
Sequence Modeling for Time-Optimal Quadrotor
Trajectory Optimization with Sampling-based

Robustness Analysis

Katherine Mao1, Hongzhan Yu2, Ruipeng Zhang2, Igor Spasojevic1,
M. Ani Hsieh1, Sicun Gao2, Vijay Kumar1

1University of Pennsylvania, 2University of California San Diego
{maokat, igorspas, mya, kumar}@seas.upenn.edu

{ruz019, hoy021, sicung}@ucsd.edu

Abstract: Time-optimal trajectories drive quadrotors to their dynamic limits, but
computing such trajectories involves solving non-convex problems via iterative
nonlinear optimization, making them prohibitively costly for real-time applica-
tions. In this work, we investigate learning-based models that imitate an model-
based time-optimal trajectory planner to accelerate trajectory generation. Given a
dataset of collision-free geometric paths, we show that learning-based approaches
can effectively learn the patterns underlying time-optimal trajectories. We intro-
duce a quantitative framework to analyze local analytic properties of the learned
models, and link them to the Backward Reachable Tube of the geometric tracking
controller. To enhance robustness, we propose a data augmentation scheme that
applies random perturbations to the input paths at training. Compared to classical
planners, our method achieves substantial speedups, and we validate its real-time
feasibility on a hardware quadrotor platform. Experiments demonstrate that the
learned models generalize to previously unseen path lengths. The code for our
approach can be found here: https://github.com/maokat12/lbTOPPQuad

Keywords: Trajectory Planning, Imitation Learning, Robustness Analysis, Aerial
Robotics

1 Introduction

Optimal trajectory generation is one core component of an agile micro aerial vehicle’s (MAVs)
autonomy stack. Numerous applications such as search and rescue operations, disaster response,
and package and aid delivery require these robots to perform tasks safely, at operational speeds. The
aim of minimizing task completion time arises not only due to the limited battery life onboard the
MAVs, but also the desire to take advantage of their full flight envelope.

The key algorithmic challenge behind optimization problems underlying synthesizing time-optimal
trajectories lies in the non-convexity. One source of non-convex constraints comes from the presence
of obstacles in the environment. Another arises from the nonlinear nature of the robot’s dynamics.
The majority of previous approaches optimize trajectories using a combination of simplified dynam-
ics models, and/or faithful dynamics models with proxy actuation constraints. Other approaches plan
trajectories with both faithful dynamics models and suitable actuation constraints. Such planners ex-
hibit superior mission execution time, at the cost of far greater computational resources.

This is the first work to develop a learning-based algorithm for computationally efficient time op-
timal path parametrization for quadrotors with faithful dynamics and actuation constraints. The
approach for learning a solution to the high-dimensional sequential optimization problem rests on
a combination of domain-specific insights as well as a novel imitation learning formulation for
“sequence-to-sequence” problems. In summary, the contributions of this paper are as follows:
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Figure 1: Overall pipeline. We begin by discretizing the input geometric path γ(·) into equally spaced grid
points using a minimum-snap planner. Based on this discretized trajectory, our LSTM encoder-decoder model
(which performed the best in our ablation study) predicts squared-speed h(·) and yaw θz profiles, imitating the
model-based time-optimal planner TOPPQuad [1]. From these predicted profiles, we unroll the full robot state
trajectory. Finally, a low-level geometric controller computes the control trajectory to execute, ensuring that
per-motor actuation constraints must be satisfied.

• A learning-based formulation for imitating an model-based time-optimal trajectory plan-
ner, employing an input–output feature design that predicts only the minimal variables
necessary to reconstruct the time-optimal trajectory.

• A rigorous robustness analysis framework that quantifies how well predicted trajectories
can be tracked by a controller via a sampling-based approach to recover Backward Reach-
able Tubes (BRT), along with a data augmentation strategy to enhance model robustness.

• A comprehensive ablation study across various neural architectures, showing that an LSTM
encoder-decoder model achieves near-time-optimal performance with significant speedup
over optimized-based planners.

• A demonstration of our learning-based planner on a hardware platform, showing robust
generalization to unseen path geometries and lengths.

