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Semantic Evaluation for Text-to-SQL with Distilled Test Suite

Anonymous EMNLP submission

Abstract

We propose test suite accuracy to approxi-
mate semantic accuracy for Text-to-SQL mod-
els, where a predicted query is semantically
correct if its denotation is the same as the gold
for every possible database. Our method dis-
tills a small test suite of databases that achieves
high code coverage for the gold query from a
large number of randomly generated databases.
At evaluation time, it computes the denota-
tion accuracy of the predicted queries on the
distilled test suite, hence calculating a tight
upper-bound for semantic accuracy efficiently.
We generate a distilled test suite for SPIDER,
COSQL, and SPARC, and evaluate 21 mod-
els submitted to the SPIDER leaderboard. We
manually examine 100 predictions where our
approach disagrees with the current metric,
and verify that our method is always correct.
The current metric of SPIDER leads to a 2.5%
false negative rate on average and 8.1% in the
worst case, indicating that test suite accuracy
is needed to reflect progress in semantic pars-
ing better.

1 Introduction

A Text-to-SQL model translates natural language
instructions to SQL queries that can be executed
on databases and bridges the gap between expert
programmers and non-experts. Accordingly, re-
searchers have built a diversity of datasets (Dahl,
1989; Iyer et al., 2017; Zhong et al., 2017; Yu et al.,
2018) and improved model performances (Xu et al.,
2017; Suhr et al., 2018; Guo et al., 2019; Bogin
et al., 2019a; Wang et al., 2020). However, eval-
uating the semantic accuracy of a Text-to-SQL
model is a long-standing problem: we want to
know whether the predicted SQL query has the
same denotation as the gold for all every possible
database. “Single” denotation evaluation executes
the predicted SQL on one database and compares

Query: “Who is above 34 years old?”

NAME AGE
Alice 35
Bob 37

Test Suite “People” Databases
database 1

Predicted 1

Gold
SELECT NAME FROM People
    WHERE AGE > 34

SELECT NAME FROM People
    (missing WHERE)

… 

Denotations:   
          Gold: Alice, Bob
Predicted 1: Alice, Bob
Predicted 2: Alice, Bob

NAME AGE
Alice 20
Bob 37Predicted 2 SELECT NAME FROM People

    WHERE AGE >= 35

Bob
Alice, Bob
BobExecutes

Matches

Exact String Match:
  “SELECT NAME FROM People WHERE AGE > 34” 
  “SELECT NAME FROM People WHERE AGE >= 35”
!=

database n

Figure 1: Prediction 2 is semantically correct, and Pre-
diction 1 is wrong. Exact string match judges predic-
tion 2 to be wrong, which leads to false negatives. Only
comparing denotations on database 1 judges prediction
1 to be correct, which leads to false positives. Test suite
evaluation compares denotations on a set of databases
and reduces false positives.

its denotation with that of the gold. It might cre-
ate false positives, where a semantically different
prediction (Figure 1 prediction 1) happens to have
the same denotation as the gold, on a particular
database. In contrast, exact string match might
produce false negatives: Figure 1 prediction 2 is
semantically equivalent to the gold but differs in
logical form.

The programming language research community
developed formal tools to reliably reason about
query equivalence for a restricted set of query types.
They lift SQL queries into other semantic represen-
tations such as K-relations (Green et al., 2007),
UniNomial (Chu et al., 2017) and U-semiring (Chu
et al., 2018); then they search for an equivalence
or inequivalence proof. However, these representa-
tions cannot express sort operations and float com-
parisons, and hence do not support the full range of
operations that Text-to-SQL models can use. We
ideally need a method to approximate semantic
accuracy reliably without operation constraints.

If the computation budget were unlimited, we
could compare the denotations of the predicted
query with those of the gold on a large number of
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random databases (Section 4.1), and obtain a tighter
upper bound for semantic accuracy than single de-
notation evaluation. The software testing literature
calls this idea fuzzing (Padhye et al., 2019; AFL;
Lemieux et al., 2018; Qui). However, it is unde-
sirable to spend a lot of computational resources
every time when we evaluate a Text-to-SQL model.
Instead, we want to check denotation correctness
only on a smaller test suite of databases that are
more likely to distinguish 1 any wrong model pre-
dictions from the gold.

