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Abstract
Vision-language models (VLMs) have demon-1

strated strong generalization across multimodal2

tasks, enabling applications in medical image inter-3

pretation, robotic perception, and education. How-4

ever, their lack of grounding in domain specific5

knowledge often leads to hallucinations, especially6

when applied to out of distribution data where pre-7

cision and explainability are critical. Prompt en-8

gineering provides a lightweight alternative to fine9

tuning for adapting VLMs to specialized tasks, but10

remains fragile and lacks guarantees for factual ac-11

curacy. Fine tuning, while more robust, is compu-12

tationally expensive and often impractical in pri-13

vacy sensitive environments. We focus on a high14

stakes application: symptom level reasoning in15

rare dental diseases, such as dental agenesis and16

enamel defects. These conditions present diag-17

nostic challenges due to low prevalence, overlap-18

ping symptoms, and limited labeled data making19

them an ideal testbed for evaluating the adaptability20

of general purpose VLMs. We propose an ontol-21

ogy guided prompting framework that enables in-22

terpretable, step by step reasoning without model23

retraining. A domain specific ontology, created24

with clinical experts, models the rare disease do-25

main of our dataset including disease symptom re-26

lationships and supports the generation of chain-27

of-thought (CoT) prompts. These prompts guide28

VLMs such as MiniGPT-4, LLaVA, and BLIP-2 to29

extract medically grounded reasoning from dental30

images. Our method leverages the models’ latent31

medical knowledge through symbolic constraints32

and semantic filtering based on ontology terms. We33

evaluate three prompting strategies: zero-shot, hu-34

man feedback, and ontology-guidance and assess35

reasoning quality using F1 score, ontology cov-36

erage, and hallucination rate. Results show that37

ontology-guided prompting significantly improves38

factual alignment and reduces hallucinations, sup-39

porting safe and explainable VLM deployment in40

clinical domains.41

1 Introduction 42

Recent vision-language models (VLMs), such as MiniGPT- 43

4 [Zhu et al., 2023], LLaVA [Liu et al., 2023], and BLIP- 44

2 [Li et al., 2023], have demonstrated impressive capabilities 45

across multimodal tasks like image captioning, visual ques- 46

tion answering, and scene understanding. These models en- 47

able general purpose reasoning by jointly processing visual 48

and textual inputs, allowing rapid adaptation to a wide range 49

of applications. 50

However, when deployed in specialized domains like 51

healthcare, VLMs frequently hallucinate or produce clini- 52

cally irrelevant outputs [Agarwal et al., 2024]. This is of- 53

ten due to a lack of grounding in domain specific knowledge, 54

which is typically absent from the large scale, general pur- 55

pose corpora used during pretraining. This issue is partic- 56

ularly critical in high stakes settings like medical diagnosis, 57

where untrustworthy reasoning can compromise safety and 58

adoption. 59

Prompt engineering has emerged as a lightweight strategy 60

to adapt VLMs to specific tasks without retraining. Tech- 61

niques such as Few-shot Prompting [Brown et al., 2020], 62

Chain-of-Thought [Wei et al., 2023], and Chain-of-Symbol 63

(CoS) Prompting [Hu et al., 2024] have been developed to 64

enhance reasoning structure, improve consistency, or reduce 65

hallucination. However, many of these methods remain sen- 66

sitive to prompt phrasing and lack robustness under domain 67

shift. Moreover, they rarely incorporate external knowledge 68

sources. On the other hand, fine tuning offers stronger adap- 69

tation but introduces computational cost and raises privacy 70

and reproducibility concerns in regulated fields [Ding et al., 71

2025]. It also requires a large data regime to work effectively. 72

In most real-world cases, obtaining such data is not feasible 73

especially in domains such as rare diseases. 74

To address these challenges, we propose an ontology 75

prompting framework that guides pretrained VLMs using 76

an expert curated ontology associated with chain-of-thought 77

prompts. Rather than fine tuning model parameters, our 78

method aligns model reasoning with structured domain 79

knowledge using ontology guidance and an adaptive feedback 80

loop. This allows us to extract interpretable outputs without 81

requiring labeled data or retraining. 82

As a testbed, we apply our method to rare dental diseases 83



an underrepresented domain characterized by low data avail-84

ability, overlapping symptoms, and complex diagnostic logic.85

We evaluate three pretrained VLMs: MiniGPT-4, LLaVA,86

and BLIP-2 on a private multimodal dataset of 1,280 an-87

notated dental images spanning 22 diseases and 30 textual88

symptoms [de La Dure-Molla et al., 2019]. While the domain89

