets as inputs, and the
corresponding author names as target categories.
We trained a Ridge Classifier using scikit-learn
(Pedregosa et al., 2011), and obtained 0.81% ac-
curacy. This high accuracy allows this CIf metric
to be informative enough.

* H.,s Haiku is a type of short form poetry orig-
inally from Japan as illustrated in the Table 2.
In general, it contains only 17 syllables, broken
up into three lines. We calculate two differences
between the prediction and the ground-truth: i)
for the number of lines, and ii) for the number
of syllables. H,, g corresponds to the average of
these two differences, BLEU and the Constraint
satisfiability (i.e., if the generated haiku contains
the topic phrase X that was present in the instruc-
tion).

il

®We used BERTScore based on deberta-mnli that is shown
to have high correlation with human judgements.

" All those metrics implementations are available in the
publicly released code.
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Figure 1: Rehearsal ablation with 0.0, 0.25 and 1.0% of
training data showing target task performance along
with TO zero-shot performance(TOzs) with Relative
Gain in Y axis vs Number of training steps in X axis

4.1 Learning Only a New Task

First, we test Continual Learning via rehearsal inde-
pendently on three tasks, by varying the rehearsal
hyper-parameter between 0%, 0.25% and 1%, re-
spectively. We report the results in Figure 1. We
observe that for the three tasks (Headline Gener-
ation with Constraint, Simplification, and Haiku),
the rehearsal value does not affect the task result:
all the blue curves are consistent. Conversely, the

rehearsal value has a dramatic impact on the TO
zero-shot results (green curves). At 0% rehearsal,
the model catastrophically forgets the TO zero-shot
tasks. Conversely, with only 0.25% rehearsal we
observe an almost perfect stability. Finally, with
1% rehearsal (solid line), TO zero-shot results are
stationary, indicating that our model is able to main-
tain its performance on those tasks, while learning
a new task.

4.2 Learning a Sequence of New Tasks

As observed from our previous experiments using
Continual Learning via rehearsal we can learn a
new task without catastrophic forgetting, with just
a very little rehearsal percent. As a next step, we
propose to measure if fine-tuned language models
can progressively learn more and more tasks, with-
out catastrophic forgetting. This is an important di-
rection as it would allow the models to continually
increase their knowledge and capabilities without
forgetting the knowledge already acquired.

To test this hypothesis, we progressively train
our model on a sequence of 8 new language gen-
eration tasks (see Section 3.3.2 and Table 2 for
description of those tasks) using Continual Learn-
ing via rehearsal (r = 1%).We call our final model
CTO. The task order has been selected 1) randomly
among the three first tasks, and 2) in light of the
actual success, we progressively kept adding new
tasks. This setup corresponds to a realistic usage
of our proposed method, where future tasks were
thus unknown even for us. To assess a potential
impact of the order, we also conduct an alternative
experiment with our 3B model, where the order is
reversed.

In Figure 3 in Appendix A we display our fi-
nal sequential learning with 1% rehearsal on the 8
tasks. We learn a new task, starting from the model
fine-tuned on the previous task, and add to our re-
hearsal buffer 1% of the data of the learned task.
We observe an improvement of the relative gain
progressively for each task, that is our model keeps
learning new tasks. At the same time, the perfor-
mance is preserved for the other tasks, indicating
the success of our CLR method in a sequential
learning setup through more than 1000 gradient
steps over 8 different tasks.

In Table 3, we report the results for the last check-
points of our model after progressively learning
each task. We also report the results for the base-
line, TOpp and TO_3B, as well as the performance



of the last checkpoint after sequentially teaching
TO_3B 8 tasks in the reverse order (rev_final). Col-
umn TOzs in Table 3 shows that our continually
fine-tuned models are able to retain the perfor-
mance on the TO zero-shot evaluation set. As
expected, the best performance for a task 75 is often
obtained at step ¢, Vt € (1, 8) (as indicated by the
results in bold for the large model TOpp and under-
line for the small 3B TOmodel). Still, the final per-
formance for the different tasks after learning all of
them, remains very close to the best performances
at step £. Overall, the performance maintain 99.8%
for TOpp and 98.0% for TO_3B, indicating the ef-
ficiency of the CLR method. No task suffers a
decrease in performance more than 2% for TOpp.
Finally our Continual Learning with rehearsal ap-
proach is task order invariant as demonstrated by
rev_final results.

