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Abstract

Unsupervised learning- and optimisation-based 3D registration has almost exclusively been
approached using backward warping (interpolation) for transforming images. While this
has practical advantages in particular the ease of implementation within common libraries it
limits the robustness and accuracy in certain challenging scenarios. The alternative solution
of forward splatting (extrapolation) is currently limited to very few applications, e.g. mesh
or point cloud registration, requiring specific geometric learning architectures that are so far
less efficient compared to dense 3D convolutional networks. In this work, we propose to use a
straightforward forward splatting technique based on differentiable rasterisation. Contrary
to prior work, we rephrase the problem of deformable image registration as a density
alignment of rasterised volumes based on intermediate point cloud representations that can
be automatically obtained through e.g. geometric vessel filters or surface segmentations.
Our experimental validation demonstrates state-of-the-art performance over a wide range
of registration tasks including intra- and inter-patient alignment of thorax and abdomen.
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1. Introduction

Deformable image registration is ubiquitously used in various medical imaging applications
many of them requiring realtime and fully automatic solutions. Despite significant progress
over the last few years, learning-based image registration still faces some challenges that
are absent for other tasks, e.g. a larger performance discrepancy of feed forward models
with or without instance optimisation or fine-tuning (Balakrishnan et al., 2019; Heinrich
and Hansen, 2022; Hering et al., 2022). The gap before and after adaptation to a particular
instance can be as large as 50% (Heinrich and Hansen, 2022; Wang et al., 2022). The
necessity to use more complex multi-stage (Mok and Chung, 2020) or cascaded (Zhao et al.,
2019) architectures to mimic an iterative alignment is well documented for large deformation
tasks beyond the cranial vault. Moreover, recent research even explored to explicitly build
upon parts of conventional gradient descent methods to stabilise the learning of registration
networks (Jia et al., 2021). Eventually, some approaches directly focused on speeding up
the optimisation of pre-computed geometric or semantic features (Siebert et al., 2021).

A challenge for unsupervised deformable image registration is to find a balance
between similarity metric and smoothness regularisation. To avoid degenerated solutions

© 2025 CC-BY 4.0, M.P. Heinrich, A. Bigalke & L. Hansen.

https://orcid.org/0000-0002-7489-1972
https://orcid.org/0000-0001-7824-5735
https://orcid.org/0000-0001-7824-5735
https://creativecommons.org/licenses/by/4.0/


Heinrich Bigalke Hansen

- that e.g. let to two points from different origins in the moving image correspond to the
same location in the fixed scan - a smooth mapping is essential. Commonly, a combination
of several regularising elements is employed: 1) constraints on the gradient of the estimated
displacements, which can also be a conditional hyperparameter (Mok and Chung, 2021);
2) employing a low-parametric transformation model such as B-splines (Qiu et al., 2021)
or Fourier-basis functions (Jia et al., 2023); 3) a symmetric registration framework that
achieves inverse consistency by design (Greer et al., 2023). The latter two are preferable
because they do not introduce any additional continuous hyperparameters and point to an
apparent deficiency of oftentimes weak regularisation constraints. All mentioned approaches
formulate registration as a backward warping, which interpolates intermediate intensity
values from the moving image at displaced locations.

Contrarily, sparse point cloud registration can be formulated as forward transform,
which aims to align two 3D densities e.g. by solving an optimal transport problem (Shen
et al., 2021) or using the Chamfer distance between moved and fixed points. This, however,
comes with its own challenges for defining a well-differentiable cost function (Bigalke and
Heinrich, 2023; Heinrich et al., 2023). Point cloud processing has greatly benefited from the
advent of new geometric deep learning architectures (Zhao et al., 2021). Yet its inherent
limitations of expensive sparse memory access (Liu et al., 2019) have prevented a more
widespread adoption. A notable popular point registration networks (Wu et al., 2020) was
only cited 150 times to date. In addition, using forward transforms on dense images requires
the extrapolation pixel intensities from one grid to another, a so called splatting operation,
that may lead to holes that could negatively affect the loss computation.

