
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Semantic Evaluation for Text-to-SQL with Distilled Test Suite

Anonymous EMNLP submission

Abstract

We propose test suite accuracy to approxi-
mate semantic accuracy for Text-to-SQL mod-
els, where a predicted query is semantically
correct if its denotation is the same as the gold
for every possible database. Our method dis-
tills a small test suite of databases that achieves
high code coverage for the gold query from a
large number of randomly generated databases.
At evaluation time, it computes the denota-
tion accuracy of the predicted queries on the
distilled test suite, hence calculating a tight
upper-bound for semantic accuracy efficiently.
We generate a distilled test suite for SPIDER,
COSQL, and SPARC, and evaluate 21 mod-
els submitted to the SPIDER leaderboard. We
manually examine 100 predictions where our
approach disagrees with the current metric,
and verify that our method is always correct.
The current metric of SPIDER leads to a 2.5%
false negative rate on average and 8.1% in the
worst case, indicating that test suite accuracy
is needed to reflect progress in semantic pars-
ing better.

1 Introduction

A Text-to-SQL model translates natural language
instructions to SQL queries that can be executed
on databases and bridges the gap between expert
programmers and non-experts. Accordingly, re-
searchers have built a diversity of datasets (Dahl,
1989; Iyer et al., 2017; Zhong et al., 2017; Yu et al.,
2018) and improved model performances (Xu et al.,
2017; Suhr et al., 2018; Guo et al., 2019; Bogin
et al., 2019a; Wang et al., 2020). However, eval-
uating the semantic accuracy of a Text-to-SQL
model is a long-standing problem: we want to
know whether the predicted SQL query has the
same denotation as the gold for all every possible
database. “Single” denotation evaluation executes
the predicted SQL on one database and compares

Query: “Who is above 34 years old?”

NAME AGE
Alice 35
Bob 37

Test Suite “People” Databases
database 1

Predicted 1

Gold
SELECT NAME FROM People
 WHERE AGE > 34

SELECT NAME FROM People
 (missing WHERE)

…

Denotations:
 Gold: Alice, Bob
Predicted 1: Alice, Bob
Predicted 2: Alice, Bob

NAME AGE
Alice 20
Bob 37Predicted 2 SELECT NAME FROM People

 WHERE AGE >= 35

Bob
Alice, Bob
BobExecutes

Matches

Exact String Match:
 “SELECT NAME FROM People WHERE AGE > 34”
 “SELECT NAME FROM People WHERE AGE >= 35”
!=

database n

Figure 1: Prediction 2 is semantically correct, and Pre-
diction 1 is wrong. Exact string match judges predic-
tion 2 to be wrong, which leads to false negatives. Only
comparing denotations on database 1 judges prediction
1 to be correct, which leads to false positives. Test suite
evaluation compares denotations on a set of databases
and reduces false positives.

its denotation with that of the gold. It might cre-
ate false positives, where a semantically different
prediction (Figure 1 prediction 1) happens to have
the same denotation as the gold, on a particular
database. In contrast, exact string match might
produce false negatives: Figure 1 prediction 2 is
semantically equivalent to the gold but differs in
logical form.

The programming language research community
developed formal tools to reliably reason about
query equivalence for a restricted set of query types.
They lift SQL queries into other semantic represen-
tations such as K-relations (Green et al., 2007),
UniNomial (Chu et al., 2017) and U-semiring (Chu
et al., 2018); then they search for an equivalence
or inequivalence proof. However, these representa-
tions cannot express sort operations and float com-
parisons, and hence do not support the full range of
operations that Text-to-SQL models can use. We
ideally need a method to approximate semantic
accuracy reliably without operation constraints.

If the computation budget were unlimited, we
could compare the denotations of the predicted
query with those of the gold on a large number of

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

random databases (Section 4.1), and obtain a tighter
upper bound for semantic accuracy than single de-
notation evaluation. The software testing literature
calls this idea fuzzing (Padhye et al., 2019; AFL;
Lemieux et al., 2018; Qui). However, it is unde-
sirable to spend a lot of computational resources
every time when we evaluate a Text-to-SQL model.
Instead, we want to check denotation correctness
only on a smaller test suite of databases that are
more likely to distinguish 1 any wrong model pre-
dictions from the gold.

Inspired by fuzzing, we propose test suite ac-
curacy to efficiently approximate the semantic ac-
curacy of a Text-to-SQL model, by checking de-
notations of the predicted queries on a compact
test suite with high code coverage. We introduce
how to search for such a test suite without prior
knowledge about model predictions. In Section 3.1,
we generate neighbor queries of a gold program
by modifying only one aspect of it. For example,
prediction 1 in Figure 1 is a neighbor query of the
gold, since they differ only by a filtering predicate.
Neighbor queries have two desirable properties: (1)
they are usually semantically different from the
gold, and (2) if a test suite can distinguish them
from the gold, it is likely to distinguish other wrong
predictions as well. The latter holds because dis-
tinguishing all neighbors from the gold requires
executions on these databases to exercise every
modified part of the gold query, hence reflecting
comprehensive code coverage and high test quality
(Miller and Maloney, 1963; Ammann and Offutt).

