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Abstract

Randomized smoothing is a recent technique that
achieves state-of-art performance in training cer-
tifiably robust deep neural networks. While the
smoothing family of distributions is often con-
nected to the choice of the norm used for certi-
fication, the parameters of these distributions are
always set as global hyper parameters independent
from the input data on which a network is certi-
fied. In this work, we revisit Gaussian randomized
smoothing and show that the variance of the Gaus-
sian distribution can be optimized at each input so
as to maximize the certification radius for the con-
struction of the smooth classifier. Since the data
dependent classifier does not directly enjoy sound
certification with existing approaches, we propose
a memory-enhanced data dependent smooth clas-
sifier that is certifiable by construction. This new
approach is generic, parameter-free, and easy to
implement. In fact, we show that our data depen-
dent framework can be seamlessly incorporated
into 3 randomized smoothing approaches, leading
to consistent improved certified accuracy. When
this framework is used in the training routine of
these approaches followed by a data dependent
certification, we achieve 9% and 6% improvement
over the certified accuracy of the strongest baseline
for a radius of 0.5 on CIFAR10 and ImageNet.

1 INTRODUCTION

1 Despite the success of Deep Neural Networks (DNNs) in
various learning tasks [Krizhevsky et al., 2012, Long et al.,
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Figure 1: From fixed to data dependent smoothing. Us-
ing a fixed σ for all inputs to smooth fθ may under certify
(results in smaller certification radius) inputs far from de-
cision boundary e.g. x1, decrease in prediction confidence
as for x2 or produce incorrect predictions as for x3. Thus,
smoothing should vary per input (right figure) to alleviate
the aforementioned issues.

2015], they were shown to be vulnerable to small carefully
crafted adversarial perturbations [Goodfellow et al., 2015,
Szegedy et al., 2013]. For a DNN f that correctly classifies
an image x, f can be fooled to produce an incorrect predic-
tion for x+ η even when the adversary η is so small that x
and x+η are indistinguishable to the human eye. To circum-
vent this nuisance, there have been several works proposing
heuristic training procedures to build networks that are ro-
bust against such perturbations [Cisse et al., 2017, Madry
et al., 2018]. However, many of these works provided a
false sense of security as they were subsequently broken, i.e.
shown to be ineffective against stronger adversaries [Atha-
lye et al., 2018, Tramer et al., 2020, Uesato et al., 2018].
This has inspired researchers to develop networks that are
certifiably robust, i.e. networks that provably output con-
stant predictions over a characterized region around every
input. Among many certification methods, a probabilistic
approach to certification called randomized smoothing has
demonstrated impressive state-of-the-art certifiable robust-
ness results [Cohen et al., 2019, Lecuyer et al., 2019, Li
et al., 2019]. In a nutshell, given an input x and a base
classifier f , e.g. a DNN, randomized smoothing constructs
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a “smooth classifier” g(x) = Eϵ∼D [f(x+ ϵ)] such that,
and under some choices of D, g(x) = g(x + δ) ∀δ ∈ R.
As such, g is certifiable within the certification region R
characterized by x and the smoothing distribution D. While
there has been considerable progress in devising a notion of
“optimal” smoothing distributionD for whenR is character-
ized by an ℓp certificate [Yang et al., 2020], a common trait
among all works in the literature is that the choice ofD is in-
dependent from the input x. For example, one of the earliest
works on randomized smoothing grants ℓ2 certificates under
D = N (0, σ2I), where σ is a free parameter that is constant
for all x [Cohen et al., 2019]. That is to say, the classifier
f is smoothed to a classifier g uniformly (same variance
σ2) over the entire input space of x. The choice of σ used
for certification is often set either arbitrarily or via cross
validation to obtain best certification results [Salman et al.,
2019a]. We believe this is suboptimal and that σ should vary
with the input x (data dependent), since using a fixed σ may
under-certify inputs (i.e. the constructed smooth classifier
g produces smaller certification radii), which are far from
the decision boundaries as exemplified by x1 in Figure 1.
Moreover, this fixed σ could be large for inputs x close to
the decision boundaries resulting in a smooth classifier g
that incorrectly classifies x (refer to x3 in Figure 1).

In this paper, we aim to introduce more structure to the
smoothing distribution D by rendering its parameters data
dependent. That is to say, the base classifier f is smoothed
with a family of smoothing distributions to produce: g(x) =
Eϵ∼N (0,σ2

xI)
[f(x+ ϵ)] 2 . Note here that the variance of

the Gaussian is now dependent on the data input x. More-
over, given that σx varies with x, classical randomized
smoothing based certification does not apply directly. We
propose a simple memory-based approach to certify the re-
sultant data dependent smooth classifier g. We show that
our memory-enhanced data dependent smooth classifier
can boost certification performance of several randomized
smoothing techniques. Our contributions can thus be sum-
marized in three folds. (i) We propose a parameter free
and generic framework that can easily turn several random-
ized smoothing techniques into their data dependent vari-
ants. In particular, given a network f and an input x, we
propose to optimize the smoothing distribution parameters
for every x, e.g. σ∗

x, so they maximize the certification ra-
dius. This choice of σ∗

x is then used to smooth f at x and
construct a smoothed classifier g. Moreover, as the data
dependent smooth classifier is not directly certifiable us-
ing Cohen et al. [2019] MCMC approaches, we propose
a memory-enhanced data dependent smooth classifier for
certification. (ii) We demonstrate the effectiveness of our
memory-enhanced data dependent smoothing by showing
that we can improve the certified accuracy of several mod-
els, specifically models trained with Gaussian augmentation

2The paper mainly focuses on Gaussian smoothing, but the
idea holds for other parameterized distributions.