Inspired by fuzzing, we propose test suite ac-
curacy to efficiently approximate the semantic ac-
curacy of a Text-to-SQL model, by checking de-
notations of the predicted queries on a compact
test suite with high code coverage. We introduce
how to search for such a test suite without prior
knowledge about model predictions. In Section 3.1,
we generate neighbor queries of a gold program
by modifying only one aspect of it. For example,
prediction 1 in Figure 1 is a neighbor query of the
gold, since they differ only by a filtering predicate.
Neighbor queries have two desirable properties: (1)
they are usually semantically different from the
gold, and (2) if a test suite can distinguish them
from the gold, it is likely to distinguish other wrong
predictions as well. The latter holds because dis-
tinguishing all neighbors from the gold requires
executions on these databases to exercise every
modified part of the gold query, hence reflecting
comprehensive code coverage and high test quality
(Miller and Maloney, 1963; Ammann and Offutt).

We generate a large number of random databases
and keep a small fraction of them that can distin-
guish the neighbors from the gold (Section 4.2).
We call this set of databases a distilled test suite.
While evaluating model predictions, we only check
their denotations on the distilled test suite to ap-
proximate semantic accuracy efficiently.

1.1 Application

We construct distilled test suites for SPIDER (Yu
et al., 2018), COSQL (Yu et al., 2019a) and SPARC
(Yu et al., 2019b); on all three datasets, the test
suites can distinguish more than 99% of the neigh-
bor queries after generating 1000 random databases.
We evaluate test suite accuracy on 21 SPIDER
leaderboard submissions, randomly sample 100
model predictions where our method disagrees with

1Section 2 defines that a database distinguishes two queries
if their executions lead to different results.

exact set match (ESM, the SPIDER official metric),
and manually verify that our method is correct in
all these cases (Section 6.1).

We use test suite accuracy as a proxy for se-
mantic accuracy to examine how well the exact set
match metric approximates the semantic accuracy,
and identify several concerns. (1) The exact set
match (ESM) tends to underestimate model per-
formances, leading to a 2.5% false negative rate
on average and 8.1% in the worst case. (2) ESM
does not reflect all improvements in semantic accu-
racy. For example, it undervalues a high-score sub-
mission with 61% semantic accuracy by 8%, but
instead favors five other submissions with lower
semantic accuracy, thus misrepresenting state of
the art. (3) ESM becomes poorer at approximating
semantic accuracy on more complex queries. Since
models are improving and solving harder queries,
ESM deviates more from semantic accuracy. We
need test suite accuracy to better track progress in
Text-to-SQL development.

Our contributions are summarized as follows:

• A method and software to create compact high
quality test suites for Text-to-SQL evaluation.

• A test suite to reliably approximate semantic
accuracy for SPIDER, COSQL and SPARC.

• A detailed analysis of why current metrics are
poor at approximating semantic accuracy.

2 Problem Statement

Let w 2 W be a database input to a SQL query q 2
Q, and JqKw be the denotation of q on w ,2 where
W/Q is the space of all databases/SQL queries.
Two queries q1 and q2 are semantically equivalent
if their denotations are the same for all possible
databases, i.e.

8w 2 W, Jq1Kw = Jq2Kw (1)

We refer to the ground truth query as g and the
predicted query to be evaluated as q. Ideally, we
want to evaluate whether g and q are semantically
equivalent (abbreviated as semantic accuracy),
which is unfortunately undecidable in general (Chu
et al., 2017). Traditionally, people evaluate a model
prediction q by either exact string match or com-
pare denotations on a single database w (abbrevi-
ated as single denotation accuracy). Exact string

2As in Yu et al. (2018), we use Sqlite3 to obtain the deno-
tation. Define JqKw = ? if execution does not end, which is
implemented as timeout in practice.

https://yale-lily.github.io/spider
https://yale-lily.github.io/cosql
https://yale-lily.github.io/spider
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match is too strict, as two different strings can have
the same semantics. Single denotation evaluation
is too loose, as the denotations of g and q might be
different on another database w.

We use test suite to refer to a set of databases. A
database w distinguishes two SQL queries g, q if
JgKw 6= JqKw, and a test suite S distinguishes them
if one of the databases w 2 S distinguishes them:

9w 2 S, JgKw 6= JqKw (2)

For convenience, we define the indicator function:

DS(g, q) := [S distinguishes g, q] (3)

We use the test suite S to evaluate a model predic-
tion q: q is correct iff DS(g, q) = 0; i.e., g and
q have the same denotations on all databases in
test suite S. Sorted by looseness, exact match <
semantic accuracy < test suite accuracy < single
denotation accuracy. Our goal is to find a test suite
of databases S, such that it can be used to approxi-
mate semantic accuracy reliably and efficiently.