We hypothesise that revisiting an under-researched paradigm for medical image regis-
tration as forward transform model that combines the complementary strengths of dense
and sparse model components can alleviate most aforementioned problems. This leads to a
substantially different solution, which replaces the spatial alignment of dense images using
backward warping with a forward splatting of density estimates of an intermediate point
cloud representation. Prior work (Heinrich et al., 2023) already showed that splatting pro-
vides a well-differentiable loss for training graph-/point registration networks. We crucially
extend upon this work by combining forward splatting with well-proven dense 3D convo-
lutional architectures for deformation estimation. Our new paradigm for defining the loss
and transform leads to more robust and accurate performance without finding additional
hyperparameter for constraining the displacement regularity.

Our method combines dense volumetric registration with intermediate point cloud rep-
resentations with the following three technical contributions:

• Conversion of volumetric scans into point based multichannel density representations
using either semantic, geometric or intensity-based features

• Differentiable rasterisation for an unsupervised loss definition within a multi-step and
optionally symmetric, inverse-consistent registration framework

• Fully-convolutional dense 3D networks adapted to rasterised point cloud inputs for
improved efficiency and accuracy

To demonstrate the efficacy of this newly proposed paradigm for deformable registration we
perform a detailed analysis on a challenging proof-of-concept dataset followed by compre-
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Rephrasing deformable registration through forward splatting

ζ(ℱ) = F

ζ(ℳ) = M

moving point cloud rasterised mov. vol. 

splatting

splatting

registration net f(1) 

with B-splines

Fϕ = ζ(ℱ, ϕ)

repeat multiple (fast) 
 forward  stages f(2) .. f(n)

ℒ = |Fϕ − M |1

volumetric density loss 
➞ no regularisation 

transf. fixed cloud 

fixed point cloud rasterised fixed vol. transform. fixed vol. 

deformable     splatting

dense deformation

Figure 1: Given two sparse point clouds F and M we rasterise 3D volumes F and M
by forward splatting ζ as input to a registration U-Net (including a B-spline
transform) which predicts a dense deformation ϕ that is sampled sparsely at the
points of F (vector addition). An L1 loss of a newly splatted Fϕ = ζ(F , ϕ) and
M is used to derive a well differentiable loss and stable multi-stage model.

hensive experimental validation on 3D medical datasets involving large deformation lung
registration and cross-patient shape alignment of abdominal organs. The source code is
available at https://github.com/mattiaspaul/fastforward.

2. Method

We consider the task of aligning two 3D images - fixed F and moving M - with intermediate
representations as sparse 3D point cloud, denoted as F and M - using a spatial transform φ.

Given unlabelled training data T = {(Fi,Mi)}|T |
i=1 comprising |T | unaligned pairs we aim

to learn a function f represented by the parameters θf of a deep neural network to predict
a displacement field φ̂ = f(F ,M , θf ) that minimises a dissimilarity metric S(F , φ ◦M).

Forward versus backward transforms: In the above notation a conventional back-
ward transformation was formulated that pulls M towards F . But it is similarly possible
to make the model learn a forward transform ϕ that minimises S∗(ϕ ◦ F ,M). Let us
start with volumetric data that resides on a regular cartesian grid with integer coordinates
q = (qx, qy, qz) ∈ N3 and associated voxel intensities x ∈ Rnx×ny×nz (for ease of presentation
we limit ourselves to grayscale but extend the concept to multi-channel images later). To
apply the spatial transform φ to M in a differentiable manner, we can follow (Jaderberg
et al., 2015), which introduced spatial transformer networks. In practice, we are interested
in the intensity values for the coordinates pφ = p0 +∆p, which represent the addition of
identity transform and the relative displacements. We follow the notation of (Dai et al.,
2017) to define a trilinear interpolant G(q,p) = g(qx, px) · g(qy, py) · g(qz, pz), with g being
defined as g(qx, px) = max(0, 1−|qx−px|), which can be used to perform a weighted average
over the 8 neighbouring grid points of displaced voxels pφ using:

y(φ,x) =
∑
q

G(q,pφ) · x(q). (1)
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Intuitively speaking, this backward transform Mφ = y(φ,M) gathers information in an
irregular manner from the moving image onto a regular grid for the new warped image
that should reside in the domain of the fixed image. Each grid point in the warped image
receives the same density, yet the voxels from the moving image may contribute differently
to the transformed output. A forward transform conversely scatters voxel intensities from
a regular grid onto irregularly spaced spatial coordinates in the transformed image, which
requires an extrapolation to neighbouring grid locations.

Hence as detailed in (Heinrich et al., 2023) for the case of sparse 3D point clouds F
and M, the order of Eq. 1 has to be reversed to x(ϕ, q) =

∑
pG(p, qϕ) · y(p) resulting

in a trilinear splatting operation Fϕ = x(ϕ,F ) = ζ(F , ϕ). When used in isolation this
may lead to visually undesirable effects, e.g. holes in the output and multiple intensities
that are accumulated onto the same location. While most prior work considered this a
disadvantage that required careful post-processing (cf. (Birkfellner et al., 2005)), we want
to highlight the benefits of such an approach. When incorporating the splatting operation
into the dissimilarity loss, the optimisable function fθ (e.g. a deep neural network) has
to predict a ϕ that retains a similar density distribution across images to avoid penalties,
which helps to prevent unrealistic and implausible deformations. To that end, we focus our
empirical evaluation on the gains that may be obtained by replacing backward with forward
transformations.

Dense-to-sparse-to-dense model: To efficiently handle the challenges of splatting
large 3D volumes in a differentiable manner we propose to design a model with intermediate
sparse point cloud representations. Fig. 1 starts from 3D scans have been converted into
two unordered 3D point clouds F ∈ RNF×3,M ∈ RNM×3. In case of multi-object (multi-
channel) registration, each point can have a one-hot vector representing its class assigned.
While geometric deep learning has seen use in the medical domain for shape classification
and pose recognition (Bigalke et al., 2023), deformable 3D registration has so far been
limited to few sparse point cloud based architectures such as PointPWC-Net (Wu et al.,
2020). They additionally pose a particular challenge for unsupervised learning to define
suitable loss functions (cf. (Shen et al., 2021)). We hence generate a rasterised 3D density
representation using the efficient splatting function ζσ proposed in (Heinrich et al., 2023) to
transform F and M into F and M , which reside on a regular cartesian 3D grid and where
σ defines a spatial smoothing kernel. Such an intermediate dense representations was used
e.g. in V2V-PoseNet (Moon et al., 2018) to address slow random memory access in k-nearest
neighbour graph networks (cf. (Liu et al., 2019)). With 3D voxel volumes at hand we can
employ a straightforward 3D U-Net (Çiçek et al., 2016) to define our neural network function
f . For robustness, the output of the U-Net φ = f(ζσ(F), ζσ(M)) is fed into a differentiable
B-spline transformation (that comprises no trainable parameters) akin to (Qiu et al., 2021).
To extract the sparse motion vectors that align the two point clouds we first compute a
trilinear interpolation (see Eq. 1) of φ at the coordinates of F to obtain ϕ = y(F , φ). Next,
we perform another deformable splatting to perform a forward transform that should satisfy
the similarity ζσ(F + ϕ) ∼ ζσ(M). Note, that absolute and relative coordinates are simply
added for the transformation. The hyperparameter σ together with the resolution of the
cartesian grid q defines how much spatial overlap neighbouring points have within the 3D
density estimation of ζ and improves differentiability.
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Multi-step, regularisation and inverse consistency: When designing a backward
warping baseline, we noted that the implicit regularisation of the B-spline transform is
sometimes not sufficient to achieve competitive performance due to the tendency of this
model to pull points from multiple different locations to the same grid coordinate. The
baseline model hence adds a diffusion regulariser R = ||λ · ∇φ||2 to penalise large gradients
of φ, which introduces another hyperparameter to be tuned (cf. (Mok and Chung, 2021)).
To capture large deformations, we consider the multi-step approach of (Mok and Chung,
2020) that cascades (Zhao et al., 2019) multiple U-Nets to obtain φ∗