(COHEN) [Cohen et al., 2019], adversaries on the smoothed
classifier (SMOOTHADV) [Salman et al., 2019a], and radius
regularization (MACER) [Zhai et al., 2020] without any
model retraining. We boost the certified accuracy of the best
baseline by 5.4% on CIFAR10 and by 2.8% on ImageNet
for ℓ2 perturbations with less than 0.5 (=127/255) ball ra-
dius. (iii) We show that incorporating the proposed data
dependent smoothing in the training pipeline of COHEN,
SMOOTHADV and MACER can further boost results to get
certified accuracies of 68.3% on CIFAR10 and 64.2% on
ImageNet at ℓ2 perturbations less than 0.25.

2 RELATED WORK

Certified Defenses. Certified defenses aim to guarantee that
an adversary does not exist in a certain region around a
given input. Certified defenses can be divided into exact
[Cheng et al., 2017, Lomuscio and Maganti, 2017, Huang
et al., 2017, Ehlers, 2017] and relaxed certification [Salman
et al., 2019b, Wong and Kolter, 2018]. Generally, exact
certification suffers from poor scalability with networks that
are at most 3 hidden layers deep [Tjeng et al., 2019]. On the
other hand, relaxed methods resolve this issue by aiming at
finding an upper bound to the worst adversarial loss over all
possible bounded perturbations around a given input [Weng
et al., 2018]. However, the latter is too expensive for any
mixed certification-training routine.

Randomized Smoothing. The earliest work on randomized
smoothing [Lecuyer et al., 2019] was from a differential
privacy perspective, where it was demonstrated that adding
Laplacian noise enjoys an ℓ1 certification radius in which
the average classifier prediction under this noise is constant.
This work was later followed by the tight ℓ2 certificate ra-
dius for Gaussian smoothing [Cohen et al., 2019]. Since
then, there has been a body of work on randomized smooth-
ing with empirical defenses [Salman et al., 2019a] to certify
black box classifiers [Salman et al., 2020]. Other works de-
rived certification guarantees for ℓ1 bounded [Teng et al.,
2019], ℓ∞ bounded [Zhang et al., 2019], and ℓ0 bounded
[Levine and Feizi, 2020] perturbations. Even more recently,
a novel framework that finds the optimal smoothing distri-
bution for a given ℓp norm [Yang et al., 2020] was proposed
showing state-of-art certification results on ℓ1 perturbations.
We deviate from the common literature by introducing the
notion of smoothing, particularly Gaussian smoothing for ℓ2
perturbations, which varies depending on the input. In partic-
ular, since an input x that is far from the decision boundaries
should tolerate larger smoothing (and equivalently have a
larger certification radius) as compared to inputs closer to
these boundaries, we optimize for the amount of smoothing
per input (specifically σx) that maximizes the certification
radius. This proposed process is denoted as data dependent
smoothing where we provide a procedure for certifying the
resultant smooth classifier.



3 DATA DEPENDENT SMOOTHING

3.1 PRELIMINARIES AND NOTATIONS

Let x ∈ Rd and the labels y ∈ Y = {1, . . . , k} be the
input-label pairs (x, y) sampled from an unknown data
distribution. Unless explicitly mentioned, we consider a
classifier fθ : Rd → P(Y) parameterized by θ where
P(Y) is a probability simplex over k labels. We say that
fθ is ℓrp certifiably accurate for an input x, if and only if,
argmaxc f

c
θ (x) = argmaxc f

c
θ (x + δ) = y ∀ ∥δ∥p ≤ r,

where f cθ is the cth element of fθ. That is to say, the classi-
fier correctly predicts the label of x and enjoys a constant
prediction for all perturbations δ that are in the ℓp ball of ra-
dius r from x. As such, the overall ℓrp certification accuracy
is defined as the average certified accuracy over the data
distribution. Following prior art [Cohen et al., 2019, Salman
et al., 2019a, Zhai et al., 2020], we focus on ℓr2 certification.

3.2 OVERVIEW OF RANDOMIZED SMOOTHING

Randomized smoothing constructs a certifiable classifier gθ
by smoothing a base classifier fθ. For any σ > 0, the smooth
classifier is defined as: gθ(x) = Eϵ∼N (0,σ2I) [fθ(x+ ϵ)].
Let gθ predict label cA for input x with some confidence,
i.e. Eϵ[f

cA
θ (x+ ϵ)] = pA ≥ pB = maxc̸=cA Eϵ[f

c
θ (x+ ϵ)],

then, gθ is certifiably robust at x with certification radius:

R =
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
. (1)

Here, g(x+ δ) = g(x) ∀∥δ∥2 ≤ R, where Φ is the CDF of
the standard Gaussian.