3 Desiderata

We use Sg to denote the target test suite. Before
describing how to generate Sg, we first list two
criteria of a desirable test suite. Later we construct
Sg by optimizing over these two criteria.

Code coverage. The test suite needs to cover ev-
ery branch and clauses of the gold program such
that it can test the use of every crucial clause, vari-
able, and value. For example, database 1 in Figure
1 alone does not have a row where “AGE 34” and
hence does not have comprehensive code coverage.

Computational efficiency. We minimize the
size of Sg to speed up test suite evaluations.

3.1 Neighbor Queries

We measure the code coverage of a test suite by
its ability to distinguish the gold query from its
neighbor queries that are likely to be semantically
different but close in surface forms. To generate
them, we modify one of the following aspects of
the gold query (Figure 2): (1) replace an integer
(float) value with either a random integer (float) or
its value ± 1 (0.001); (2) replace a string with a
random string, its sub-string or a concatenation of
it with another random string; (3) replace a com-
parison operator/column name with another; (4)

Original SELECT NAME FROM People 
    WHERE AGE >= 34 AND NAME LIKE “%Alice%”

Replace 
Column Name

SELECT AGE FROM People 
    WHERE AGE >= 34 AND NAME LIKE “%Alice%”

Replace 
Comparison

SELECT NAME FROM People 
    WHERE AGE > 34 AND NAME LIKE “%Alice%”

Replace 
Numerical

SELECT NAME FROM People 
    WHERE AGE >= 33 AND NAME LIKE “%Alice%”

Replace 
String

SELECT NAME FROM People 
    WHERE AGE >= 34 AND NAME LIKE “%Bob%”

Drop 
Span

SELECT NAME FROM People 
    WHERE AGE >= 34 AND NAME LIKE “%Alice%”

On average ~90 more neighbor queries omitted … 

Figure 2: Automatically generating a set of neighbor
queries Ng . We apply one type of modification to the
original query at a time. The modified queries are likely
to be semantically close but inequivalent to the gold.

drop a non-optional span (e.g., the default sort or-
der “ASC” is optional). We then remove modified
queries that cannot compile and execute.

Neighbor queries have two desirable properties.
First, they are likely to be semantically different
from the gold query. For example, “ > 34” is
semantically different from “ � 35” (replace com-
parison operator) and “ > 35” (replace values);
however, we only apply one modification at a time,
since “ > 34” is semantically equivalent to “ � 35”
for an integer. Secondly, in order to distinguish the
gold from all its neighbors, the test suite needs to
cover all the branches of the gold program. For
example, the database needs to have people above,
below and equal to age 34 to distinguish all is neigh-
bors. Hence, the test suite tends to have high quality
if it can distinguish the gold from all its neighbors.

Our goal is to find a small test suite that can
distinguish as many neighbor queries as possible.
Denoting the set of neighbors for the gold program
g as Ng, we hope to find a test suite Sg:

minimize |Sg|
s.t. 8q 2 Ng, DSg(g,q) = 1

(4)

4 Fuzzing

Fuzzing is a software testing technique that gen-
erates a large number of random inputs to test
whether a program satisfies the target property (e.g.,
SQL equivalence). We describe a procedure to sam-
ple a large number of random databases and keep a
small fraction of them to distill a test suite Sg.
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NAME
(text)

AGE
(int)

BORN STATE
(text)

Alice 34 DFWEU

aAlicegg 35 CA

qwertyasdf 24601 CA

gg-no-re 33 VA

STATE
(text)

AREA
(float)

NY ...

CA ...

GA ...

DFWEU ...

Random “People” Table Random “State” Table

Foreign key 
reference

Gold: SELECT NAME FROM People WHERE 
          AGE >= 34 AND NAME LIKE “%Alice%”

Figure 3: A random database input w from the distribu-
tion Ig , where g is the gold SQL query. We generate the
“State” column before the “BORN STATE” column
because the latter has to be a subset of the former. Each
element of the column “BORN STATE” is sampled uni-
formly at random from the parent “STATE” column.
For the column that has data type int/string, each ele-
ment is either a random number/string or a close variant
of the values in the gold query.

4.1 Sampling Databases

A database w needs to satisfy the input type con-
straints of the gold program g, which include using
specific table/column names, foreign key reference
structure, and column data types. We describe how
to generate a random database under these con-
straints and illustrate it with Figure 3.

