
Channel Simulation and Distributed Compression
with Ensemble Rejection Sampling

Buu Phan1 Ashish Khisti 1

Department of Electrical and Computer Engineering, University of Toronto
truong.phan@mail.utoronto.ca, akhisti@ece.utoronto.ca

Abstract

We study channel simulation and distributed matching, two fundamental prob-
lems with several applications to machine learning, using a recently introduced
generalization of the standard rejection sampling (RS) algorithm known as En-
semble Rejection Sampling (ERS). For channel simulation, we propose a new
coding scheme based on ERS that achieves a near-optimal coding rate. In this
process, we demonstrate that standard RS can also achieve a near-optimal coding
rate and generalize the result of Braverman and Garg (2014) to the continuous
alphabet setting. Next, as our main contribution, we present a distributed matching
lemma for ERS, which serves as the rejection sampling counterpart to the Poisson
Matching Lemma (PML) introduced by Li and Anantharam (2021). Our result
also generalizes a recent work on importance matching lemma (Phan et al, 2024)
and, to our knowledge, is the first result on distributed matching in the family
of rejection sampling schemes where the matching probability is close to PML.
We demonstrate the practical significance of our approach over prior works by
applying it to distributed compression. The effectiveness of our proposed scheme is
validated through experiments involving synthetic Gaussian sources and distributed
image compression using the MNIST dataset.

1 Introduction

One-shot channel simulation is a task of efficiently compressing a finite collection of noisy samples.
Specifically, this can be described as a two-party communication problem where the encoder obtains
a sample X ∼ PX and wants to transmit its noisy version Y ∼ PY |X to the decoder, with the
communication efficiency measured by the coding cost R (bits/sample), see Figure 1 (left). Since
the conditional distribution PY |X can be designed to target different objectives, channel simulation
is a generalized version of lossy compression. As a result, it has been widely adopted in various
machine learning tasks such as data/model compression [1, 4, 46, 19], differential privacy [37, 42],
and federated learning [23]. While much of the prior work has focused on the point-to-point
setting described above, recent research has extended channel simulation techniques to more general
distributed compression scenarios [27, 35]. These scenarios often follow a canonical setup, shown
in Figure 1 (middle, right), in which the encoder (party A) and the decoder (party B) each aim to
generate samples YA and YB , respectively, according to their own target distributions PA

Y and PB
Y ,

using a shared source of randomness W . Although their sampling goals may differ, the selection
processes are coupled through W , resulting in a non-negligible probability that both parties select
the same output. We refer to this quantity as the distributed matching probability, which can be
leveraged to reduce communication overhead in distributed coding schemes. For example, in the
Wyner-Ziv setup [45], where the decoder has access to side information unavailable to the encoder,
this framework enables the design of efficient one-shot compression protocols [35].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Currently, Poisson Monte Carlo (PMC) [32] and importance sampling (IS) are the two main Monte
Carlo methods being applied across both scenarios [29]. Particularly, the Poisson Functional Rep-
resentation Lemma (PFRL) [28] provides a near-optimal coding cost for channel simulation. The
Poisson Matching Lemma (PML) [27] was later developed for distributed matching scenarios, en-
abling the analysis of achievable error rates in various compression settings. However, PMC requires
an infinite number of proposals, which can cause certain issues involving termination of samples in a
practical scenario when the density functions, typically PB

Y , are estimated via machine learning. IS-
based approaches, including the importance matching lemma (IML) for distributed compression [35],
bypass this issue by limiting the number of proposals in W to be finite. Yet, the output distribution
from IS is biased [19, 41], and thus not favorable in certain applications. It is hence interesting to see
whether a new Monte Carlo scheme and coding method can be developed to handle both scenarios
without compromising sample quality or termination guarantees.

This work studies rejection sampling schemes and its applicability to these two scenarios. We begin
by revisiting and improving the coding efficiency of standard rejection sampling (RS) in channel
simulation [40, 41]. In particular, we introduce a new coding scheme based on sorting that attains
a near-optimal coding cost, extending the prior achievability result by Braverman and Garg [5]
for discrete distributions to broader settings, while employing a distinct mechanism. However,
our analysis also suggests that the distributed matching probabilities of both RS and its adaptive
variant, namely greedy rejection sampling (GRS)[14], are lower than that of the PML, making
them less suitable for distributed compression. Interestingly, we find that by combining RS with
IS—a technique known as Ensemble Rejection Sampling (ERS) [9]—one can improve the distributed
matching probability without degrading the sample quality. We demonstrate, with provable guarantees,
that ERS retains efficient coding performance in channel simulation and can be naturally extended
to distributed compression settings where the target distribution PB

Y must be learned using machine
learning, typically encountered in high-dimensional data scenarios.

In summary, our contribution is as follows:

1. We propose a new compression method for RS that achieves a coding cost near the theoretical
optimum. However we also argue that RS and its variant GRS do not achieve competitive
performance in distributed matching.

2. We analyze ERS and show that it achieves competitive performance in distributed matching
compared to PML and IML, while maintaining a coding cost close to the theoretical optimum
in channel simulation.

3. We propose a practical distributed compression scheme based on ERS, supported by theo-
retical guarantees. We demonstrate the benefits of our approach through experiments on
synthetic Gaussian sources and the MNIST image dataset.

Finally, we note that the term distributed matching in this paper encompasses settings that differ
across communities. Without communication, it aligns with the problem of correlated sampling [3]
in theoretical computer science, while classical coupling does not capture scenarios with limited
communication. To stay consistent with the setups in Li and Anantharam [27], we use distributed
matching to refer to these scenarios, to be discussed in Section 3.2.

2 Related Work

Channel Simulation. Our work introduces a novel channel simulation algorithm based on standard
RS and ERS [9]. Our results enhance the coding efficiency compared to prior works [17, 41, 40] for
standard RS and extend the best-known results for RS [5] to continuous settings. A related and more
widely studied scheme in channel simulation is greedy rejection sampling (GRS), which can achieve
a near-optimal coding cost. However, GRS is also more computationally intensive when applied to
continuous distributions [14, 18, 16] as it requires iteratively evaluating a complex and potentially
intractable integral. Our work studies ERS, the generalized version of standard RS, and shows a new
coding scheme to achieve a near-optimal bound for a continuous alphabet. The ERS-based algorithm
can be considered as an extension of the IS-based method for exact sampling setting [35, 41] and
serves as a complementary approach to existing exact algorithms, such as the PFRL [28] and its
faster variants [12, 15, 21]. Finally, there exist other channel simulation methods, though these are
restricted to specific distribution classes [1, 24, 39].

2

 Shared Randomness

Channel Simulation:

Encoder
(Party A)

Decoder
(Party B)

 Shared Randomness

Distributed Matching
(without Communication):

Encoder
(Party A)

Decoder
(Party B)

 Shared Randomness

Encoder
(Party A)

Decoder
(Party B)

Distributed Matching
(with Communication):

Figure 1: Left: Channel simulation setup. Middle: Distributed matching without communication.
Right: Distributed matching with communication where the decoder’s input Z ∼ PZ|X,YA

represents
side information and/or messages from the encoder.

Distributed Compression. In distributed compression, one requires a generalized form of channel
simulation, i.e. distributed matching, to reduce the coding cost, with current approaches include
PML [27] and IML [35], as discussed earlier. Prior work has examined the matching probability of
standard RS in various settings, primarily for discrete alphabets [8, 36]. Our method builds on ERS,
a new RS-based scheme, and shows that its performance in distributed matching is comparable to
PML, enabling practical applications in distributed compression. Other information-theoretic [30,
38, 43] and quantization-based approaches [31, 47] for this problem are generally impractical for
implementation. Meanwhile, recent work has explored neural networks-based solutions [33, 44],
with some provides empirical evidence that neural networks can learn to perform binning [34].

3 Problem Setup

3.1 Channel Simulation

Let (X,Y) ∈ X × Y be a pair of random variables with joint distribution PX,Y , with PX and PY

are their respective marginal distributions. In this setup, see Figure 1 (left), the encoder observes
X = x ∼ PX(.) and wants to communicate a sample Y ∼ PY |X(.|x) to the decoder, with the coding
cost of R (bits/sample). Given that both parties share the source of common randomness W ∈ W
independent of X , we define f and g to be the encoder and decoder mapping as follow:

f : X ×W −→ M; g : M×W −→ Y,

where the encoder message M ∈ M = {0, 1}∗ is a binary string with length ℓ(M) and R = E[ℓ(M)].
Here, we require that the decoder’s output follows PY |X(.|x), i.e., Y = g(f(x,W),W) ∼ PY |X(.|x).
Depending on the encoding and decoding function f and g, the specification of what W includes
varies. A general requirement for a channel simulation scheme to be efficient is that R satisfies:

R ≤ I(X;Y) + c1 log(I(X;Y) + c2) + c3, (1)

where I(X;Y) is the mutual information between X and Y and the theoretical optimal solution
attainable in the asymptotic (i.e., infinite blocklength) setting [7]. Different techniques may produce
slightly different coding costs, characterized by the positive constants c1, c2, and c3[18, 26], but any
approach that fails to achieve the leading term I(X;Y) is generally considered inefficient.

3.2 Distributed Matching

We describe the two setups, with and without communication. Both setups consider two parties: A
(the encoder) and B (the decoder) sharing a source of common randomness W ∈ W .

3.2.1 Distributed Matching Without Communication

In this setup, visualized in Figure 1 (middle), each party A and B aim to generate samples YA and YB

from their respective distributions PA
Y and PB

Y , which are locally available to each party, by selecting
values from W . Each party constructs their respective mapping f and g as follows:

f : W → Y, g : W → Y,

with the requirement that YA = f(W) ∼ PA
Y and YB = g(W) ∼ PB

Y . Following prior work on
PML [27], we are interested in the lower bound of the conditional probability that both parties select

3

the same value, given that YA = y, with the following form:

Pr(YA = YB | YA = y) ≥ Γ(PA
Y (y), PB

Y (y)), (2)

where in the case of PML, we have Γ(PA
Y (y), PB

Y (y)) = (1 + PA
Y (y)/PB

Y (y))−1. For IML,
Γ(PA

Y (y), PB
Y (y))=(1+(1+ϵ)PA

Y (y)/PB
Y (y))−1 where ϵ −→ 0 as the number of proposals increases.

3.2.2 Distributed Matching With Communication

In practice, communication from the encoder to the decoder is allowed to improve the matching
probability. Also, the target distributions at each end may depend on their respective local inputs.
Specifically, let (X,Y, Z) ∈ X × Y × Z be a triplet of random variables with joint distribution
PX,Y,Z . We first define the following mappings, also see Figure 1 (right):

f : X ×W → Y, g : W × Z → Y,

where the protocol is as follows:

1. Encoder (party A): given X = x ∼ PX independent of W , the encoder sets its target
function PA

Y = PY |X(.|x) and selects a sample YA = f(x,W) ∼ PA
Y .

2. Given X = x, YA = y, we generate Z = z ∼ PZ|X,Y (.|x, y), which can be thought as
some noisy version of (X,YA). Note that the Markov chain Z − (X,YA)−W holds.

3. Decoder (party B): having access to Z=z, sets its target distribution to PB
Y (·) = P̃Y |Z(· | z),

where P̃Y |Z can be arbitrary. It then queries a sample YB = g(W, z) from the source W .

The constraint YB ∼ PB
Y is not necessarily satisfied, but this is not required in this setting [27], where

the goal is to ensure the decoder selects the same value as the encoder with high probability. As in
the case without communication, we are interested in establishing the bound with the following form:

Pr(YA = YB | YA = y, Z = z,X = x) ≥ Γ(PA
Y (y), PB

Y (y)), (3)

where for PML and IML, Γ(PA
Y (y), PB

Y (y)) also follows the form discussed in Section 3.2.1.
Remark 3.1. Since Z−(X,YA)−W forms a Markov chain and Z is input to the decoder, the
communication in this setting happens by designing PZ|X,Y (· |x, y) to include the encoder message.
Finally, this setup generalizes the no-communication one by setting (X,Z) to fixed constants.

3.3 Bounding Condition

In this work, we often consider the ratio PY (y)/QY (y) to be bounded for all y, where PY , QY are
the target and proposal distribution, respectively. We formalize this in Definition 3.2.

Definition 3.2. A pair of distributions (PY , QY) is said to satisfy a bounding condition with constant
ω ≥ 1 if maxy PY (y)/QY (y) ≤ ω. Furthermore, let (X,Y) ∼ PX,Y , a triplet (PX , PY |X , QY)
satisfies an extended bounding condition with constant ω ≥ 1 if maxx,y PY |X(y|x)/QY (y) ≤ ω.

We note that the extended condition is practically satisfied when (PY |X=x, QY) satisfies the bounding
condition for every x, and PX has bounded support.

4 Rejection Sampling

We review the existing coding scheme of standard RS and introduce a new technique that achieves a
bound comparable to (1). We then discuss results on matching probability bounds for RS and GRS.

Sample Selection. We define the common randomness W = {(U1, Y1), (U2, Y2), . . . }, where each
Ui

i.i.d.∼ U(0, 1) and each Yi
i.i.d.∼ PY , and require that the triplet (PX , PY |X , PY) satisfies the extended

bounding condition in Definition 3.2 with ω. Given X=x, the encoder picks the first index K where
UK≤PY |X(YK |x)

ωPY (YK) , obtaining YK∼PY |X(.|x).
Runtime-Based Coding. This approach encodes the sample following the entropy of H(K). Since
each individual sample Yi has the acceptance probability Pr(Accept) = ω−1, we can compress K

4

Group #1: Skip Group #2: Send

Sort
 Rejected Samples

 Accepted Samples 1.2 1.6 2.0 2.4
DKL(PY |X(.|x)||PY (.))

0.0

0.5

1.0

E[
lo

g(
L

)]

Upper-Bound

Empirical

1.8 2.3 2.8 3.3
DKL(PY |X(.|x)||PY (.))

1.0

2.2

3.4

4.6

E[
lo

g(
K̂

)]

Figure 2: Left: Visualization of our Sorting Method for Standard RS. Right: Empirical results
comparing E[log(L)] and E[log(K̂)] with their associated theoretical upper-bound across different
target distribution. We use PY (.) = N (0, 1.0) and PY |X(.|x) = N (1.0, σ2) where σ2 ∈ [0.01, 0.1].

with a coding cost of R ≤ H[K] + 1 ≤ log(ω) + 2, which is inefficient compared to I(X;Y). For
this reason, GRS is often preferred, but with practical limitations as discussed in Section 2.

Our Approach. Unlike the previous method, where the coding of K is independent of W , we aim
to design a scheme that leverages the availability of W at both parties, thereby reducing the coding
cost R through the conditional entropy H[K | W]. Our Sorting Method operates on this idea, where
instead of sending K, we send the rank of UK within a subset in W . Assume that the encoder and
decoder agree on the value of ω prior to communication, we first collect every ⌊ω⌋ proposals into
one group, (⌊.⌋, ⌈.⌉ are floor and ceil functions respectively). We encode two messages: one for the
group index L and one for the rank K̂ of the selected UK within that group, in particular:

1. Encoding L: The encoder sends the ceiling L = ⌈ K
⌊ω⌋⌉, i.e. L = 2 in Figure 2 (left). The

decoder then knows (L− 1)⌊ω⌋+ 1 ≤ K ≤ L⌊ω⌋, i.e. K is in group L.

2. Encoding K̂: The encoder and decoder sort the list of Ui for (L− 1)⌊ω⌋+ 1 ≤ i ≤ L⌊ω⌋:

Uπ(1) ≤ Uπ(2) ≤ ... ≤ Uπ(⌊ω⌋)

where π(.) maps the sorted indices with the original ones. The encoder sends the rank of
UK within this list, i.e. sends the value K̂ such that K = π(K̂), which the decoder uses to
retrieve YK accordingly. This corresponds to K̂ = 2 in Figure 2 (left).

Coding Cost. In terms of the coding cost at each step, i.e., E[logL] and E[log K̂], we have:

E[logL] ≤ 1 bit , E[log K̂] ≤ DKL(PY |X(.|x)||PY (.)) + log(e) bits, (4)

where Figure 2 (right) shows the empirical results verifying the bounds. The proof for these bounds
are shown in Appendix B.2. We then perform entropy coding for each message separately using
Zipf’s distribution and prefix-free coding. Proposition 4.1 shows their overall coding cost:
Proposition 4.1. Given (X,Y) ∼ PX,Y and K defined as above. Then we have:

R ≤ I(X;Y) + log(I(X;Y) + 1) + 9, (5)

Proof: See Appendix B.4.

