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Abstract

Difficult coding problems are often solved by prompting large language models to
generate programs and iterate on their code until they find a solution. Many works
have proposed ways to guide this iterative process but often do not compare to
simpler baselines. Taking nine problems from the AlphaEvolve paper [Novikov
et al., 2025] as case studies, we find that randomly sampling programs using an
LLM works well, matching AlphaEvolve on two and matching or improving over
a strong open source baseline, ShinkaEvolve, on eight. This implies that some
improvements may stem not from the LLM-driven program search but due to the
manual formulation that makes the problems easily optimizable.

1 Introduction

It is difficult designing computer programs to solve a given task. Programs have precise syntax,
long range dependencies, and contain many possible characters, so searching over program space is
nontrivial as most randomly sampled strings are invalid. In the last few years many works [Li et al.,
2022, Romera-Paredes et al., 2024, Novikov et al., 2025] sample programs using large language
models (LLMs), as they can output syntactically valid code [Chen et al., 2021], deal with long range
dependencies [Bahdanau et al., 2016], and can generate many different kinds of characters [Sennrich
et al., 2015]. In turn, the LLM can be used to “evolve” the code so it better solves a problem, using
the LLM as the evolutionary algorithm’s mutation operator.

Works like FunSearch [Romera-Paredes et al., 2024] and AlphaEvolve [Novikov et al., 2025]
discovered new mathematical bounds and algorithms using this process. In spite of these problems’
complex formulations, some of them are functionally simple, having relatively low dimensional
input spaces – consisting of 100 − 104 numbers – with their optimal solutions being straightforward
programs for black-box numerical optimization (see Listing 1).2 This begs the question, how well
would much simpler methods do?

As a first step towards answering this question, we run random search baselines over nine problems
from the AlphaEvolve paper. As it is unclear how those solutions were found and given how much
resources, we compare a similar open source sample efficient system, ShinkaEvolve Lange et al.
[2025], to randomly sampling programs from an LLM. On two of the nine problems random search
achieves the same performance ceiling as AlphaEvolve while on eight of the nine it matches or
outperforms ShinkaEvolve. Given the same API budget, random search has a > 50% chance of
outperforming ShinkaEvolve on five of the nine problems. Thus, for easily verifiable problems
with short programs as answers, the hard part may be formulating the problems so they are easily
optimizable – which is still done by hand – and not the LLM-driven optimization itself.3
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1 def pack_circles() -> Tuple[np.ndarray, np.ndarray]:
2 ...
3 # Try to arrange the circles in a grid-like structure
4 initial_centers = np.array([[0.2, 0.2], [0.8, 0.2], [0.2, 0.8], [0.8, 0.8],
5 ...
6 # Define bounds for the optimizer
7 bounds = [(0, 1) for _ in range(52)] + [(0, 0.5) for _ in range(26)]
8 ...
9 result = minimize(

10 calculate_objective,
11 x0,
12 method='SLSQP',
13 bounds=bounds,
14 constraints=calculate_constraints(x0),
15 options={'maxiter': 2000, 'ftol': 1e-6}
16 )
17 ...
18 return centers, radii

Listing 1: Code snippets from the best circle packing solution found by a random baseline here. The
function is fairly straightforward, using simple black-box numerical optimization.

2 Problems

Novikov et al. [2025] demonstrated using LLM driven code evolution to solve many tasks, among
them finding bounds for mathematical problems. We focus on these kinds of problems as they are
relatively simple, requiring relatively short single-file programs and quick CPU based evaluation.
These problems are subdivided into those belonging to analysis, combinatorics, or geometry, with
us using three, two, and four problems from each category respectively.4 Brief summaries of the
problems and their bounds are in Table 1, with longer explanations in Novikov et al. [2025]’s
Appendix.