If a column c1 refers to another column c2 as its
foreign key, all elements in c1 must be in c2 and
we have to generate c2 first. We define a partial
order among the tables: table A < table B if B
has a foreign key referring to any column in table
A. We then generate the content for each table in
descending order found by topological sort. For
example, in Figure 3, we generate the “State”
table before the “People” table because the latter
refers to the former. We now sample elements for
each column such that they satisfy the type and
foreign key constraints. If a column c1 is referring
to another column c2, each element in c1 is uni-
formly sampled from c2. Otherwise, if the column
is a numerical(string) type, each element is sam-
pled uniformly from [�263, 263] (a random string
distribution). We also randomly add in constant val-
ues used in g (e.g., 34 and “Alice”) and their close
variants (e.g., 35 and “aAlicegg”) to potentially
increase code coverage. We denote the database
distribution generated by this procedure as Ig.

4.2 Distilling a Test Suite

We use samples from Ig to construct a small test
suite Sg such that it can distinguish as many neigh-
bor queries in Ng as possible (Section 3.1). We

initialize Sg to be empty and proceed greedily. A
database w is sampled from the distribution Ig; if
w can distinguish a neighbor query that cannot be
distinguished by any databases in Sg, we add w to
Sg. Appendix Section A.1 gives a more rigorous
description. In the actual implementation, we also
save the disk space by sharing the same random
database wt across all gold SQL queries that are
associated with the same schema. Though this al-
gorithm is far from finding an optimal solution to
Objective 4, in practice, we find a test suite that is
small enough to distinguish most neighbor queries.

5 Data

Datasets We generate test suites Sg for the devel-
opment set of 3 datasets: SPIDER (Yu et al., 2018),
SPARC (Yu et al., 2019b) and COSQL (Yu et al.,
2019a). Since they share the same set of database
schema, we generate the same set of databases for
them to save space.

Model Predictions We run test suite evaluation
on real model predictions for the SPIDER develop-
ment set, which contains 1034 language-SQL pairs.
It stratifies data into four categories (easy, medium,
hard, and extrahard) according to difficulty level
measured by gold SQL complexity. We decide to
focus on SPIDER because it invites researchers to
submit their model predictions and requires them
to follow a standard format, which makes it conve-
nient to study a wide variety of model predictions.

We obtained the development set model predic-
tions from 21 submissions. They include models
from Guo et al. (2019); Bogin et al. (2019b); Choi
et al. (2020); Wang et al. (2020). 3 These models
capture a broad diversity of network architectures,
decoding strategies, and pre-traning methods, with
accuracy (defined later) ranging from below 40%
to above 70%. We obtained the model predictions
after producing the test suites to ensure that our
method is general and not tailored to a specific fam-
ily of model predictions. To foster reproducibility,
we obtain consent from the corresponding author
of Yu et al. (2018) to release the model predictions.

Metric Adaptation The SPIDER official evalua-
tion metric is exact set match (Zhong et al., 2017;
Yu et al., 2018). It parses the gold and predicted
SQLs into sub-clauses and determine accuracy by
checking whether they have the same set of clauses.

3Many dev set submissions do not have public references.



5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

It improves over exact string matching by prevent-
ing false negatives due to semantically equivalent
clause reordering. However, it is still considered to
be a strict metric and create false negatives.

We adapt both test suite accuracy and SPIDER
official exact set match (abbreviated as ESM) to
make a fair comparison. Because ESM does not
account for value prediction correctness, we enu-
merate all possible ways to replace the values in a
predicted query with the gold values, and consider
a prediction to be correct if one of the replacements
passes the test suite. ESM is also indifferent to-
wards column order differences, so we consider
two denotations equivalent if they only differ by a
column permutation.

The official SPIDER evaluation script acciden-
tally ignores any join predicate (Figure 8 row 1).
We fix this issue before comparing ESM to test
suite accuracy. We always refer to these adapted
metrics rather than the original ones unless we ex-
plicitly specify.

6 Results

The test suite Sg for all three datasets are shared
and takes 3.27GB in space (databases from the orig-
inal datasets take 100.7MB). Table 1 reports the
time needed to evaluate on the entire test suite. Al-
though test suite evaluation consumes more space
and computation resources than single denotation
evaluation, it is parallelizable and affordable by
most researchers.