2 Related Work

The nature of time-optimal quadrotor trajectories requires plans that push the system to its phys-
ical limits. Paired with the quadrotor’s underactuated dynamics, this remains a challenging prob-
lem. Popularized by [2], many approaches plan trajectories following a polynomial structure, where
trajectories are characterized by a set of waypoints and their time allocations [3][4][5][6]. These
approaches take advantage of the quadrotor’s differential flatness property to ensure smoothness of
state values and often allow for faster compute times, but sacrifice the ’bang-bang’ behavior re-
quired for more aggressive flight. Other approaches forgo the polynomial structure to plan around
the full dynamics. A series of approaches track progress along a nominal path, allowing deviations
[7][8], while [1] determines the time paramterization of a fixed geometric path. Finally, [9], [10]
simplify the quadrotor to a point model in the planning phase, then rely on modern nonlinear Motion
Predictive Controllers (NMPC) to track a potentially dynamically infeasible reference trajectory.

The heavy computation cost of optimization-based time-optimal trajectory planners has made
learning-based solutions an attractive option. Although polynomial planners for a set of waypoints
can be formulated as a convex problem, the selection of the such waypoints and their corresponding
time allocations is still computationally challenging. Approaches to the time allocation problem for a
set of waypoints have used Gaussian Processes [11], sequence-to-sequence learning [12], GNNs [13]
and transformers [14]. [15] broadens this problem and trains an LSTM to learn both the intermedi-
ary waypoints and time allocation given a series of safe flight corridors and goal points. While often
computationally faster, the lack of full dynamics constraints in the polynomial approaches can lead
to dynamically infeasible motor thrusts. On the other hand, planners that utilize the full dynamics
can become intractably slow, ranging from seconds [1] to hours [7]. [16], [17] solve this by utilizing
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Reinforcement Learning to generate near-time optimal trajectories for drone racing tracks. How-
ever, their progress-based nature encourages deviations from a nominal center-line path and cannot
guarantee safety in cluttered environments and policies are overfit to known tracks.

3 Preliminary

TOPPQuad [1] is an optimization-based approach for Time-Optimal Path Parameterization (TOPP)
which generates dynamically feasible quadrotor trajectories for a given collision-free path. The key
to this method is the squared-speed profile, h(·), which dictates the relationship between traversal
time and the progress along a N -point discretized geometric path γ(·). However, due to the non-
convexity of the full dynamics model and the desire for explicit bounds on actuation constraints,
the optimization must be performed upon an 16 × N variable state space, incurring heavy compu-
tation cost and slow runtime. This state space includes the rotational profile along the trajectory.
Conversely, the quadrotor is a differentially flat system [2], where any trajectory can be uniquely
represented by four flat variables and their derivatives: position (x, y, z) and yaw (θz). Given the
nature of the TOPP problem and the relationship between h and the higher positional derivatives,
the time optimal trajectory along a given path γ(·) can be represented as function of just h and θz .

4 Methodolgy

4.1 Imitation Learning Problem Formulation

When designing an imitation learning framework, it is essential to ensure the input-output mapping
is feasible with respect to system constraints. Restricting the output dimensionality to only the min-
imal set of required features mitigates overfitting risks and promotes robustness. Given γ(·), TOP-
PQuad produces a time-optimal, dynamically feasible trajectory r(·), where dynamically feasibility
is defined as respecting all state and input constraints. However, the variables are tightly coupled by
the underlying dynamic constraints, making it challenging to learn jointly in a direct manner. In par-
ticular, the motor thrust u(·) must lie within specified actuation limits, highly non-linear functions of
the flat variables, and the quaternions q(·) must reside on the 3-sphere, S3 = {q ∈ R4 | ||q||2 = 1}.

We propose to use [h(·), cos θz(·)] as the output variables, where cos θz(·) encodes the yaw rota-
tion enconded via the cosine function in order to address the many-to-one yaw wraparound. Next,
we discuss how to recover the original variables, providing equations in Appendix B. We obtain
the speed profile derivative h

′
from finite differences of the learned squared-speed profile h. To

construct quaternion q, we first compute the body z-axis vector b3 by adding gravity to the derived
acceleration (from speed profiles and path curvature) and normalizing, ensuring b3 aligns with the
net thrust vector. Then, q is derived via rotation composition, orienting the drone to align its body-
z axis with b3 and setting yaw to the desired θz . Next, we calculate the rotation change between
steps, yielding angular velocity ω and its derivative ω′. Finally, a low-level geometric controller
[18][19] computes u(·) from the derived states. In TOPPQuad, u(·) is jointly optimized with other
decision variables to guarantee dynamic feasibility. Conversely, our approach recovers u(·) from the
orientation and accelerations and the low-level controller applies a clipping function to ensure the
per-motor actuation constraints are satisfied.