3 Random Baselines

There are largely two ways to randomly sample solutions – at the input level and at the program level,
with only the latter requiring an LLM. Searching directly at the input level, where the problem’s
parameters are sampled from some distribution, can work for low dimensional problems but struggles
scaling for cases with even tens of dimensions. We show this in Appendix A over a subset of three
problems. Random search over the inputs matches AlphaEvolve on the uncertainty inequality, having
a 3-dimensional input, but gets subpar performance for the others.

When searching over program space how much domain knowledge should be used? While on the
one hand it may guide the model towards better solutions it can also make it get stuck on suboptimal
setups. Moreover, these biases confound how well a method works with how the model is guided.
Thus, we opt to give relatively little domain knowledge in the model’s prompts, specifying only
the problem’s broad structure and some evaluation functions. An example prompt, for the second
autocorrelation inequality, is given in Appendix C.

This relatively little domain knowledge also facilitates a fair comparison with different methods that
get more than just prompts as inputs. ShinkaEvolve and other code evolution systems [Novikov
et al., 2025, Sharma, 2025] iterate over an initial program, starting their search with some biases. For
example, Novikov et al. [2025], Lange et al. [2025] start their circle packing program with a function
that, given a configuration of circle centers, finds their maximal radii. When asking Gemini 2.5 Pro
to generate ten circle packing solutions with a prompt with minimal biases it never includes such a
function in its solution. Therefore, ShinkaEvolve is always initialized from a trivial initial program
with essentially no domain knowledge other than the functions the random sampling baseline also
has access to.

4Combinatorics has only two problems, hence the imbalance.
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Problem Input size Pre-AE Bound AE Bound AE Appendix

First autocorrelation
inequality (↓)

Unbounded, step function
heights

1.5098 1.5053 B.1

Second
autocorrelation
inequality (↑)

Unbounded, step function
heights

0.88922 0.8962 B.2

Uncertainty
inequality (↓)

3 coefficients of a Hermite
polynomial

0.35229 0.35210 B.4

Erdős’ minimum
overlap (↓)

Unbounded, step function
heights

0.380927 0.380924 B.5

Sums vs. differences
of finite sets (↑)

Unbounded, set U ⊂ Z≥0

fulfilling some properties
1.14465 1.1584 B.6

Max–min distance
ratio for 16 2D
points (↓)

32 coordinates (16×2) 12.890 12.88927 B.8

Heilbronn triangles
n = 11, (↑)

22 coordinates (11×2) in a
unit-area triangle

0.036 0.0365 B.9

Kissing number in
11D (↑)

Largest number of 11D sphere
centers all tangent to a
common sphere

592 593 B.11

Circle packing (↑) 78 – 26 center coordinates
(26×2) and 26 radii

2.634 2.63586 B.12

Table 1: Bounds of AlphaEvolve (AE) problems studied here, divided into analysis (top), combina-
torics (middle), and geometry (bottom). The arrow next to the problem name indicates whether it is
an upper bound, so lower results are tighter and hence better (↓), or a lower bound so higher is tighter
and thus better (↑). All numbers are from Novikov et al. [2025]. “Pre-AE” are the best bounds from
before Novikov et al. [2025].

Concretely, for the randomly sampled programs we use Gemini 2.5 Pro, sampling with a temperature
of 0.8, a top-p sampling cutoff of 0.95, a thinking budget of 1024 tokens, and letting each solution
run for at most 5 minutes. These settings were not thoroughly ablated and chosen as they seemed
like sensible defaults. During development we observed a general, intuitive trend of more thinking
tokens and a longer execution time giving better results, while making API calls more expensive
and experiments take longer. Given a prompt describing a problem we ask the LLM to output entire
programs and extract ```python ... ``` from its completions. 2000 solutions are sampled for
each problem, requiring 25-50$ worth of API calls per problem.

To make the comparison fair we have ShinkaEvolve uses only LLMs from the Gemini family –
specifically 2.5 Pro, Flash, and Flash Lite – and adopt their circle packing hyperparameters, changing
the system prompts and initial programs per problem. Each problem is run for 200 evolution
generations, making each run cost 12-18$, where their reference circle packing run costs about 12$.