We generate a large number of random databases
and keep a small fraction of them that can distin-
guish the neighbors from the gold (Section 4.2).
We call this set of databases a distilled test suite.
While evaluating model predictions, we only check
their denotations on the distilled test suite to ap-
proximate semantic accuracy efficiently.

1.1 Application

We construct distilled test suites for SPIDER (Yu
et al., 2018), COSQL (Yu et al., 2019a) and SPARC
(Yu et al., 2019b); on all three datasets, the test
suites can distinguish more than 99% of the neigh-
bor queries after generating 1000 random databases.
We evaluate test suite accuracy on 21 SPIDER
leaderboard submissions, randomly sample 100
model predictions where our method disagrees with

1Section 2 defines that a database distinguishes two queries
if their executions lead to different results.

exact set match (ESM, the SPIDER official metric),
and manually verify that our method is correct in
all these cases (Section 6.1).

We use test suite accuracy as a proxy for se-
mantic accuracy to examine how well the exact set
match metric approximates the semantic accuracy,
and identify several concerns. (1) The exact set
match (ESM) tends to underestimate model per-
formances, leading to a 2.5% false negative rate
on average and 8.1% in the worst case. (2) ESM
does not reflect all improvements in semantic accu-
racy. For example, it undervalues a high-score sub-
mission with 61% semantic accuracy by 8%, but
instead favors five other submissions with lower
semantic accuracy, thus misrepresenting state of
the art. (3) ESM becomes poorer at approximating
semantic accuracy on more complex queries. Since
models are improving and solving harder queries,
ESM deviates more from semantic accuracy. We
need test suite accuracy to better track progress in
Text-to-SQL development.

Our contributions are summarized as follows:

• A method and software to create compact high
quality test suites for Text-to-SQL evaluation.

• A test suite to reliably approximate semantic
accuracy for SPIDER, COSQL and SPARC.

• A detailed analysis of why current metrics are
poor at approximating semantic accuracy.

2 Problem Statement

Let w 2 W be a database input to a SQL query q 2
Q, and JqKw be the denotation of q on w ,2 where
W/Q is the space of all databases/SQL queries.
Two queries q1 and q2 are semantically equivalent
if their denotations are the same for all possible
databases, i.e.

8w 2 W, Jq1Kw = Jq2Kw (1)

We refer to the ground truth query as g and the
predicted query to be evaluated as q. Ideally, we
want to evaluate whether g and q are semantically
equivalent (abbreviated as semantic accuracy),
which is unfortunately undecidable in general (Chu
et al., 2017). Traditionally, people evaluate a model
prediction q by either exact string match or com-
pare denotations on a single database w (abbrevi-
ated as single denotation accuracy). Exact string

2As in Yu et al. (2018), we use Sqlite3 to obtain the deno-
tation. Define JqKw = ? if execution does not end, which is
implemented as timeout in practice.

https://yale-lily.github.io/spider
https://yale-lily.github.io/cosql
https://yale-lily.github.io/spider

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

match is too strict, as two different strings can have
the same semantics. Single denotation evaluation
is too loose, as the denotations of g and q might be
different on another database w.

We use test suite to refer to a set of databases. A
database w distinguishes two SQL queries g, q if
JgKw 6= JqKw, and a test suite S distinguishes them
if one of the databases w 2 S distinguishes them:

9w 2 S, JgKw 6= JqKw (2)

For convenience, we define the indicator function:

DS(g, q) := [S distinguishes g, q] (3)

We use the test suite S to evaluate a model predic-
tion q: q is correct iff DS(g, q) = 0; i.e., g and
q have the same denotations on all databases in
test suite S. Sorted by looseness, exact match <
semantic accuracy < test suite accuracy < single
denotation accuracy. Our goal is to find a test suite
of databases S, such that it can be used to approxi-
mate semantic accuracy reliably and efficiently.

3 Desiderata

We use Sg to denote the target test suite. Before
describing how to generate Sg, we first list two
criteria of a desirable test suite. Later we construct
Sg by optimizing over these two criteria.

Code coverage. The test suite needs to cover ev-
ery branch and clauses of the gold program such
that it can test the use of every crucial clause, vari-
able, and value. For example, database 1 in Figure
1 alone does not have a row where “AGE 34” and
hence does not have comprehensive code coverage.

Computational efficiency. We minimize the
size of Sg to speed up test suite evaluations.