We augment the model’s input with path curvature, the first and second derivatives of the geometric
path γ′(·) and γ′′(·). This directly provides explicit geometric information, rather than requiring the
model to infer it implicitly. In summary, we formulate the imitation task as learning the mapping:

[γ(·), γ′(·), γ′′(·)] → [h(·), cos θz(·)], (1)
the minimal set of outputs necessary to reconstruct the time-optimal path parameterization.

4.2 Robustness Analysis

To ensure practical reliability, learned trajectory planners must be explicitly evaluated for dynamic
infeasiblity, rather than relying solely on empirical performance metrics.
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Given a geometric path γ(·), the model predicts [h(·), cos θz(·)] from which we derive the robot
state trajectories r(·) := {h(·), q(·), ω(·)}. We assume that the quadrotor starts at γ(s1) at rest (zero
velocity). Let r̂(·) denote the full robot state trajectory after executing the error-tracking low-level
controller U [19]. That is, r̂(s1) = r(s1), and for each i ∈ {1, ..., N − 1}:

r̂(si+1) = r̂(si) +

∫ ∆s

0

ḟ(r̂(si + s), U
(
r̂(si + s), r(si)

)
)ds, (2)

which integrates the quadrotor dynamics ḟ over the spatial step-size ∆s. If the model’s predictions
are perfectly dynamically feasible, the planned and executed trajectories coincide, i.e., r(·) = r̂(·).
Conversely, a state prediction is dynamically infeasible when the planned state is unreachable from
the executed state under the system dynamics.

We quantify dynamic feasibility via trackability using the concept of finite-time Backward Reach-
able Tube (BRT) [20]: for state x ∈ X and time ∆t > 0, let ξU (x,∆t) denote the set of states from
which x can be reached within ∆t seconds under U :

ξU (x,∆t) = {x0 ∈ X | ∃ τ ≤ ∆t, s.t. x0(τ) = x under U}. (3)

Proposition 4.1 Suppose γ(·) is a geometric path. Let r(·) and r̂(·) be the planned and the simu-
lated trajectories, respectively. If, for each i ∈ {1, ..., N − 1},

r̂(si) ∈ ξU (r(si+1), ti) where ti = 2∆s/(
√
h(si) +

√
h(si+1)) (Eq. 22 in [1]), (4)

then the trajectory planner is said to respect dynamic feasibility.

The use of U offers recoverability from transient dynamic infeasibility: even if, at some step i,
the executed state r̂(si) cannot exactly reach the planned state r(si) and only approaches it, U
can realign the system with the plan at later steps. Proposition 4.1 formalizes how recoverable the
dynamics violations in the predicted states are under the low-level controller U .

Proposition 4.2 Suppose γ(·), r(·) and r̂(·) satisfy Proposition 4.1. If, for every i ∈ {1, ..., N}, the
robot’s position under r̂(si) matches exactly γ(si), then the trajectory planner is said to track γ(·)
while preserving dynamic feasibility.

Deriving a finite-time BRT for a quadrotor, an underactuated non-linear system, is non-trivial. We
therefore approximate the BRT via sampling. Let ψ(x0, x,∆t) be a procedure that simulates the
closed-loop dynamics under U from initial state x0 and returns whether the target state x is reached
within time ∆t. Formally, ξc(x,∆t) comprises all x0 for which ψ(x0, x,∆t) holds. Hence:

Er(si),r̂(si)∼γ

[
ψ

(
r̂(si), r(si+1), ti)

)]
= Pr

(
r̂(si) ∈ ξc(r(si+1), ti)

)
, (5)

which serves as an empricial approximation to the finite-time BRT, and yields a trackability-based
measure of the dynamic infeasibility of model predictions.

4.2.1 Robustness: Sensitivity of Trackability to Input Perturbations

Moreover, we define robustness as the sensitivity of trackability to bounded perturbations of the
model inputs. As a local generalization metric, robustness encodes a Lipschitz-type property: small
input variations should induce only small changes in the planned path parameterization.

Let ϵ denote the perturbation scale. Define πϵ(γ) as the family of geometric paths that deviate from
γ(·) by at most ϵ at each discrete step while staying within the class of piece-wise polynomial paths.

Proposition 4.3 Suppose γ(·) is a geometric path. If, for each γ̂ ∈ πϵ(γ) and i ∈ {1, ..., N − 1},

r̂(si) ∈ ξc(r(si+1), ti), where ti = 2∆s/(
√
h(si) +

√
h(si+1)), (6)

with r(·), r̂(·) and h(·) all corresponding to γ̂, then the trajectory planner is ϵ-robust to respect
dynamic feasibility.