is medical, our framework is general purpose and applicable90

to other verticals that require grounded reasoning.91

In summary, our contributions are threefold: (1) we intro-92

duce a general purpose symbolic prompting framework that93

integrates ontology based guidance associated with chain-of-94

thought reasoning to guide vision-language models; (2) we95

design an adaptive feedback loop that extracts semantically96

aligned outputs using similarity based filtering and prompt97

refinement, without requiring fine tuning; and (3) we demon-98

strate the framework’s effectiveness on a real world case99

study in rare dental disease diagnosis, showing improved rea-100

soning quality and reduced hallucination across three VLMs:101

MiniGPT-4, LLaVA, and BLIP-2 in a zero-shot, privacy pre-102

serving setting.103

2 Related Work104

The emergence of powerful VLMs, such as MiniGPT-4 [Zhu105

et al., 2023], LLaVA [Liu et al., 2023], and BLIP-2 [Li et106

al., 2023], has sparked increasing interest in applying these107

models to medical image interpretation [Chen et al., 2023;108

Alayrac et al., 2022]. Despite their strong performance on109

general purpose multimodal tasks such as visual question an-110

swering (VQA) and image captioning, recent studies [Liang111

et al., 2023; Agarwal et al., 2024] have shown that VLMs112

frequently hallucinate or generate clinically irrelevant outputs113

when applied to specialized domains like healthcare.114

To improve domain alignment, several approaches have ex-115

plored the integration of structured knowledge, such as on-116

tologies and knowledge graphs, into large language mod-117

els (LLMs). Methods include knowledge enhanced pretrain-118

ing [Yao et al., 2022], retrieval augmented generation [Li119

et al., 2024], and graph constrained decoding [Luo et al.,120

2024]. In the medical domain, symbolic knowledge has121

been used to improve the precision and alignment of fac-122

tual information in tasks such as the generation of reports123

and the recognition of named entities [He and others, 2022;124

Chen and others, 2022]. However, most of these methods125

rely on fine tuning or require modifying model parameters,126

which is often impractical in privacy sensitive or compute-127

constrained environments.128

Prompt engineering offers a lightweight alternative that129

allows model adaptation without retraining. CoT prompt-130

ing [Wei et al., 2023] has emerged as a prominent strategy131

for improving reasoning by encouraging step by step out-132

puts. Extensions to knowledge grounded CoT have shown133

promise in math and scientific domains, but their use in multi-134

modal medical tasks remains underexplored. Moreover, most135

multimodal evaluations focus on surface-level metrics (e.g.,136

fluency or answer accuracy) rather than symbolic alignment137

with structured domain knowledge.138

Our work bridges these gaps by introducing a symbolic139

prompting framework that operates entirely at inference time,140

combining CoT reasoning with an ontology driven feedback 141

loop. To the best of our knowledge, this is the first ap- 142

proach to use ontology guiding prompting with general pur- 143

pose VLMs for interpretable, symptom level reasoning in 144

multimodal medical data. By avoiding model fine tuning and 145

focusing on inference time alignment, our method offers a 146

practical and scalable solution for trustworthy AI in low re- 147

source and clinical settings. 148

3 Methodology 149

3.1 Ontology Construction 150

Following the Ontology Development 101 guidelines [Noy et 151

al., 2001], we constructed a modular, domain specific ontol- 152

ogy (Figure 1) to formally encode structured clinical knowl- 153

edge for rare dental diseases. We defined core biomedical 154

classes such as Patient, Disease, Symptom, Image, 155

Gene, and Region, etc, along with domain specific sub- 156

classes including XRay, RGB, Occlusion, Texture, 157

etc.To capture semantic relationships between clinical enti- 158

ties, we introduced object properties such as has symptom, 159

shows, symptom of, which link patients, images, regions, 160

and diagnoses. To enable visual grounding and structured 161

reasoning, we modeled each image as composed of anatom- 162

ical regions, which may contain localized symptoms. These 163

regions are further described by fine grained features such 164

color, and transparency capturing visual cues relevant to clin- 165

ical interpretation. This structure allows textual symptom ev- 166

idence to be linked hierarchically, from pixel-level cues to 167

diagnostic categories. We populated the ontology using a pri- 168

vate dataset of 1,280 annotated dental images spanning 22 169

rare conditions and 30 textual symptoms [de La Dure-Molla 170

et al., 2019]. The ontology was serialized in OWL format. 171

Its modular design supports future extensions and integration 172

with external ontologies. 173

Figure 1: The dental rare disease ontology.