3.1 Neighbor Queries

We measure the code coverage of a test suite by
its ability to distinguish the gold query from its
neighbor queries that are likely to be semantically
different but close in surface forms. To generate
them, we modify one of the following aspects of
the gold query (Figure 2): (1) replace an integer
(float) value with either a random integer (float) or
its value ± 1 (0.001); (2) replace a string with a
random string, its sub-string or a concatenation of
it with another random string; (3) replace a com-
parison operator/column name with another; (4)

Original SELECT NAME FROM People
 WHERE AGE >= 34 AND NAME LIKE “%Alice%”

Replace
Column Name

SELECT AGE FROM People
 WHERE AGE >= 34 AND NAME LIKE “%Alice%”

Replace
Comparison

SELECT NAME FROM People
 WHERE AGE > 34 AND NAME LIKE “%Alice%”

Replace
Numerical

SELECT NAME FROM People
 WHERE AGE >= 33 AND NAME LIKE “%Alice%”

Replace
String

SELECT NAME FROM People
 WHERE AGE >= 34 AND NAME LIKE “%Bob%”

Drop
Span

SELECT NAME FROM People
 WHERE AGE >= 34 AND NAME LIKE “%Alice%”

On average ~90 more neighbor queries omitted …

Figure 2: Automatically generating a set of neighbor
queries Ng . We apply one type of modification to the
original query at a time. The modified queries are likely
to be semantically close but inequivalent to the gold.

drop a non-optional span (e.g., the default sort or-
der “ASC” is optional). We then remove modified
queries that cannot compile and execute.

Neighbor queries have two desirable properties.
First, they are likely to be semantically different
from the gold query. For example, “ > 34” is
semantically different from “ � 35” (replace com-
parison operator) and “ > 35” (replace values);
however, we only apply one modification at a time,
since “ > 34” is semantically equivalent to “ � 35”
for an integer. Secondly, in order to distinguish the
gold from all its neighbors, the test suite needs to
cover all the branches of the gold program. For
example, the database needs to have people above,
below and equal to age 34 to distinguish all is neigh-
bors. Hence, the test suite tends to have high quality
if it can distinguish the gold from all its neighbors.

Our goal is to find a small test suite that can
distinguish as many neighbor queries as possible.
Denoting the set of neighbors for the gold program
g as Ng, we hope to find a test suite Sg:

minimize |Sg|
s.t. 8q 2 Ng, DSg(g,q) = 1

(4)

4 Fuzzing

Fuzzing is a software testing technique that gen-
erates a large number of random inputs to test
whether a program satisfies the target property (e.g.,
SQL equivalence). We describe a procedure to sam-
ple a large number of random databases and keep a
small fraction of them to distill a test suite Sg.

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

NAME
(text)

AGE
(int)

BORN STATE
(text)

Alice 34 DFWEU

aAlicegg 35 CA

qwertyasdf 24601 CA

gg-no-re 33 VA

STATE
(text)

AREA
(float)

NY ...

CA ...

GA ...

DFWEU ...

Random “People” Table Random “State” Table

Foreign key
reference

Gold: SELECT NAME FROM People WHERE
 AGE >= 34 AND NAME LIKE “%Alice%”

Figure 3: A random database input w from the distribu-
tion Ig , where g is the gold SQL query. We generate the
“State” column before the “BORN STATE” column
because the latter has to be a subset of the former. Each
element of the column “BORN STATE” is sampled uni-
formly at random from the parent “STATE” column.
For the column that has data type int/string, each ele-
ment is either a random number/string or a close variant
of the values in the gold query.

4.1 Sampling Databases

A database w needs to satisfy the input type con-
straints of the gold program g, which include using
specific table/column names, foreign key reference
structure, and column data types. We describe how
to generate a random database under these con-
straints and illustrate it with Figure 3.

If a column c1 refers to another column c2 as its
foreign key, all elements in c1 must be in c2 and
we have to generate c2 first. We define a partial
order among the tables: table A < table B if B
has a foreign key referring to any column in table
A. We then generate the content for each table in
descending order found by topological sort. For
example, in Figure 3, we generate the “State”
table before the “People” table because the latter
refers to the former. We now sample elements for
each column such that they satisfy the type and
foreign key constraints. If a column c1 is referring
to another column c2, each element in c1 is uni-
formly sampled from c2. Otherwise, if the column
is a numerical(string) type, each element is sam-
pled uniformly from [�263, 263] (a random string
distribution). We also randomly add in constant val-
ues used in g (e.g., 34 and “Alice”) and their close
variants (e.g., 35 and “aAlicegg”) to potentially
increase code coverage. We denote the database
distribution generated by this procedure as Ig.