3.3 ROBUSTNESS-ACCURACY TRADE-OFF

Note that Equation 1 holds regardless of the prediction cA
made by the smooth classifier gθ. This suggests that one
can perhaps improve the robustness of gθ, i.e. increase cer-
tification radius R where gθ is constant, by increasing the
hyper parameter σ in Equation 1. However, to reason about
ℓr2 certification accuracy, it is not enough to increase the
certification radius R, as this requires cA to be the cor-
rect prediction for x by gθ. This reveals the robustness-
accuracy trade-off as one cannot improve ℓr2 certified accu-
racy by only increasing the certification radius R (robust-
ness) through the increase in σ. This is because it comes
at the expense of requiring a classifier gθ that correctly
classifies x with correct label y under large Gaussian pertur-
bations (accuracy). As such, the following inequality should
hold Eϵ[f

y
θ (x+ ϵ)] ≥ pA ≥ pB ≥ maxc̸=y Eϵ[f

c(x+ ϵ)].

Algorithm 1: Data Dependent Certification

Function OptimizeSigma(fθ, x, α, σ0, n):
Initialize: σ0

x ← σ0, K
for k = 0 . . .K − 1 do

sample ϵ̂1, . . . ϵ̂n ∼ N (0, I)

ψ(σk
x) =

1
n

∑n
i=1 fθ(x+ σk

x ϵ̂i)

EA(σ
k
x) = maxc ψ

c; yA = argmaxc ψ
c;

EB(σ
k
x) = maxc̸=yA

ψc

R(σk
x) =

σk
x

2

(
Φ−1(EA)− Φ−1(EB)

)
σk+1
x ← σk

x + α∇σk
x
R(σk

x)

σ∗
x ← σK

x

return σ∗
x

3.4 DATA DEPENDENT SMOOTHING FOR
CERTIFICATION

The certification regionR = {δ : ∥δ∥2 ≤ R} at an input x
is fully characterized by the classifier fθ and the standard
deviation of the Gaussian distribution σ. Moreover, for a
given fθ, the certification region R varies at different x,
when σ is fixed, due to the nonlinear dependence of the
prediction gap Φ−1(pA(x;σ))−Φ−1(pB(x;σ)) on x. This
hints that, for a given fθ, different inputs x may enjoy a
different optimal σ∗

x that maximizes the certification region.
To see this, consider the three inputs x1, x2 and x3 all cor-
rectly classified by the binary classifier fθ as C1 in Figure 1.
Using a fixed σ to smooth the predictions of fθ, i.e. predict
with gθ, reveals that inputs, depending on how close they
are from the decision boundaries, can enjoy different levels
of smoothing without affecting the prediction of gθ. For
instance, as shown in Figure 1 for constant σ, the input far
from the decision boundary x1 could have still been clas-
sified correctly with similarly large prediction gap even if
fθ were to be smoothed with a larger σ. This indicates that
perhaps the certification radius at x1 could have been en-
larged with a larger smoothing σ. As for x2, we can observe
that while the prediction under this choice of σ by gθ is still
correct, the prediction gap Φ−1(pA(x;σ))−Φ−1(pB(x;σ))
drops, due to having more Gaussian samples fall in the C2
region. Thus, a different choice of σ could have been used
to trade-off the drop in prediction gap and certification ra-
dius. Last, for the input x3 that is very close to the decision
boundary, the sub optimal choice of σ (too large for x3)
could result in an incorrect prediction by gθ. Despite the
observations that σ plays a significant role in ℓr2 certifica-
tion accuracy, certification methods generally (i) choose σ
arbitrarily and (ii) set it to be constant for all x. Based on
this observation, for a given smooth classifier with a specific
σ0, where σ0 can be zero reducing the smooth classifier
to fθ, we seek to construct another smooth classifier with
parameter σ∗

x for every input x such that: (i) the prediction
of both smooth classifiers (smoothing with σ0 and σ∗

x) is



identical for all x. (ii) The certification radius of the new
smooth classifier at every x is maximized. To construct
a classifier smoothed with σ∗

x enjoying the two previous
properties, let cA be the prediction under σ0 smoothing, i.e.
cA = argmaxc Eϵ∼N (0,σ0I)[f

c(x + ϵ)]. We maximize R
in Equation 1 over σ for every x by solving:

σ∗
x =argmax

σ

σ

2

(
Φ−1

(
Eϵ∼N (0,σ2I)[f

cA
θ (x+ ϵ)]

)
− Φ−1

(
max
c̸=cA

Eϵ∼N (0,σ2I)[f
c
θ (x+ ϵ)]

))
.

(2)

Since Φ−1 is a strictly increasing function, it is important
to note that solving Equation 2 for a fixed cA can at worst
yield a smooth classifier of an identical radius to when the
classifier is smoothed with σ0 both predicting cA for x.