FM = φ1 ◦φ2 ◦ . . .◦φ(n).
Furthermore, we explore the very recent strategy of establishing symmetry and inverse
consistency of the registration by construction following (Greer et al., 2023) and estimate
φ∗ = exp(fFM − fMF ), where exp represents the exponentiation step of the scaling-and-
squaring approach (Avants et al., 2008) (and the output of fFM = f(F ,M) is scaled down
appropriately). When estimating large deformations a single network is usually unable
to capture the complex transformation. Hence, a two-step consistent approach with two
networks f (1) and f (2) is used:

φ(2) = exp(
f
(1)
FM − f

(1)
MF

2
) ◦ exp(f (2)

F̂ M̂
− f

(2)

M̂F̂
) ◦ exp(

f
(1)
FM − f

(1)
MF

2
). (2)

Here, two mid-way warps are defined as M̂ = M ◦ exp(
f
(1)
MF−f

(1)
FM

2 ), similar to the ANTs
SyN approach (Avants et al., 2008). More details on the implementation of each step can
be found within our open source code.

3. Experiments

We consider two tasks that are currently challenging for learning based registration and
often require additional instance optimisation. Our aim is to ease the difficulty by replacing
backward warping with forward splatting in two image registration tasks. First, the large
deformation 3D CT lung registration between inspiration and expiration using the PVT1010
(Shen et al., 2021) and DIRlab COPD (Castillo et al., 2013) patient data respectively.
And second, finding shapes correspondences across patients of the multi-organ abdominal
CT dataset Beyond the Cranial Vault (BVC) with significant differences across anatomies
(Xu et al., 2016) that was used in Learn2Reg 2020 (Hering et al., 2022). We perform
up to three registration approaches for those datasets: 1) purely optimisation based, 2)
asymmetric (multi-stage) deep learning and 3) symmetric two-step inverse-consistent deep
learning registration.

The DIRlab COPD dataset remains one of the most challenging tasks for deep learning
registration yielding target registration errors (TRE) of > 7 mm for VoxelMorph (Balakr-
ishnan et al., 2019) and ≈ 5 mm for LapIRN (Mok and Chung, 2020). The only highly
accurate solution we found in the literature (Greer et al., 2023) that achieved < 2 mm was
trained on additional 1000 pairs of high-resolution intensity scan pairs of the COPDgene
study. The related point cloud dataset (PVT1010) has been tackled with the sparse Point-
PWC (Wu et al., 2020) model for which results of ≈ 5 mm before instance optimisation
(Shen et al., 2021; Heinrich et al., 2023) were reached when trained with unsupervised losses
and 2.3 mm for supervision with simulated deformations followed by mean teacher domain
adaptation on the real unlabelled data.

5



Heinrich Bigalke Hansen

Figure 2: Example distribution and case for the abdomen test data with initial and trans-
formed labels. A substantial improvement can be found using forward splatting.

PVT1010 / COPD comprises point clouds within the paired lungs of 1000 patients
that depict ≈ 50-120×103 well distributed 3D coordinates at lung vessels, airways or other
points of high local image gradient or curvature in both extreme respiratory phases. For 10
scans the publicly available DIRlab cases provide additional image information (which we
do not use) and serve as a benchmark with 300 manual landmarks each.