4 Results

To see how well random search would perform given the same API budget as ShinkaEvolve, we
calculate the probability random search would have matched or outperformed it for each problem,
PRS≥Shinka given the same settings. This is done by (conservatively) assuming a ShinkaEvolve run
costs 12$, seeing how many random programs can be sampled for that price, and calculating the
probability sampling that many programs yields one which is better than Shinka’s optimal solution,
which amounts to calculating a pass@k. Many other metrics can be compared – wall clock time,
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number of output tokens, etc. – but are harder to do so fairly as they depend more on implementation
details.5

As Table 2 shows, random search outperformed ShinkaEvolve on most problems, both in general and
when considering its probability of outperforming Shinka given the same budget. This is especially
surprising for problems with variable, typically unbounded, inputs, which are five out of the nine
problems. Intuitively, for these cases a method that builds on previous solutions would perform better,
so why did Shinka not here? One option is that being incremental biases it towards more common,
worse solutions, where it can be easier directly sampling a low probability good solution instead.

Problem AE Random Search ShinkaEvolve PRS≥Shinka

First autocorr. ineq. (↓) 1.5053 1.529 1.541 95.2%
Second autocorr. ineq. (↑) 0.8962 0.8739 0.868543 41.7%
Uncertainty ineq. (↓) 0.3521 0.3521 0.3521 100%
Erdős’ min. overlap (↓) 0.3809 0.3811 0.3813 44.2%
Sums/differences of sets (↑) 1.1584 1.124 1.110 100%
Max–min dist. ratio (↓) 12.88926 12.88923 12.99 100%
Heilbronn triangles (↑) 0.0365 0.0334 0.0356 0%
Kissing number in 11D (↑) 593 438 405 43.4%
Circle packing (↑) 2.635 2.632 2.621 100%

Table 2: ShinkaEvolve and random search baselines. Best results are bolded, second best are italicized.
Random search matches or exceeds AlphaEvolve on two of the nine problems and ShinkaEvolve on
eight of the nine. Arrows denote whether higher or lower is better.

Why did ShinkaEvolve find a subpar circle packing, although Lange et al. [2025] got better results
than AlphaEvolve? This is likely due to having both a system prompt and initial program with much
less domain knowledge. In Appendix A we see that randomly sampling a thousand programs when
given more domain knowledge results in a similarly good packing configuration as well.

Why do both baselines generally underperform AlphaEvolve? Other than likely using far fewer
resources,6 it is unclear how open-ended AlphaEvolve is, e.g. to what extent are its prompts especially
designed per problem? Without an open source reproduction that matches its performance it is hard
to do more than speculate.

5 Discussion

Code evolution systems are often presented as intended for advancing scientific discovery [Novikov
et al., 2025, Lange et al., 2025], where it is fair to use domain knowledge if it helps solve a problem.
Meanwhile, common machine learning wisdom argues that using algorithms with more human
knowledge is detrimental, yielding short term gains that are surpassed by more general long term
improvements [Sutton, 2019]. Interestingly, given the same budget and domain knowledge, a simple
random search baseline seems competitive with code evolution on several mathematical problems.

This has several implications. First, when developing these systems, what should one focus on? Is
it wall clock time, or getting good performance within a given budget, or something else entirely?
Typically these constraints are not well defined, but they are important for the field to progress.
Simple baselines performing well might show that current systems are insufficiently sample efficient,
or prioritize the wrong metrics, or something else entirely.

More fundamentally, what do we care about solving? In mathematics improving a bound is typically
interesting only if it yields some deeper insights [Tao, 2007], whereas in machine learning getting
better performance on a problem is practically useful even if it is due to mundane reasons. This is
generally the difference between natural and engineering sciences, so systems for (natural) scientific
discovery should focus on yielding insights more than improving bounds and performance. Regardless
of the science, all good results are either useful or interesting, and in the best cases both. If what

5For example, given enough CPUs random search can be done very quickly while many code evolution
systems have sequential components.