Solver. While our proposed Objective 2 has a similar
form to the MACER regularizer [Zhai et al., 2020] used
during training, ours differs in that we optimize σ for
every x and not the network parameters θ, which are
fixed here. A natural solver for 2 is stochastic gradient
ascent with the expectation approximated with n Monte
Carlo samples. As such, the gradient of the objective
at the kth iteration will be approximated as follows:
∇σk

σk

2

[
Φ−1

(
γcA(σk)

)
− Φ−1

(
maxc ̸=cA γ

c(σk)
)]
,

where γc(σk) = 1
n

∑n
i=1 f

c(x + ϵi) for ϵ1, . . . , ϵn ∼
N (0, (σk)2I). However, this estimation of the gradient
suffers from high variance due to the dependence of the
expectation on the optimization variable σ that parame-
terizes the smoothing distribution N (0, σ2I) [Williams,
1992]. To alleviate this, we use the reparameterization trick
suggested by Kingma and Welling [2014], Rezende et al.
[2014] to compute a lower variance gradient estimate for
our Objective 2. In particular, with the change of variable
ϵ = σϵ̂ where ϵ̂ ∼ N (0, I), Objective 2 is equivalent to:

σ∗
x =argmax

σ

σ

2

(
Φ−1

(
Eϵ̂∼N (0,I)[f

cA
θ (x+ σϵ̂)]

)
−

Φ−1

(
max
c̸=cA

Eϵ̂∼N (0,I)[f
c
θ (x+ σϵ̂)]

)) (3)

Note that, unlike before, the expectation over the distribution
ϵ̂ ∼ N (0, I) no longer depends on the optimization variable
σ. This allows the gradient of 3 to enjoy a lower variance
compared to the gradient of 2 [Kingma and Welling, 2014,
Rezende et al., 2014]. Algorithm 1 summarizes the updates
for optimizing σ for each x by solving 3 with K steps of
stochastic gradient ascent. It is worthwhile to mention that
the function OptimizeSigma in Algorithm 1 is agnostic
of the choice of architecture fθ and of the training procedure
that constructed fθ.

Algorithm 2: Training with Data Dependent σxi

Function TrainBatch(fθ, {xi, yi}Bi=1, {σxi
}Bi=1, α,

n):
for i = 1, . . . , B do

σ∗
xi

= OptimizeSigma(fθ, xi, α, σxi
, n)

TrainFunction
(
{xi, yi}Bi=1, {σ∗

xi
}Bi=1

)
// any training routine e.g. MACER

3.5 MEMORY-BASED CERTIFICATION FOR
DATA DEPENDENT CLASSIFIERS

Unlike previous approaches where σ is constant for all in-
puts, the data dependent classifier gθ with varying σ per
input can not be directly certified by the classical Monte
Carlo algorithms proposed by Cohen et al. [2019]. This is
since the data dependent classifier gθ does not enjoy a con-
stant σ within the given certification region, i.e. gθ tailors
a new σx for every input x including within the certified
region of x. Informally, let R(σ∗

x1
) be the radius of certi-

fication at x1 granted by the data dependent classifier gθ.
The data dependent classifier does not guarantee that there
can not exist x2 within the region of certification of x1,
i.e. ∥x1 − x2∥2 ≤ R(σ∗

x1
), where gθ with σ∗

x2
predicts x2

differently from x1 breaking the soundness of certification.
To circumvent this problem, we propose a memory-based
procedure to certifying our proposed data dependent classi-
fier. Let {xi}Ni=1 be a set of previously predicted inputs and
{Ci}Ni=1 be their corresponding predictions with mutually
exclusive ℓ2 certified regionsRi for differently predicted in-
puts, i.e.Ri ∩Rj = ∅ ∀i ̸= j, Ci ̸= Cj . Let xN+1 be a new
input with a certified regionRN+1 computed by the Monte
Carlo algorithms of Cohen et al. [2019] for the data depen-
dent classifier gθ with prediction CN+1. If there exists an i
such that RN+1 ∩ Ri ̸= ∅, xN+1 ∈ Ri, and CN+1 ̸= Ci,
we adjust the prediction of the data dependent classifier
gθ to be Ci and update RN+1 to be the largest subset of
RN+1 that is a subset ofRi (see middle example in Figure
2). On the other hand, if RN+1 ∩ Ri ̸= ∅, xN+1 /∈ Ri,
and that CN+1 ̸= Ci, we update RN+1 to be the largest
subset of RN+1 not intersecting with Ri (see right exam-
ple in Figure 2). We perform the previous operations for
all elements in the memory and add xN+1, CN+1,RN+1

to memory. The aforementioned procedure grants a sound
certification for the data dependent classifier preventing by
construction overlapping certified regions with different pre-
dictions.While the memory-based certification is essential
for a sound certification, empirically, we never found in any
of the later experiments a case where two inputs predicted
differently suffer from intersecting certified regions. That
is to say while our sound certificate works on the memory-
enhanced data dependent smooth classifier, we found that
the certified radius of the memory classifier for every input is
the radius granted by the Monte Carlo certificates of Cohen



Figure 2: Memory-based certification of the data dependent classifier. Given a memory of an input x1 with a certified
regionR1 and another input x2 with a certified regionR2. Three scenarios could arise whereR1 andR2 intersect. Left:
The certified regions intersect while both x1 and x2 share the same prediction. In this case, x2 along with its certified region
are directly added to memory. Middle: x2 lies insideR1 with a different prediction from x1. In this case, x2 is predicted
with the same prediction as x1 and added to memory along with the largest subset ofR2 that is withinR1. Right: x2 lies
outside theR1 with a different prediction from x1 In this case, x2 with its prediction are added to memory along with the
largest certified region inR2 not intersecting withR1.

et al. [2019] for the data dependent classifier. Therefore and
throughout, we refer to the memory-enhanced data depen-
dent smooth classifier and data dependent smooth classifier
interchangeably. We elaborate more on this and provide an
algorithm in the Appendix.