Note that the approach of Braverman and Garg [5] for discrete distributions can be extended to the
continuous case, included in Appendix B.1 for completeness. Our sorting mechanism is fundamentally
different and can be extended to the more general ERS framework, where incorporating the method
of Braverman and Garg [5] is nontrivial.1

Distributed Matching. In distributed matching setups in Section 3.2 where both parties use standard
RS to select samples from their respective distributions, we show in Appendix C.2 that RS perfor-
mance is not as strong compared to PML and IML. For GRS, we provide an analysis via a non-trivial
example in Appendix D.2, where we managed to construct target and proposal distributions such
that Pr(YA=YB | YA=y) → 0.0, even when PA

Y (y) = PB
Y (y). In contrast, this probability is greater

than 1/2 for PML, thus concluding that RS and GRS are less efficient compared to PML and IML.

1At the time of acceptance, we became aware of a concurrent work by [13] proposing a similar approach;
however, their formulation requires communicating additional information, resulting in a slightly suboptimal
coding cost compared to ours.

5

5 Ensemble Rejection Sampling

We show that ERS[9], an exact sampling scheme that combine RS with IS, can improve the matching
probability and maintain a coding cost close to the theoretical optimum in channel simulation.

5.1 Background

Setup and Definitions. We begin by defining the common randomness W , which includes a set of
exponential random variables to employ the Gumbel-Max trick for IS [35, 41], i.e.:

W = {(B1, U1), (B2, U2), ...}, where Ui ∼ U(0, 1) (6)
Bi = {(Yi1, Si1), (Yi2, Si2), ..., (YiN , SiN)}, where Yij ∼ PY (.), Sij ∼ Exp(1), (7)

where we refer to each Bi as a batch. A selected sample YK from W is defined by two indices: the
batch index K1 and the local index in BK1

, denoted as K2. Its global index within W is K, where
K = (N − 1)K1 +K2 and we write YK ≜ YK1,K2 .

Sample Selection. Consider the target distribution PY |X(.|x), for each batch Bi ∈ W , the ERS
algorithm selects a candidate index Kcand

i via Gumbel-max IS and decides to accept/reject YKcand
i

based on Ui. This process ensures that the accepted YK∼PY |X(·|x) and is denoted for simplicity as:
K = ERS(W ;PY |X=x, PY), (8)

where the procedure is shown in Figure 3 (top, left) and Algorithm 1 in Appendix E.1. This procedure
assumes the bounding condition holds for (PY |X(y|x), PY (y)) with ω. The target and proposal
distributions can be any, e.g., replacing PY with QY , as long as the bounding condition holds.
Remark 5.1. Since the accept/reject operation happens on the whole batch Bi, we define the
batch average acceptance probability as ∆ (see Appendix E.1) where ∆ −→ 1.0 as N −→ ∞ and
N∗ = N∆−1 as the average number of proposals (or runtime) required for ERS.

5.2 Channel Simulation with ERS

For N = 1, ERS becomes the standard RS and thus achieves the coding cost shown in Proposition 4.1.
When N −→ ∞, we have the batch acceptance probability ∆ −→ 1.0, meaning that we mostly accept
the first batch and thus achieve the coding cost of Gumbel-max IS schemes [35, 41], which follows
(1). This section presents the result for general N , which is more challenging to establish as discussed
below. We assume the extended bounding condition in Definition 3.2 holds for (PX , PY |X , PY).

Encoding Scheme. We view the selection of K1 as a rejection sampling process on a whole batch
(see Appendix E.1) and apply the Sorting Method to encode K1. Specifically, we collect every ⌊∆−1⌋
batches into one group of batches, send the group index and the rank of UK1 within this group. For
the local index K2, we use the Gumbel-Max Coding approach [35]. This process is visualized in
Figure 3 (middle), detailed as follow:

• Encoding K1: we represent K1 by two messages L and K̂1. Here, L is the group of batches
index K1 belongs to and K̂1 is the rank of UK1

within this Lth group, i.e., we sort the list:
Uϕ(1) ≤ Uϕ(2) ≤ ... ≤ Uϕ(⌊∆−1⌋) and send the rank K̂1 of UK1 , i.e. ϕ(K̂1) = K1.

• Encoding K2: We first sort the exponential random variables within the selected batch K1,
i.e. Sπ(1) ≤ Sπ(2) ≤ ... ≤ Sπ(N) and send the rank K̂2 of SK2 , i.e. π(K̂2)=K2.

Coding Cost. We outline the main results for the coding costs, details in Appendix E. Specifically:
E[logL] ≤ 1 bit , K = E[log K̂1] + E[log K̂2] ≤ DKL(PY |X(.|x)||PY (.))+2 log(e)+3 bits, (9)

where the second bound is one of the core technical contributions of this work. We empirically
validate the bound on K in Figure 3(right). Proposition 5.2 shows the overall coding cost for K:
Proposition 5.2. Given (X,Y) ∼ PX,Y and K defined as above. For any batch size N , we have:

R ≤ I(X;Y) + 2 log(I(X;Y) + 8) + 12, (10)
Proof. See Appendix E.4.
Remark 5.3. The upper-bound in (10) is expected to be conservative, as evidenced by the evaluation
of actual rates in Figure 3 (right). We further demonstrate the improvements in our proposed method
over the baselines in the distributed compression application, to be elaborated upon in the subsequent
discussion.

6

4.0 4.8 5.6 6.4
DKL(PY |X(.|x)||PY (.))

5

10

C
od

in
g

C
os

t

21 25 29 213

Batch Size N

0

5

10

C
od

in
g

C
os

t

E[log(K̂1)]

E[log(K̂2)]

E[log(K̂1)] + E[log(K̂2)]

Upper-Bound

Figure 3: Left: Illustration of ERS Selection Method. Middle: Coding scheme for channel simulation.
Right: Empirical results on the coding cost of K̂1, K̂2 and their theoretical upper-bound (in bits). Both
figures use PY (.)=N (0, 1.0), where the first figure sets N = 32 and varies PY |X(.|x)=N (1.0, σ2)

with σ2 ∈ [0.1, 5]×10−3. The second one fixes σ2=10−3 while varying N .

5.3 Distributed Matching Probabilities

We consider the communication setup described in Section 3.2.2, which generalizes the no-
communication one in Section 3.2.1, see Remark 3.1. We use subscripts to distinguish the in-
dices selected by each party, e.g., KA and KB denote the global indices chosen by the encoder
(party A) and decoder (party B), respectively. Recall that the encoder observes X=x∼PX and sets
PA
Y =PY |X(· | x), while the decoder observes Z=z and sets PB

Y =P̃Y |Z(· | z), not necessarily follow
PY |Z(· | z). The target distributions PA

Y , PB
Y , and the proposal distribution QY in W must satisfy

the bounding conditions outlined in Section 3.3 for the ratio pairs (PA
Y , QY) and (PB

Y , QY). Each
party then uses ERS to select their indices:

KA = ERS(W ;PA
Y , QY), KB = ERS(W ;PB

Y , QY), (11)

where the function ERS(.) is defined in (8) and we set YA=YKA
and YB=YKB

as the values reported
by each party. Proposition 5.4 shows a bound on the matching probability in this setting. The bound
for the no-communication case naturally follows with appropriate modification, see Appendix F.2.

Proposition 5.4. Let KA,KB , P
A
Y and PB

Y defined as above. For N ≥ 2, we have:

Pr(YA = YB |YA = y,X = x, Z = z) ≥
(
1+µ′

1(N)+
PA
Y (y)

PB
Y (y)

(1 + µ′
2(N))

)−1

, (12)

where µ′
1(N) and µ′

2(N) defined in Appendix F.5 are decay coefficients depending on the distributions
where µ′

1(N), µ′
2(N) −→ 0 as N −→ ∞ with rate N−1under mild assumptions on the distributions

PA
Y (.), PB

Y (.) and QY (.).

Proof: See Appendix F.6.

ERS with Batch Index Communication. In practice, PB
Y (y) is often learned via deep learning,

making it difficult to obtain the upper bound for PB
Y (y)/QY (y), thus preventing a well-defined select

condition. A practical workaround is for the encoder to transmit the selected batch index K1,A to the
decoder, limiting the search space to a finite subset. This aligns with Section 3.2.2 by incorporating
K1,A into the construction of YA, Z, and YB . Its matching bound, see Appendix G, is similar to
Proposition 5.4, but with different decaying coefficients.

Remark 5.5. Since the decay coefficients µ′
1(N), µ′

2(N) −→ 0.0 with the rate N−1, for any small ϵ
one can choose N > N0(ϵ) such that µ′

1(N), µ′
2(N) ≤ ϵ.

Empirical Results. Figure 4 (left, middle) validates and compares ERS matching probability (with
and without batch communication) with PML and IML, where we see both ERS approaches converge
to PML performance. For the same average number of proposals N∗, Figure 4 (middle) demonstrates
that ERS (with batch index communication) achieves consistently higher matching probabilities than
IS, while maintaining an unbiased sample distribution. For completeness, Figure 4 (right) shows
the bias of IS can remain high even when the number of proposals is sufficiently large, i.e. 4ω. We
discuss the overhead of the batch index in Section 5.3.1 on application to distributed compression.

7

0 100 200ω 4ω
Batch Size N

0.4

0.6

0.8

1.0

M
at

ch
in

g
P

ro
b

ab
ili

ty

PML Matching Probability

RS Matching Probability

ERS

ERS-Batch Communication

0 100 2001.6ω 4.4ω
Average Number of Proposals N∗

0.4

0.6

0.8

1.0

M
at

ch
in

g
P

ro
b

ab
ili

ty

PML Matching Probability

RS Matching Probability

ERS

ERS-Batch Communication

IML

0 100 200ω 4ω
Average Number of Proposals N∗

0.6

0.8

1.0

1.2

1.4

σ
2

Ground-truth σ2

IS Estimated σ̂2 (IML)

Figure 4: (Best viewed in color) We set QY =N (0, 100), PA
Y =N (0.5, 0.7) and PB

Y =N (−0.5, 0.7).
Left: Matching probabilities versus the batch size N . Middle: Matching probabilities versus the
average number of proposals where the red and black dotted lines correspond to the batch sizes ω
and 4ω shown in the left figure. Right: Sample quality of IS, measured by the estimated variance σ̂2.

5.3.1 Lossy Compression with Side Information

We apply our matching result with batch index communication to the Wyner-Ziv distributed compres-
sion setting [45], where the encoder observes X=x∼PX and the decoder has access to correlated side
information X ′∼PX′|X(·|x) unavailable to the encoder. Let PY ′|X(·|x) denote the target distribution
that the encoder aims to simulate, which, together with X ′, induces the joint distribution PX,X′,Y ′ .
For any integer V>0 and Ui∼U(0, 1), we set Yij=(Y ′

ij , Vij) in batch Bi within W where:

Y ′
ij ∼ QY ′(·) (i.e., the ideal output), Vij ∼ Unif[1:V] (i.e., the hash value for index j)

The main idea is, after selecting the index KA where YKA
∼PY ′|X=x, the encoder sends its hash VKA

along with the batch index K1,A to the decoder. The decoder, on the other hand, aims to infer KA by
using the posterior PY ′|X′=x′ . The message (VKA

,K1,A) from the encoder will further reduce the
decoder’s search space within W and improves the matching probability (details in Appendix H).
Proposition 5.6 provides a bound on the probability the decoder outputs a wrong index:
Proposition 5.6. Fix any ϵ > 0 and let (PX , PY ′|X , QY ′) satisfies the extended bounding condition
with ω, for N ≥ max(N0(ϵ), ω) where N0(ϵ) is defined in Remark 5.5, we have:

Pr(Y ′
KA

̸= Y ′
KB

) ≤ EX,Y ′,X′

[
1−

(
1 + ϵ+ (1 + ϵ)V−12i(Y

′;X)−i(Y ′;X′)
)−1

]
(13)

where iY ′;X(y′;x) = logPY ′|X(y′|x)− logPY ′(y′) is the information density. The coding cost is
log(V) + r where r is the coding cost of sending the selected batch index K1,A and r ≤ 4 bits.

Proof: See Appendix H
Remark 5.7. We can reduce the overhead r in Proposition 5.6 by jointly compressing n i.i.d. samples,
i.e., to 4/n per sample. This also improves the matching probability in practice (see Appendix H).

6 Experiments

We study the performance of ERS in the Wyner-Ziv distributed compression setting on synthetic
Gaussian sources and MNIST dataset. All experiments are conducted on a single NVIDIA RTX
A-4500. We use the batch communication version of ERS and encode the index with unary coding.
Finally, we use the following formula from IS literature [6] as a starting point for choosing the batch
size: N=2EX [DKL(PY |X(.|x)||QY (.)]+t where t≥4 often gives ∆≥0.5, resulting in a small overhead r.

6.1 Synthetic Gaussian Sources

We study and compare the performance of ERS, IML and PML in the Gaussian setting. Let
X ∼ N (0, σ2

X) with σ2
X = 1 and is truncated within the range [−2, 2] and the side information

X ′ = X + ζ where ζ ∼ N (0, σ2
X′|X) and σ2

X′|X = 0.01. The proposal and target distributions are
QY ′(.) = N (0, σ2

Y ′), PY ′|X(.|x) = N (x, σ2
Y ′|X), PY ′|X′(.|x′) = N

(
x′σ2

X/σ2
X′ , σ2

Y ′−σ4
X/σ2

X′

)
where σ2

Y ′=σ2
X+σ2

Y ′|X , σ2
X′=σ2

X+σ2
X′|X , and σ2

Y ′|X is a fixed variance corresponding to the desired
distortion level set by the encoder. The expression for PY ′|X′(·|x′) is an approximation derived from

8

2.5 3.0 3.5 4.0
Rate (Bits)

−23.0

−22.8

−22.6

−22.4

−22.2

D
is

to
rt

io
n

(d
B

)

IML - 1.1e6

ERS - 1.1e6

IML - 1.6e6

ERS - 1.6e6

PML (IML with N∗→∞)

2.8 3.0 3.2 3.4
Rate (Bits)

−23.0

−22.5

−22.0

−21.5

−21.0

D
is

to
rt

io
n

(d
B

)

−21.5dB

−22dB

−22.5dB

−23dB

IML

ERS

PML

I(X ;Y)

N∗ Target dB
1.0e6 −21.5dB
1.1e6 −22dB
1.5e6 −22.5dB
1.6e6 −23dB

Figure 5: Left: Comparison of RD performance between different matching results for the Gaussian
setting when targeting −23dB distortion (black dotted line), with the average number of proposals
N∗ ∈ {1.1e6, 1.6e6}. Right: RD curves of different methods. Each group targets the same distortion
levels and uses the same average number of proposals N∗ for ERS and IML, shown in the right table.

the posterior distribution assuming X is unbounded (i.e., not truncated). We jointly compress 4 i.i.d.
samples to improve rate-distortion (RD) performance and average the result over 106 runs.

Figure 5 (left) investigates the RD tradeoff between ERS and IML with similar number of proposals
(on average) N∗ while targeting a distortion level of −23dB, i.e. σ2

Y ′|X=5e−3. We observe that
ERS outperforms IML in distortion regimes close to the target level, i.e. below −22.6dB as the rate
increases, since IML samples are inherently biased. This bias also causes IML, with N∗ = 1.6e6, to
be less effective than ERS, with N∗ = 1.1e6, for a distortion regime lower than −22.8dB, despite
having more samples. Also, the batch index conveys information that helps improve the matching
probability, similar to Figure 4 (middle), compensating for the overhead. Overall, for appropriately
chosen N∗, ERS is more effective than IML on achieving low distortion levels while remaining
competitive compared to PML, which is unbiased and requires no extra overhead.

In Figure 5 (right), we plot the RD tradeoff at different target distortion levels. We compare the
distortion achieved by different methods at the rate where ERS reaches distortion within approximately
0.2 dB of the target. Again, for appropriately chosen batch size N and rate, ERS outperforms IML
due to the inherent bias in importance sampling, and achieves performance close to that of PML.
Note that PML does not generalize to practical setting when PB

Y is estimated via machine learning
as the decoder cannot determine the number of samples upfront. In general, all three approaches
outperform the asymptotic baseline I(X;Y) in which there is no side information. Finally, standard
RS achieves −17 dB at 10 bits when targeting −23 dB, falling outside the plotted range.

6.2 Distributed Image Compression

We apply our method in the task of distributed image compression [44, 33] with the MNIST
dataset[25]. Following the setup in [35], the side information is the cropped bottom-left quadrant
of the image and the source is the remaining. To reduce the complexity caused by high dimen-
sionality, we use an encoder neural network to project the data into a 3D embedding space. This
vector and the side information are input into a decoder network to output the reconstruction X̂ ,
and the process is trained end-to-end under the β-VAE framework. For each input X = x, we set
the target distribution PY ′|X(·|x) = N (µ(x), σ2(x)) where µ(·), σ(·) are the outputs of the β-VAE
network. Since PY ′|X′ is unknown, we employ a neural contrastive estimator [22] to learn the ratio
between PY ′|X′(y′|x′)/QY ′(y′) from data, where QY ′=N (0, 1). Since the upperbound of this ratio
is unknown, PML cannot be applied [41]. Models and training details are in Appendix J and K.