6Novikov et al. [2025] mention using “thousands of LLM samples” per problem.
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matters for scientific discovery is finding good problem formulations, with the optimization afterwards
being easy, how can we teach a model to better formulate problems?

A nice example of how formulations are important relative to the optimization process is in Appendix
B.4 of Novikov et al. [2025]. After publishing the paper the AlphaEvolve authors were told of a better
formulation of the uncertainty inequality problem, which had a published lower bound of 0.3284
instead of the previous one of 0.3523. This allowed them to find a new bound of 0.3216 instead of
0.3521. Although the optimization improved both bounds, the larger improvements can from a better
underlying structure.

Still, these results should be taken with caution. Code evolution systems have evidently been useful,
with AlphaEvolve finding better tensor factorizations and ShinkaEvolve being used to win a coding
competition, yielding deeper insights on the way [Akiba, 2025]. Random baselines, especially
non-iterative ones, likely have their limitations when applied to more difficult highly structured
problems, where a good sample efficiency is important. These problems are harder to work with but
might be a better focus than proof of concepts like circle packing. Developing better benchmarks and
understanding when and how code evolution’s value lies is important for future work.
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A Input Level Random Search

We compare two kinds of input random sampling to LLM based program sampling. The simplest
method is direct random sampling, where the problem parameters are randomly sampled from a
given distribution, e.g. uniformly over [0, 1]. If the function is well behaved then random sampling
with numerical optimization should perform better, where the initial guess is sampled like before
but then optimized using a black-box optimizer, here being Nelder-Mead [Gao and Han, 2012]. Most
general is LLM-based random sampling where an LLM is prompted to generate a program that
produces the optimal parameters.

Direct and numerical optimization based random sampling are run for each problem for 6 hours over
8 CPU cores. This results in a tradeoff between the number of sampled solutions and how well each is
optimized, as the optimization based method samples fewer initial points but spends wall clock time
on optimizing them. For LLM based sampling we generate a thousand programs for each problem.
To see if a better LLM produces better programs this is done twice, once using Gemini 2.0 Flash Lite
and again with Gemini 2.5 Pro. For both numerical optimization and LLM based sampling we limit
each program to run for at most 60 seconds.

For the input level sampling, for Erdős’ minimum overlap and circle packing problems the inputs
are sampled uniformly from [0, 1]. For the uncertainty inequality the three inputs are sampled log-
uniformly from [10−2, 102], [10−4, 100], [10−6, 10−2], with the rough orders of magnitude chosen
based on the pre-AlphaEvolve optimal solution’s coefficients.

Erdős’ minimum overlap problem can have any arbitrary step function as its input. For a fair
comparison with the AlphaEvolve solution we use 95 steps for the direct and numerical optimization
baselines while for the LLM based sampler we accept any number but prompt the model to use 95.
This may make the problem either easier or harder, as on the one hand it is less open ended but on the
other it is confined to a smaller search space.

For circle packing naïvely sampling centers and radii would most of the time yield invalid solutions.
Thus, we use some domain knowledge and formulate the problem as a 52-dimensional optimization
problem, where given the 26 centers the optimal radii are inferred. This can be done by solving a
linear programming problem, which is quick in practice. Details are in Appendix B. This makes
sampling valid solutions feasible but may give these baselines an advantage.7 For LLM based
sampling the model has no access to the linear program.

However, as in this case the circle packing input-level sampling has additional domain knowledge in
the form of the linear program we give the LLMs access to the circle packing initial program helper
function from [Novikov et al., 2025] as a possible helper. This allows random search to get a better
packing than AlphaEvolve, whereas in Table 2 without this additional knowledge it underperformed.
This is an example of domain knowledge being the difference between getting state of the art and
subpar performance.