Figure 2: Ontology-constrained prompting and feedback loop. Each
reasoning output is filtered, refined, and selected based on semantic
alignment to symbolic constraints.

3.2 Ontology-Guided Prompting and Feedback174

Loop175

We introduce a symbolic chain-of-thought prompting frame-176

work that leverages structured clinical knowledge from our177

ontology to guide VLMs toward interpretable, symptom level178

reasoning. Each prompt follows a structured format mim-179

icking diagnostic logic: it asks the model to describe visual180

features, identify observable symptoms, and explain how they181

relate to the given diagnosis.182

Our ontology-guided prompting method dynamically in-183

jects symbolic information such as symptom terms and their184

relationships from the ontology into the prompt. These con-185

straints explicitly steer the model’s reasoning during infer-186

ence, grounding it in clinically relevant semantics and reduc-187

ing reliance on hallucinated associations.188

To operationalize this strategy, we implement an adaptive189

feedback loop (Algorithm 1). For each image diagnosis pair,190

the model generates up to five reasoning attempts. Each out-191

put is cleaned, segmented, and filtered using semantic sim-192

ilarity via Sentence-BERT [Reimers and Gurevych, 2019]193

against ontology defined symptoms. If the extracted reason-194

ing fails to meet a similarity threshold, the prompt is automat-195

ically refined by reinforcing the symbolic constraints from the196

ontology. The response with the highest alignment score is197

selected as the final output.198

Figure 2 illustrates this iterative refinement process, where199

model outputs are validated and improved through tight cou-200

pling with domain specific symbolic knowledge.201

We treat the number of reasoning attempts N in the feed-202

back loop as a tunable hyperparameter. In our experiments,203

we set N = 5 based on empirical stability, where most204

prompts converged within 2–3 iterations. The loop stops205

when a high confidence symptom set is extracted or the max-206

imum attempts are exhausted.207

4 Experiments208

We evaluate our symbolic prompting framework using three209

pretrained (VLMs): MiniGPT-4, LLaVA (v1.6 Mistral), and210

BLIP-2. All models are used in their released, pretrained form211

without any fine tuning, allowing us to test their zero-shot212

generalization to an underrepresented and privacy sensitive213

domain such as rare dental diseases. To ensure lightweight214

deployment, all models were quantized to 4-bit precision215

using the BitsAndBytes library and executed on a single216

Algorithm 1 Ontology-Guided Prompting and Feedback
Loop
Input: Image I , Diagnosis D, Ontology symptoms Sgt, At-
tempts N , VLM
Output: Best reasoning response r∗, predicted symptoms
s∗

1: Initialize: prompt← generate prompt(D)
2: for i = 1 to N do
3: ri ← VLM.generate(I, prompt)
4: fi ← filter and clean(ri)
5: si ← extract symptoms(fi, Sgt)
6: scorei ← cosine similarity(si, Sgt)
7: if scorei < threshold then
8: prompt← refine prompt(prompt, si, Sgt)
9: else

10: break
11: end if
12: end for
13: Select best: ⟨r∗, s∗⟩ ← argmaxi scorei
14: return r∗, s∗