Extending the scope of the previous experiment, we study the interaction between matching schemes
and feedback mechanisms for error correction, introduced in previous IML work [35]. Here, the
decoder returns its retrieved index to the encoder, which then confirms or corrects it with the cost of 1
plus log(N/V) for ERS and log(N∗

IML/V) for IML, see Appendix I. This is relevant when aiming to
mitigate mismatching errors or to generate samples that closely follow the encoder’s target distribution,
as in applications such as differential privacy. Since IML produces biased samples, we reduce this
bias by setting the number of proposals to the maximum feasible value in our simulation system, i.e.,
N∗

IML = 226, ensuring it exceeds the ones used by ERS, denoted N∗
ERS, in this experiment.

We train four models, each targeting a different pixel distortion level, and compare their performance
in Figure 6, where two samples are compressed jointly. With feedback, ERS consistently outperforms
IML in both embedding and pixel domains. This is because the feedback scheme in IML incurs a

9

8 9 10
Rate (Bits)

0.2

0.4

0.6

E
m

b
ed

di
ng

M
S

E

8 9 10
Rate (Bits)

0.055

0.060

0.065

0.070

P
ix

el
M

S
E

ERS IML ERS (Feedback) IML (Feedback) NDIC

N∗
ERS

Target Pixel
Distortion

1.5× 217 0.066
1.2× 219 0.063
1.2× 220 0.061
1.2× 221 0.058

Figure 6: MNIST Rate-distortion comparison for pixels, i.e. ||X − X̂||22 and embeddings domain, i.e.
||µ(X)− Y ′||22, between ERS and IML. Identical markers (from top to bottom) indicate the same
target models, with the target distortion levels corresponding to those achieved using feedback.

higher return message cost due to the large N∗
IML, while still introducing slight bias in its output

samples. In contrast, ERS operates with a smaller batch size N , significantly reducing the correction
message size without compromising the sample quality. Without feedback, under a distortion regime
close to the target level, ERS outperforms IML for reasons discussed in the Gaussian experiment,
though the performance gap is smaller. We include NDIC results [33]—a specialized deep learning
approach that targets optimal RD performance. On the other hand, our method operates on a
probabilistic matching nature and can accommodate scenarios with distributional constraints.

7 Conclusion
This work explores the use of the RS-based family for channel simulation and distributed compression.
We focus on ERS where we develop a new efficient coding scheme for channel simulation and derive
a performance bound for distributed compression that is comparable to PML [27]. We validate our
theoretical results on both synthetic and image datasets, showing their advantages and adaptability
across various setups, including feedback-based error correction schemes. From these results, possible
future directions include improving the current runtime efficiency—which is O(ω)—by incorporating
acceleration techniques such as space partitioning [21] or importance sampling methods like Multiple
IS [11], as well as extending the distributed compression setup to incorporate differential privacy.

Acknowledgment

Resources used in preparing this research were provided, in part, by the Province of Ontario,
the Government of Canada through CIFAR, and companies sponsoring the Vector Institute
www.vectorinstitute.ai/partnerships/.

10

References
[1] Eirikur Agustsson and Lucas Theis. Universally quantized neural compression. Advances in

neural information processing systems, 33:12367–12376, 2020.

[2] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436, 2018.

[3] Mohammad Bavarian, Badih Ghazi, Elad Haramaty, Pritish Kamath, Ronald L Rivest, and
Madhu Sudan. Optimality of correlated sampling strategies. arXiv preprint arXiv:1612.01041,
2016.

[4] Yochai Blau and Tomer Michaeli. Rethinking lossy compression: The rate-distortion-perception
tradeoff. In International Conference on Machine Learning, pages 675–685. PMLR, 2019.

[5] Mark Braverman and Ankit Garg. Public vs private coin in bounded-round information. In
International Colloquium on Automata, Languages, and Programming, pages 502–513. Springer,
2014.

[6] Sourav Chatterjee and Persi Diaconis. The sample size required in importance sampling. The
Annals of Applied Probability, 28(2):1099–1135, 2018.

[7] Paul Cuff. Distributed channel synthesis. IEEE Transactions on Information Theory, 59(11):
7071–7096, 2013.

[8] Majid Daliri, Christopher Musco, and Ananda Theertha Suresh. Coupling without communica-
tion and drafter-invariant speculative decoding. arXiv preprint arXiv:2408.07978, 2024.

[9] George Deligiannidis, Arnaud Doucet, and Sylvain Rubenthaler. Ensemble rejection sampling.
arXiv preprint arXiv:2001.09188, 2020.

[10] George Deligiannidis, Pierre E Jacob, El Mahdi Khribch, and Guanyang Wang. On importance
sampling and independent metropolis-hastings with an unbounded weight function. arXiv
preprint arXiv:2411.09514, 2024.

[11] Víctor Elvira, Luca Martino, David Luengo, and Mónica F Bugallo. Generalized multiple
importance sampling. 2019.

[12] Gergely Flamich. Greedy poisson rejection sampling. Advances in Neural Information Process-
ing Systems, 36:37089–37127, 2023.

[13] Gergely Flamich. Data Compression with Relative Entropy Coding. PhD thesis, University of
Cambridge (United Kingdom), 2024.

[14] Gergely Flamich and Lucas Theis. Adaptive greedy rejection sampling. arXiv preprint
arXiv:2304.10407, 2023.

[15] Gergely Flamich, Stratis Markou, and José Miguel Hernández-Lobato. Fast relative entropy
coding with a* coding. In International Conference on Machine Learning, pages 6548–6577.
PMLR, 2022.

[16] Gergely Flamich, Stratis Markou, and José Miguel Hernández-Lobato. Faster relative entropy
coding with greedy rejection coding. Advances in Neural Information Processing Systems, 36:
50558–50569, 2023.

[17] Gergely Flamich, Sharang M Sriramu, and Aaron B Wagner. The redundancy of non-singular
channel simulation. arXiv preprint arXiv:2501.14053, 2025.

[18] Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan. The communica-
tion complexity of correlation. In Twenty-Second Annual IEEE Conference on Computational
Complexity (CCC’07), pages 10–23. IEEE, 2007.

[19] Marton Havasi, Robert Peharz, and José Miguel Hernández-Lobato. Minimal random code
learning: Getting bits back from compressed model parameters. In 7th International Conference
on Learning Representations, ICLR 2019, 2019.

11

[20] Jiajun He, Gergely Flamich, Zongyu Guo, and José Miguel Hernández-Lobato. Recombiner:
Robust and enhanced compression with bayesian implicit neural representations. arXiv preprint
arXiv:2309.17182, 2023.

[21] Jiajun He, Gergely Flamich, and José Miguel Hernández-Lobato. Accelerating relative entropy
coding with space partitioning. Advances in Neural Information Processing Systems, 37:
75791–75828, 2024.

[22] Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free mcmc with amortized
approximate ratio estimators. In International conference on machine learning, pages 4239–
4248. PMLR, 2020.

[23] Berivan Isik, Francesco Pase, Deniz Gunduz, Sanmi Koyejo, Tsachy Weissman, and Michele
Zorzi. Adaptive compression in federated learning via side information. In International
Conference on Artificial Intelligence and Statistics, pages 487–495. PMLR, 2024.

[24] Szymon Kobus, Lucas Theis, and Deniz Gündüz. Gaussian channel simulation with rotated
dithered quantization. In 2024 IEEE International Symposium on Information Theory (ISIT),
pages 1907–1912. IEEE, 2024.

[25] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[26] Cheuk Ting Li. Pointwise redundancy in one-shot lossy compression via poisson functional
representation. In International Zurich Seminar on Information and Communication (IZS 2024).
Proceedings, pages 28–29. ETH Zürich, 2024.

[27] Cheuk Ting Li and Venkat Anantharam. A unified framework for one-shot achievability via the
poisson matching lemma. IEEE Transactions on Information Theory, 67(5):2624–2651, 2021.

[28] Cheuk Ting Li and Abbas El Gamal. Strong functional representation lemma and applications
to coding theorems. IEEE Transactions on Information Theory, 64(11):6967–6978, 2018.

[29] Cheuk Ting Li et al. Channel simulation: Theory and applications to lossy compression and
differential privacy. Foundations and Trends® in Communications and Information Theory, 21
(6):847–1106, 2024.

[30] Jingbo Liu, Paul Cuff, and Sergio Verdú. One-shot mutual covering lemma and marton’s inner
bound with a common message. In 2015 IEEE International Symposium on Information Theory
(ISIT), pages 1457–1461. IEEE, 2015.

[31] Zhixin Liu, Samuel Cheng, Angelos D Liveris, and Zixiang Xiong. Slepian-wolf coded nested
lattice quantization for wyner-ziv coding: High-rate performance analysis and code design.
IEEE Transactions on Information Theory, 52(10):4358–4379, 2006.

[32] Chris J Maddison. A poisson process model for monte carlo. Perturbation, Optimization, and
Statistics, pages 193–232, 2016.

[33] Nitish Mital, Ezgi Özyılkan, Ali Garjani, and Deniz Gündüz. Neural distributed image com-
pression using common information. In 2022 Data Compression Conference (DCC), pages
182–191. IEEE, 2022.

[34] Ezgi Ozyilkan, Johannes Ballé, and Elza Erkip. Learned wyner-ziv compressors recover binning.
arXiv preprint arXiv:2305.04380, 2023.

[35] Buu Phan, Ashish Khisti, and Christos Louizos. Importance matching lemma for lossy compres-
sion with side information. In International Conference on Artificial Intelligence and Statistics,
pages 1387–1395. PMLR, 2024.

[36] Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

[37] Abhin Shah, Wei-Ning Chen, Johannes Balle, Peter Kairouz, and Lucas Theis. Optimal
compression of locally differentially private mechanisms. In International Conference on
Artificial Intelligence and Statistics, pages 7680–7723. PMLR, 2022.

12

[38] Eva C Song, Paul Cuff, and H Vincent Poor. The likelihood encoder for lossy compression.
IEEE Transactions on Information Theory, 62(4):1836–1849, 2016.

[39] Sharang Sriramu, Rochelle Barsz, Elizabeth Polito, and Aaron Wagner. Fast channel simulation
via error-correcting codes. Advances in Neural Information Processing Systems, 37:107932–
107959, 2024.

[40] Michael Steiner. Towards quantifying non-local information transfer: finite-bit non-locality.
Physics Letters A, 270(5):239–244, 2000.

[41] Lucas Theis and Noureldin Y Ahmed. Algorithms for the communication of samples. In
International Conference on Machine Learning, pages 21308–21328. PMLR, 2022.

[42] Aleksei Triastcyn, Matthias Reisser, and Christos Louizos. Dp-rec: Private & communication-
efficient federated learning. arXiv preprint arXiv:2111.05454, 2021.

[43] Sergio Verdú. Non-asymptotic achievability bounds in multiuser information theory. In 2012
50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1–8. IEEE, 2012.

[44] Jay Whang, Anish Acharya, Hyeji Kim, and Alexandros G Dimakis. Neural distributed source
coding. arXiv preprint arXiv:2106.02797, 2021.

[45] Aaron Wyner and Jacob Ziv. The rate-distortion function for source coding with side information
at the decoder. IEEE Transactions on information Theory, 22(1):1–10, 1976.

[46] Yibo Yang, Justus Will, and Stephan Mandt. Progressive compression with universally quantized
diffusion models. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=CxXGvKRDnL.

[47] Ram Zamir and Shlomo Shamai. Nested linear/lattice codes for wyner-ziv encoding. In 1998
Information Theory Workshop (Cat. No. 98EX131), pages 92–93. IEEE, 1998.

13

https://openreview.net/forum?id=CxXGvKRDnL

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes we support every claim in the abstract with proof and experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the Conclusion Section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: Every assumption is rigorously stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Code will be included for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: Code will be available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the Experiment Section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Every plot is averaged for 10 different random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We check and verify the paper follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper poses no such societal impacts due to its scope in compression and
information theory.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on probabilistic methods and poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No assets involved.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No assets involved.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper provides theoretical studies of channel simulation and does not
involve related items.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper provides theoretical studies of channel simulation and does not
involve related items.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: No LLM usage was involved.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Runtime of ERS.

We provide an analysis of ERS runtime. Let ω = maxx,y PY |X(y|x)/Q(y) and ωx =
maxy PY |X(y|x)/Q(y), where PY |X=x is the target distribution and QY is the proposal distribution.
For the batch size N and input x, we have the following bound on the average batch acceptance
probability ∆x, which we will show in Appendix E.1:

∆x ≥ N

N − 1 + ωx
≥ N

N − 1 + ω
, (14)

Thus, the expected number of batches in ERS is:

Expected Number of Batches =
1

∆x
≤ N − 1 + ω

N
, (15)

which leads to the runtime, i.e. the expected number of proposals as:

Expected Runtime =
N

∆x
≤ N − 1 + ω. (16)

In practice, since we typically choose N = O(ω), the expected runtime is also O(ω).

B Coding Cost of Standard Rejection Sampling

For the proof, we generalize and use P (.) and Q(.) as the target and proposal distributions. This
allows shorthand the notations while also generalizing the results for arbitrary distributions.

B.1 Extension of Braverman and Garg [5]’s Method for Continuous Setting

Binning Scheme

D
en

si
ty

7
10

12

1

2
3

4

5 68 9

11

Target Dist.

Scaled Proposal Dist.

Bin Boundaries

Accepted

Rejected

Figure 7: Binning Method for RS.

This method is an extension of the work by Braver-
man and Garg [5] to the continuous setting. The core
idea is to divide the acceptance region into smaller
bins, visualized in Figure 7. Specifically, for each pair
(Ui, Yi) from W , we denote Ũi = ωUiQ(Yi). The
encoder selects the index K according to rejection
sampling rule, which is 7 in Figure 7. It then sends
the bin index of the first accepted sample, where the
bin corresponds to the smallest scaled region that ŨK

belongs to. In Figure 7, this corresponds to the or-
ange region and the content of the message is 3. Then
the encoder sends another message which indicates
the rank of the selected sample within that bin, which
is 1. The decoder then K accordingly. Formally, the two steps are as follow:

• Binning: The encoder sends to the decoder the ceiling T = ⌈ ŨK

Q(YK)⌉. Upon receiving T , the
decoder collects the set:

ST = {i|(T − 1)Q(Yi) ≤ Ũi ≤ TQ(Yi)}, (17)

• Index Selection: The encoder locates the original chosen index K within ST , says G, and
send G to the receiver. We have E[logG] ≤ 1.

Binning Step. We will show the E[log T] ≤ DKL(P ||Q)+log(e)., adapting the proof for the discrete
case presented in [36]. First, we note that:

YK ∼ P (.), UK |YK ∼ U
(
0,

P (YK)

ωQ(YK)

)
(18)

21

We then have:

E[log T] = E

[
log

(⌈
ŨK

Q(YK)

⌉)]
(19)

≤ E

[
log

(
1 +

ŨK

Q(YK)

)]
(20)

= E [log (1 + ωUK)] (21)
= E [E [log (1 + ωUK)|YK]] (22)

=

∫ +∞

−∞
P (y)

[
ωQ(y)

P (y)

∫ ω−1P (y)/Q(y)

0

log (1 + ωu) du

]
dy (Due to (18)) (23)

≤
∫ +∞

−∞
P (y)

[
ωQ(y)

P (y)

∫ ω−1P (y)/Q(y)

0

log

(
1 +

P (y)

Q(y)

)
du

]
dy (24)

≤
∫ +∞

−∞
P (y)

[
ωQ(y)

P (y)

∫ ω−1P (y)/Q(y)

0

log

(
P (y)

Q(y)

)
+

Q(y) log(e)

P (y)
du

]
dy (25)

=

∫ +∞

−∞
P (y) log

(
P (y)

Q(y)

)
dy +

∫ +∞

−∞
Q(y) log(e)dy (26)

= DKL(P ||Q) + log(e), (27)

where we use the following results for the last inequality:

log(1 + x) ≤ log(x) +
log(e)

x
(for all x > −1). (28)

Index Selection Step. We first show that E[G] ≤ 2 by using recursion. We define A as an event
where the first samples is accepted, i.e. U1 ≤ P (Y1)

ωQ(Y1)
. Then, if A happens then we have G = 1, i.e.

E[G|A] = 1, since it is also the first sample in ST .

Before proceeding to the case where A does not happen, i.e. Ā, we define the following random
variable M = 1[1 ∈ ST], i.e. M = 1 if the first proposed sample from W stays within the ceiling
(T − 1)Q(Y1) ≤ Ũ1 ≤ TQ(Y1) and M = 0 otherwise.