Correspondingly, we quantify ϵ-robustness by sampling a set of perturbed geometric paths and sim-
ulating them under U based on the predicted path parameterization.
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TOPPQuad LSTM Transformer ETransformer MLP

Train Test Train Test Train Test Train Test

max dev (m) 0.053 0.074 0.143 0.607 0.649 0.195 0.226 0.252 0.305
thrust violation (N) 0.000 0.002 0.009 0.135 0.123 0.012 0.018 0.031 0.048

TD ratio (%) 5.929(s) -0.70% -0.40% -8.50% -2.35% 1.89% 2.49% -6.59% -3.03%

failure (%) 0.0% 2.0% 4.0% 76.0% 72.0% 6.0% 4.0% 0.0% 6.0%
compute time (s) 10.656 0.078 0.096 1.012 1.042 0.010 0.018 0.005 0.014

Table 1: Ablation study on model architectures. Each statistic is averaged over 100 trajectories. A negative
TD ratio ( PRED. TIME−OPT. TIME

OPT. TIME ) denotes shorter travel time relative to TOPPQuad (OPT. TIME). Although the
low-level controller enforces per-motor limits, the nonlinear mapping from the inputs of the TOPP problem
to predicted motor thrusts is not bounded by construction. Hence, the approximate nature of learning-based
methods can lead to faster path execution times, albeit with non-zero thrust violations. A key desideratum of
such methods is to minimize thrust violations without producing overly conservative (slow) trajectories.

4.2.2 Robustness Enhancement via Noise Injection

Proposition 4.3 naturally inspires a new training scheme that augments the dataset with randomized
path perturbations. Rather than training exclusively on the original paths γ(·), we also include the
perturbed paths γ̂ ∈ πϵ(γ) under a given perturbation scale ϵ, targeting to predict the same ground-
truth [h(·), cos θz(·)] at γ. To ensure practical feasibility, we adopt the following assumption:

Assumption 4.4 Let γ(·) be a geometric path, and ϵ be a perturbation scale. For each γ̂ ∈ πϵ(γ),
the control sequence u(·) that is optimal for γ remains ϵ-robust for γ̂.

In essence, this assumption constrains how large ϵ can be. Beyond model robustness, an excessively
large ϵ would significantly compromise the time-optimal quality of the predictions. While we do
not derive a precise bound on ϵ in this work, we treat it as a tunable hyperparameter, and show the
proposed training scheme’s effectiveness in enhancing model robustness in Section 5.1.2.

5 Experimental Results

5.1 Simulation Experiments

We construct the training dataset by generating minimum-snap trajectories through randomly sam-
pled waypoints within a given range, discretized by 100 equally spaced points. For each path,
we apply TOPPQuad to obtain a dynamically feasible, time-optimal path parameterization under
a 5m/s speed limit, resulting in a dataset of 10, 000 trajectories. All simulation experiments are
conducted in RotorPy [21] configured with CrazyFlie 2.0 parameters [22].

5.1.1 Architecture Ablation

We begin by describing the candidate architectures. LSTM Encoder-Decoder [23, 24] uses an
LSTM encoder (with a non-parameterized attention mechanism equipped) mapping the input trajec-
tory to a latent representation, and an LSTM decoder to generate outputs auto-regressively. Trans-
former Encoder-Decoder (denoted as Transformer) [25] uses self-attention in the encoder to cap-
ture intra-sequence dependencies, and cross-attention in the decoder, trained via teacher forcing [26],
i.e., masking the shifted ground-truth output as the decoder input. Encoder-Only Transformer
(denoted as ETransformer) removes the decoder altogether to obviate the need for teacher forcing.
Finally, Per-Step MLP is a multilayer perceptron that predicts the outputs at each discrete step in-
dividually. Detailed implementation details and additional ablation studies appear in the Appendix.