The multi-organ abdomen dataset (AbdomenCT) is made up by 30 CT scans of
different patients for pairwise training (Xu et al., 2016), whereas the test set has 20 scans
with 9 annotation labels (Gibson et al., 2018). To create multilabel point-clouds we employ
predictions from a pre-trained TotalSegmentator (Wasserthal et al., 2023) for 14 anatomies
and sample 61’440 (15x4096) surface points (using both non-maximum suppression and
farthest point sampling). We use torch.gradient to obtain spatial gradients of the seg-
mentations represented as one-hot tensors. The FPS implementation followed the code
from (Zhao et al., 2021). The whole process requires ≈ 200 millisec. per 3D volume. The
Gaussian smoothing employed in the differentiable splatting function ζσ is sped-up using
the approximation of (Kovesi, 2010) and extended to the 15-channel input.

Implementation details: We employ the basic MONAI U-Net (Cardoso et al., 2022)
with 5 levels and up to 64 channels as f with 2 or 30 (multi-organ) input channels of the con-
catenated rasterised point clouds with fixed dimensions of 1283 voxels. The output is fed to
a hyperbolic tangent and multiplied by 0.25 to limit the displacement range and regularised
using a cubic B-spline with a control-point grid of 323 (see Appendix for hyperparameter
choices). In case of the two-step inverse consistency (IC), we use scaling-and-squaring and
symmetry by design (see Eq. 2) with two trainable networks. For multi-step, we train up
to st = 8 U-Nets, further limit each output to 0.3

st and compose the output transformations.
The dissimilarity loss S is chosen as the L1-Norm of the splatted point clouds of fixed and
transformed moving scan. All models or respectively the B-spline grid for optimisation-
only approaches are trained with Adam with a learning rate of 0.015 for 10’000 or 150
iterations respectively. For the latter, the backward warping loss led to insufficient perfor-
mance, which we addressed by weighting the L1-Norm with the fixed point cloud density.
Test-time adaptation is optionally used to fine-tune the weights of f (1) and f (2), since our
model uses only an unsupervised loss on the automatically generated point clouds (with
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Figure 3: Rendering of inspiration to expiration point clouds (PVT1010/COPD) showing
improved alignment (purple) of our method compared to backward warping.

Table 1: Quantitative accuracy for multi-organ abdomen averaged across 8 labels (Gib-
son et al., 2018) (initial Dice of 25%). All methods use label-supervision but only
during training. Our forward splatting outperforms backward warping in every
case, in particular for optimisation and TTA and sets new SOTA.

method optimisation 8x multi-step two-step IC net+TTA

backw. warp. 59.88±7.7% 64.56±9.1% 70.95±5.4% 61.42±6.7%
forw. splat. 71.74±6.3% 69.10±6.3% 71.25±5.2% 75.29±4.0%

SOTA img 69% 67% 52.3% 69.6%

/label (Siebert et al.,
2021)

(Mok and Chung,
2020)

(Heinrich and
Hansen, 2022)

(Heinrich and
Hansen, 2022)

ConvexAdam LapIRN VxM+ VxM+(+IO)

NF = NM ≈ 64 · 103). This step requires only 3 − 5 secs. per scan pair for 20 − 50
iterations. Training requires less than 1 hour per model on one GPU.

This is achieved by the very efficient implementation of the splatting operation to ras-
terise input and intermediate (warped) point clouds, which resulted in orders of magni-
tude faster processing compared to traditional sparse data interpolation and modern GPU-
accelerated kernel operators (Charlier et al., 2021), see Appendix C for details.
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Table 2: Manual landmark error (TRE) in mm for PTV1010/COPD (Castillo et al.,
2013) with an initial affine TRE of 11 mm. We set new SOTA for point cloud
methods and outperform most approaches that use intensity images (values after
/ denote inst. optimisation)

method optimisation 8x multi-step two-step IC net+TTA

backw. warp. 3.21±4.0 4.00±2.1 3.2±2.4 1.82±0.3
forw. splat. 2.00±0.6 2.16±0.7 3.1±2.4 1.76±0.4