Then we have the two following recursion identities:{
E[G|Ā,M = 0] = E[G]

E[G|Ā,M = 1] = 1 + E[G]
(29)

For the first equality, given that the first sample U1, Y1 does not stay within ST does not implies any
information about G, since all the samples are i.i.d. For the second equality takes into account the
fact that we now accept the first sample (U1, Y1) and repeat the counting process. Hence, we have:

E[G|Ā] = Pr(M = 0|Ā)E[G|Ā,M = 0] + Pr(M = 1|Ā)E[G|Ā,M = 1] (30)

= E[G] + Pr(M = 1|Ā) (31)

We now express E[G] as follows:

E[G] = Pr(A)E[G|A] + Pr(Ā)E[G|Ā] (32)

= Pr(A) + Pr(Ā)(E[G] + Pr(M = 1|Ā)) (33)

Rearranging the terms, we obtain:

E[G] = 1 +
Pr(M = 1, Ā)

Pr(A)
(34)

22

We have Pr(A) =
∫∞
−∞ ω−1P (y)Q−1(y)Q(y)dy = ω−1. For Pr(M = 1, Ā), we have:

Pr(M = 1, Ā) ≤ Pr(M = 1) (35)

=

∞∑
t=0

Pr((T − 1)Q(Y1) ≤ Ũ1 ≤ (T − 1)Q(y), T = t) (36)

=

∞∑
t=0

Pr((t− 1)Q(Y1) ≤ Ũ1 ≤ (t− 1)Q(y)) Pr(T = t) (37)

=

∞∑
t=0

ω−1 Pr(T = t) (38)

= ω−1 (39)

Thus, we obtain E[G] ≤ 2 and hence E[logG] ≤ 1.

B.2 The Sorting Method

The encoding process is as follows:

• Grouping: the encoder sends the ceiling L = ⌈ K
⌊ω⌋⌉ to the decoder. The decoder then knows

(L− 1)ω + 1 ≤ K ≤ Lω, i.e. K is in range L. We have E[logL] = 1 bit.
• Sorting: The encoder and decoder both sort the uniform random variables Ui within the

selected range (L − 1)⌊ω⌋ + 1 ≤ i ≤ L⌊ω⌋. Let the sorted list be Uπ(1) ≤ Uπ(2) ≤
... ≤ Uπ(⌊ω⌋) where π(.) is the mapping between the sorted index and the original unsorted
one. The encoder sends the rank of UK within this list, i.e. sends the value K̂ such that
K = π(K̂). The decoder receive K̂ and retrieve YK accordingly. The coding cost for this
step is DKL(P ||Q) + log(e).

We provide detail analysis for each step below:

Grouping Step. Since each proposal is accepted with probability ω−1, this means:

Pr(K > ℓ⌊ω⌋) =
(
1− ω−1

)ℓ⌊ω⌋
<

(
1

2

)ℓ

, (40)

where we will prove the RHS inequality in Appendix B.3. Hence, we have Pr(L > ℓ) <
(
1
2

)−ℓ
and:

E[L] =
∞∑
ℓ=0

Pr(L > ℓ) < 1 + 0.5−1 + 0.5−2 + ... = 2. (41)

Finaly, using Jensen’s inequality, we have:

E[logL] ≤ log(E[L]) = 1. (42)

Sorting Step. To bound the coding cost in step 2, we first express E[log K̂] with the rule of conditional
expectation as follows:

E[log K̂] =

∫ ∞

−∞
P (y)E[log K̂|YK = y]dy (43)

=

∫ ∞

−∞
P (y)

(∫ ∞

−∞
E[log K̂|YK = y, UK = u]P (UK = u|YK = y)du

)
dy (44)

=

∫ ∞

−∞
P (y)

(∫ P (y)
ωQ(y)

0

E[log K̂|YK = y, UK = u]
ωQ(y)

P (y)
du

)
dy, (45)

where the last step, P (UK = u|YK = y) = ωQ(y)
P (y) for 0 ≤ u ≤ P (y)

ωQ(y) is due to the acceptance
condition in rejection sampling. We will show in Section B.3.1 that:

E[log K̂|YK = y, UK = u] ≤ log(ωu+ 1) (46)

23

Then, combining this with Equation (45), we obtain:

E[log K̂] ≤
∫ ∞

−∞
P (y)

(∫ P (y)
ωQ(y)

0

ωQ(y)

P (y)
log(ωu+ 1)du

)
dy (47)

≤
∫ ∞

−∞
P (y)

(∫ P (y)
ωQ(y)

0

ωQ(y)

P (y)
log

(
P (y)

Q(y)
+ 1

)
du

)
dy (48)

=

∫ ∞

−∞
P (y)

[
P (y)

ωQ(y)

ωQ(y)

P (y)
log

(
P (y)

Q(y)
+ 1

)]
dy (49)

=

∫ ∞

−∞
P (y) log

(
P (y)

Q(y)
+ 1

)
dy (50)

≤
∫ ∞

−∞
P (y)

[
log

(
P (y)

Q(y)

)
+

log(e)Q(y)

P (y)

]
dy (51)

= DKL(P ||Q) + log(e) (52)

Hence, we have E[log K̂] ≤ DKL(P ||Q) + log(e) on average.

B.3 Proof for Inequality (40)

The proof for this inequality is self-contained. We want to prove that for any ω ≥ 1, we have:

f(ω) = (1− ω−1)⌊ω⌋ ≤ 1

2
. (53)

Consider the behavior of f(ω) at every interval [n, n+ 1) where n ∈ Z+, n ≥ 1. Since ω ≥ 1, the
function fn(ω) =

(
1− ω−1

)n
is increasing and hence:

sup
ω

fn(ω) =

(
1− 1

n+ 1

)n

=

(
n

n+ 1

)n

for every interval [n, n+1). We will show that supω fn(ω) is decreasing for n ≥ 1 and thus we have
supω f(ω) = supω f1(ω) =

1
2 .

Consider the function g(x) =
(

x
x+1

)n
for x ≥ 1, x ∈ R. Let h(x) = ln(g(x)) = x ln(x

x+1), then
we simply need to show h(x) is decreasing. Consider its first derivative:

h′(x) = ln

(
x

x+ 1

)
+

1

x+ 1
≤ 0, (54)

since:

ln

(
x

x+ 1

)
= ln

(
1− 1

x+ 1

)
≤ − 1

x+ 1
(55)

due to the inquality ln(1 + y) < y for all y.

B.3.1 Proof for Inequality (46)

We begin by applying Jensen’s inequality for concave function log(x):

E[log K̂|YK = y, UK = u] ≤ logE[K̂|YK = y, UK = u] (by Jensen’s Inequality) (56)

= logEL[E[K̂|YK = y, UK = u, L = ℓ]] (57)

Given K is within the range L = ℓ and UK = u, we can express K̂ as follows:

K̂ = |{Ui < u, (ℓ− 1)⌊ω⌋+ 1 ≤ i ≤ ℓ⌊ω⌋}|+ 1, (58)
= Ω(u, ℓ) + 1 (59)

i.e. the number of Ui (plus 1 for the ranking) within the range L that has value lesser than u.

24

We can see that the the index i within the range L satisfying Ui < u are from the index that are either
(1) rejected, i.e. index i < K or (2) not examined by the algorithm, i.e. index i > K. The rest of this
proof will show the following upperbound:

E[Ω(u, ℓ)|YK = y, UK = u, L = ℓ] ≤ ωu, for any ℓ (60)

For readability, we split the proof into different proof steps.

Proof Step 1: We condition on the mapped index of π(K̂) on the original array:

E[K̂|YK = y, UK = u, L = ℓ] (61)

= Eπ(K̂)

[
E[K̂ | YK = y, UK = u, L = ℓ, π(K̂) = k]

]
(62)

= Eπ(K̂)

[
E[Ω(u, ℓ) + 1 | YK = y, UK = u, L = ℓ, π(K̂) = k]

]
(63)

= Eπ(K̂)

[
E[Ω(u, ℓ) | YK = y, UK = u, L = ℓ, π(K̂) = k]

]
+ 1 (64)

= Eπ(K̂)

[
E[Ω1(u, ℓ, k) + Ω2(u, ℓ, k) | YK = y, UK = u, L = ℓ, π(K̂) = k]

]
+ 1, (65)

where Ω1(u, ℓ, k),Ω2(u, ℓ, k) are the number of Ui < u within the range L = ℓ that occurs before
and after the selected index k respectively. Specifically:

Ω1(u, ℓ, k) = |{Ui < u, (ℓ− 1)⌊ω⌋+ 1 ≤ i < (ℓ− 1)⌊ω⌋+ k}| (66)
Ω2(u, ℓ, k) = |{Ui < u, (ℓ− 1)⌊ω⌋+ k + 1 ≤ i ≤ ℓ⌊ω⌋}|, (67)

which also naturally gives Ω(u, ℓ) = Ω1(u, ℓ, k) + Ω2(u, ℓ, k).

Proof Step 2: Consider Ω2(u, ℓ, k), since each proposal (Yi, Ui) is i.i.d distributed and the fact that
k is the index of the accepted sample, for every i > K, we have:

Pr(Ui < u | YK = y, UK = u, L = ℓ, π(K̂) = k) = Pr(Ui < u)

This gives us:

E[Ω2(u, ℓ, k) | YK = y, UK = u, L = ℓ, π(K̂) = k] = (⌊ω⌋ − k) Pr(U < u) (68)
= (⌊ω⌋ − k)u (69)

≤ (⌊ω⌋ − k)u

Pr(reject a sample)
(70)

≤ (⌊ω⌋ − k)u

1− ω−1
(71)

Proof Step 3: For Ω1(u, ℓ, k), we do not have such independent property since for every sample
with index i < K, we know that they are rejected samples, and hence for i < k:

Pr(Ui < u | YK = y, UK = u, L = ℓ, π(K̂) = k) = Pr(Ui < u|Yi is rejected) (72)

=
Pr(Ui < u, Yi is rejected)

Pr(Yi is rejected)
(73)

≤ Pr(Ui < u)

Pr(Yi is rejected)
(74)

=
u

1− ω−1
, (75)

which gives us:

E[Ω2(u, ℓ, k) | YK = y, UK = u, L = ℓ, π(K̂) = k] ≤ (k − 1)u

1− ω−1
(76)

To prove Equation (72), note that the following events are equivalent:

{YK = y, UK = u, L = ℓ, π(K̂) = k} = {Yk = y, Uk = u, Y1...k−1 are rejected} (77)

≜ Λ(u, y, k) (78)

25

Here, we note that Yk, Uk denote the value at index k within W , which is different from YK , UK , the
value selected by the rejection sampler. Hence:

Pr(Ui < u|Λ(u, y, k)) = Pr(Ui < u, Y1...k−1 are rejected|Yk = y, Uk = u)

Pr(Y1...k−1 are rejected|Yk = y, Uk = u)
(79)

=
Pr(Ui < u, Y1...k−1 are rejected)

Pr(Y1...k−1 are rejected)
(Since (Yi, Ui) are i.i.d) (80)

= Pr(Ui < u|Yi is rejected), (81)

Proof Step 4: From the above result from Step 2 and 3, we have Ω(u, ℓ) = Ω1(u, ℓ, k) +
Ω2(u, ℓ, k) ≤ ωu and as a result:

E[K|YK = y, UK = u, L = ℓ] ≤ (⌊ω⌋ − 1)u

1− ω−1
+ 1 (82)

≤ (ω − 1)u

1− ω−1
+ 1 (Since⌊ω⌋ ≤ ω) (83)

= ωu+ 1 (84)

which completes the proof.

B.4 Overall Coding Cost.

We now provide the upperbound on H[K] for our Sorting Method. Since the message in the Binning
Method also consists of two parts, the results are the same. For each part of the message, namely L
and K, we encode it with a prefix-code from Zipf distribution [28]. For H[L], we have:

H[L] ≤ EX [E[logL|X = x]] + log(EX [E[logL|X = x]] + 1) + 1 (85)
= 3 bits (86)

Hence, the rate for the first message is R1 ≤ H[L] + 1 = 4bits.

Similarly, for H[K̂]:

H[K̂] ≤ EX [E[log K̂|X = x] + log(EX [E[log K̂|X = x] + 1) + 1 (87)
= I(X;Y) + log(e) + log(I(X;Y) + log(e) + 1) + 1 (88)
≤ I(X;Y) + log(I(X;Y) + 1) + 2 log(e) + 1 (89)

Hence, the rate for the second message is R2 ≤ H[K̂] + 1 = I(X;Y) + log(I(X;Y) + 1) +
2 log(e) + 2bits . Also note that:

H[K|W] = H[L, K̂|W] (Given W,K and (L, K̂) are bijective) (90)

≤ H[L|W] +H[K̂|W] (91)

≤ H[L] +H[K̂] (92)
≤ I(X;Y) + log(I(X;Y) + 1) + 7 (bits) (93)

Since we are compressing two messages separately, we have: R ≤ R1 + R2 = I(X;Y) +
log(I(X;Y) + 1) + 9 (bits)

C Matching Probability of Rejection Sampling

C.1 Distributed Matching Probabilities of RS

Follow the setup in Section 3.2.1, each party independently performs RS using the proposal distribu-
tion QY (·) to select indices KA and KB and set (YA, YB) = (YKA

, YKB
). We assume the bounding

condition holds for both parties, i.e. maxy
(
PA
Y (y)Q−1

Y (y), PB
Y (y)Q−1

Y (y)
)
≤ ω, Proposition C.1

shows the probability that they select the same index, given that YKA
= y.

26

Proposition C.1. Let W,Q(.), PA
Y (.) and PB

Y (.) defined as above. Then we have:

Pr(YA = YB |YA = y) =
min(1, PB

Y (y)/PA
Y (y))

1 + TV(PA
Y , PB

Y)
≥ 1

2
(
1 + PA

Y (y)/PB
Y (y)

) (94)

Furthermore, we have:

Pr(YKA
= YKB

) =
1− TV(PA

Y , PB
Y)

1 + TV(PA
Y , PB

Y)
. (95)

where TV(PA
Y , PB

Y) is the total variation distance between two distribution PA
Y and PB

Y .

This matching probability is not as strong, compared to PML as well as IML, details in Appendix
C.22. In the case of GRS, we provide an analysis via a non-trivial example in Appendix D.2,
where we demonstrate that it is possible to construct target and proposal distributions such that
Pr(KA=KB | YKA

=y) → 0.0, even when PA
Y (y) = PB

Y (y). In contrast, this probability is greater
than 1/4 for standard RS. In summary, while GRS and RS can achieve a coding cost in (1), its
matching probability remains lower than that attainable by PML and IML.

C.1.1 Proof.

We denote by KA,KB the index selected by parties A and B, respectively. We first note that the
event {KA = KB = i, Yi = y} is equivalent to the event {KA = KB = i, YKA

= y}, thus:

Pr(KA = KB = i|YKA
= y) =

Pr(KA = KB = i|Yi = y)QY (y)

PA
Y (y)

, (96)

where the denominator is due to YKA
∼ PA

Y (.). Since:

Pr(KA = KB |YKA
= y) =

∞∑
i=1

Pr(KA = KB = i|YKA
= y) (97)

=
QY (y)

PA
Y (y)

∞∑
i=1

P (KA = KB = i|Yi = y) (98)

We will later show that:

Pr(KA = KB = i|Yi = y)=
min(PA

Y (y), PB
Y (y))

ωQY (y)

[
1− 1

ω

∫
max(PA

Y (y), PB
Y (y))dy

]i−1

, (99)

which gives us:

Pr(KA=KB |YKA
=y) (100)

=
QY (y)

PA
Y (y)

·min(PA
Y (y), PB

Y (y))

ωQY (y)

∞∑
i=1

[
1− 1

ω

∫
max(PA

Y (y), PB
Y (y))dy

]i−1

(101)

=
min(PA

Y (y), PB
Y (y))

ωPA
Y (y)

∞∑
i=0

[
1− 1

ω

∫
max(PA

Y (y), PB
Y (y))dy

]i
(102)

=
min(PA

Y (y), PB
Y (y))

ωPA
Y (y)

ω∫
max(PA

Y (y), PB
Y (y))dy

(103)

=
min(1, PB

Y (y)/PA
Y (y))∫

max(PA
Y (y), PB

Y (y))dy
(104)

=
min(1, PB

Y (y)/PA
Y (y))

1 + TV(PA
Y , PB

Y)
, (105)

where TV (PA
Y , PB

Y) is the total variation distance between PA
Y (.) and PB

Y (.). Using the inequality
min(u, v) ≥ uv

u+v and the fact that TV (PA
Y , PB

Y) ≤ 1 gives us the latter inequality.

2Daliri et al. [8] also arrives to a similar conclusion but for discrete case, targeting a different problem.