3.6 TRAINING WITH DATA DEPENDENT
SMOOTHING

Models that enjoy a large ℓr2 certification accuracy under
the randomized smoothing framework need to enjoy a large
certification radius R in Equation 1 for all x and be able
to correctly classify inputs corrupted with Gaussian noise,
i.e. gθ(x) = y. While there are several approaches to train
fθ (or directly gθ) so as to output correct predictions for
inputs corrupted with noise sampled from N (0, σ2I), all
existing works fix σ for all inputs during training. We
are interested in complementing these approaches with
smoothing distributions that are data dependent. As such,
we can employ the training procedure of these approaches
but with σ∗

x computed by OptimizeSigma. Algorithm 2
summarizes this proposed training pipeline. The function
TrainFunction proceeds by performing backpropaga-
tion using any training scheme, given the estimated σ∗

xi
for

each xi. We note that whenever Algorithm 2 is used, we
initialize σxi

at each epoch with σ∗
xi

computed at the pre-
vious epoch. Since COHEN, SMOOTHADV and MACER
are among the most popular approaches that embed random-
ized smoothing certificates as part of the training routine,
TrainFunction refers here to any of these three train-
ing methods. Empirically, we show that we can boost all
three methods even further when models are trained with
Algorithm 2.

4 EXPERIMENTS

We conduct two sets of experiments to validate our key con-
tributions. (i) We show that we can boost certified accuracy
for several pre-trained models by using Algorithm 1 for data

dependent smoothing only during certification, i.e. without
employing any additional training. (ii) Once data dependent
smoothing is employed during training, we can improve
the certified accuracy even further. Since our framework is
agnostic to the training routine, we incorporate it into (i)
COHEN [Cohen et al., 2019], (ii) SMOOTHADV [Salman
et al., 2019a] and (iii) MACER [Zhai et al., 2020]. Through-
out, we use DS to refer to when data dependent smoothing
is used only in certification and DS2 when it is used during
both training and certification.

Setup. We conduct experiments with ResNet-18 and ReNet-
50 [He et al., 2016] on CIFAR10 [Krizhevsky and Hinton,
2009] and ImageNet [Russakovsky et al., 2015], respec-
tively. For CIFAR10 experiments, we train from scratch
for 200 epochs. For ImageNet, we initialize using the
network parameters provided by the authors. When σ is
fixed and following prior art, e.g. COHEN, SMOOTHADV,
and MACER, we set σ ∈ {0.12, 0.25, 0.50} and σ ∈
{0.25, 0.50, 1.0} for CIFAR10 and ImageNet, respectively,
for training and certification. We set α = 10−4 in Algo-
rithm 1 and the initial σ0 to the σ used in training the
respective model. Unless stated otherwise, we set n = 1
in Algorithm 1. Following COHEN and SMOOTHADV,
we compare models using the approximate certified accu-
racy curve (simply referred to as certified accuracy) fol-
lowed by the envelope curve over all σ. We also report
the Average Certified Radius (ACR) proposed by MACER
1/|Stest|

∑
(x,y)∈Stest

R(fθ, x).1{argmaxc g
c
θ(x) = y},

where 1{.} is an indicator function. Following COHEN and
all randomized smoothing methods, we certify all results
using N0 = 100 Monte Carlo samples for prediction and
N = 100, 000 estimation samples to estimate the radius
with a failure probability of 0.001 given a smoothing σ.

4.1 COHEN + DS

We combine data dependent smoothing with COHEN. Fol-
lowing Gaussian augmentation, this method trains fθ on
(x+ ϵ), where ϵ ∼ N (0, σ2I), with the cross entropy loss.



Figure 3: Certified accuracy comparison against Cohen per radius per σ. We compare Cohen against our data dependent
certification Cohen-DS and when data dependency is incorporated in both training and certification Cohen-DS2 for several
σ. The value of σ shown for our models in the legend refers to the optimization initialization σ0 in Algorithm 1. We show
CIFAR10 and ImageNet results in first and second rows, respectively, where the last column is the envelope.

Table 1: Best certified accuracy per radius and ACR of Cohen, Cohen-DS and Cohen-DS2.