Table 5 in Appendix A shows how the CTO
model remembers and retains knowledge from
tasks trained at very early stages of the Contin-
ual Learning process. It should also be noted that
the TOpp model fails to generalize for most NLG
tasks, while our CTO model shows very strong per-
formance. For instance it can generate a haiku that
has a perfect syllable count of 17 given an unseen
topic of ‘mountain winds haunt’. It can also gener-
ate reasonable natural language explanations that
often comply with our commonsense. Moreover,
CTO obtains a new state-of-the-art on the ASSET
evaluation set, improving over MUSS (Martin et al.,
2020): 85.9 BLEU4 Vs 72.98 and 46.6 SARI Vs
44.15, and despite not using all the training data
available.

5 Discussion

5.1 Zero-shot Instruction Combinations

Our CTO model has learned effectively to process
different instructions in specific contexts: word
level constraint in the context of headline genera-
tion, or an emotional tone in the context of dialogue.
Does CTO understand these instructions in differ-
ent contexts? To answer this question, and explore
whether CTO can learn the compositionality of the
instructions, we conduct several experiments.

In Table 4 we explore how our model succeeds
in understanding constraint instructions beyond the
one it was exposed during training. Our model was
trained on Headline Generation with Constraint
(HGen) instructions with only one match, such as
Make a title for this article containing “X”. In

our current experiment to test generalization, we
prompt our CTO model with unseen instructions
with 2 and 3 matches, such as Make a title for this
article containing “X” and “Y", or Make a title
for this article containing “X” and “Y" and “Z".
We also compose instructions from constraint and
Twitter Stylometry resulting in instructions such as
Write a tweet about X, in the style of Y, containing
Z.

Zero-Shot Constraint. CTO respects the Contain
constraint 77% for n = 1. The score naturally
drops when n > 1, however the satisfiablity is still
50% of the time for n = 2 and 40% for n = 3.
As expected, the ROUGE-1 score also improves:
NoCons: 30.2, #Cons=1: 38.9, #Cons=2: 43.9
and #Cons=3: 47.4. When we compose HGen
and TwSt, CTO also performs significantly better
compared to CTO0nocons (46.4 Vs 10.7). These
results demonstrate CTO’s ability to comprehend
instructions as well as to satisfy compositionality.
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Figure 2: Emotion Generalization: Percentage of Haiku
classified as positive, when adding emotion specific con-
straints to the Haiku instruction like dialogue (EmDg).
We used an open source binary sentiment analysis clas-
sifier.8

Zero-Shot Emotional Haiku. We explore
whether combining an emotion with the Haiku
instructions would help control the haiku gener-
ation. Note that during training, only the task of
Empathetic Dialogue has been exposed to emotion.
Our results, reported in Figure 2, indicate that CTO
is able to combine an emotion with the Haiku
instructions in a zero-shot setting. For instance,
given the following input Generate a haiku
about “held my hand”. The associated emotion
is “faithful”., our model output is “He held my
hand through thick and thin, Through sickness