27

To show (99), we first compute the following probabilities where A and B both accept/terminate a
given sample Y = y:

γ(y) = Pr(A and B accepts Y |Y = y) (106)

= Pr(U ≤ min(PA
Y (y), PB

Y (y)))|Y = y) (107)

=
min(PA

Y (y), PB
Y (y))

ωQY (y)
(108)

and,

γ̂(y) = Pr(A and B rejects Y |Y = y) (109)

= Pr(U > max(PA
Y (y), PB

Y (y)))|Y = y) (110)

= 1− max(PA
Y (y), PB

Y (y))

ωQY (y)
(111)

Then we have:

Pr(KA = KB = i|Yi = yi) (112)

=

∫
Pr(KA = KB = i|Y1:i = y1:i)QY (Y1:i−1 = y1:i−1|Yi = y)dy1:i−1 (113)

=

∫
Pr(KA = KB = i|Y1:i = y1:i)QY (Y1:i−1 = y1:i−1)dy1:i−1 (114)

=

∫
Pr(KA = KB = i|Y1:i = y1:i)QY (Y1:i−1 = y1:i−1)dy1:i−1 (115)

= γ(yi)

∫ i−1∏
j=1

γ̂(yj)QY (yj)dy1:i−1 (116)

= γ(yi)

i−1∏
j=1

∫
γ̂(y)QY (y)dy (117)

=
min(PA

Y (y), PB
Y (y))

ωQY (y)

[∫ (
1− max(PA

Y (y), PB
Y (y))

ωQY (y)

)
QY (y)dy

]i−1

(118)

=
min(PA

Y (y), PB
Y (y))

ωQY (y)

[
1− 1

ω

∫
max(PA

Y (y), PB
Y (y)dy

]i−1

(119)

Finally, we note that:

Pr(B outputs y|A outputs y) (120)
= Pr(KB = KA|YKPA

=y) + Pr(party B outputs y,KB ̸= KA|YKA=y) (121)

Finally, note that in the case where PA(.), PB(.) are continuous distribution, we have:

Pr(party B outputs y,KPB
̸= KPA

|YKPA
=y) = 0.0 (122)

This completes the proof.

C.2 Comparision with Poisson Matching Lemma

We will compare the average matching probability Pr(KA = KB) between RS and PML in the
continuous case. Starting from equation (30) in [27] and assume PA

Y (y) ≤ PB
Y (y), we have:

28

P (YA = YB = y) (123)
= Pr(KA = KB |YA = y)P (YA = y) (124)

=
1∫∞

−∞ max
{

PA
Y (v)

PA
Y (y)

,
PB

Y (v)

PB
Y (y)

}
dv

(125)

=
PA
Y (y)∫∞

−∞ max
{
PA
Y (v),

PB
Y (v)

PB
Y (y)

PA
Y (y)

}
dv

(126)

≥ PA
Y (y)∫∞

−∞ max
{
PA
Y (v), PB

Y (v)
}
dv

(Since we assume PA
Y (y) ≤ PB

Y (y)) (127)

=
PA
Y (y)

1 + TV(PA
Y , PB

Y)
(128)

Repeating the same step for PA
Y (y) ≥ PB

Y (y), we have:

P (YA = YB = y) ≥ min(PA
Y (y), PB

Y (y)

1 + TV(PA
Y , PB

Y)
(129)

Taking the integral with respect to y for both sides gives us the desired inequality where the RHS
expression is the average matching probability of RS. Finally, the same conclusion holds for IML
since the matching probability of IML converges to that of PML.

D Greedy Rejection Sampling.

D.1 Coding Cost

Compared to the standard RS approach described above, GRS is a more well-known tool for channel
simulation [14, 18], as its runtime entropy, i.e., H[K], is significantly lower than that of standard RS.
Unlike standard RS, where the acceptance probability remains the same on average at each step, GRS
greedily accepts samples from high-density regions as early as possible (see [14] for more details).
Using these properties, Flamich and Theis [14] provide the following upper bound on H[K], which
generalizes the discrete version established by Harsha et al. [18]:

H[K] ≤ I[X;Y] + log(I[X;Y] + 1) + 4, (130)

which has a smaller constant compared to the bound for standard RS. We conclude with a note on the
coding cost of GRS, highlighting that, unlike standard RS, which is relatively easy to implement in
practice, GRS can be more challenging to deploy as it requires repeatedly computing a complex and
potentially intractable integral.

D.2 Matching Probability in Greedy Rejection Sampling

Setup. Let the proposal distribution QY be a discrete uniform Unif[1, n], i.e. QY (y) = q = 1/n and
U ∼ U(0, 1) as in standard RS. Then, we define W as follow:

W = {(Y1, U1), (Y2, U2), ...} (131)

Our goal is to show that, for this proposal distribution QY , there exists the target distributions
PA
Y (.) and PB

Y (.) such that the GRS matching probability Pr(YA = YB |YA = y) −→ 0.0 even when
PA
Y (y) = PB

Y (y). Let n = 2k + 1, we construct the following PA
Y and PB

Y :

PA
Y (Y = 1) =

k + 1

2k + 1
, PA

Y (Y = i) =

{
1

2k+1 , for 1 < i ≤ k + 1

0.0, for i > k + 1
, (132)

PB
Y (Y = 1) =

k + 1

2k + 1
, PB

Y (Y = i) =

{
1

2k+1 , for i > k + 1

0.0, for 1 < i ≤ k + 1
, (133)

29

1 2 3
Y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

ba
bi

lit
y

Probability Mass Functions for QY , PA
Y , and PB

Y (k=1, n=3)

QY

PA
Y

PB
Y

Figure 8: Visualization of example distributions in Section D.2 for k = 1.

where we visualize this in Figure 8.

GRS Matching Probability. Given party A has target distribution PA
Y (.) and party B has target

distribution PB
Y (.), with each running the GRS procedure to obtain their samples YA, YB respectively.

We want to characterize the probability that party A and party B outputs the same value, give party
A’s output. We denote KA and KB as the index within W that party A and party B select respectively,
i.e., YKA

= YA and YKB
= YB .

Consider the event YA = 1, with the construction above, we have the following properties:

• If party A and party B both see the first proposal Y1 = 1, they will greedily accept it, since
PA
Y (Y = 1) = PB

Y (Y = 1) ≥ QY (Y = 1). So in this case:

Pr(KA = KB = 1, YA = 1) = QY (Y = 1) =
1

2k + 1

• On the other hand, if the first proposal Y1 ̸= 1 then either party A or B must accept and
output Y1 ̸= 1 since for y ̸= 1, the probability distribution complement each other and equal
to QY (y) =

1
2k+1 . For example, for n = 3 and Y2 = 2, then party A will accept it while

party B must reject it. Therefore, we have:

Pr(KA = KB > 1, YA = 1) = 0.0.

• Finally, from the previous analysis, for any positive integers i ̸= j, we have

Pr(KA = i,KB = j, YA = 1, YB = 1) = 0.0,

Indeed, consider i = 1 then Pr(KA = 1,KB = j, YA = 1, YB = 1) = 0.0 since both of
them must accept the first proposal Y1 = 1. On the other hand, if i > 1 then we must have
j = 1 since we know that Y1 ̸= 1 in this case and thus one of the party must stop. Since
i > 1, it has to be party B and in this case, YB ̸= 1.

For this reason, we have:

Pr(YA = YB = 1) (134)
= Pr(KA = KB , YA = 1, YB = 1) + Pr(KA ̸= KB , YA = 1, YB = 1) (135)

= Pr(KA = KB , YA = 1) +
∑
i ̸=j

Pr(KA = i,KB = j, YA = 1, YB = 1) (136)

= Pr(KA = KB , YA = 1) (137)
= Pr(KA = KB = 1, YA = 1) + Pr(KA = KB > 1, YA = 1) (138)
= QY (Y = 1) (139)

=
1

2k + 1
(140)

and hence:

Pr(YA = YB |YA = 1) =
1

k + 1
(141)

30

which approaches 0.0 as n −→ ∞. Overall, due to its greedy selection approach, GRS may yield
lower matching probabilities compared to other methods such as PML which we provide the analysis
below.

Matching Probability of PML. In PML, the matching probability is Pr(YA = YB | YA = 1) = 1.
This results from PML’s more global selection process compared to GRS, as it evaluates all candidates
comprehensively. In particular, let W = (S1, Y1), ..., (Sn, Yn) where Si ∼ Exp(1) and let KA,KB

be the value within W that each party respectively select in this case. Note that the construction of
W in the discrete case for PML does not require QY . The selection process according to PML is as
follows:

KA = arg min
1≤i≤n

Si

PA
Y (Yi)

KB = arg min
1≤i≤n

Si

PB
Y (Yi)

, (142)

and each party outputs YA = YKA
, YB = YKB

. We see that if KA = 1, then we must have
KB = 1. This is because for any i > 1, we have PA

Y (Y = 1) = PB
Y (Y = 1) > PB

Y (Y = i) and
PA
Y (Y = i) = PB

Y (Y = i+ 1 + k). Thus, this gives Pr(YA = YB | YA = 1) = 1.

31

Algorithm 1: Ensemble Rejection Sampling - ERS(W ;PY , QY , ω = maxy
PY (y)
QY (y) , scale = 1)

Input: Target distribution PY , Proposal distribution QY , and the source of randomness W (see
Section 5.1). Default value ω = maxy

PY (y)
QY (y) unless override by some value > ω.

Default scaling factor scale = 1 unless override by some value within (0, 1].
Output: Selected Index K and sample YK ∼ PY

1. Observe batch {Bi, Ui}
2. Select candidate index Kcand

i :

Kcand
i = argmin

1≤k≤N

Sik

λik
, where: λik =

PY (Yik)

QY (Yik)

3. Compute:

Ẑ(Yi,1:N) =

N∑
k=1

λik , Z̄(Yi,1:N ,Kcand
i) = Ẑ(Yi,1:N) + ω − λi,Kcand

i

4. Set K1 = i, K2 = Kcand
i , K = (N−1)1i+Kcand

i and return YK if:

Ui ≤
Ẑ(Yi,1:N)

Z̄(Yi,1:N ,Kcand
i)

· scale,

else repeat Step 1 with Bi+1.

E ERS Coding Scheme

E.1 Prelimaries

We show the standard ERS algorithm in Algorithm 1, following the original version introduced by
Deligiannidis et al. [9] with a slight generalization in terms of the scaling factor (0 < scale ≤ 1)
that we will use for channel simulation purpose. This section begins by establishing some detailed
quantities that will be used repeatedly. For simplicity, we use Px(.) for the target distribution PY |X=x

and Q(.) for the proposal distribution. Let ωx = maxy Px(y)/Q(y), we define the quantities:

Ẑx(y1:N) =

N∑
j=1

Px(yj)

Q(yj)
, Z̄x(y1:N , k) = Ẑx(y1:N)− Px(yk)

Q(yk)
+ ωx (143)

and denote the following constants:

∆x = EY1:N∼Q

[
N

Z̄x(Y1:N , 1)

]
, ∆ =

N

N − 1 + ω
, (144)

where we recall that ω = maxx,y Px(y)/Q(y), by Jensen’s inequality we have the following:

∆x ≥ N

N − 1 + ωx
≥ N

N − 1 + ω
= ∆ for every x. (145)

From this, we can see that as N −→ ∞, we achieve ∆ −→ 1.0. This value ∆ turns out to be the average
batch acceptance probability when we set scale = ∆

∆x
, which we elaborate on below.

Scaled Acceptance Probability. For the channel simulation setting in this section, we slightly modify
the acceptance probability in Algorithm 1 (step 4) with a scaling factor scale = ∆

∆x
≤ 1 such that

the average batch acceptance probability is the same, regardless of the target distribution Px
3. In

particular, the encoder selects the index according to:

K = ERS(W ;Px, Q, scale =
∆

∆x
), (146)

3This is similar to the case of standard RS where we accept/reject based on the global ratio bound ω instead
of ωx.

32

which means for a batch i containing samples Yi,1:N = y1:N , we accept it within step 4 if:

Accept if Ui ≤
Ẑx(y1:N)

Z̄x(y1:N , k)

∆

∆x
, (147)

where we modify the scaling scale = ∆
∆x

≤ 1 in Algorithm 1, which is a constant and does not
affect the resulting output distribution. The value of k is determined via the Gumbel-Max selection
procedure in Step 2. The intuition is, within every accepted batch without scaling, we randomly reject
(1− scale) of them. Formally, first consider the following ERS proposal distribution:

Q̄Y1:N ,K(y1:N , k;x) =

(
Px(yk)/Q(yk)∑N
j=1 Px(yj)/Q(yj)

)
N∏
j=1

Q(yj) (148)

=

(
Px(yk)/Q(yk)

Ẑx(y1:N)

)
N∏
j=1

Q(yj), (149)

where the first product in the RHS is the likelihood we obtain the samples y1:N from the original
proposal distribution QY (.) and the ratio is due to the IS process. Now, the ERS target distribution
is P̄Y1:N ,K(y1:N , k;x) where

P̄Y1:N ,K(y1:N , k;x) =
1

α

(
Px(yk)/Q(yk)

Ẑx(y1:N)

Ẑx(y1:N)

Z̄x(y1:N , k)

∆

∆x

)
N∏
j=1

Q(yj) (150)

=

(
Px(yk)/Q(yk)

∆xZ̄x(y1:N , k)

) N∏
j=1

Q(yj), (151)

which is the batch target distribution that yields Y ∼ Px when no scaling occur (see [9], Section 2.2),
since the normalization factor α is:

α =

N∑
k=1

∫ ∞

−∞

(
Px(yk)/Q(yk)

Z̄x(y1:N , k)

)
∆

∆x

 N∏
j=1

Q(yj)

 dy1:N (152)

= N
∆

∆x

∫ ∞

−∞

(
Px(yk)/Q(yk)

Z̄x(y1:N , 1)

) N∏
j=1

Q(yj)

 dy1:N (Due to symmetry) (153)

= N
∆

∆x

∫ ∞

−∞

1

Z̄x(y1:N , 1)

 N∏
j=2

Q(yj)

 dyN2 (154)

= ∆ (155)

It turns out that ∆ is also the batch acceptance probability since:

Pr(Accept batch B) = E(Y1:N ,K)∼Q̄

[
∆

∆x

Ẑx(y1:N)

Z̄x(y1:N , k)

]
(156)

=
∆

∆x

N∑
k=1

∫ ∞

−∞

(
Px(yk)/Q(yk)

Z̄x(y1:N , k)

)
(157)

=
∆

∆x
N

∫ ∞

−∞

(
Px(y1)/Q(y1)

Z̄x(y1:N , 1)

) N∏
j=1

Q(yj)

 dy1:N (158)

= ∆, (159)

and it can be observed that, without the scaling factor ∆
∆x

, the batch acceptance probability is ∆x.
Finally, we can view the ERS as a standard RS procedure with proposal distribution Q̄Y N

1 ,K and
target distribution P̄Y N

1 ,K .

Harris-FKG/Chebyshev Inequality. We introduce the following inequality (Harris-
FKG/Chebyshev), which will be used in the proof:

33

Proposition E.1. For function f, g on Y ∼ P (.) where f is non-increasing and g is non-decreasing,
we have:

E[f(Y)g(Y)] ≤ E[f(Y)]E[g(Y)]

Proof. Let Y1, Y2 ∼ P (.) and they are independent. Then we have:

[f(Y1)− f(Y2)][g(Y1)− g(Y2)] ≤ 0 (160)

Hence:

E{[f(Y1)− f(Y2)][g(Y1)− g(Y2)]} ≤ 0 (161)

This gives us:

E[f(Y1)g(Y1)] + E[f(Y2)g(Y2)] ≤ E[f(Y1)]E[g(Y2)] + E[f(Y2)]E[g(Y1)], (162)

which completes the proof.

E.2 Encoding K1.

We encode K1 the same way as the scheme for standard RS. Similar to standard RS, we encode K1

into two messages. Specifically:

• Step 1: the encoder sends the ceiling L = ⌈ K1

⌊∆−1⌋⌉ to the decoder. The decoder then knows
(L− 1)⌊∆−1⌋−1 + 1 ≤ L ≤ L⌊∆−1⌋−1, i.e. K1 is in chunk L that consists of ⌊∆−1⌋−1

batches. We have E[log(L)] ≤ 1 bit.

• Step 2: The encoder and decoder both sort the uniform random variables Ui within the
selected chunk (L − 1)⌊∆−1⌋−1 + 1 ≤ i ≤ L⌊∆−1⌋−1. Let the sorted list be Uπ(1) ≤
Uπ(2) ≤ ... ≤ Uπ(⌊∆−1⌋) where π(.) is the mapping between the sorted index and the
original unsorted one. The encoder sends the rank of UK1 within this list, i.e. sends the
value T such that K1 = π(K̂1). The decoder receive K̂1 and retrieve BK1

accordingly.
Section E.2.2 shows the coding cost for this step.

We provide the detail analysis in Section E.2.1 and E.2.2. Notice that the role ∆ plays here is similar
to that of ω in standard RS.

E.2.1 Coding Cost of L

Similar to RS, since each batch is accepted with probability ∆ (see (159)), this means:

Pr(K1 > ℓ∆−1) = (1−∆)
ℓ⌊∆−1⌋

< 0.5−ℓ,

which is equivalent to Pr(L > ℓ) < 0.5−ℓ. Note that we reuse the inequality in Appendix B.3. We
have:

E[L] =
∞∑
ℓ=0

Pr(L > ℓ) < 1 + 0.5−1 + 0.5−2 + ... = 2, (163)

implying E[logL] ≤ 1.