4.2 Distilling a Test Suite

We use samples from Ig to construct a small test
suite Sg such that it can distinguish as many neigh-
bor queries in Ng as possible (Section 3.1). We

initialize Sg to be empty and proceed greedily. A
database w is sampled from the distribution Ig; if
w can distinguish a neighbor query that cannot be
distinguished by any databases in Sg, we add w to
Sg. Appendix Section A.1 gives a more rigorous
description. In the actual implementation, we also
save the disk space by sharing the same random
database wt across all gold SQL queries that are
associated with the same schema. Though this al-
gorithm is far from finding an optimal solution to
Objective 4, in practice, we find a test suite that is
small enough to distinguish most neighbor queries.

5 Data

Datasets We generate test suites Sg for the devel-
opment set of 3 datasets: SPIDER (Yu et al., 2018),
SPARC (Yu et al., 2019b) and COSQL (Yu et al.,
2019a). Since they share the same set of database
schema, we generate the same set of databases for
them to save space.

Model Predictions We run test suite evaluation
on real model predictions for the SPIDER develop-
ment set, which contains 1034 language-SQL pairs.
It stratifies data into four categories (easy, medium,
hard, and extrahard) according to difficulty level
measured by gold SQL complexity. We decide to
focus on SPIDER because it invites researchers to
submit their model predictions and requires them
to follow a standard format, which makes it conve-
nient to study a wide variety of model predictions.

We obtained the development set model predic-
tions from 21 submissions. They include models
from Guo et al. (2019); Bogin et al. (2019b); Choi
et al. (2020); Wang et al. (2020). 3 These models
capture a broad diversity of network architectures,
decoding strategies, and pre-traning methods, with
accuracy (defined later) ranging from below 40%
to above 70%. We obtained the model predictions
after producing the test suites to ensure that our
method is general and not tailored to a specific fam-
ily of model predictions. To foster reproducibility,
we obtain consent from the corresponding author
of Yu et al. (2018) to release the model predictions.

Metric Adaptation The SPIDER official evalua-
tion metric is exact set match (Zhong et al., 2017;
Yu et al., 2018). It parses the gold and predicted
SQLs into sub-clauses and determine accuracy by
checking whether they have the same set of clauses.

3Many dev set submissions do not have public references.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

It improves over exact string matching by prevent-
ing false negatives due to semantically equivalent
clause reordering. However, it is still considered to
be a strict metric and create false negatives.

We adapt both test suite accuracy and SPIDER
official exact set match (abbreviated as ESM) to
make a fair comparison. Because ESM does not
account for value prediction correctness, we enu-
merate all possible ways to replace the values in a
predicted query with the gold values, and consider
a prediction to be correct if one of the replacements
passes the test suite. ESM is also indifferent to-
wards column order differences, so we consider
two denotations equivalent if they only differ by a
column permutation.

The official SPIDER evaluation script acciden-
tally ignores any join predicate (Figure 8 row 1).
We fix this issue before comparing ESM to test
suite accuracy. We always refer to these adapted
metrics rather than the original ones unless we ex-
plicitly specify.

6 Results

The test suite Sg for all three datasets are shared
and takes 3.27GB in space (databases from the orig-
inal datasets take 100.7MB). Table 1 reports the
time needed to evaluate on the entire test suite. Al-
though test suite evaluation consumes more space
and computation resources than single denotation
evaluation, it is parallelizable and affordable by
most researchers.

Dataset # Queries One (min) Suite (min)
SPIDER 1034 1.2 75.3
COSQL 1007 1.1 75.6
SPARC 1203 1.4 86.7

Table 1: Development set sizes, the wall clock time
needed (on one CPU) to execute the gold query only
on databases provided by (Yu et al., 2018) (One), and
the time needed to run on the entire test suite (Suite).

6.1 Reliability

Distinguish Neighbor Queries. For each gold
query in SPIDER/COSQL/SPARC, we generate on
average 94/93/81 neighbor queries (Figure 2). We
sample 1000 random databases for each database
schema and run fuzzing (Section 4.2) to construct
Sg, which takes around a week on 16 CPUs. Figure
5 reveals the progress of fuzzing by plotting the
fraction of neighbor queries that remain undistin-
guished after attempting t random databases.

Checking single database denotation fails to
distinguish 5% of the neighbor queries, and the
curve stops decreasing after around 600 random
databases. For all three datasets, 1000 random
databases can distinguish > 99% of the neighbor
queries. A large number of random databases is
necessary to achieve comprehensive code coverage.

Figure 4 presents some typical neighbor queries
that have the same denotations as the gold on all
the databases we sampled. These queries are only
a small fraction (1%) of all the neighbors; in most
cases they happen to be semantically equivalent to
the gold. We acknowledge that our fuzzing based
approach has trouble distinguishing semantically
close queries that differ only at a floating-point pre-
cision (e.g. “ 2.31” vs. “< 2.31”). Fortunately,
however, we cannot find a false positive caused by
this weakness in our subsequent manual evaluation.