To evaluate the trajectory planners, we measure the maximum deviation in position from the refer-
ence trajectories, average thrust violation indicating adherence to actuation constraints, and time-
optimality by comparing travel Time Difference ratio (TD ratio) with respect to TOPPQuad. An
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LSTM LSTM-0.01 LSTM-0.1

ϵ (perturbation scale) 0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1

max deviation (m) 0.234 0.790 0.739 0.094 0.093 0.448 0.127 0.126 0.127
TD ratio (%) -0.13% 1.33% 3.21% 0.08% 0.09% 3.73% -0.07% 0.04% 0.29%

output variation 0.005 0.206 0.306 0.000 0.005 0.089 0.001 0.002 0.013
in-BRT probability (%) 90.0% 78.8% 70.0% 94.3% 94.5% 91.4% 92.4% 93.0% 92.9%

Table 2: Robustness analysis for the LSTM Encoder-Decoder model. Each statistic is averaged over 100
trajectories with 10 sets of perturbations randomly drawn per trajectory. TD ratios are computed relative to
TOPPQuad’s optimal solutions (not shown in the table). Non-percentage values are rounded to three decimal
places, so ‘0.000’ does not imply an exact zero.

attempt is classified as a failure if it leads to a crash, or if the maximum position deviation exceeds
1 meter. We also report the compute time required by each planner.

Table 1 presents the ablation results. LSTM achieves the best performance among all candidates,
with a maximum position deviation only 0.023m above TOPPQuad and negligible thrust violation,
resulting in an almost zero failure rate. The slight reduction in travel time arises because the LSTM
occasionally yields velocities marginally above the 5m/s speed limit. In contrast, Transformer
has worse tracking accuracy and higher failure rates, consistent with known difficulties in training
transformers via teacher forcing with limited data [26]. This aligns with the larger TDRatio, where a
faster travel time necessitates greater thrust bound violations. ETransformer provides competitive
results but still lags behind the LSTM in tracking accuracy and time optimality. Finally, Per-Step
MLP struggles to track the reference trajectory precisely and incurs high thrust violations as it must
repeatedly base its predictions on its own prior outputs, leading to out-of-distribution issues.

5.1.2 Robustness Analysis

Next, we conduct a robustness analysis on the LSTM encoder-decoder model. We evaluate both
the model trained solely on clean data (LSTM) and two variants, LSTM-0.01 and LSTM-0.1, that
incorporate randomized path perturbations of scales 0.01 and 0.1 respectively, to augment training
data. To evaluate robustness, we apply controlled perturbations to the input geometric paths. Two
additional metrics are reported. First, output variation quantifies the model sensitivity, computing
the average of the maximum absolute differences in model outputs. Second, in-BRT probability
assesses dynamic feasibility of the predicted path parameterization, as defined in Section 4.2

Table 2 presents the robustness analysis results. When trained exclusively on clean data, the model is
highly sensitive to input perturbations. This is reflected by the large values in output variation. Even
under small input perturbations such as ϵ = 0.001, its maximal position deviation rises from 0.143 m
(Table 1) to 0.234 m. Larger perturbations further degrade tracking performance and reduce in-BRT
probability, which indicates a greater likelihood of generating dynamically infeasible predictions.

In contrast, the models trained with augmented noisy data yields improved output stability and
in-BRT probability. Notably, LSTM-0.1 consistently maintains low maximum position deviations
and high in-BRT probabilities at all tested perturbation levels, highlighting its strong robustness.
LSTM-0.01 also shows enhanced robustness up to its training perturbation level (ϵ = 0.01). Note
that a higher in-BRT probability does not imply superior tracking, as it primarily measures the
dynamic feasibility of the predicted trajectory under quadrotor dynamics. Furthermore, LSTM-0.1
trades off some time-optimality and tracking accuracy for robustness, evident when examining low-
perturbation regimes (ϵ = 0.001). Training over a broader neighborhood of nominal paths ensures
robust feasibility but can shift the solution away from the exact time-optimal trajectories. This
suggests that an upper limit to training perturbation levels must exist in practice.
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TOPPQuad LSTM LSTM-0.1 AllocNet MFBOTrajectory

max deviation (m) 0.039 0.124 0.170 0.037 0.010
min/max thrusts (N) 0.05 / 0.14 0.03 / 0.16 0.03 / 0.17 0.06 / 0.10 0.07 / 0.08
thrust violation (N) 0.000 0.002 0.002 0.000 0.000

traj time (s) 5.687 5.653 5.691 4.066 9.431
path length (m) 19.772 19.772 19.772 11.453 16.778

average speed (m/s) 3.477 3.498 3.474 2.817 1.779

failure rate (%) 0% 0% 0% 28% 0%
compute time (s) 10.083 0.064 0.062 0.277 13609.913

Table 3: Baseline comparison. Each statistic is averaged over 50 trajectories. Compute time is measured
from when the target path (or waypoints) are provided until a valid path parameterization is returned. For
MFBOTrajectory, which undergoes online retraining for each unseen waypoint configuration, the retraining
time is included for a fair comparison.