E.2.2 Coding Cost of K̂1

We will show that:

E[log K̂1] ≤
N

∆x
EY1:N∼Q

[
Px(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
Ẑx(Y1:N)

∆xZ̄x(Y1:N , 1)

)]
, (164)

where we provide the result of (164) in Section E.4.2.

34

E.3 Encoding K2.

Given an accepted batch {(Yi, Si)}Ni=1 , we have:

K2 = arg min
1≤i≤N

Si

λi
; ΘP = min

1≤i≤N

Si

λi
, (165)

where we have the weights λi defined as:

λi =
P (Yi)

Q(Yi)
(166)

After communicating the selected batch index K1, the encoder and decoder sort the exponential
random variables {SK1,i}Ni=1, i.e.

SK2,π(1) ≤ SK2,π(2) ≤ ... ≤ SK2,π(N), (167)

and send the sorted index K̂2 of K2, i.e. π(K̂2) = K2. The decoder also performs the sorting
operation and retrieve K2 accordingly. Since K2 are obtained from the batch selected by ERS, we
analyze E[log K̂ ′

2|Y1:N are selected], where K̂ ′
2 and K ′

2 are defined the same as K̂2 and K2 (follows
the same Gumbel-Max procedure) but for arbitrary N i.i.d. proposals Y1:N ∼ Q(.). In this case:

E[log K̂2] = E[log K̂ ′
2|Y1:N are selected]

Notice the following identity:

P̄ (y1:N , k2;x) = P (Y1:N = y1:N |Y1:N are selected,K ′
2 = k2) Pr(K

′
2 = k2|Y1:N are selected)

where P̄ (y1:N , k2;x) is the ERS target distribution described previously in Appendix E.1. Then, we
obtain the following likelihood:

P (Y1:N = y1:N |Y1:N are selected,K ′
2 = 1) (168)

=
P̄ (y1:N , j;x)

Pr(K ′
2 = 1|Y1:N are selected)

(169)

= N
Px(y1)/Q(y1)

∆xZ̄x(y1:N , 1)

N∏
i=1

Q(yi) (170)

With this, we now bound the expectation term of interest E[log K̂2] as follows:

E[log K̂2] (171)

= E[log K̂ ′
2|Y1:N are selected] (172)

= E[log K̂ ′
2|Y1:N are selected,K ′

2 = 1] (Due to Symmetry) (173)

= EY1:N
[E[log K̂ ′

2|Y1:N are selected,K ′
2 = 1, Y1:N = y1:N]] (174)

= N

∫ ∞

−∞

Px(y1)/Q(y1)

∆xZ̄x(y1:N , 1)
E[log K̂ ′

2|Y1:N are selected, Y1:N = y1:N ,K ′
2 = 1]

(
N∏
i=1

Q(yi)

)
dy1:N

(175)

= N

∫ ∞

−∞

Px(y1)/Q(y1)

∆xZ̄x(y1:N , 1)
E[log K̂ ′

2|Y1:N = y1:N ,K ′
2 = 1]

(
N∏
i=1

Q(yi)

)
dy1:N , (176)

where the last equality is because, given {Y1:N=y1:N ,K ′
2=1}, the event {Y1:N are selected} and the

random variable K̂ ′
2 are independent. In particular, the decision whether to accept a batch or not does

not depends on the rank of SK′
2
, that is:

Pr(Y1:N are selected|Y1:N = y1:N ,K ′
2 = 1, K̂ ′

2 = k2) (177)

= Pr(Y1:N are selected|Y1:N = y1:N ,K ′
2 = 1) (178)

=
Ẑx(y1:N)

Z̄x(y1:N , 1)

∆

∆x
(179)

35

We then have:

E[log K̂ ′
2|Y1:N are selected] (180)

=N

∫ ∞

−∞

N∏
i=1

Q(yi)
Px(y1)/Q(y1)

∆xZ̄x(y1:N , 1)

(∫ ∞

0

e−θE[log K̂ ′
2|Y1:N=y1:N ,K ′

2=1,ΘP=θ]dθ

)
dy1:N ,

(181)

since, given Y1:N , ΘP is independent of K ′
2 and ΘP∼Exp(1) (see [35], Appendix 18). We now pro-

vide an upperbound of E[log K̂2|Y1:N=y1:N ,K2=1,ΘP=θ], which follows the argument presented
in [35], and is repeated here. Applying Jensen’s inequality, we have:

E[log K̂ ′
2|Y1:N = y1:N ,K ′

2 = 1,ΘP = θ] ≤ logE[K̂ ′
2|Y1:N = y1:N ,K ′

2 = 1,ΘP = θ], (182)

We then rewrite K̂ ′
2 as the following:

K̂ ′
2 = |{Si < SK′

2
}|+ 1, (183)

which gives us:

E[K̂ ′
2|Y1:N = y1:N ,K ′

2 = 1,ΘP = θ] (184)

= 1 + E[|{Si < SK′
2
}||Y1:N = y1:N ,K ′

2 = 1,ΘP = θ] (185)

= 1 + E

[∣∣∣∣∣
{
Si < θ

Px(YK′
2
)/Q(YK′

2
)

Ẑx(Y1:N)

}∣∣∣∣∣
∣∣∣∣∣Y1:N = y1:N ,K ′

2 = 1,ΘP = θ

]
(186)

= 1 +

N∑
i=2

Pr

(
Si < θ

Px(YK′
2
)/Q(YK′

2
)

Ẑx(Y1:N)

∣∣∣∣∣Y1:N = y1:N ,K ′
2 = 1,ΘP = θ

)
(187)

= 1 +

N∑
i=2

Pr

Si < θ
Px(Y1)/Q(Y1)

Ẑx(Y1:N)

∣∣∣∣∣Y1:N = y1:N ,
Sj

Px(yj)/Q(yj)

Ẑx(y1:N)

≥θ for j ̸=1,
S1

Px(y1)/Q(y1)

Ẑx(y1:N)

=θ


(188)

= 1 +

N∑
i=2

Pr

Si < θ
Px(Y1)/Q(Y1)

Ẑx(Y1:N)

∣∣∣∣∣Y1:N=y1:N ,
Sj

Px(yj)/Q(yj)

Ẑx(y1:N)

≥θ for j ̸=1,
S1

Px(y1)/Q(y1)

Ẑx(y1:N)

=θ


(189)

= 1 +

N∑
i=2

Pr

Si < θ
Px(Y1)/Q(Y1)

Ẑx(Y1:N)

∣∣∣∣∣Y1:N = y1:N ,
Si

Px(yi)/Q(yi)

Ẑx(y1:N)

≥ θ

 (190)

Note that:

Pr

Si < θ
Px(Y1)/Q(Y1)

Ẑx(y1:N)

∣∣∣∣∣Y1:N = y1:N ,
Si

Px(yi)/Q(yi)

Ẑx(y1:N)

≥ θ

 (191)

= 1

{
θ
Px(Y1)/Q(Y1)

Ẑx(y1:N)
≥ θ

Px(Yi)/Q(Yi)

Ẑx(y1:N)

}[
1− exp

(
−θ

Px(y1)/Q(y1)− Px(yi)/Q(yi)

Ẑx(y1:N)

)]
(192)

≤ 1− exp

(
−θ

Px(y1)/Q(y1)− Px(yi)/Q(yi)

Ẑx(y1:N)

)
(193)

≤ θ[Px(y1)/Q(y1)− Px(yi)/Q(yi)]

Ẑx(y1:N)
(194)

≤ θPx(y1)/Q(y1)

Ẑx(y1:N)
(195)

36

As such:

E[K̂ ′
2|Y1:N = y1:N ,K ′

2 = 1,ΘP = θ] ≤ 1 +

N∑
i=2

θPx(y1)/Q(y1)

Ẑx(y1:N)
(196)

≤ 1 +
NθPx(y1)/Q(y1)

Ẑx(y1:N)
(197)

and thus: ∫ ∞

0

e−θE[logK|Y1:N = y1:N ,K2 = 1,ΘP = θ]dθ (198)

≤
∫ ∞

0

e−θ log

(
1 +

NθPx(y1)/Q(y1)

Ẑx(y1:N)

)
dθ (199)

≤ log

(
NPx(y1)/Q(y1)

Ẑx(y1:N)
+ 1

)
, (200)

which is due to Jensen’s inequality for concave function log(.). Finally, we have:

E[log K̂2] (201)

≤ EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N)
+ 1

)]
(202)

≤ EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N)

)
+

log(e)Ẑx(Y1:N)

NPx(Y1)/Q(Y1)

NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)

]
(203)

= EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N)

)]
+ log(e) (204)

The last inequality is due to the FKG inequality:

EY1:N∼Q(.)

[
log(e)Ẑx(Y1:N)

∆xZ̄x(Y1:N , 1)

]
(205)

= log(e)EY N
2 ∼Q(.)

[(
1 +

N∑
i=2

Px(Yi)

Q(Yi)

)(
1

∆xZ̄x(Y1:N , 1)

)]
(206)

≤ log(e)EY N
2 ∼Q(.)

[
1 +

N∑
i=2

Px(Yi)

Q(Yi)

]
EY N

2 ∼Q(.)

[
1

∆xZ̄x(Y1:N , 1)

]
(207)

= log(e) (208)

So we have the bound on E[log(K̂2)] as:

E[log(K̂2)] ≤ EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N)

)]
+ log(e) (209)

E.4 Total Coding Cost of K

We now provide an upperbound on the total coding cost of K. We have:

H(K|W) = H(L, K̂1, K̂2|W) (210)

≤ H(L|W) +H(K̂1|W) +H(K̂2|W) (211)

≤ H(L) +H(K̂1) +H(K̂2) (212)

37

For each of the message, we encode using Zipf distribution. Since E[log(L)] ≤ 1, then:

H(L) ≤ 3

For H(K̂1), we have:

H(K̂1) ≤ EX [E[log(K̂1)]] + log(EX [E[log(K̂1)]] + 1) + 1 (213)

and H(K̂2), we have:

H(K̂2) ≤ EX [E[log(K̂2)]] + log(EX [E[log(K̂2)]] + 1) + 1 (214)

and thus we have:

H(K|W) (215)

≤ (EX [E[log(K̂1)] + E[log(K̂2)]])+ log((EX [E[log(K̂1)]] + 1)(EX [E[log(K̂2)]] + 1))+5
(216)

By AM-GM inequality, we have:

log((EX [E[log(K̂1)]] + 1)(EX [E[log(K̂2)]] + 1)) (217)

≤ log(
1

4
(EX [E[log(K̂1)]] + 1 + EX [E[log(K̂2)]] + 1)2) (218)

= 2 log(EX [E[log(K̂1)]] + EX [E[log(K̂2)]] + 2)− 2 (219)

We will show E[log(K̂1)] + E[log(K̂2)] ≤ DKL(Px||Q) + 3 + 2 log(e) at the end of this section.
Given this, we have:

H(K|W) ≤ I(X;Y) + 3 + 2 log(e) + 2 log(I(X;Y) + 5 + 2 log(e))− 2 + 5 (220)
≤ I(X;Y) + 2 log(I(X;Y) + 8) + 9. (221)

Since we are encoding 3 messages separately, we add 1 bit overhead for each message and thus arrive
to the constant 12 as in the original result.

The rest is to bound E[log(K̂1)] + E[log(K̂2)], note that:

E[log(K̂1)] + E[log(K̂2)] (222)

≤2 log(e)+EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)

(
log

(
Ẑx(Y1:N)

∆xZ̄x(Y1:N , 1)

)
+ log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N)

))]
(223)

= 2 log(e) + EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)

)]
(224)

= 2 log(e) + EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)

(
log

Px(Y1)

Q(Y1)
+ log

(
N

∆xZ̄x(Y1:N , 1)

))]
(225)

= 2 log(e) +DKL(Px||Q) + EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log

(
N

∆xZ̄x(Y1:N , 1)

)]
(226)

= 2 log(e) +DKL(Px||Q) + E1 (227)

where:

E1 = EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log

(
N

∆xZ̄x(Y1:N , 1)

)]
(228)

We will show in Appendix E.4.1 that:

E1 ≤ 3 (229)

and thus:

E[log(K̂1)] + E[log(K̂2)] ≤ 2 log(e) + 3 +DKL(Px||Q) (230)

38

E.4.1 Bound on E1

We consider two cases, when the batch size N ≤ 7ωx and when N > 7ωx.

Case 1: N ≤ 7ωx

Recall that Z̄x(Y1:N , 1) > ωx and ∆x ≥ N
N−1+ωx

, we have:

N

∆xZ̄x(Y1:N , 1)
≤ N − 1 + ωx

ωx
(231)

<
8ωx − 1

ωx
(Since N ≤ 7ω) (232)

< 8 (233)

Thus, we have:

E1 = EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log

(
N

∆xZ̄x(Y1:N , 1)

)]
(234)

≤ EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log (8)

]
(235)

= 3 (Since ∆x = EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)

]
), (236)

and hence E1 ≤ 3 bit.

Case 2: N > 7ω

To upper-bound E2 in this regime, we first note that:

∆x = EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)

]
= Pr(Accept batch B) ≤ 1 (237)

Another way to see this is through the following arguments:

EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)

]
(238)

= EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Z̄x(Y1:N , 1)

]
(239)

= EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Ẑx(Y1:N)

Ẑx(Y1:N)

Z̄x(Y1:N , 1)

]
(240)

≤ EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Ẑx(Y1:N)

] (
Since

Ẑx(Y1:N)

Z̄x(Y1:N , 1)
≤ 1

)
(241)

=

N∑
i=1

EY1:N∼Q(.)

[
Px(Yi)/Q(Yi)

Ẑx(Y1:N)

]
(Due to symmetry) (242)

= 1, (243)

and as a consequence (which we will be using later), we have:

EY1:N∼Q(.)

[
N + 1

ωx + Ẑx(Y1:N)

]
(244)

= EY N+1
1 ∼Q(.)

[
N + 1

ωx + Ẑx(Y1:N)

]
(245)

≤ 1. (246)

39

Then, observe that:

E1 = EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log

(
N

∆xZ̄x(Y1:N , 1)

)]
(247)

=
1

∆x
EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
+ log

1

∆x
(248)

≤ 3 bits (249)

where, to show the inequality at the end, we will prove the following two inequalities:

log
1

∆x
≤ log

(
8

7

)
(250)

1

∆x
EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
≤ 16

7
, (251)

and hence E2 ≤ 3 (bits). For the first inequality, we have:

∆x = EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)

]
(252)

≥ N

EY1:N∼Q(.)[Z̄x(Y1:N , 1)]
(Jensen’s Inequality) (253)

=
N

N − 1 + ωx
(254)

≥ N

N − 1 +N/7
(Since N > 7ωx) (255)

≥ 7

8
, (256)

hence, we have:

1

∆x
≤ 8/7, (257)

which yields the first inequality after taking the log(.) in both sides.

For the second inequality, we begin by establishing the following key inequality:

N

Z̄x(Y1:N , 1)
≤ 2N

Ẑx(Y1:N) + ωx

, (258)

which is due to:

N

Z̄x(Y1:N , 1)
=

N

ωx +
∑N

i=2
Px(Yi)
Q(Yi)

(259)

≤ N

ωx + 1
2

∑N
i=2

Px(Yi)
Q(Yi)

(Since
Px(Yi)

Q(Yi)
≥ 0 for all i) (260)

=
2N

2ωx +
∑N

i=2
Px(Yi)
Q(Yi)

(261)

≤ 2N

ωx +
∑N

i=1
Px(Yi)
Q(Yi)

(Since
Px(Yi)

Q(Yi)
≤ ω for all i) (262)

=
2N

Ẑx(Y1:N) + ωx

, (263)

40

Then, we have:
1

∆x
EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
(264)

≤8

7
EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
(Since ∆x ≥ 7

8
from (256)) (265)

=
8

7
EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
(266)

≤8

7
EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)
+ 1

)]
(267)

≤8

7
EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
2N

Ẑx(Y1:N) + ωx

+ 1

)]
(Due to Inequality (258))

(268)

≤8

7
EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Ẑx(Y1:N)
log

(
2N

Ẑx(Y1:N) + ωx

+1

)]
(Since Ẑx(Y1:N)≤Z̄x(Y1:N , 1))

(269)

=
8

7

N∑
i=1

EY1:N∼Q(.)

[
Px(Yi)/Q(Yi)

Ẑx(Y1:N)
log

(
2N

Ẑx(Y1:N) + ωx

+ 1

)]
(Due to symmetry) (270)

=
8

7
EY1:N∼Q(.)

[∑N
i=1 Px(Yi)/Q(Yi)

Ẑx(Y1:N)
log

(
2N

Ẑx(Y1:N) + ωx

+ 1

)]
(271)

=
8

7
EY1:N∼Q(.)

[
log

(
2N

Ẑx(Y1:N) + ωx

+ 1

)]
(272)

≤8

7
log

(
EY1:N∼Q(.)