Dataset # Queries One (min) Suite (min)
SPIDER 1034 1.2 75.3
COSQL 1007 1.1 75.6
SPARC 1203 1.4 86.7

Table 1: Development set sizes, the wall clock time
needed (on one CPU) to execute the gold query only
on databases provided by (Yu et al., 2018) (One), and
the time needed to run on the entire test suite (Suite).

6.1 Reliability

Distinguish Neighbor Queries. For each gold
query in SPIDER/COSQL/SPARC, we generate on
average 94/93/81 neighbor queries (Figure 2). We
sample 1000 random databases for each database
schema and run fuzzing (Section 4.2) to construct
Sg, which takes around a week on 16 CPUs. Figure
5 reveals the progress of fuzzing by plotting the
fraction of neighbor queries that remain undistin-
guished after attempting t random databases.

Checking single database denotation fails to
distinguish 5% of the neighbor queries, and the
curve stops decreasing after around 600 random
databases. For all three datasets, 1000 random
databases can distinguish > 99% of the neighbor
queries. A large number of random databases is
necessary to achieve comprehensive code coverage.

Figure 4 presents some typical neighbor queries
that have the same denotations as the gold on all
the databases we sampled. These queries are only
a small fraction (1%) of all the neighbors; in most
cases they happen to be semantically equivalent to
the gold. We acknowledge that our fuzzing based
approach has trouble distinguishing semantically
close queries that differ only at a floating-point pre-
cision (e.g. “ 2.31” vs. “< 2.31”). Fortunately,
however, we cannot find a false positive caused by
this weakness in our subsequent manual evaluation.

Manual evaluation. Even though our test suite
achieves comprehensive code coverage, we still
need to make sure that our method does not create
any false positives on real model predictions. We
focus on the predictions from the 21 submissions
that are considered incorrect by ESM but correct
by our test suite evaluation, and manually exam-
ined 100 of them. All of them are semantically
equivalent to the gold query; in other words, we
did not observe a single error made by our eval-
uation method. We will release these 100 model
predictions along with annotated reasons for why
they are equivalent to the gold labels, such that the
research community can conveniently scrutinize
the quality of our evaluation method.

Difficulty Mean Std Max
easy (%) 0.5 / 2.2 0.5 / 1.3 2.0 / 7.2

medium (%) 0.2 / 1.9 0.3 / 1.9 0.7 / 8.0
hard (%) 0.5 / 4.4 1.2 / 3.8 4.0 / 12.1
extra (%) 1.7 / 3.2 1.8 / 1.6 5.3 / 8.2

all data (%) 0.5 / 2.6 1.0 / 1.7 2.0 / 8.1

Table 2: The false positive/negative rate of the adapted
exact set match for each difficulty split in the SPIDER
dataset. We report the mean/standard deviation/max of
these two statistics among 21 dev set submissions.

6.2 Errors of Traditional Metrics

Given that test suite evaluation empirically pro-
vides an improved approximation of semantic
equivalence, we use test suite accuracy as ground
truth and retrospectively examine how well ESM
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Modification Gold & Modified Passing Reason

Comparison 
Operator
Replaced

Gold: SELECT T1.NAME FROM Conductor … 
    GROUP BY T2.CONDUCTER_ID HAVING COUNT(*) > 1
Modified: SELECT T1.NAME FROM Conductor … 
    GROUP BY T2.CONDUCTER_ID HAVING COUNT(*) != 1

Count is always positive, so “> 1” is 
equivalent to “!= 1”. modification is 
semantically equivalent to the original SQL. 

Constant
Replaced

Gold: SELECT NAME FROM City 
    WHERE POPULATION BETWEEN 160000 AND 90000
Modified: SELECT NAME FROM City 
    WHERE POPULATION BETWEEN 160000 AND 21687

Original annotation is wrong and both the 
original and the modification lead to empty 
results, which are semantically equivalent.

Column Name 
Dropped

Gold: SELECT COUNT(T2.LANGUAGE), T1.NAME …
Modified: SELECT COUNT(*), T1.NAME FROM … 

The SQL interpreter infers it should count 
the number of rows. modification is 
semantically equivalent to the original SQL. 

Comparison 
Operator
Replaced

Gold: SELECT COUNT(*) FROM Dogs 
    WHERE age  <  (SELECT AVG(AGE) FROM Dogs)
Modified: SELECT COUNT(*) FROM Dogs 
    WHERE age <=  (SELECT AVG(AGE) FROM Dogs)

A dog entry needs to have exactly the 
average age to distinguish the modification. 
This happens with low probability and our 
test suite fails to distinguish them. 