CIFAR10 Radius 0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 ACRTrain Certify

Cohen FS FS 79.9 58.3 40.1 29.2 20.2 13.1 7.3 3.3 0.0 0.0 0.0 0.591
Cohen-DS FS DS 77.2 64.5 47.8 38.3 27.6 16.5 8.0 3.2 1.2 0.7 0.5 0.784
Cohen-DS2 DS DS 79.8 66.5 50.4 39.2 29.1 18.3 8.8 3.8 1.4 0.6 0.2 0.764

ImageNet Radius 0.0 0.25 0.50 0.75 1.00 1.50 2.0 2.5 3.0 3.50 4.0 ACRTrain Certify

Cohen FS FS 66.6 58.2 49.0 42.4 37.4 27.8 19.4 14.4 12.0 8.6 0.0 1.098
Cohen-DS FS DS 67.8 61.4 53.6 45.6 42.0 30.4 23.4 18.8 14.6 10.2 2.0 1.257
Cohen-DS2 DS DS 67.4 64.2 58.4 47.4 41.8 31.8 25.0 21.2 17.2 11.0 2.0 1.319

DS for certification only. We first certify the trained mod-
els with the same fixed σ used in training for all inputs,
dubbed COHEN. Then, we certify using the memory based
certification the same trained models with the proposed data
dependent σ∗

x produced by Algorithm 1, which we refer
to as COHEN-DS. Figure 3 plots the certified accuracy for
CIFAR10 and ImageNet in the first and second rows, re-
spectively. Even though the base classifier fθ is identical for
COHEN and COHEN-DS, Figure 3 shows that COHEN-DS
is superior to COHEN in certified accuracy across almost
all radii and for all training σ on both datasets. This is also
evident from the envelope plots in the last column of Figure
3. In Table 1, we report the best certified accuracy per radius
over all training σ for COHEN (envelope figure) against our
best COHEN-DS, cross-validated over all training σ and the
number of iterations in Algorithm 1 K, accompanied with
the corresponding ACR score. For instance, we observe that
data dependent certification COHEN-DS can significantly
boost certified accuracy at radii 0.5 and 0.75 by 7.7% (from

40.1 to 47.8) and 9.1% (from 29.2% to 38.3%), respectively,
and by 0.193 ACR points on CIFAR10. Moreover, we boost
the certified accuracy on ImageNet by 4.6% and 3.2% at
0.5 and 0.75 radii, respectively, and by 0.159 ACR points.

DS for training and certification. We employ data depen-
dent smoothing in both training and certification for COHEN
models (denoted as COHEN-DS2) by running Algorithm
2. For CIFAR10, we train COHEN first with fixed σ for 50
epochs, i.e.K = 0 in Algorithm 1, and then we perform data
dependent smoothing with K = 1 for the remaining 150
epochs. For ImageNet experiments, we only finetune the pro-
vided models for 30 epochs using Algorithm 2 with K = 1.
Once training is complete, we certify all trained models with
Algorithm 1 using the memory based certification. In Figure
3, we observe that COHEN-DS2 can further improve certi-
fied accuracy across all trained models on both CIFAR10
and ImageNet. This is also evident in the last column of
Figure 3 that shows the best certified accuracy per radius



Figure 4: Certified accuracy comparison against SmoothAdv per radius per σ. We compare SmoothAdv against
SmoothAdv-DS and SmoothAdv-DS2. We show CIFAR10 and ImageNet results in first and second rows, respectively.

Table 2: Best certified accuracy per radius and ACR of SmoothAdv, SmoothAdv-DS and SmoothAdv-DS2.

CIFAR10
Radius

0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 ACR
Train Certify

SmoothAdv FS FS 76.0 62.4 46.7 34.6 26.5 19.5 12.9 7.5 0.0 0.0 0.0 0.681
SmoothAdv-DS FS DS 75.7 66.4 52.1 38.8 30.6 22.2 15.0 8.5 4.2 1.8 0.6 0.799
SmoothAdv-DS2 DS DS 76.2 66.8 52.8 39.3 30.8 22.6 15.1 8.8 4.3 2.0 0.7 0.812

ImageNet
Radius

0.0 0.25 0.50 0.75 1.00 1.50 2.0 2.5 3.0 3.50 4.0 ACR
Train Certify

SmoothAdv FS FS 60.8 57.8 54.6 50.4 42.2 35.6 25.6 20.4 18.0 14.2 0.0 1.287
SmoothAdv-DS FS DS 62.0 60.4 57.4 53.2 47.0 39.2 29.2 23.8 19.6 15.2 6.2 1.445
SmoothAdv-DS2 DS DS 62.2 60.6 58.8 54.2 48.2 43.0 30.6 25.4 21.6 18.6 4.2 1.514

(envelope) over all training σ. We note that COHEN-DS2

improves the certification accuracy of COHEN-DS by 2.6%
and by 0.9% at radii 0.5 and 0.75 respectively on CIFAR10,
and by 4.8% and 1.8% at radii 0.5 and 0.75 respectively
on ImageNet. The improvements are consistently present
over a wide range of radii on both datasets. We do ob-
serve that the ACR score for COHEN-DS2 on CIFAR10
marginally drops compared to COHEN-DS. We believe that
this is due to the fact that some inputs that are classified
correctly at the small radii have an overall larger certifica-
tion radius for COHEN-DS compared to COHEN-DS2 on CI-
FAR10. Regardless, COHEN-DS2 substantially outperforms
COHEN by 0.173 ACR points. As compared to COHEN-DS,
COHEN-DS2 improves the ACR on ImageNet from 1.257
to 1.319.