[
2N

Ẑx(Y1:N) + ωx

+ 1

])
(Jensen’s Inequality) (273)

=
8

7
log

(
1 +

2N

N + 1
EY1:N∼Q(.)

[
N + 1

Ẑx(Y1:N) + ωx

])
(274)

≤8

7
log

(
1 +

2N

N + 1

)
(Since EY1:N∼Q(.)

[
N + 1

Ẑx(Y1:N) + ωx

]
< 1 due to Inequality (246)) (275)

≤8

7
log(4) (276)

=
16

7
(bits) (277)

which completes the proof for this part.
E.4.2 Proof of Inequality (164)

We first express the quantity E[log K̂1] with conditional expectation. The accepted batch and selected
local index K2 are distributed according to YK1,1:N ,K2 ∼ P̄Y1:N ,K;x, then:

E[log K̂1] (278)

= E[E[log K̂1|YK1,1:N = y1:N ,K2 = k2]] (279)

=

N∑
k2=1

∫ ∞

−∞

 N∏
j=1,j ̸=k2

Q(yj)

 Px(yk)

Z̄x(y1:N , k)∆x
E[log K̂1|YK1,1:N = y1:N ,K2 = k2]dy1:N

(280)

= N

∫ ∞

−∞

 N∏
j=2

Q(yj)

 Px(y1)

Z̄x(y1:N , 1)∆x
E[log K̂1|YK1,1:N = y1:N ,K2 = 1]dy1:N (281)

41

Notice that, since we accept a batch i when Ui ≤ Ẑx(y1:N)
Z̄x(y1:N ,1)

∆
∆x

, we have that:

P (UK1
= u|YK,1:N = y1:N ,K2 = 1) =

Z̄x(y1:N , 1)

Ẑx(y1:N)

∆x

∆
,

then conditioning on UK1
for the last expectation term above:

E[log K̂1|YK1,1:N = y1:N ,K2 = k] (282)

=

∫ ∞

−∞
E[log K̂1|YK1,1:N = y1:N ,K2 = 1, UK1 = u]P (UK1 = u|YK1,1:N = y1:N ,K2 = 1)du

(283)

=

∫ Ẑx(y1:N)

Z̄x(y1:N,1)
∆
∆x

0

E[log K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u]

Z̄x(y1:N , 1)

Ẑx(y1:N)

∆x

∆
du (284)

≤ ∆x

∆

∫ Ẑx(y1:N)

Z̄x(y1:N,1)
∆
∆x

0

Z̄x(y1:N , 1)

Ẑx(y1:N)
log
[
1 +

u

∆

]
du (See the Sort Coding bound below.) (285)

≤ ∆x

∆

∫ Ẑx(y1:N)

Z̄x(y1:N,1)
∆
∆x

0

Z̄x(y1:N , 1)

Ẑx(y1:N)
log

[
1 +

Ẑx(y1:N)

∆xZ̄x(y1:N , 1)

]
du (286)

= log

[
1 +

Ẑx(y1:N)

∆xZ̄x(y1:N , 1)

]
, (287)

Finally, we have:

E[log K̂1] (288)

= N

∫ ∞

−∞

 N∏
j=2

Q(yj)

 Px(y1)

Z̄x(y1:N , 1)∆x
log

[
1 +

Ẑx(y1:N)

∆xZ̄x(y1:N , 1)

]
dy1:N (289)

≤ N

∫ ∞

−∞

 N∏
j=2

Q(yj)

 Px(y1)

Z̄x(y1:N , 1)∆x

(
log

[
Ẑx(y1:N)

∆xZ̄x(y1:N , 1)

]
+ log e

∆xZ̄x(y1:N , 1)

Ẑx(y1:N)

)
dy1:N

(290)

= N

∫ ∞

−∞

 N∏
j=2

Q(yj)

 Px(y1)

Z̄x(y1:N , 1)∆x
log

[
Ẑx(y1:N)

∆xZ̄x(y1:N , 1)

]
dy1:N + log(e) (291)

=
N

∆x
EY1:N∼Q

[
Px(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
Ẑx(Y1:N)

∆xZ̄x(Y1:N , 1)

)]
(292)

We show the proof for (285) below.

Sort Coding Bound. To bound the expectation term, we first apply Jensen’s inequality and condi-
tioning on the accepted chunk of batches L = ℓ:

E[log K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u] (293)

≤ log(E[K̂1|YK1,1:N = y1:N ,K2 = 1, UK1 = u]) (294)

= log(E[K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u]) (295)

= log(EL[E[K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ]]) (296)

We now repeat the previous argument in standard RS. Specifically, given K̂1 is within the range
L = ℓ and UK1

= u, we can express K̂1 as follows:

K̂1 = |{Ui < u, (ℓ− 1)⌊∆−1⌋+ 1 ≤ i ≤ ℓ⌊∆−1⌋}|+ 1, (297)
= Ω(u, ℓ) + 1 (298)

42

i.e. the number of Ui (plus 1 for the ranking) within the range L that has value lesser than u.

We can see that the the index i within the range L satisfying Ui < u are from the indices that are
either (1) rejected, i.e. index i < K̂1 or (2) not examined by the algorithm, i.e. index i > K̂1. The
rest of this proof will show the following bound:

E[Ω(u, ℓ)|YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ] ≤ ∆−1u, for any ℓ (299)

For readability, we split the proof into different proof steps.

Proof Step 1: We condition on the mapped index of π(K̂) on the original array:

E[K̂1|YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ] (300)

= Eπ(K̂1)

[
E[K̂1 | YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ, π(K̂1) = k1]

]
(301)

= Eπ(K̂1)

[
E[Ω(u, ℓ) + 1 | YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ, π(K̂1) = k1]

]
(302)

= Eπ(K̂1)

[
E[Ω(u, ℓ) | YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ, π(K̂1) = k1]

]
+ 1 (303)

= Eπ(K̂1)

[
E[Ω1(u, ℓ, k1) + Ω2(u, ℓ, k1) | YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ, π(K̂1) = k1]

]
+ 1,

(304)

where Ω1(u, ℓ, k1),Ω2(u, ℓ, k1) are the number of Ui < u within the range L = ℓ that occurs before
and after the selected index k1 respectively. Specifically:

Ω1(u, ℓ, k1) = |{Ui < u, (ℓ− 1)⌊∆−1⌋+ 1 ≤ i < (ℓ− 1)⌊∆−1⌋+ k1}| (305)

Ω2(u, ℓ, k1) = |{Ui < u, (ℓ− 1)⌊∆−1⌋+ k1 + 1 ≤ i ≤ ℓ⌊∆−1⌋}|, (306)

which also naturally gives Ω(u, ℓ) = Ω1(u, ℓ, k1) + Ω2(u, ℓ, k1).

Proof Step 2: Consider Ω2(u, ℓ, k1), since each proposal (Yi,1:N , Ui) is i.i.d distributed and the fact
that k1 is the index of the first accepted batch, for every i > k1, we have:

Pr(Ui < u | Ȳ1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ, π(K̂1) = k1) = Pr(Ui < u)

This gives us:

E[Ω2(u, ℓ, k1) | YK1,1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ, π(K̂1) = k1] (307)

= (⌊∆−1⌋ − k1) Pr(U < u) (308)

= (⌊∆−1⌋ − k1)u (309)

≤ (⌊∆−1⌋ − k1)u

Pr(Batch is rejected)
(310)

≤ (⌊∆−1⌋ − k1)u

1−∆
(311)

Proof Step 3: For Ω1(u, ℓ, k̂1), we do not have such independent property since for every batch
with index i < k1, we know that they are rejected batches, and hence for i < k1:

Pr(Ui < u | YK1,1:N = y1:N ,K2 = k, UK1
= u, L = ℓ, π(K̂1) = k1) (312)

= Pr(Ui < u|Yi,1:N is rejected) (313)

=
Pr(Ui < u, Yi,1:N is rejected)

Pr(Yi,1:N is rejected)
(314)

≤ Pr(Ui < u)

Pr(Yi,1:N is rejected)
(315)

=
u

1−∆
, (316)

which gives us:

E[Ω2(u, ℓ, k1) | YK1,1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ, π(K̂1) = k1] ≤

(k1 − 1)u

1−∆
(317)

43

To prove Equation (313), note that the following events are equivalent:

{YK1,1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ, π(K̂1) = k1} (318)

= {Yk1,1:N = y1:N ,K2 = 1, Uk = u,B1,..,k−1 are rejected} (319)

≜ Λ(u, y, k1) (320)

Here, we note that Yk1
, Uk1

denote the value at batch index k within W , which is different from
YK1 , UK1 , the value selected by the rejection sampler. Hence:

Pr(Ui < u|Λ(u, y, k1)) (321)

=
Pr(Ui < u,B1...k1−1 are rejected|Yk,1:N = y1:N , Uk = u,K2 = 1)

Pr(B1...k1−1 are rejected|Yk,1:N = y1:N , Uk = u,K2 = 1)
(322)

=
Pr(Ui < u, B1...k1−1 are rejected)

Pr(B1...k1−1 are rejected)
(Since (Yi, Ui) are i.i.d) (323)

= Pr(Ui < u|Bi is rejected), (324)

Proof Step 4: From the above result from Step 2 and 3, we have Ω(u, ℓ) = Ω1(u, ℓ, k) +

Ω2(u, ℓ, k) ≤ (⌊∆−1⌋−1)u
1−∆ and as a result:

E[log K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u] ≤ (⌊∆−1⌋ − 1)u

1−∆
+ 1 (325)

≤ (∆−1 − 1)u

1−∆
+ 1 (Since⌊∆−1⌋ ≤ ∆−1)

(326)

= ∆−1u+ 1 (327)

which completes the proof.

44

F ERS Matching Lemmas

F.1 Preliminaries

We begin by providing the following bounds on inverse moments of averages.
Proposition F.1. Let Y1, Y2, ..., YN ∼ QY (.) and suppose the target distribution PY satifies:

d2(QY ||PY) ≜ EY∼QY (.)

[
QY (Y)

PY (Y)

]
< ∞, (328)

then we have:

EY1:N∼QY (.)

 N∑N
i=1

PY (Yi)
QY (Yi)

 ≤ d2(QY ||PY). (329)

Proof. Applying the Cauchy-Schwarz inequality, we have:

N∑N
i=1

PY (Yi)
QY (Yi)

≤ 1

N

N∑
j=1

QY (Yi)

PY (Yi)
(330)

Taking the expectation of both sides yield the desired inequality.

Remark F.2. In general, stronger results on the inverse moments of averages exist under weaker
moment assumptions, specifically:

EY∼QY

[(
QY (Y)

PY (Y)

)η]
is finite for some η < 0. The resulting bound has a similar form (some power terms involved) to that
of Proposition F.1 but requires a mild threshold on N . For further details, see Proposition A.1 in
[10].

We show an application of Proposition F.1, which we will use repeatly:
Corollary F.3. Let Y1, Y2, ..., YN ∼ QY (.) and suppose the target distributions PA

Y , PB
Y satisfy:

d2(QY ||PA
Y) ≜ EY∼QY (.)

[
QY (Y)

PA
Y (Y)

]
< ∞, and

PA
Y (y)

QY (y)
,
PB
Y (y)

QY (y)
≤ ω for all y. (331)

Then, for any N ≥ 1,

EY1:N∼QY (.)

∑N
j=1

PB
Y (Yj)

QY (Yj)∑N
i=1

PA
Y (Yi)

QY (Yi)

 ≤ IN (ω, 1) · d2(QY ||PY), (332)

where we define IN (ω, i) ≜ (21N>i + ω1N=i).

Proof. For N = 1, applying the conditions for PA
Y and PB

Y gives us an upper-bound of ωd2(QY ||PA
Y).

For N > 1, we have:

EY1:N∼QY (.)

∑N
j=1

PB
Y (Yi)

QY (Yi)∑N
i=1

PA
Y (Yi)

QY (Yi)

 = NEY1:N∼QY (.)

 PB
Y (Y1)

QY (Y1)∑N
i=1

PA
Y (Yi)

QY (Yi)

 (Due to symmetry) (333)

≤ NEY1:N∼QY (.)

 PB
Y (Y1)

QY (Y1)∑N
i=2

PA
Y (Yi)

QY (Yi)

 (since
PA
Y (Yi)

QY (Yi)
≥ 0) (334)

=
N

N − 1
EY1:N∼QY (.)

 N − 1∑N
i=2

PA
Y (Yi)

QY (Yi)

 (335)

≤ 2d2(QY ||PA
Y) (Proposition F.1 and N > 1), (336)

which completes the proof.

45

F.2 Distributed Matching Without Batch Communication

Before the proof, we outline the details of each case in Section 3.2, covering scenarios without and
with communication between the encoder and decoder.

Without-Communication. In this scenario, let PA
Y (.) and PB

Y (.) be the target distributions at the
encoder and decoder respectively, where we use the same shared randomness W as in Section 5.1
where we use the proposal distribution QY (.). Furthermore, we assume that:

max
y

(
PA
Y (y)

QY (y)

)
= ωA, max

y

(
PB
Y (y)

QY (y)

)
= ωB , max

y

(
PA
Y (y)

QY (y)
,
PB
Y (y)

QY (y)

)
≤ ω, (337)

Using the ERS procedure, the encoder and decoder select the indices KA and KB respectively.

KA = ERS(W ;PA
Y , QY), KB = ERS(W ;PB

Y , QY), (338)

The ERS(·) function follows Algorithm 1, without requiring any specific scaling factor. During the
selection process, the calculation of Z̄ in Step 3 of this algorithm, which determines the acceptance
probability, uses the ratio upper bounds ωA and ωB for parties A and B, respectively. Proposition F.4
establishes the bound on the probability that both parties produce the same output, conditioned on
YKA

= y.
Proposition F.4. Let KA,KB and PA

Y , PB
Y defined as above and N ≥ 2, we have:

Pr(YKA
= YKB

|YKA
= y) ≥

(
1 + µ1(N) +

PA
Y (y)

PB
Y (y)

(1 + µ2(N))

)−1

, (339)

where µ1(N) and µ2(N) are defined as in Appendix F.3 and we note that µ1(N), µ2(N) −→ 0 as
N −→ ∞ under mild assumptions on the distributions PA

Y , PB
Y and QY .

Proof. See Appendix F.4.

With Communication. Following the setup described in Section 5.3, we define the ratio upperbounds
in the communication case as below:

max
z

(
PY |Z(y|x)
QY (y)

)
= ωx, max

z

(
P̃Y |Z(y|z)
QY (y)

)
= ωz, max

y,z

(
PY |X(y|x)
QY (y)

,
P̃Y |Z(y|z)
QY (y)

)
≤ ω,

and similar to the case without communication, the ERS(.) selection process at the encoder and
decoder also follows Algorithm 1, with the calculation of Z̄ in Step 3 uses the upperbound ωx and ωz

respectively for the encoder and decoder. The bound for this case is shown below.
Proposition F.5. For N ≥ 2 and X,Y, Z defined as above, we have:

Pr(YKA
=YKB

|YKA
=y,X=x, Z=z) ≥

(
1+µcond

1 (N)+
PY |X(y|x)
P̃Y |Z(y|z)

(
1+µcond

2 (N)
))−1

, (340)

where µcond
1 (N) and µcond

2 (N) are defined as in Appendix F.5 and we note that
µcond
1 (N), µcond

2 (N) −→ 0 as N −→ ∞ under mild assumptions on the distributions
PY |X(.|x), P̃Y |Z(.|z) and QY (.).

Proof. See Appendix F.6.

F.3 Coefficients in Proposition F.4

We first define the coefficient µ1(N) and µ2(N) in Proposition F.4.

µ1(N) =
1

N

[
ω + ωIN (ω, 2)d2(QY ||PB

Y) +
ω2

N − 1
d2(QY ||PB

Y)

]
(341)

µ2(N) =
1

N

[
ω + ωIN (ω, 2)d2(QY ||PA

Y) +
ω2

N − 1
d2(QY ||PA

Y)

]
(342)

where we define IN (ω, i) ≜ (21N>i + ω1N=i) as in Proposition F.3.