TOzs | ASSET Simp HGen Haiku | CQA | IngQG EmDg | Exp TwSt
Acc | B4/SARI | B4/SARI | R1/Cons | Hews: | BS | 1Tok/BS | BS | BS | CIf/BS
T0_3B 482 | 70.1/41.0 | 12.8/41.1 | 336322 | 342 | 476 | 21587 | 486 | 327 | 54.4/38.0
TOpp (11B) | 65.6 | 56.5/37.7 | 11.7/40.1 | 34.9/359 | 31.6 | 460 | 2.4/59.8 | 497 | 37.2 | 66.4/45.1
+Simp 3B 489 | 79.9/452 | 13.8144.6 | 303310 | 309 | 439 | 20561 | 402 | 349 | 508425
+Simp 1B | 66.7 | 85.3/46.1 | 15.0/44.8 | 34.9/36.1 | 33.0 | 472 | 2.1/59.0 | 48.1 | 392 | 68.8/47.6
+HGen 3B 46.9 | 81.4/449 | 14.1/43.9 | 39.7/81.0 | 337 | 442 | 2.5/559 | 459 | 552 | 19.6/37.3
+HGen 11B | 65.5 | 84.5/46.1 | 15.3/44.8 | 41.9/86.9 | 359 | 466 | 2.9/59.7 | 489 | 364 | 69.6/48.1
+Haiku 3B 48.8 | 81.6/45.0 | 14.6/43.9 | 39.0/782 | 62.6 | 43.0 | 2.3/549 | 472 | 39.0 | 65.6/44.5
+Haiku 1B | 64.6 | 83.5/46.1 | 14.9/45.1 | 41.1/83.0 | 63.9 | 460 | 2.9/59.9 | 489 | 37.5 | 66.4/46.22
+CQA 3B 48.5 | 79.7/444 | 14.0/438 | 37.6/754 | 622 | 90.0 | 2.0/544 | 425 | 387 | 66.4/453
+CQA 11B | 64.6 | 84.3/46.1 | 14.5/44.9 | 40.9/83.7 | 63.6 | 90.0 | 2.9/592 | 485 | 427 | 67.2/473
+IngQG 3B | 47.4 | 65.2/412 | 14.6/438 | 37.9177.7 | 604 | 89.6 | 53/633 | 46.8 | 342 | 59.245.4
+InqQG 11B | 65.5 | 85.5/463 | 14.9/44.8 | 40.6/81.7 | 645 | 899 | 4.9/65.7 | 4992 | 47.7 | 61.2/45.9
+EmDg3B | 48.6 | 73.9/43.8 | 15.0/43.7 | 38.0/77.7 | 629 | 886 | 47627 | 557 | 352 | 53.6/42.7
+EmDg 11B | 66.4 | 85.3/463 | 15.1/44.7 | 40.9/84.1 | 650 | 899 | 5.3/655 | 56.6 | 37.0 | 61.6/45.38
+Exp 3B 474 | 74.6/440 | 142435 | 379809 | 60.9 | 86.5 | 49/623 | 552 | 71.8 | 54.8/43.4
+Exp 11B 65.0 | 85.6/46.5 | 14.9/44.7 | 40.7/84.6 | 645 | 89.8 | 4.8/65.5 | 56.5 | 73.5 | 63.6/46.3
+TwSt 3B 46.6 | 78.0/445 | 14.6/43.7 | 37.3/77.5 | 604 | 86.8 | 52/61.9 | 553 | 72.4 | 74.8/56.5
STWSt1IB | 64.4 | 85.9/46.6 | 14.6/44.7 | 40.7/855 | 658 | 89.8 | 4.8/652 | 562 | 73.0 | 74.4/57.9
rev_final | 48.8 | 83.345.4 | 1461439 | 39.081.6 | 612 | 886 | 44/61.9 | 550 | 724 | 73.2/57.3

Table 3: 3B and 11B results for continual training set up with best 3B results underlined & best 11B results bolded.
TOzs denotes TO zero-shot and is the average accuracy obtained on 12 eval datasets. B4, R1, BS denote BLEU-4,

ROUGE-1 and BERTScore.

HGen TwSt
# Cons 1 2 3 1
CTO 77.0 564 395 464
CTONocons 33.6 154 8.1 10.7

Table 4: Table showing Constraint generalisation i.e
% of instructions completely respected, when provid-
ing constraints for unseen prompts. CT0xocons COITe-
sponds to providing the same input without constrain.

and health, through life and death”. A qualitative
analysis also shows that CTO understands subtle
nuances; for instance given as input Generate
a haiku about “Seagulls crying high”. The
associated emotion is “nostalgic”. our model
output is “Seagulls crying high, A familiar scene,
from a childhood Now .

6 Conclusion

We explored for the first time Continual Learning
for instruction-based models. Our results indicate

that fine-tuned language models are efficient con-
tinual learners: 1% rehearsal is enough to maintain
a high performance on previously learned tasks,
while learning new ones. Additionally, we show
that our model CTO is able to comprehend the com-
positionality of the instructions, and understand
new combinations. The current technique to learn
multiple tasks is to train a model from scratch.
We hope this work paves the way toward a new
paradigm where models do not have to be retrained
all over again. We believe our experimental find-
ings will contribute to the effectiveness of large
language models, enabling them to progressively
adapt to new concepts and acquire more and more
abilities. As an analogy with Software Develop-
ment, this could be seen as learning new features.
New checkpoints are like new versions of a model.
In this context, Continual Learning will help to-
ward the Call to Build Models Like We Build Open-
Source Software.’

*https://tinyurl.com/3b7b2nrc
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A Example Appendix
B TO tasks
B.1 Training Tasks:

As detailed in Section 3.2, we instantiate our model
with TO (Sanh et al., 2022) weights. TO is trained
in a multi-task setting on a collection of 35 datasets
spanning across Multiple Choice QA, Extractive
QA, Closed Book QA, Sentiment Classification,
Topic Classification, Structure to Text Generation,
Summarization and Paraphrase Identification.