As seen in Table 3, direct input sampling underperforms sampling programs for the minimum overlap
and circle packing, whereas for the very low dimensional uncertainty inequality they all perform
similarly.

B Circle Packing Linear Program

Given n circle centers xi, yi we wish to find their radii ri such that
∑

i ri is maximized while all
the circles are in the unit square and do not overlap. Assuming the circle centers are valid, the
no-overlap constraint for circles i, j is dij ≤ ri + rj where dij =

√
(xi − xj)2 + (yi − yj)2. Circle

i’s maximum radius without exiting the square is ui := min(xi, yi, 1 − xi, 1 − yi), yielding the

7It is worth noting that LLMs can easily reproduce the linear programming formulation when prompted to
do so.
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Direct Numerical LLM
Problem AlphaEvolve Sampling Optimization Flash Lite Pro

Uncertainty inequality (↓) 0.35210 0.35216 0.35210 0.35213 0.35210
Erdős’ minimum overlap (↓) 0.38092 0.44855 0.39662 0.38242 0.38233

Circle packing (↑) 2.63586 1.78428 2.20161 2.52451 2.63598

Table 3: Best bounds found by AlphaEvolve and random search baselines. On two out of the three
problems random search matched or slightly exceeded AlphaEvolve’s bounds.

constraint ri ≤ ui. This also allows pruning the overlap constraints, as if dij ≥ ui + uj then the
inequality over the radii is always fulfilled. All together this yields a linear program with O(n2)
constraints in the radii, which can be efficiently solved using a variety of tools.

C Second Autocorrelation Inequality Prompt

The compute_lower_bound function is taken from AlphaEvolve’s validation script.
${max_execution_time} is replaced with the time limit per problem, which in practice
was 300 seconds (5 minutes) for the programs in Table 2 and 60 seconds for those in Appendix A.

You are an expert programmer specialising in numerical optimisation. Implement a
Python function with the exact signature:↪→

def find_step_heights() -> np.ndarray:

Where the goal is to find step function heights that will maximize the lower bound
on the smallest constant C for which $$ \|f*f\|_2^2 \leq C \|f* f\|_1
\|f*f\|_ \infty$$, $f$ being a nonnegative function supported on $[-1/4, 1/4]$.
The returned np array should represent the heights of this step function,
yielding a constant $K<C$. We wish to maximize $K$.

↪→
↪→
↪→
↪→

You can use this predefined helper function without redefining it:
```
def compute_lower_bound(step_heights: np.ndarray) -> float:

convolution = np.convolve(step_heights, step_heights)

# Calculate the 2-norm squared: ||f*f||_2^2
num_points = len(convolution)
x_points = np.linspace(-0.5, 0.5, num_points + 2)
x_intervals = np.diff(x_points) # Width of each interval
y_points = np.concatenate(([0], convolution, [0]))
l2_norm_squared = 0.0
for i in range(len(convolution) + 1): # Iterate through intervals

y1 = y_points[i]
y2 = y_points[i + 1]
h = x_intervals[i]
# Integral of (mx + c)^2 = h/3 * (y1^2 + y1*y2 + y2^2) where m = (y2-y1)/h,

c = y1 - m*x1, interval is [x1, x2], y1 = mx1+c, y2=mx2+c↪→
interval_l2_squared = (h / 3) * (y1 ** 2 + y1 * y2 + y2 ** 2)
l2_norm_squared += interval_l2_squared

# Calculate the 1-norm: ||f*f||_1
norm_1 = np.sum(np.abs(convolution)) / (len(convolution) + 1)

# Calculate the infinity-norm: ||f*f||_inf
norm_inf = np.max(np.abs(convolution))
return l2_norm_squared / (norm_1 * norm_inf)

```

Note that all steps should be non-negative. You can have any number of steps in
your step function and up to ${max_execution_time} seconds for your solution
to run. The returned value must be a 1-D NumPy array.

↪→
↪→
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