NVIDIA GeForce RTX 3060 GPU (12GB). This setup re- 217

flects real world constraints in clinical environments where 218

computational resources and patient data availability are lim- 219

ited. 220

We compare three prompting strategies: (1) Base prompt- 221

ing, a generic instruction format with no medical specific 222

adaptation; (2) Human feedback prompting, where templates 223

were refined through iterative development with a clinical 224

experts to improve clarity and specificity (though no hu- 225

man involvement occurred during final evaluation); and (3) 226

Ontology-guided prompting, where disease specific symptom 227

terms from the ontology were dynamically injected into the 228

prompt. Each model received up to five reasoning attempts 229

per image diagnosis pair, with responses filtered using seman- 230

tic similarity to ontology terms via Sentence-BERT. The best 231

scoring output was selected for evaluation. This inference 232

pipeline was kept consistent across all models and strategies 233

to ensure fair comparison. 234

5 Results and Discussion 235

We report the performance of MiniGPT-4, LLaVA, and BLIP- 236

2 under three prompting strategies: base (zero-shot), human 237

feedback, and ontology-guided. 238

5.1 Evaluation Metrics 239

We evaluated model performance on symptom identification 240

using four clinically relevant metrics: Precision measures 241

the proportion of correctly predicted symptoms out of all ex- 242

tracted ones; F1 score captures the harmonic mean of preci- 243

sion and recall, reflecting a balanced view of accuracy; Ontol- 244

ogy coverage quantifies the proportion of relevant ontology- 245

defined symptoms recovered by the model; Hallucination 246

rate denotes the proportion of symptoms generated by the 247

model that do not appear in the ontology. All metrics were 248

computed using set based comparisons. Sentence-BERT was 249

used to compute cosine similarity between predicted and 250



ground truth terms, and natural language processing (NLP)251

preprocessing was handled via SpaCy. We also report infer-252

ence time in milliseconds to highlight the practical feasibility253

of our lightweight pipeline.254

5.2 Results255

Table 1: Model performance across prompting strategies.
OC = Ontology Coverage, HR = Hallucination Rate, T = Inference
Time (ms)

Model Condition Precision F1 OC HR T
Base 70% 72% 0% 95% 4

LLaVA Ontology-Guided 100% 94% 90% 0% 6
Human Feedback 89% 80% 0% 60% 6

Base 59% 62% 0% 97% 5
BLIP-2 Ontology-Guided 80% 85% 80% 64% 7

Human Feedback 75% 70% 0% 67% 9

Base 49% 47% 0% 95% 10
MiniGPT-4 Ontology-Guided 60% 62% 45% 46% 12

Human Feedback 59% 58% 0% 40% 12

Table 1 summarizes model outputs across four evaluation256

metrics: precision, F1 score, ontology coverage, and hallu-257

cination rate alongside inference time. Across all models,258

ontology-guided prompting consistently yielded the best per-259

formance. LLaVA achieved the strongest results, with 100%260

precision, 94% F1 score, and 90% ontology coverage demon-261

strating the effectiveness of strict symbolic filtering in elim-262

inating hallucinated outputs. Notably, while this precision263

reflects perfect alignment with the ontology, it may omit un-264

documented but clinically valid symptoms.265

BLIP-2 also showed substantial improvements with266

ontology-guided prompts, increasing F1 from 62% to 85%267

and reducing hallucination rate from 97% to 64%. MiniGPT-268

4, although showing the least improvement, still saw halluci-269

nations reduced by half and F1 boosted to 62%.270

Base prompts exhibited the highest hallucination rates (up271

to 97%) and near-zero ontology coverage, confirming the272

unreliability of unguided reasoning in specialized domains.273

Human feedback improved consistency but did not match274

the precision or interpretability offered by ontology-guided275

prompting. we visualize their normalized metric scores us-276

ing a radar plot (Figure 3). LLaVA demonstrates strong and277

balanced performance across all criteria, followed closely278

by BLIP-2. MiniGPT-4 shows lower coverage and F1 but279

benefits from symbolic constraints in reducing hallucina-280

tions. This visualization highlights the overall robustness281

of ontology-guided prompting in maintaining factual consis-282

tency and structured reasoning across models.283

To evaluate the stability and effectiveness of the adaptive284

feedback loop, we conducted a convergence analysis on 594285

samples. We observed that the loop consistently converged286

within the maximum budget of five iterations. The mean287

number of iterations to convergence was 5.0, with all sam-288

ples stabilizing before reaching the cap. After convergence,289

the hallucination rate dropped to 0%, confirming that the290

loop effectively filtered spurious outputs. The mean F1 score291

was 71.3% (±36.1%), and average ontology coverage reached292

64.9%, demonstrating improved semantic alignment. These293

Figure 3: Radar plot comparing VLMs under ontology-constrained
prompting. Metrics are normalized; hallucination rate is inverted for
alignment.