Figure 4: Representative modifications in Ng that produce the same results as the gold (pass) on all sampled
databases.

Figure 5: The progress of fuzzing (Section 4.2). Each
curve represents a different dataset. The x-axis is the
number of random databases attempted (t), and the
y-axis (re-scaled by log) is the fraction of neighbor
queries left. y-value at x = 0 is the fraction of neigh-
bors left after checking denotations on the database pro-
vided by Yu et al. (2018). Figure 4 shows representative
remaining neighbors when fuzzing finishes.

approximates semantic accuracy. We calculate the
false positive/false negative rate for each difficulty
split and report the mean, standard deviation, and
max for all 21 model submissions. Table 2 shows
the results. ESM leads to a nontrivial false negative
rate of 2.6% on average, and 8.1% in the worst
case. The error becomes larger for harder fractions
of queries characterized by more complex queries.
On the hard fraction, false negative rate increases
to 4% on average and 12.1% in the worst case.

In Table 3, we report the difference between
test suite accuracy and single denotation accu-

Difficulty Mean Std Max
easy (%) 3.6 1.2 6.0

medium (%) 5.9 0.9 8.2
hard(%) 8.0 1.5 10.3
extra (%) 11.0 3.5 17.6

all data (%) 6.5 1.0 9.0

Table 3: The false positive rate of single denotation ac-
curacy (i.e., checking denotation only on the database
originally released in Yu et al. (2018)) for each dif-
ficulty split of the SPIDER dataset. We report the
mean/standard deviation/max of these two statistics
among 21 dev set submissions.

racy, which effectively means testing the predicted
SQL query only on the databases from the original
dataset release (Yu et al., 2018). In the worst case,
single denotation accuracy creates a false positive
rate of 8% on the entire development set, and 4%
more on the extrahard fraction.

6.3 Correlation with Existing Metrics

Could surface-form based metric like ESM reli-
ably track improvements in semantic accuracy?
We plot ESM against test suite accuracy for all 21
dev set predictions in Figure 6. On a macro level,
ESM correlates well with test suite accuracy with
Kendall ⌧ correlation 91.4% in aggregate; however,
the correlation decreases to 74.1% on the hard frac-
tion. Additionally, ESM and test suite accuracy
starts to diverge as model performance increases.
These two facts jointly imply that as models are be-
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(a) ⌧ = 91.4% on all
queries in the dev set.

(b) ⌧ = 74.1% on
hard fraction of the dev set.

Figure 6: Kendall ⌧ correlation between exact set
match and test suite accuracy. Each dot is a develop-
ment set submission to the SPIDER leaderboard.

(a) ⌧ = 97.9% on all
queries in the dev set.

(b) ⌧ = 82.2% on extrahard
fraction of the dev set.

Figure 7: Kendall ⌧ correlation between single execu-
tion accuracy as originally defined in Yu et al. (2018)
and test suite accuracy. Each dot is a dev set submis-
sion to the SPIDER leaderboard.

coming better at harder queries, ESM is no longer
sufficient to approximate semantic accuracy. On a
micro level, when two models have close perfor-
mances, improvements in semantic accuracy might
not be reflected by increases in ESM. On the hard
fraction, 5 out of 21 submissions have more than
four others that have lower test suite accuracy but
higher ESM scores (i.e., five dots in Figure 6b have
four dots to their upper left).

Figure 7 plots the correlation between single
denotation accuracy against test suite accuracy. On
the extrahard fraction, four submissions have more
than three others that have higher single denotation
accuracy but lower test suite accuracy. Checking
denotation only on one database is insufficient.

We list the Kendall ⌧ correlations between test
suite accuracy and different metrics in Table 4 and
plot them in the appendix Section A.2. The correla-
tion with the current official metric is low without
fixing the issue identified at the end of Section 5.

7 Metrics Comparison and Analysis

We explain how ESM and test suite accuracy differ
and provide representative examples.

Difficulty Adpated Official Single Denot
easy (%) 91 86 90

medium (%) 90 37 96
hard (%) 75 28 94
extra (%) 91 20 82

all data (%) 91 40 98

Table 4: Kendall ⌧ correlation between various metrics
and test suite accuracy across 21 model prediction files.
Adapted refers to ESM after we fix the issue identi-
fied at the end of Section 5. Official refers to directly
running the official evaluation script to evaluate, and
Single Denot refers to only checking denotation on the
one database provided by Yu et al. (2018).