4.2 SMOOTHADV + DS

We combine our data dependent smoothing strategy with the
more effective SMOOTHADV, which trains the smoothed
classifier for every x on the adversarial example x̂ that max-

imizes − logEϵ∼N (0,σ2I) [f
y
θ (x

′ + ϵ)], where ∥x′ − x∥ ≤
ζ.For CIFAR10 experiments, we follow the training proce-
dure of SMOOTHADV, where the adversary x̂ is computed
with 2 PGD (proximal gradient descent) steps with ζ = 0.25
and one augmented sample to estimate the expectation. For
ImageNet experiments, we use the best reported models, in
terms of certified accuracy, provided by the authors, which
correspond to ζ = 0.5 for σ = 0.25 and ζ = 1.0 for
σ ∈ {0.5, 1.0}.

DS for certification only. Similar to COHEN, we first cer-
tify SMOOTHADV models trained with the same fixed σ.
Then, we certify the proposed data dependent σ∗

x models
using the memory-based certification, which we refer to
as SMOOTHADV-DS. In Figure 4, we show the certified
accuracy for both CIFAR10 and ImageNet in the first and
second rows, respectively. The last column shows the en-
velopes per radius. Even though they both share the same
classifier fθ, SMOOTHADV-DS significantly improves upon
SMOOTHADV over all radii and all values of σ in training
for both CIFAR10 and ImageNet. In particular, for models
trained with σ = 0.25, SMOOTHADV achieves a zero cer-



Figure 5: Certified accuracy comparison against MACER per radius per σ. We compare MACER against MACER-DS
and MACER-DS2 for several σ on CIFAR10 with the last column showing the envelope.

Table 3: Best certified accuracy per radius and ACR of MACER, MACER-DS and MACER-DS2 on CIFAR10.

CIFAR10
Radius

0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 ACR
Train Certify

MACER FS FS 78.8 59.3 43.6 34.7 26.6 19.4 13.0 7.50 0.0 0.0 0.0 0.702
MACER-DS FS DS 79.5 66.7 52.3 43.0 30.8 19.5 12.8 7.55 3.97 1.67 0.5 0.841
MACER-DS2 DS DS 82.4 68.3 52.7 43.5 31.7 20.6 13.8 7.92 3.65 1.39 0.4 0.807

tified accuracy for large certification radii (≥ 1.0), while
SMOOTHADV-DS achieves non-trivial certified accuracy in
these cases. Similar to the earlier setup, we report the best
certified accuracy along with the ACR scores in Table 2. We
improve over SMOOTHADV by large margins. For example,
the certified accuracy at 0.5 radius increases by 5.4% and
2.8% on CIFAR10 and Imagenet, respectively. The improve-
ment is consistent over all radii. The ACR also improves by
0.118 and 0.158 on CIFAR10 and ImageNet, respectively.

DS for training and certification. We fine tune the
SMOOTHADV trained models (either the retrained CIFAR10
models or the ImageNet models provided by SMOOTHADV)
using Algorithm 2, where σ∗

x is computed using Algo-
rithm 1. We report the per σ certification accuracy compar-
ing SMOOTHADV-DS2 (certified also using memory based
certification) to both SMOOTHADV-DS and SMOOTHADV.
SMOOTHADV-DS2 further improves the certified accuracy
as compared to SMOOTHADV-DS with performance gains
more prominent on ImageNet. While the improvement of
SMOOTHADV-DS2 over SMOOTHADV-DS is indeed small,
e.g. 0.7% at radius 0.5 on CIFAR10, we observe that the
performance gaps are much larger on ImageNet reaching
1.4% at 0.5 radius as shown in Table 2. We see a similar
trend in ACR with improvements of 0.013 and 0.069 on
CIFAR10 and ImageNet, respectively. SMOOTHADV-DS2

boosts the certified accuracy of SMOOTHADV at radius 0.5
by 6.1% and 4.2% on CIFAR10 and ImageNet, respectively.

4.3 MACER + DS

We integrate data dependent smoothing within
MACER which trains gθ by minimizing over the
parameters θ the following objective − log gθ(x) +
λσ
2 max

(
γ − 2R

σ , 0
)
.1{argmaxc gcθ(x) = y}. where R

Figure 6: Qualitative examples of estimated σ∗
x on differ-

ent inputs. From left to right of first row: clean image, fixed
σ = 0.5 and estimated σ∗

x = 0.368 maximizing certifica-
tion radius. Similarly for second row but with σ = 0.25 and
σ∗
x = 0.423. This demonstrates that σ∗ that maximizes the

radius should vary per input x.

also depends on θ. While this seems to be similar in spirit to
our approach, we in fact maximize the certification radius
over σ with fixed parameters θ for every x. We conduct
experiments on CIFAR10 following the training procedure
of MACER estimating the expectation with 64 samples,
λ = 12, and γ = 8. We set n = 8 in Algorithm 1 with
ablations on n = 1 in the appendix.