Manual evaluation. Even though our test suite
achieves comprehensive code coverage, we still
need to make sure that our method does not create
any false positives on real model predictions. We
focus on the predictions from the 21 submissions
that are considered incorrect by ESM but correct
by our test suite evaluation, and manually exam-
ined 100 of them. All of them are semantically
equivalent to the gold query; in other words, we
did not observe a single error made by our eval-
uation method. We will release these 100 model
predictions along with annotated reasons for why
they are equivalent to the gold labels, such that the
research community can conveniently scrutinize
the quality of our evaluation method.

Difficulty Mean Std Max
easy (%) 0.5 / 2.2 0.5 / 1.3 2.0 / 7.2

medium (%) 0.2 / 1.9 0.3 / 1.9 0.7 / 8.0
hard (%) 0.5 / 4.4 1.2 / 3.8 4.0 / 12.1
extra (%) 1.7 / 3.2 1.8 / 1.6 5.3 / 8.2

all data (%) 0.5 / 2.6 1.0 / 1.7 2.0 / 8.1

Table 2: The false positive/negative rate of the adapted
exact set match for each difficulty split in the SPIDER
dataset. We report the mean/standard deviation/max of
these two statistics among 21 dev set submissions.

6.2 Errors of Traditional Metrics

Given that test suite evaluation empirically pro-
vides an improved approximation of semantic
equivalence, we use test suite accuracy as ground
truth and retrospectively examine how well ESM

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Modification Gold & Modified Passing Reason

Comparison
Operator
Replaced

Gold: SELECT T1.NAME FROM Conductor …
 GROUP BY T2.CONDUCTER_ID HAVING COUNT(*) > 1
Modified: SELECT T1.NAME FROM Conductor …
 GROUP BY T2.CONDUCTER_ID HAVING COUNT(*) != 1

Count is always positive, so “> 1” is
equivalent to “!= 1”. modification is
semantically equivalent to the original SQL.

Constant
Replaced

Gold: SELECT NAME FROM City
 WHERE POPULATION BETWEEN 160000 AND 90000
Modified: SELECT NAME FROM City
 WHERE POPULATION BETWEEN 160000 AND 21687

Original annotation is wrong and both the
original and the modification lead to empty
results, which are semantically equivalent.

Column Name
Dropped

Gold: SELECT COUNT(T2.LANGUAGE), T1.NAME …
Modified: SELECT COUNT(*), T1.NAME FROM …

The SQL interpreter infers it should count
the number of rows. modification is
semantically equivalent to the original SQL.

Comparison
Operator
Replaced

Gold: SELECT COUNT(*) FROM Dogs
 WHERE age < (SELECT AVG(AGE) FROM Dogs)
Modified: SELECT COUNT(*) FROM Dogs
 WHERE age <= (SELECT AVG(AGE) FROM Dogs)

A dog entry needs to have exactly the
average age to distinguish the modification.
This happens with low probability and our
test suite fails to distinguish them.

Figure 4: Representative modifications in Ng that produce the same results as the gold (pass) on all sampled
databases.

Figure 5: The progress of fuzzing (Section 4.2). Each
curve represents a different dataset. The x-axis is the
number of random databases attempted (t), and the
y-axis (re-scaled by log) is the fraction of neighbor
queries left. y-value at x = 0 is the fraction of neigh-
bors left after checking denotations on the database pro-
vided by Yu et al. (2018). Figure 4 shows representative
remaining neighbors when fuzzing finishes.

approximates semantic accuracy. We calculate the
false positive/false negative rate for each difficulty
split and report the mean, standard deviation, and
max for all 21 model submissions. Table 2 shows
the results. ESM leads to a nontrivial false negative
rate of 2.6% on average, and 8.1% in the worst
case. The error becomes larger for harder fractions
of queries characterized by more complex queries.
On the hard fraction, false negative rate increases
to 4% on average and 12.1% in the worst case.

In Table 3, we report the difference between
test suite accuracy and single denotation accu-

Difficulty Mean Std Max
easy (%) 3.6 1.2 6.0

medium (%) 5.9 0.9 8.2
hard(%) 8.0 1.5 10.3
extra (%) 11.0 3.5 17.6

all data (%) 6.5 1.0 9.0

Table 3: The false positive rate of single denotation ac-
curacy (i.e., checking denotation only on the database
originally released in Yu et al. (2018)) for each dif-
ficulty split of the SPIDER dataset. We report the
mean/standard deviation/max of these two statistics
among 21 dev set submissions.

racy, which effectively means testing the predicted
SQL query only on the databases from the original
dataset release (Yu et al., 2018). In the worst case,
single denotation accuracy creates a false positive
rate of 8% on the entire development set, and 4%
more on the extrahard fraction.