B.2 Evaluation Tasks:

To test zero-shot generalization, Sanh et al. (2022)
hold out all constituent datasets of four tasks: Nat-
ural language inference (NLI), Co-reference reso-
lution, Sentence completion, and Word sense dis-
ambiguation. Among Natural Language Inference
tasks they evaluate models on the Adversarial NLI

11

Make a title for this article, finishing with
"escalates": the sri lankan government
announced the closure of government
schools with immediate effect as a military
campaign against tamil separatists escalated
in the north of the country .

sri lanka closes schools as war with

tamils escalates

sri lanka closes schools as tamil

rebels advance

Instr

CTO

TOpp

Write a haiku about ‘mountain winds
haunt’

mountain winds haunt, the hollow of the
stones, voices echo there.

a lone tree in the mountains is haunted by
the wind

Instr

CTO

TOpp

Explain why the two following sentences
do not entail each other: "Sentence 1: A
woman with a green headscarf, blue shirt
and a very big grin."; Sentence 2:"The
woman has been shot."

A woman cannot be smiling if she has
been shot.

No

Instr

CTO
TOpp

Table 5: Outputs for HGen, Haiku and Exp from TOpp
and our continually learned final model CTO.

(ANLI) (Nie et al., 2020), Commitment Bank (CB)
(de Marneffe et al., 2019) and Recognizing Textual
Entailment (RTE) (Dagan et al., 2005) benchmarks.
For Co-reference resolution they use the data from
Winogrande Schema Challenge (WSC) (Levesque
et al., 2012) and the Adversarial Winogrande (Sak-
aguchi et al., 2020) benchmarks, for Word sense
disambiguation the Words in Context (WIC) (Pile-
hvar and Camacho-Collados, 2019), while for Sen-
tence completion the Choice Of Plausible Alter-
natives(COPA) (Gordon et al., 2012), HelloSwag
(Zellers et al., 2019) and StoryCloze (Mostafazadeh
et al., 2016) benchmarks.

C Data Efficiency

Our method based on rehearsal learning is simple
yet efficient. While the complexity in term of data
storage and training is not constant (O(1)), with
only 1% of the previous training data we are able
to retain model abilities.This result is still data and
computationally efficient, compared to the standard
approach of retraining the model from scratch on
all tasks. In cases where the number of tasks to
learn would grow by several order of magnitude,
more sophisticated methods could be explored. We
leave this for future research.
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Figure 3: Progressive results for CTO (11B) during the sequential learning. The curves for tasks Tp, ...T% are
displayed respectively at step 0, ..., ¢ such that only the first task, Simplification (green and orange) is present at step
0, then HGen (red) etc. The results are normalised w.r.t. the performance achieved by CTO at the end of a training
so that 1 corresponds to the reference for any task, and results below 1 will indicate task forgetting.

D Scaling Laws

Scaling Laws - Continual Learning Brown et al.
(2020) shows that zero and few-shot capabilities of
language models substantially improve for larger
models, a result confirmed in (Wei et al., 2022),
and (Sanh et al., 2022) where the 11B parame-
ters model largely outperforms the 3B (65.6% vs.
48.2% on T0zs). As expected, our results for CTO-
11B are better than CTO-3B. We also analyze a
potential effect of scaling laws on Continual Learn-
ing. When comparing the 3B and 11B results of
CTO0, we observe less forgetting on the 11B version.
This result may again indicate the effectiveness of
larger models.

Why could LLMs be lifelong learners? Litera-
ture in Continual Learning has consistently look for
a compromise between rigidity, i.e., encouraging
similarity between the new model and its previous
state, and plasticity, i.e. letting enough slack to
learn new abilities. In line with the recent findings
from Ramasesh et al. (2021), we hypothesise that
our surprisingly good result is a consequence of the
hyper-parameterization for large language models,
making them continual learners.
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D.1 Toward Concept Drift

In the original CovidQA the task consists of an-
swering a question present in a given paragraph. In
this setup, one can arguably succeed into answer-
ing questions about COVID by transferring the task
knowledge, even without particular domain knowl-
edge about COVID. In our paper, we intentionally
chose to not provide the context for CQA but only
the question. This alternative setup corresponds
to learning by heart the answer to a question. Our
results in Table 3 show that while we framed CQA
as a new task to learn, our proposed setup also
opens new way to tackle concept drift, by directly
incorporating knowledge into a model.