5.1.3 Baseline Comparison

We compare the performance of the proposed algorithm against two learning-based baselines. Time
Allocation Network (AllocNet) [15] processes a point cloud of obstacles to predict time-optimal
trajectories for safe navigation between specified start and goal locations. Obstacles are constructed
from a sequence of bounding boxes placed around the reference trajectory. Multi-Fidelity Black-Box
Optimization Trajectory Planner (MFBOTrajectory) [11] employs Gaussian Processes to allocate
time between waypoints, requiring iterative online simulations to handle unseen waypoint arrange-
ments. These methods aim to generate time-optimal trajectories within the class of polynomials, so
the resulting paths may deviate significantly from the TOPPQuad and LSTM path. Examples are
provided in the Appendix. Hence, the quadrotor’s average speed and mean path length are reported.

Table 3 summarizes this comparison. AllocNet suffers from a higher failure rate due to a mismatch
between predicted time allocations and the polytopes used in the safe flight corridor during predic-
tion. Notably, our testing setup uses generous bounding boxes to avoid distribution mismatch issues.
Among its successful runs, AllocNet’s predicted trajectories achieve shorter travel times by finding
shorter geometric paths, yet yields a lower average speed than LSTM. MFBOTrajectory achieves
zero failures, but produces the slowest average speed, leading to longer travel time despite formu-
lating shorter polynomial paths than LSTM. Moreover, MFBOTrajectory must retrain online with
each new unseen waypoint arrangement, incurring significant computational overhead. Unlike the
LSTM, neither approach utilizes the full flight profile of the quadrotor, as seen by the commanded
minimum and maximum thrusts.

5.2 Hardware Experiments

Next, we validate our approach on hardware using a CrazyFlie 2.0 quadrotor tracked in a Vicon
motion capture space. For safety, we limit the maximum speed to 2m/s, the maximum acceleration
to 10 m/s2, and the maximum angular velocity to 10 rad/s. Under these parameters, we gener-
ate a new dataset of 9, 000 trajectories in simulation, following the same procedures used in our
earlier experiments. We train an LSTM encoder-decoder model with a perturbation scale of 0.001.
Experiments with other training configurations are provided in Appendix.

Table 4 shows quantitative statistics, while Figure 2 provides visualizations. We conduct tests on
eight distinct geometric paths, with four trials of TOPPQuad and five trials of our proposed method.
As in simulation, our method yields position deviations comparable to TOPPQuad. However, the
travel time difference ratio increases. This discrepancy arises due to the difficulty of settling the
quadrotor at its goal, an issue exacerbated in the learning-based approach by the sim-to-real gap.

Moreover, the proposed method naturally generalizes to longer sequences than those encountered in
training. The key modification is to have the model predict only a segment of the overall trajectory
at once, while conditioning on additional information capturing the robot’s state at the start of each
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TOPPQuad Learning-based TOPPQuad

max deviation (m) 0.347 0.355
travel time (s) 7.981 8.355

Table 4: Hardware experiments.

segment. As sequence lengths grow, the compute speedups become increasingly substantial. Figure
3 demonstrates the resulting extended trajectory predictions.
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Figure 2: Experiment visualization, plotted from the collected motion capture flight data. The dashed black
line represents the reference geometric path, the dashed blue line shows the tracked trajectory generated by
TOPPQuad, and the solid purple lines show the tracked trajectories output by our model across different runs.
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Figure 3: a) Partial depiction of Traj 9. b) Experiment Visualization, showcasing good tracking of geometric
paths whose lengths exceede what is seen in the dataset

6 Conclusion

In this work, we propose an imitation-learning framework for time-optimal quadrotor trajectory
generation. Guided by domain-specific insights, we introduce a concise yet effective input-output
feature design. We also present a rigorous robustness analysis framework alongside a data aug-
mentation strategy that enhances model robustness. Through comprehensive studies, our method
is shown to closely imitate a model-based trajectory planner, producing near-optimal solutions that
largely respect dynamic feasibility and delivering a significant computational speedup over similar
optimization-based methods. Finally, we validate the approach on a hardware quadrotor platform,
demonstrating its practical effectiveness.
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6.1 Limitations

A key limitation of the proposed approach is that the model must be retrained whenever the quadro-
tor’s configuration changes, as its learned parameters are tailored to specific hardware setups and
dynamic constraints from the training dataset. Furthermore, while the model generally approxi-
mates the expert solution accurately, the approximate nature of learning-based methods may still
yield infeasible path parameterizations. Finally, the optimal perturbation bounds for data augmenta-
tion remain an open question.
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