SOTA 0.82 4.99 2.03/1.62 2.2

images (Rühaak et al.,
2017)

(Mok and Chung,
2020)

(Greer et al.,
2023)

(Heinrich and
Hansen, 2022)

SOTA point 3.13(CPD) 2.31 5.96/2.39

clouds (Falta et al.,
2024)

(Bigalke and
Heinrich, 2023)

(Heinrich et al.,
2023)

4. Results and Discussion

Our empirical results demonstrate clear advantages compared to prior work. We outper-
form all previous point cloud registration models on the challenging PVT1010 dataset by
a large margin (see Tab. 2 and Fig. 3), when replacing a sparse graph-convolution based
model (Point-PWC) with a dense multi-stage (symmetric) U-Net, while keeping the attrac-
tive properties of sparse inputs. In particular, our novel integration of forward splatting
within a cascade of dense U-Net registration networks leads to a threefold reduction in TRE
compared to DiVRoC (Heinrich et al., 2023) (5.96→2.16 mm) before instance optimisation.
Unlike prior methods, we dynamically splat moved points after each transformation rather
than relying on backward warping, which significantly improves registration accuracy. Point
clouds are efficient for data sharing and substantial reduce the risk of privacy leakage (cf.
(Shen et al., 2021)). However, traditional point cloud networks suffer from unstructured
memory access and expensive kNN queries, particularly as the number of points increases.
In direct comparison to DiVRoC (Heinrich et al., 2023), which also employs rasterisation
as loss, our method achieves a sixfold speed-up while reducing computational complexity:
the PPWC model used processed only a subset of 8192 points per scan and required eight
partial runs to predict a forward transform in ∼1.5 seconds, using 7.7M parameters and
65.2 GFlops. In contrast, our sparse-to-dense representation enables U-Nets that are in-
dependent of the number of points, requiring only ≈0.25 seconds for the two-step inverse
consistency model, with 1.2M parameters and 47.2 GFlops. This highlights the efficiency
gains of our method, making it highly scalable while retaining the expressiveness and pri-
vacy advantages of sparse point clouds. By extending the concept to multi-channel surface
point clouds, where points carry categorical labels, we outperform all previous supervised
image-based methods for AbdomenCT (+2%) and achieve further gains to +5% points
when employing test-time adaptation. Notably, the stabilising effect of forward splatting
is more pronounced for multi-step or iterative alignment, while the two-step inverse consis-
tency (Greer et al., 2023) introduces complementary benefits, enforcing perfect symmetry
in all solutions. A supplementary ablation study (Appendix) empirically shows the sensitiv-
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ity of hyperparameter choice for the warping strategy, whereas our method remains robust
across a wider range of values. Further improved alignment can still be obtained when
considering the complete dense image information (see superior results for (Greer et al.,
2023) in Tab. 2), which would motivate hybrid models trained on large-scale, multi-centric,
privacy-preserving and modality-agnostic point cloud datasets, with local fine-tuning on full
patient scans at test time.
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Fenja Falta, Christoph Großbröhmer, Alessa Hering, Alexander Bigalke, and Mattias Hein-
rich. Lung250m-4b: a combined 3d dataset for ct-and point cloud-based intra-patient
lung registration. Advances in Neural Information Processing Systems, 36, 2024.

Eli Gibson, Francesco Giganti, Yipeng Hu, Ester Bonmati, Steve Bandula, Kurinchi Gu-
rusamy, Brian Davidson, Stephen P Pereira, Matthew J Clarkson, and Dean C Barratt.
Automatic multi-organ segmentation on abdominal ct with dense v-networks. IEEE Trans
Med Imag, 37(8):1822–1834, 2018.