6.3 Correlation with Existing Metrics

Could surface-form based metric like ESM reli-
ably track improvements in semantic accuracy?
We plot ESM against test suite accuracy for all 21
dev set predictions in Figure 6. On a macro level,
ESM correlates well with test suite accuracy with
Kendall ⌧ correlation 91.4% in aggregate; however,
the correlation decreases to 74.1% on the hard frac-
tion. Additionally, ESM and test suite accuracy
starts to diverge as model performance increases.
These two facts jointly imply that as models are be-

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) ⌧ = 91.4% on all
queries in the dev set.

(b) ⌧ = 74.1% on
hard fraction of the dev set.

Figure 6: Kendall ⌧ correlation between exact set
match and test suite accuracy. Each dot is a develop-
ment set submission to the SPIDER leaderboard.

(a) ⌧ = 97.9% on all
queries in the dev set.

(b) ⌧ = 82.2% on extrahard
fraction of the dev set.

Figure 7: Kendall ⌧ correlation between single execu-
tion accuracy as originally defined in Yu et al. (2018)
and test suite accuracy. Each dot is a dev set submis-
sion to the SPIDER leaderboard.

coming better at harder queries, ESM is no longer
sufficient to approximate semantic accuracy. On a
micro level, when two models have close perfor-
mances, improvements in semantic accuracy might
not be reflected by increases in ESM. On the hard
fraction, 5 out of 21 submissions have more than
four others that have lower test suite accuracy but
higher ESM scores (i.e., five dots in Figure 6b have
four dots to their upper left).

Figure 7 plots the correlation between single
denotation accuracy against test suite accuracy. On
the extrahard fraction, four submissions have more
than three others that have higher single denotation
accuracy but lower test suite accuracy. Checking
denotation only on one database is insufficient.

We list the Kendall ⌧ correlations between test
suite accuracy and different metrics in Table 4 and
plot them in the appendix Section A.2. The correla-
tion with the current official metric is low without
fixing the issue identified at the end of Section 5.

7 Metrics Comparison and Analysis

We explain how ESM and test suite accuracy differ
and provide representative examples.

Difficulty Adpated Official Single Denot
easy (%) 91 86 90

medium (%) 90 37 96
hard (%) 75 28 94
extra (%) 91 20 82

all data (%) 91 40 98

Table 4: Kendall ⌧ correlation between various metrics
and test suite accuracy across 21 model prediction files.
Adapted refers to ESM after we fix the issue identi-
fied at the end of Section 5. Official refers to directly
running the official evaluation script to evaluate, and
Single Denot refers to only checking denotation on the
one database provided by Yu et al. (2018).

7.1 False Positives

Although ESM is usually considered strict, the SPI-
DER evaluation script ignores JOIN predicates and
leads to false positives. Additionally, since multiple
intermediate tables can contain the same column,
selecting any of them is semantically equivalent.
Yu et al. (2018) addressed this problem by not eval-
uating intermediate table names. Such a strategy
effectively rules out many false negatives but also
introduces new false positives. Figure 8 row 1
shows an example where the “JOIN” predicate is
missing, and ESM ignores table name differences.

7.2 False Negatives

We provide representative false negative mistakes
made by ESM in Figure 8 row 2-7. As we can
see from row 2-4, slightly complicated queries usu-
ally have semantically equivalent variants, and it
is nontrivial to tell whether they are semantically
equivalent unless we execute them on a test suite
or manually verify them.

Nevertheless, even though test suite accuracy
reliably approximates semantic accuracy accord-
ing to our observation, researchers might also care
about other aspects of a generated SQL query. Se-
mantic accuracy is only concerned with what are
the denotations of a query, but not how it calcu-
lates them. For example, Figure 8 row 5 represents
one of the most common types of false negatives,
where the predicted SQL query chooses to join
other tables even though it is unnecessary. While
semantically correct, the predicted query increases
running time. Figure 8 row 7 exhibits a similar but
more complicated and rare example.

Inserting gold values into model predictions as
described in Section 5 might also unexpectedly
loosen the semantic accuracy metric. For exam-

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Error Gold & Model Prediction Explanation
1 False Positive Gold: SELECT T3.NAME, T2.COURSE FROM Course_arrange AS T1 JOIN Course AS T2 ON

 T1.COURSE_ID = T2.COURSE_ID JOIN Teacher AS T3 ON T1.TEACHER_ID = T3.TEACHER_ID;
Prediction: SELECT T1.NAME, T2.COURSE FROM Teacher AS T1
 JOIN Course_arrange AS T3 JOIN Course AS T2; [Missing JOIN keys]

Exact set match does not account for
predicates used by a JOIN clause; it
also ignores variable names.