7.1 False Positives

Although ESM is usually considered strict, the SPI-
DER evaluation script ignores JOIN predicates and
leads to false positives. Additionally, since multiple
intermediate tables can contain the same column,
selecting any of them is semantically equivalent.
Yu et al. (2018) addressed this problem by not eval-
uating intermediate table names. Such a strategy
effectively rules out many false negatives but also
introduces new false positives. Figure 8 row 1
shows an example where the “JOIN” predicate is
missing, and ESM ignores table name differences.

7.2 False Negatives

We provide representative false negative mistakes
made by ESM in Figure 8 row 2-7. As we can
see from row 2-4, slightly complicated queries usu-
ally have semantically equivalent variants, and it
is nontrivial to tell whether they are semantically
equivalent unless we execute them on a test suite
or manually verify them.

Nevertheless, even though test suite accuracy
reliably approximates semantic accuracy accord-
ing to our observation, researchers might also care
about other aspects of a generated SQL query. Se-
mantic accuracy is only concerned with what are
the denotations of a query, but not how it calcu-
lates them. For example, Figure 8 row 5 represents
one of the most common types of false negatives,
where the predicted SQL query chooses to join
other tables even though it is unnecessary. While
semantically correct, the predicted query increases
running time. Figure 8 row 7 exhibits a similar but
more complicated and rare example.

Inserting gold values into model predictions as
described in Section 5 might also unexpectedly
loosen the semantic accuracy metric. For exam-
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Error Gold & Model Prediction Explanation
1 False Positive Gold: SELECT T3.NAME, T2.COURSE FROM Course_arrange AS T1 JOIN Course AS T2 ON 

    T1.COURSE_ID = T2.COURSE_ID JOIN Teacher AS T3 ON T1.TEACHER_ID = T3.TEACHER_ID;
Prediction: SELECT T1.NAME, T2.COURSE FROM Teacher AS T1 
    JOIN Course_arrange AS T3 JOIN Course AS T2; [Missing JOIN keys]

Exact set match does not account for 
predicates used by a JOIN clause; it 
also ignores variable names. 

2 False Negative Gold: SELECT TEMPLATE_ID FROM Templates 
    EXCEPT SELECT TEMPLATE_ID  FROM Documents;
Prediction: SELECT TEMPLATE_ID  FROM Templates 
    WHERE TEMPLATE_ID NOT IN (SELECT TEMPLATE_ID FROM Documents);

“EXCEPT” is semantically equivalent 
to “NOT IN”

3 False Negative Gold: SELECT COUNT(*) FROM Area_code_state;
Prediction: SELECT COUNT(STATE) FROM Area_code_state;

Counting any column is the same.

4 False Negative Gold: SELECT TRANSCRIPT_DATE FROM Transcripts ORDER BY TRANSCRIPT_DATE DESC LIMIT 1;
Prediction: SELECT MAX(TRANSCRIPT_DATE) FROM Transcripts;

First element of descendingly sorted 
column is equivalent to maxing.

5 False Negative Gold: SELECT COUNT(*) FROM Cars_data WHERE HORSEPOWER > 150;
Prediction: SELECT COUNT(*) FROM Cars_data as T1 
    JOIN Car_names as T2 on T1.ID = T2.MAKEID where T1.HORSEPOWER > 150;

Semantically correct redundant join. 

6 False Negative Gold: SELECT AIRLINE FROM Airlines WHERE ABBREVIATION = "UAL";
Prediction: SELECT AIRLINE FROM Airlines WHERE ABBREVIATION LIKE "UAL";

If the string value is the same, “=” 
is equivalent to “LIKE”

7 False Negative Gold: SELECT LANGUAGE FROM Country_language 
    GROUP BY LANGUAGE ORDER BY Count(*) DESC LIMIT 1;
Prediction: SELECT Country_language.LANGUAGE FROM Country JOIN Country_language  
    GROUP BY Country_language.LANGUAGE ORDER BY Count(*) Desc LIMIT 1;

The redundant join is implicitly a 
cross join, which will repeat every 
row in Country_language by [size 
of Country table] times. It leads to 
the same ranking if counted.