DS for certification only. Similar to the earlier setup in
COHEN and SMOOTHADV, we certify models with fixed σ
and then with data dependent σ∗

x using the memory based
certification, referred to as MACER-DS. In Figure 5, we ob-
serve that MACER-DS significantly outperforms MACER
particularly in the large radius region. This can also be seen
in the envelope figure reporting the best certified accuracy



Figure 7: Varying K in Algorithm 2. Left figure shows
certification with σ0 = 0.12 on CIFAR10 and σ0 = 0.5 on
ImageNet is shown at the right.

per radius over σ. Similarly, Table 3 demonstrates the bene-
fits of data dependent smoothing, where it boosts certified
accuracy by 7.4% (from 59.3% to 66.7%) and 8.7% (43.6
to 52.3) at 0.25 and 0.5 radii, respectively. Moreover, we
improve ACR by 0.139 points.

DS for training and certification. We incorporate data
dependent smoothing as part of MACER training and
certification in a similar fashion to the earlier setup,
dubbed MACER-DS2. Figure 5 shows the improvement of
MACER-DS2 over the certification only MACER-DS over
all trained models. Table 3 summarizes the best certified
accuracy per radius. Overall, we find that the performance
is comparable or slightly better than MACER-DS, which
is still significantly better than MACER by 8.67% at ra-
dius 0.5. We also observe that MACER-DS enjoys better
ACR than MACER-DS2 with both being far better than the
MACER baseline.

4.4 DS FOR ℓ1 CERTIFICATES

At last, we extend our methodology to ℓ1 certification. We
leveraged the results of Yang et al. [2020] that derived the
tightest ℓ1 certificate using randomized smoothing with uni-
form distribution U [−λ, λ]d. The certified radius in that case
has the formR1 = λ(pA − pB). We replace our objective
in Equation (3) with:

λ∗x =argmax
λ

λ

(
Eϵ∼U [−λ,λ]d(f

cA
θ (x+ ϵ))

−max
c̸=cA

Eϵ∼U [−λ,λ]d(f
c
θ (x+ ϵ))

)
.

(4)

We solved our objective in Eq (3) in an identical fash-
ion to our Algorithm 1 with the same hyperparameters for
λ ∈ {0.25, 0.5, 1.0} in certification on both CIFAR10 and
ImageNet. Further, we combine our data-dependent smooth
classifier with the memory based algorithm proposed in Sec-
tion 3.5. It is worthwhile mentioning that similar to the ℓ2
case, the memory based algorithm did not find any overlap
between the certified regions of any pair of instances. We
report the results in Table 4. We observe that, similar to our
extensive experiments on the ℓ2 certificate, our proposed

Table 4: Best certified accuracy per ℓ1 radii and ACR of
YANG and YANG-DS.

ℓr1(CIFAR10) 0.0 0.25 0.5 0.75 1.0 1.5 2.0 ACR

YANG 92 83 75 71 46 0 0 0.775
YANG-DS 92 89 82 76 58 6 2 0.946

ℓr1(ImageNet) 0.0 0.25 0.5 0.75 1.0 1.5 2.0 ACR

YANG 78 73 67 63 0 0 0 0.683
YANG-DS 79 76 70 65 46 0 0 0.729

memory-enhanced data-dependent smoothing yields consis-
tent improvement in the ℓ1 certified accuracy. We report an
improvement of 7% and 3% over the state of the art certified
accuracy at ℓ1 radius of 0.5 on CIFAR10 and ImageNet,
respectively. At last, we note similar improvement to the ℓ1
ACR as reported in Table 4.

4.5 DISCUSSION AND ABLATION

Varying K. We pose the question: does attaining better
solutions to our proposed Objective 3 improve certified ac-
curacy? To answer this, we control the solution quality of
σ∗
x by certifying trained models with a varying number of

stochastic gradient ascent iterations K in Algorithm 1. In
particular, we certify the trained models SMOOTHADV-DS2

and SMOOTHADV-DS on CIFAR10 and ImageNet, respec-
tively, with a varying K. We leave the rest of the exper-
iments for other models to the appendix. We observe in
Figure 7 that the certified accuracy per radius consistently
improves as K increases, particularly in the large radius
regime. This is expected, since Algorithm 1 produces better
optimal smoothing σ∗

x per input x with larger K, which
in turn improves the certification radius leaving room for
improvements with more powerful optimizers.

Visualizing σ∗
x. We show the variation of σ∗

x that maxi-
mizes the certification radius over different inputs x. Figure
6 shows two examples, where the first and fourth columns
contain the clean images. In the second column, a choice
of fixed σ = 0.5 is too large compared to our estimated
σ∗
x = 0.368 that maximizes the certification radius as per

Algorithm 1. As for the fifth column, we observe that a con-
stant σ = 0.25 is far less than σ∗

x = 0.423. This indicates
that indeed the σ∗

x maximizing the certification radius varies
significantly over inputs.

5 CONCLUSION

In this work, we presented a simple and generic framework
to equip randomized smoothing techniques with data de-
pendency. We demonstrated that combining data dependent
smoothing with 3 randomized smoothing techniques pro-
vided substantial improvement in their certified accuracy.
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