Hastings Greer, Lin Tian, Francois-Xavier Vialard, Roland Kwitt, Sylvain Bouix, Raul
San Jose Estepar, Richard Rushmore, and Marc Niethammer. Inverse consistency by
construction for multistep deep registration. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 688–698. Springer, 2023.

Mattias P Heinrich and Lasse Hansen. Voxelmorph++ going beyond the cranial vault with
keypoint supervision and multi-channel instance optimisation. In International Workshop
on Biomedical Image Registration, pages 85–95. Springer, 2022.

Mattias P Heinrich, Alexander Bigalke, Christoph Großbröhmer, and Lasse Hansen. Chas-
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Figure 4: Various cases of our petal dataset with topological changes to be aligned (showing
the case with the 5th highest error out of 64 samples each). Forward splatting
achieves more accurate alignment and lower Haussdorff distances along with more
plausible displacement grids.

Shengyu Zhao, Yue Dong, Eric I Chang, Yan Xu, et al. Recursive cascaded networks for
unsupervised medical image registration. In Proc ICCV, 2019.

Appendix A. Synthetic petal dataset

We additionally perform experiments on a highly deformable synthetic 2D task with the
aim to align flower shapes with different numbers of petals. Petals can be flexible generated
by sampling 1024 points along the angle α with the equation r = cos(k·α)+d

d , where k ∈ N
defines the number of petals and d ∈ R+ modulates the curvature of the leaves. With
different numbers k1 and k2 of petals in fixed and moving image as well as changes in
curvatures, huge local deformations have to be estimated (see Fig. 4). Results show that
the warping loss produces unrealistic transforms, which may explain its difficulty to further
improve through test-time adaption for the multi-organ data.

Appendix B. Hyperparameter search

Figure 5 shows exemplary hyperparameter sweeps for the 10th COPD case. We perform an
8×8×8 sweep for our approach and evaluate an additional 8 values of λ each for backward-
warp. An optimal valley can be found for both approaches for the resolution of the ras-
terisation grid versus the employed B-spline smoothing (equivalent Gaussian σ), whereas
the optimal choice for the smoothing of the extrapolation (splatting ζσ) is more stable for
forward splatting. The comparison of B-spline smoothing and diffusion λ reveals the finicky
behaviour of backward warping, which deteriorates sharply when moving slightly away from
the optimum. While the population based learning and inverse-consistency can alleviate this
choice to some degree at highlights the current limitation of many unsupervised registration
algorithms.
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approach requires no 

diffusion regularisation 

Figure 5: Hyperparameter search for the optimisation based alignment of the 10th COPD
case comparing our proposed forward splatting with only intrinsic regularisation
with conventional backward warping that employs additional diffusion regulari-
sation. Dark green values indicate accurate registrations.
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Figure 6: Efficiency analysis that shows the very low runtime of our proposed rasterisation
across all point cloud sizes for a dense grid of 128x128x128 with 15 channels.
Even on a CPU our approach outperforms the Keops GPU implementation for
clouds larger than 12’000 points. Time given in seconds.

Appendix C. Efficiency of splatting / rasterisation

A detailed comparison of runtimes for our splatting operator that rasterises an input or
intermediate (warped) point cloud of varying size to a 3D grid is shown in Fig. 6. It demon-
strates a huge speed up of our proposed use of the Jacobian of the gridsample operator
in pytorch (see also https://github.com/mattiaspaul/fastforward). We benchmarked
our approach against several competing implementations: scipy.interpolate.griddata,
scipy.spatial.cKDTree and the highly efficient sparse Gaussian kernel from Keops (Char-
lier et al., 2021). We demonstrate enormous speed-ups (150-350x fold) and even outperform
the most advanced (Keops) GPU implementation on the CPU. Using CUDA our splatting
operator rasterises clouds with >60’000 points and 15 intensity channels in <10 millisec.
on a 128x128x128 dense grid. Hence there is virtually no overhead compared to the U-Net
models.
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