Figure 8: Representative examples where the exact set match (ESM) metric is different from test suite accuracy.
False Positives happen when ESM judges a prediction to be correct but test suite accuracy judges it to be wrong;
False Negatives happen when the reverse takes place.

ple, in Figure 8 row 6, the prediction uses the
LIKE keyword rather than the “=” operator. By
SQL style conventions, LIKE usually precedes a
value of the form “%[name]%” and corresponds
to natural language query “contains [name]” rather
than “matches [name]”; it seems plausible that the
model does not understand the natural language
query. However, if we replace the wrong value
“%[name]%” with the gold value “[name]” after the
LIKE operator, the predicate becomes semantically
equivalent to “= [value]” and hence makes the pre-
diction correct. Value prediction is a crucial part of
evaluating Text-to-SQL models.

8 Discussion and Conclusion

We propose test suite accuracy to approximate the
semantic accuracy of a Text-to-SQL model, by au-
tomatically distilling a small test-suite with compre-
hensive code coverage from a large number of ran-
dom inputs. We assure test suite quality by testing
the test-suite with neighbor queries and manually
examining its judgments on real model predictions.
Our test suite will be released for SPIDER, SPARC
and COSQL so that future works can conveniently
evaluate test suite accuracy. This metric better re-
flects semantic accuracy, and we hope that it can
inspire novel model designs and training objectives.

Our framework for creating test suites has two
requirements: (1) the input is typed so that the
fuzzing distribution Ig can be defined, and (2)
slight modifications Qg are semantically close but
different from the gold g. Since these two condi-
tions hold in many tasks, our framework might po-
tentially be applied more broadly to other Text-to-
SQL datasets (Zhong et al., 2017; Finegan-Dollak
et al., 2018) and other logical forms, such as �-DCS
(Liang, 2013). We hope to see more future works
that evaluate approximate semantic accuracy on
the existing benchmarks and formulate new tasks
amenable to test suite accuracy evaluation.

We do not attempt to solve SQL equivalence
testing in general. While our test suite achieves
comprehensive code coverage of the gold query,
it might not cover all the branches of model pre-
dictions. Theoretically, we can always construct a
query that differs from the gold only under extreme
cases and fools our metric; however, we never ob-
serve models making such pathological mistakes.

Finally, as discussed in Section 7.2, there might
be other crucial aspects of a predicted query beyond
semantic correctness. Depending on the goal of
the evaluation, other metrics such as memory/time
efficiency and readability are also desirable and
complementary to test suite accuracy.
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A Appendix

A.1 Algorithmic Description of Section 4.2

Algorithm 1: Distilling a test suite Sg. Ng

is the set of neighbor queries of g; Ig is a
distribution of database inputs.
Sg := ;, N := Ng ;
for t = 1, 2, . . . 1000 do

wt ⇠ Ig;
for q 2 Ng do

if D{wt}(q, g) = 1 then

Sg.add(wt);
N.remove(q)

return Sg

A.2 Correlation Plot with Other Metrics

We plot the correlation between test suite accuracy
and (1) adapted exact set match (Figure 9), (2)
official SPIDER exact set match (Figure 10), and
(3) single denotation accuracy (Figure 11) on each
fraction of the difficulty split.

(a) ⌧ = 90.8% on
easy fraction.

(b) ⌧ = 90.1% on
medium fraction.

(c) ⌧ = 74.1% on
hard fraction.

(d) ⌧ = 91.0% on
extra hard fraction.

(e) ⌧ = 91.4% on
all data.

Figure 9: Kendall ⌧ correlation between adapted ex-

act set match and fuzzing-based accuracy. Each dot in
the plot represents a development set submission to the
SPIDER leaderboard.
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(a) ⌧ = 86.0% on
easy fraction.

(b) ⌧ = 37.3% on
medium fraction.

(c) ⌧ = 27.8% on
hard fraction.

(d) ⌧ = 20.4% on
extra hard fraction.

(e) ⌧ = 40.0% on
all data.

Figure 10: Kendall ⌧ correlation between the official
SPIDER exact set match and fuzzing-based accuracy.
Each dot in the plot represents a development set sub-
mission to the SPIDER leaderboard.

(a) ⌧ = 90.3% on
easy fraction.

(b) ⌧ = 96.4% on
medium fraction.

(c) ⌧ = 93.7% on
hard fraction.

(d) ⌧ = 82.2% on
extra hard fraction.

(e) ⌧ = 97.9% on
all data.

Figure 11: Kendall ⌧ correlation between single deno-

tation accuracy and fuzzing-based accuracy. Each dot
in the plot represents a development set submission to
the SPIDER leaderboard.