2 False Negative Gold: SELECT TEMPLATE_ID FROM Templates
 EXCEPT SELECT TEMPLATE_ID FROM Documents;
Prediction: SELECT TEMPLATE_ID FROM Templates
 WHERE TEMPLATE_ID NOT IN (SELECT TEMPLATE_ID FROM Documents);

“EXCEPT” is semantically equivalent
to “NOT IN”

3 False Negative Gold: SELECT COUNT(*) FROM Area_code_state;
Prediction: SELECT COUNT(STATE) FROM Area_code_state;

Counting any column is the same.

4 False Negative Gold: SELECT TRANSCRIPT_DATE FROM Transcripts ORDER BY TRANSCRIPT_DATE DESC LIMIT 1;
Prediction: SELECT MAX(TRANSCRIPT_DATE) FROM Transcripts;

First element of descendingly sorted
column is equivalent to maxing.

5 False Negative Gold: SELECT COUNT(*) FROM Cars_data WHERE HORSEPOWER > 150;
Prediction: SELECT COUNT(*) FROM Cars_data as T1
 JOIN Car_names as T2 on T1.ID = T2.MAKEID where T1.HORSEPOWER > 150;

Semantically correct redundant join.

6 False Negative Gold: SELECT AIRLINE FROM Airlines WHERE ABBREVIATION = "UAL";
Prediction: SELECT AIRLINE FROM Airlines WHERE ABBREVIATION LIKE "UAL";

If the string value is the same, “=”
is equivalent to “LIKE”

7 False Negative Gold: SELECT LANGUAGE FROM Country_language
 GROUP BY LANGUAGE ORDER BY Count(*) DESC LIMIT 1;
Prediction: SELECT Country_language.LANGUAGE FROM Country JOIN Country_language
 GROUP BY Country_language.LANGUAGE ORDER BY Count(*) Desc LIMIT 1;

The redundant join is implicitly a
cross join, which will repeat every
row in Country_language by [size
of Country table] times. It leads to
the same ranking if counted.

Figure 8: Representative examples where the exact set match (ESM) metric is different from test suite accuracy.
False Positives happen when ESM judges a prediction to be correct but test suite accuracy judges it to be wrong;
False Negatives happen when the reverse takes place.

ple, in Figure 8 row 6, the prediction uses the
LIKE keyword rather than the “=” operator. By
SQL style conventions, LIKE usually precedes a
value of the form “%[name]%” and corresponds
to natural language query “contains [name]” rather
than “matches [name]”; it seems plausible that the
model does not understand the natural language
query. However, if we replace the wrong value
“%[name]%” with the gold value “[name]” after the
LIKE operator, the predicate becomes semantically
equivalent to “= [value]” and hence makes the pre-
diction correct. Value prediction is a crucial part of
evaluating Text-to-SQL models.

8 Discussion and Conclusion

We propose test suite accuracy to approximate the
semantic accuracy of a Text-to-SQL model, by au-
tomatically distilling a small test-suite with compre-
hensive code coverage from a large number of ran-
dom inputs. We assure test suite quality by testing
the test-suite with neighbor queries and manually
examining its judgments on real model predictions.
Our test suite will be released for SPIDER, SPARC
and COSQL so that future works can conveniently
evaluate test suite accuracy. This metric better re-
flects semantic accuracy, and we hope that it can
inspire novel model designs and training objectives.

Our framework for creating test suites has two
requirements: (1) the input is typed so that the
fuzzing distribution Ig can be defined, and (2)
slight modifications Qg are semantically close but
different from the gold g. Since these two condi-
tions hold in many tasks, our framework might po-
tentially be applied more broadly to other Text-to-
SQL datasets (Zhong et al., 2017; Finegan-Dollak
et al., 2018) and other logical forms, such as �-DCS
(Liang, 2013). We hope to see more future works
that evaluate approximate semantic accuracy on
the existing benchmarks and formulate new tasks
amenable to test suite accuracy evaluation.

We do not attempt to solve SQL equivalence
testing in general. While our test suite achieves
comprehensive code coverage of the gold query,
it might not cover all the branches of model pre-
dictions. Theoretically, we can always construct a
query that differs from the gold only under extreme
cases and fools our metric; however, we never ob-
serve models making such pathological mistakes.

Finally, as discussed in Section 7.2, there might
be other crucial aspects of a predicted query beyond
semantic correctness. Depending on the goal of
the evaluation, other metrics such as memory/time
efficiency and readability are also desirable and
complementary to test suite accuracy.

9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

References

American fuzzy lop. http://lcamtuf.coredump.

cx/afl. Accessed: 2020-5-12.

Automatic testing of haskell programs.
https://hackage.haskell.org/package/

QuickCheck-2.14/docs/Test-QuickCheck.

html. Accessed: 2020-5-12.