results provide quantitative evidence that the feedback loop 294

not only stabilizes prediction quality but also boosts factual 295

consistency via symbolic filtering. 296

5.3 Discussion 297

These results confirm that symbolic prompting enhances rea- 298

soning performance in clinical image analysis without requir- 299

ing fine tuning. The gains were consistent across models and 300

metrics, showing that pretrained VLMs can be steered to pro- 301

duce domain relevant outputs using structured prompts and 302

ontology based guidance. 303

The pipeline is also efficient supporting real time inference 304

with 4-bit quantized models on a single 12GB GPU making 305

it practical for deployment in low resource or privacy sensi- 306

tive environments. The symbolic feedback loop offers trans- 307

parency and interpretability, allowing clinicians to inspect in- 308

termediate reasoning steps. 309

However, the method’s success is contingent on the com- 310

pleteness of the ontology. High precision may hide missed 311

symptoms if the ontology lacks coverage. Addressing this 312

requires dynamic ontology expansion, either through experts 313

annotation or automatic concept mining from generated out- 314

puts. 315

The completeness of the ontology directly affects the sys- 316

tem’s recall and interpretability. To mitigate this bottleneck, 317

we plan to explore ontology expansion mechanisms, includ- 318

ing expert in the loop annotation, active learning, and concept 319

mining from large medical corpora or model generated out- 320

puts. 321

While this work focused on symptom extraction, future ex- 322

tensions could incorporate probabilistic reasoning or struc- 323

tured diagnosis generation. The framework is generalizable 324

and could be applied to other domains e.g., dermatology or 325

radiology where symbolic constraints and interpretability are 326

equally critical. 327

While our quantitative metrics capture overall perfor- 328

mance, we also observed qualitative failure modes. In some 329



cases, the model generated plausible but out of ontology330

symptoms, which were filtered out, lowering recall. Future331

work will include detailed error analysis and case studies to332

better understand such failures and improve interpretability.333

While our method shows strong performance across three334

VLMs, we acknowledge that the dataset is relatively small335

and imbalanced, with certain rare diseases represented by336

only one or two images. This reflects the inherent scarcity of337

annotated multimodal data in rare disease contexts. Although338

this setup mirrors real world clinical challenges, it may limit339

the generalizability of our findings. Future work will explore340

dataset expansion and evaluation on additional public or cross341

domain benchmarks to better assess robustness and transfer-342

ability343

6 Conclusion344

We presented a symbolic prompting framework that guides345

general purpose VLMs to perform interpretable, symptom346

level reasoning in rare dental disease cases. By integrating347

an expert curated ontology with structured chain-of-thought348

prompts, we enabled models such as LLaVA, BLIP-2, and349

MiniGPT-4 to generate clinically relevant outputs without350

any fine-tuning.351

Our results show that ontology-guided prompting signif-352

icantly improves factual alignment, reduces hallucinations,353

and achieves high precision across models, all within a354

lightweight, low resource setup. This highlights the practical355

value of combining symbolic medical knowledge with large356

scale multimodal models.357

The framework offers a scalable and interpretable approach358

for deploying VLMs in vertical medical domains where data359

is scarce and explainability is critical. While the current study360

is limited to symptom extraction, future extensions will ex-361

plore diagnosis level reasoning, dynamic ontology expansion,362

and expert in the loop validation. This work contributes to-363

ward safe, deployable, and knowledge grounded artificial in-364

telligence systems for clinical decision support.365
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7 Appendix482

7.1 Model Descriptions483

We used three publicly available vision-language models in484

this study: MiniGPT-4, LLaVA (v1.6 Mistral), and BLIP-2.485

All models were accessed through Hugging Face and used in486

their pretrained form without modification. MiniGPT-4 in-487

tegrates a CLIP visual encoder with the LLaMA language488

model and supports conversational, multi-turn visual reason-489

ing. LLaVA (Large Language and Vision Assistant) follows a490

similar architecture, aligning vision features with the Mistral-491

based LLaMA-2 model for grounded image understanding.492

BLIP-2 employs a lightweight vision-to-language bridging493

module, optimized for direct image-to-text generation. Our 494

goal was not to benchmark model internals, but to compare 495

their reasoning behavior under symbolic prompting. All mod- 496

els were quantized for efficient inference using 4-bit precision 497

7.2 Dataset 498

Dental anomalies are key indicators in diagnosing rare ge- 499

netic disorders [de La Dure-Molla et al., 2019]. The dataset 500

used in this study is derived from this work, which pro- 501

vides comprehensive phenotypic characterization of rare den- 502

tal anomalies. This dataset was chosen for its rich representa- 503

tion of rare oral diseases and its multimodal nature, making it 504

suitable for integrating medical imaging with domain specific 505

knowledge. 506

Dataset Composition 507

The dataset size 1280 images comprises: 508

• Images: High-resolution X-ray and RGB dental images 509

capturing anomalies such as dental agenesis, supernu- 510

merary teeth, and enamel defects. 511

• Textual Information: Disease names, textual symptom 512

lists, and associated genetic markers for each image. 513

• Metadata: Patient-specific attributes including age and 514

gender. 515

Dataset Statistics 516

The dataset includes 114 patients who underwent examina- 517

tions with X-ray and RGB imaging over different time spans. 518

It comprises 22 diseases and 30 unique symptoms. The pa- 519

tient age range is 7 to 45 years. Some diseases have only a 520

single image, illustrating dataset sparsity and annotation com- 521

plexity. 522
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