P Ammann and J Offutt. Introduction to software test-
ing. cambridge university press, 2008.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019a.
Representing schema structure with graph neural
networks for text-to-sql parsing. In ACL.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019b.
Representing schema structure with graph neural
networks for text-to-sql parsing. arXiv preprint
arXiv:1905.06241.

DongHyun Choi, Myeong Cheol Shin, EungGyun
Kim, and Dong Ryeol Shin. 2020. Ryan-
sql: Recursively applying sketch-based slot fillings
for complex text-to-sql in cross-domain databases.
https://arxiv.org/abs/2004.03125.

Shumo Chu, Brendan Murphy, Jared Roesch, Alvin
Cheung, and Dan Suciu. 2018. Axiomatic founda-
tions and algorithms for deciding semantic equiva-
lences of sql queries. Proceedings of the VLDB En-
dowment, 11(11):1482–1495.

Shumo Chu, Chenglong Wang, Konstantin Weitz, and
Alvin Cheung. 2017. Cosette: An automated prover
for sql.

Deborah A. Dahl. 1989. Book reviews: Computer in-
terpretation of natural language descriptions. Com-
putational Linguistics, 15(1).

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. arXiv preprint
arXiv:1806.09029.

Todd J Green, Grigoris Karvounarakis, and Val Tannen.
2007. Provenance semirings. In Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 31–
40.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. arXiv
preprint arXiv:1905.08205.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973, Vancouver, Canada.
Association for Computational Linguistics.

Caroline Lemieux, Rohan Padhye, Koushik Sen, and
Dawn Song. 2018. Perffuzz: Automatically gen-
erating pathological inputs. In Proceedings of the
27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 254–265.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. arXiv preprint arXiv:1309.4408.

Joan C Miller and Clifford J Maloney. 1963. System-
atic mistake analysis of digital computer programs.
Communications of the ACM, 6(2):58–63.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike
Papadakis, and Yves Le Traon. 2019. Semantic
fuzzing with zest. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 329–340.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences to ex-
ecutable formal queries. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2238–2249. Association
for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for
text-to-sql parsers.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,

http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://hackage.haskell.org/package/QuickCheck-2.14/docs/Test-QuickCheck.html
https://hackage.haskell.org/package/QuickCheck-2.14/docs/Test-QuickCheck.html
https://hackage.haskell.org/package/QuickCheck-2.14/docs/Test-QuickCheck.html
https://www.aclweb.org/anthology/J89-1008
https://www.aclweb.org/anthology/J89-1008
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
http://aclweb.org/anthology/N18-1203
http://aclweb.org/anthology/N18-1203
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204

10

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4511–4523, Florence,
Italy. Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443

11

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

A Appendix

A.1 Algorithmic Description of Section 4.2

Algorithm 1: Distilling a test suite Sg. Ng

is the set of neighbor queries of g; Ig is a
distribution of database inputs.
Sg := ;, N := Ng ;
for t = 1, 2, . . . 1000 do

wt ⇠ Ig;
for q 2 Ng do

if D{wt}(q, g) = 1 then

Sg.add(wt);
N.remove(q)

return Sg

A.2 Correlation Plot with Other Metrics

We plot the correlation between test suite accuracy
and (1) adapted exact set match (Figure 9), (2)
official SPIDER exact set match (Figure 10), and
(3) single denotation accuracy (Figure 11) on each
fraction of the difficulty split.

(a) ⌧ = 90.8% on
easy fraction.

(b) ⌧ = 90.1% on
medium fraction.

(c) ⌧ = 74.1% on
hard fraction.

(d) ⌧ = 91.0% on
extra hard fraction.

(e) ⌧ = 91.4% on
all data.

Figure 9: Kendall ⌧ correlation between adapted ex-

act set match and fuzzing-based accuracy. Each dot in
the plot represents a development set submission to the
SPIDER leaderboard.

12

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) ⌧ = 86.0% on
easy fraction.

(b) ⌧ = 37.3% on
medium fraction.

(c) ⌧ = 27.8% on
hard fraction.

(d) ⌧ = 20.4% on
extra hard fraction.

(e) ⌧ = 40.0% on
all data.

Figure 10: Kendall ⌧ correlation between the official
SPIDER exact set match and fuzzing-based accuracy.
Each dot in the plot represents a development set sub-
mission to the SPIDER leaderboard.

(a) ⌧ = 90.3% on
easy fraction.

(b) ⌧ = 96.4% on
medium fraction.

(c) ⌧ = 93.7% on
hard fraction.

(d) ⌧ = 82.2% on
extra hard fraction.

(e) ⌧ = 97.9% on
all data.

Figure 11: Kendall ⌧ correlation between single deno-

tation accuracy and fuzzing-based accuracy. Each dot
in the plot represents a development set submission to
the SPIDER leaderboard.