46

F.4 Proof of Proposition F.4

We prove the matching probability for the case of ERS. We note that in this proof, we will use the
global index for the proposals Y1, ...YN ∼ Q(.) instead of Y1,1, ...Y1,N unless otherwise stated. First,
consider:

Pr(YKA
= YKB

|YKA
= y1) (343)

≥ Pr(KA=KB |YKA
=y1) (344)

=

∞∑
k=1

Pr(KA = KB = k|YKA
= y1) (345)

≥
N∑

k=1

Pr(KA = KB = k|YKA
= y1) (346)

=N Pr(KA = KB = 1|YKA
= y1) (347)

=
NQY (y1)

PA
Y (y1)

Pr(K2,A = K2,B = 1,K1,A = K1,B = 1|Y1 = y1) (348)

=
NQY (y1)

PA
Y (y1)

∫
Pr(K2,A = K2,B = 1,K1,A = K1,B = 1, Y2:N = y2:N |Y1 = y1)dy2:N (349)

=
NQY (y1)

PA
Y (y1)

∫
Pr(K2,A = K2,B = 1,K1,A = K1,B = 1|Y1:N=y1:N)QY (y2:N)dy2:N (350)

=
NQY (y1)

PA
Y (y1)

∫
Pr(K2,A=K2,B=1|Y1:N=y1:N)

× Pr(K1,A=K1,B=1|K2,A=K2,B=1, Y1:N=y1:N)QY (y2:N)dy2:N (351)

=
NQY (y1)

PA
Y (y1)

EY2:N∼QY (.)[Pr(K2,A=K2,B=1|Y1:N=y1:N)

× Pr(K1,A=K1,B=1|K2,A=K2,B=1, Y1:N=y1:N)] (352)

where (348) is due to the following fact that:

{KA = KB = 1, YKA
= y1} = {KA = KB = 1, Y1 = y1}, (353)

and thus:

Pr(KA = KB = 1|YKA
= y1) =

Pr(KA = KB = 1|Y1 = y1)QY (y1)

P (YKA
= y1)

(354)

=
Pr(KA = KB = 1|Y1 = y1)QY (y1)

PA
Y (y1)

(355)

(356)

Define:

Ẑ(PA
Y , y1:N) =

N∑
i=1

PA
Y (yi)

QY (yi)
, Ẑ(PB

Y , y1:N) =

N∑
i=1

PB
Y (yi)

QY (yi)
(357)

Now, we note that:

Pr(K2,A=K2,B=1|Y1:N=y1:N) (358)
= Pr(K2,A=1|Y1:N=y1:N) Pr(K2,B=1|Y1:N=y1:N ,K2,A = 1) (359)

=
PA
Y (y1)/QY (y1)∑N

i=1 P
A
Y (yi)/QY (yi)

Pr(K2,B=1|Y1:N=y1:N ,K2,A = 1) (360)

≥ PA
Y (y1)/QY (y1)

Ẑ(PA
Y , y1:N)

(
1 +

PA
Y (y1)

PB
Y (y1)

· Ẑ(PB
Y , y1:N)

Ẑ(PA
Y , y1:N)

)−1

, (361)

47

where we denote Ẑ(PA
Y , y1:N) =

∑N
i=1 P

A
Y (yi)/QY (yi) and the last inequality is due to Proposition

1 in [35]. Also:

Pr(K1,A(1)=K1,B(1)=1|K2,A=K2,B=1, Y1:N=y1:N) (362)

≥ min

(
Ẑ(PA

Y , y1:N)

Ẑ(PA
Y , y2:N) + ω

,
Ẑ(PB

Y , y1:N)

Ẑ(PB
Y , y2:N) + ω

)
(Since ω ≥ max

y

(
PA
Y (y)

QY (y)
,
PB
Y (y)

QY (y)

)
) (363)

≥
(

Ẑ(PA
Y , y1:N)

Ẑ(PA
Y , y2:N) + ω

)(
Ẑ(PB

Y , y1:N)

Ẑ(PB
Y , y2:N) + ω

)
, (364)

where we use the inequality min(a, b) ≥ ab for 0 ≤ a, b ≤ 1. Plug both in (352), we have:

Pr(KA=KB |YKA
=y1) (365)

≥EY2:N∼QY (.)

 1(
1 +

PA
Y (y1)

PB
Y (y1)

· Ẑ(PB
Y ,y1:N)

Ẑ(PA
Y ,y1:N)

) (N

Ẑ(PA
Y , y2:N)+ω

)(
Ẑ(PB

Y , y1:N)∑N
i=2 Ẑ(PB

Y , y2:N)+ω

)
=EY2:N∼QY (.)

 1(
1+

PA
Y (y1)

PB
Y (y1)

· Ẑ(PB
Y ,y1:N)

Ẑ(PA
Y ,y1:N)

)(
Ẑ(PA

Y ,y2:N)+ω

N

)(
Ẑ(PB

Y ,y2:N)+ω

Ẑ(PB
Y ,y1:N)

)
 (366)

≥
(
EY2:N∼QY (.)

[(
1+

PA
Y (y1)

PB
Y (y1)

· Ẑ(PB
Y , y1:N)

Ẑ(PA
Y , y1:N)

)(
Ẑ(PA

Y , y2:N)+ω

N

)(
Ẑ(PB

Y , y2:N)+ω

Ẑ(PB
Y , y1:N)

)])−1

(367)

=

(
EY2:N∼QY (.)

[
ζ1 +

PA
Y (y1)

PB
Y (y1)

ζ2

])−1

, (368)

where we use Jensen’s inequality for the convex function 1/x in line (367) and set:

ζ1 =

(
Ẑ(PA

Y , y2:N)+ω

N

)(
Ẑ(PB

Y , y2:N)+ω

Ẑ(PB
Y , y1:N)

)
(369)

=
Ẑ(PA

Y , y2:N) · Ẑ(PB
Y , y2:N)

NẐ(PB
Y , y1:N)

+
ω

N
· Ẑ(PA

Y , y2:N)

Ẑ(PB
Y , y1:N)

+
ω

N
· Ẑ(PB

Y , y2:N)

Ẑ(PB
Y , y1:N)

+
ω2

N · Ẑ(PB
Y , y1:N)

≤ 1

N
Ẑ(PA

Y , y2:N) +
ω

N
· Ẑ(PA

Y , y2:N)

Ẑ(PB
Y , y2:N)

+
ω

N
+

ω2

NẐ(PB
Y , y2:N)

, (370)

with the last inequality due to
∑N

i=1 zi ≥
∑N

i=2 zi for any positive z. We then have:

Ey2:N∼QY (.)[ζ1] (371)

≤ Ey2:N∼QY (.)

[
Ẑ(PA

Y , y2:N)

N
+

ω

N
· Ẑ(PA

Y , y2:N)

Ẑ(PB
Y , y2:N)

+
ω

N
+

ω2

NẐ(PB
Y , y2:N)

]
(372)

=
N − 1

N
+

ω

N
+

ω

N
Ey2:N∼QY (.)

[
Ẑ(PA

Y , y2:N)

Ẑ(PB
Y , y2:N)

]
+

ω2

N
Ey2:N∼QY (.)

[
1

Ẑ(PB
Y , y2:N)

]
(373)

≤ 1 +
1

N

(
ω + ωEy2:N∼QY (.)

[
Ẑ(PA

Y , y2:N)

Ẑ(PB
Y , y2:N)

]
+ ω2Ey2:N∼QY (.)

[
1

Ẑ(PB
Y , y2:N)

])
(374)

≤ 1 +
1

N

[
ω + ωIN (ω, 2)d2(QY ||PB

Y) +
ω2

N − 1
d2(QY ||PB

Y)

]
(375)

= 1 + µ1(N), (376)

where the last inequality is due to Proposition F.1 and Corollary F.3.. For the other term, we have:

48

ζ2 =

(
Ẑ(PB

Y , y1:N)

Ẑ(PA
Y , y1:N)

)(
Ẑ(PA

Y , y2:N)+ω

N

)(
Ẑ(PB

Y , y2:N)+ω

Ẑ(PB
Y , y1:N)

)
(377)

=
1

N

(
Ẑ(PA

Y , y2:N)

Ẑ(PA
Y , y1:N)

+
ω

Ẑ(PA
Y , y1:N)

)(
Ẑ(PB

Y , y2:N) + ω
)

(378)

≤ 1

N

(
1 +

ω

Ẑ(PA
Y , y2:N)

)(
Ẑ(PB

Y , y2:N) + ω
)

(379)

=
Ẑ(PB

Y , y2:N)

N
+

1

N

(
ω +

ωẐ(PB
Y , y2:N)

Ẑ(PA
Y , y2:N)

+
ω2

Ẑ(PA
Y , y2:N)

)
. (380)

where we again repeatly use the inequality
∑N

i=1 zi ≥
∑N

i=2 zi for any positive z. This gives us:

Ey2:N∼QY (.)[ζ2] (381)

≤ 1

N

(
ω + ωEy2:N∼QY ()

[
Ẑ(PB

Y , y2:N)

Ẑ(PA
Y , y2:N)

]
+ ω2Ey2:N∼QY ()

[
1

Ẑ(PA
Y , y2:N)

])
(382)

≤ 1

N

[
ω + ωIN (ω, 2)d2(QY ||PA

Y) +
ω2

N − 1
d2(QY ||PA

Y)

]
(383)

= µ2(N), (384)

where the last inequality is due to Proposition F.1 and Corollary F.3. This completes the proof.

F.5 Coefficients in Proposition F.5

We define the coefficient µcond
1 (N) and µcond

2 (N) in Proposition F.5.

µcond
1 (N) =

1

N

[
ω + ωIN (ω, 2)d2(QY ||P̃Y |Z(.|z)) +

ω2

N − 1
d2(QY ||P̃Y |Z(.|z))

]
(385)

µcond
2 (N) =

1

N

[
ω + ωIN (ω, 2)d2(QY ||PY |X(.|x)) + ω2

N − 1
d2(QY ||PY |X(.|x))

]
(386)

where we define IN (ω, i) ≜ (21N>i + ω1N=i) as in Proposition F.3.

F.6 Proof of Proposition F.5

We will use the global index for the proposals Y1, ...YN ∼ Q(.) instead of Y1,1, ...Y1,N unless
otherwise stated. For the communication version, we have:

Pr(YKA
= YKB

|YKA
= y1, X = x, Z = z) (387)

≥ Pr(KA=KB |YKA
=y1, X = x, Z = z) (388)

=

∞∑
k=1

Pr(KA = KB = k|YKA
= y1, X = x, Z = z) (389)

≥
N∑

k=1

Pr(KA = KB = k|YKA
= y1, X = x, Z = z) (390)

=N Pr(KA = KB = 1|YKA
= y1, X = x, Z = z) (391)

= N Pr(K1,A = K1,B = 1,K2,A = K2B = 1|YKA
= y1, X = x, Z = z) (392)

Define:

Ẑ(PY |X=x, y1:N) =

N∑
i=1

PY |X(yi|x)
QY (yi)

, Ẑ(P̃Y |Z=z, y1:N) =

N∑
i=1

P̃Y |Z(yi|z)
QY (yi)

(393)

49

Now consider the following terms:

E1 = Pr(K1,A = 1,K2,A = 1|YKA
= y1, Y2:N = y2:N , X = x, Z = z)

× P (Y2:N = y2:N |YKA
= y1, X = x, Z = z) (394)

=
1

PX,Y,Z(x, y1, z)
QY (y1:N)PX(x) Pr(K2,A = 1|Y1:N = y1:N , X = x)

× Pr(K1,A = 1|Y1:N = y1:N , X = x,K2,A = 1)PZ(z|Y1:N = y1:N , X = x,KA = 1) (395)

=
1

PX,Y,Z(x, y1, z)
QY (y1:N)PX(x) Pr(K2,A = 1|Y1:N = y1:N , X = x)

× Pr(K1,A = 1|Y1:N = y1:N , X = x,K2,A = 1)PZ|X,Y (z|X = x, Y = y1) (396)

=
QY (y1:N)

PY |X(y1|x)
Pr(K2,A = 1|Y1:N = y1:N , X = x)

× Pr(K1,A = 1|Y1:N = y1:N , X = x,K2,A = 1) (397)

=
QY (y1:N)

PY |X(y1|x)
PY |X(y1|x)/QY (y1)

Ẑ(PY |X=x, y2:N) + ωx

(398)

=
QY (y2:N)

Ẑ(PY |X=x, y2:N) + ωx

(399)

and:

E2 (400)
= Pr(K2,B = 1|KA = 1, Y1:N = y1:N , X = x, Z = z) (401)
= 1− Pr(K2,B ̸= 1|KA = 1, Y1:N = y1:N , X = x, Z = z) (402)

= 1− Pr

min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N)

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N)

∣∣∣∣∣KA = 1, Y1:N = y1:N , X = x, Z = z


(403)

= 1− Pr

min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N)

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N)

∣∣∣∣∣KA = 1, Y1:N = y1:N , X = x

 (404)

= 1− Pr

min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N)

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N)

∣∣∣∣∣K2,A = 1, Y1:N = y1:N , X = x

 (405)

≥
(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N)

Ẑ(PY |X=x, y1:N)

)−1

, (406)

where (404) is due to the Markov condtion Z − (X,Y)−W , (405) is due to the fact that the uniform
random variable U is independent of SN

1 and (406) is due to the conditional importance matching
lemma [35]. We note the following events are equivalent:

{KA = 1, Y1:N = y1:N , X = x, Z = z,K2,B = 1} (407)

≜

{
U ≤ Ẑ(PY |X=x, y1:N)

Ẑ(PY |X=x, y2:N) + ωx

, Y1:N = y1:N , X = x, YKA
= y1, Z = z

}
(408)

≜ E ∩ {Z = z} (409)

50

where E =
{
U ≤ Ẑ(PY |X=x,y1:N)

Ẑ(PY |X=x,y2:N)+ωx
, Y1:N = y1:N , X = x, YKA

= y1

}
. Then, we have:

E3 = Pr(K1,B = 1|KA = 1, Y1:N = y1:N , X = x, Z = z,K2,B = 1) (410)

= Pr

(
U ≤ Ẑ(P̃Y |Z=z, Y1:N)

Ẑ(P̃Y |Z=z, Y2:N) + ωz

∣∣∣∣∣E , Z = z

)
(411)

= Pr

(
U ≤ Ẑ(P̃Y |Z=z, Y1:N)

Ẑ(P̃Y |Z=z, Y2:N) + ωz

∣∣∣∣∣E
)

(412)

= min

(
1,

Ẑ(P̃Y |Z=z, Y1:N)

Ẑ(P̃Y |Z=z, Y2:N) + ωz

· Ẑ(PY |X=x, y2:N) + ωx

Ẑ(PY |X=x, y1:N)

)
, (413)

where the second to last equality is due to the Markov condition Z − (X,Y)−W .

Combining all three terms E1, E2, E3 and continue from step (392), we have:

Pr(YKA
= YKB

|YKA
= y1, X = x, Z = z) (414)

≥ N

∫
QY (y2:N)

Ẑ(PY |X=x, y2:N) + ωx

(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N)

Ẑ(PY |X=x, y1:N)

)−1

×min

(
1,

Ẑ(P̃Y |Z=z, Y1:N)

Ẑ(P̃Y |Z=z, Y2:N) + ωz

· Ẑ(PY |X=x, y2:N) + ωx

Ẑ(PY |X=x, y1:N)

)
dy2:N (415)

= N

∫
QY (y2:N)

Ẑ(PY |X=x, y1:N)

(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N)

Ẑ(PY |X=x, y1:N)

)−1

×min

(
Ẑ(PY |X=x, y1:N)

Ẑ(PY |X=x, y2:N) + ωx

,
Ẑ(P̃Y |Z=z, Y1:N)

Ẑ(P̃Y |Z=z, Y2:N) + ωz

)
dy2:N (416)

≥
∫

NQY (y2:N)

Ẑ(PY |X=x, y1:N)

(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N)

Ẑ(PY |X=x, y1:N)

)−1

×
(

Ẑ(PY |X=x, y1:N)

Ẑ(PY |X=x, y2:N) + ω
· Ẑ(P̃Y |Z=z, Y1:N)

Ẑ(P̃Y |Z=z, Y2:N) + ω

)
dy2:N (417)

with the last inequality follows the fact that ω > max(ωx, ωz). The rest of the proof follows similar
steps as in the proof of Proposition F.4. This completes the proof.

51

G ERS Matching with Batch Communication

Setup. We first describe the setup in the case where the selected batch index is communicated from
the encoder to the decoder. The main difference between this and the setup in Section 5.3 is that the
decoder (party B) will use the Gumbel-Max selection method instead of the ERS one, since it knows
which batch the encoder index belongs to. Furthermore, we note this scheme requires a noiseless
channel between the encoder and decoder, which is available in the distributed compression scenario.
Similarly to Section 3.2.2, let (X,Y, Z) ∈ X × Y × Z with a joint distribution PX,Y,Z . We use the
same common randomness W as in Section 5.3, with the proposal distribution QY requiring that the
bounding condition hold for the tuple (PY |X=x, QY). The protocol is as follows:

1. The encoder receives the input X = x ∼ PX and selects its value using ERS procedure:

KA = ERS(W ;PY |X=x, QY), (418)

and sends the batch index K1,A to the decoder. It then sets YA = YKA

2. Given X = x, YA = y, we generate Z = z ∼ PZ|X,Y (.|x, y) and note that the Markov
chain Z − (X,YA)−W holds.

3. The decoder receives the batch index K1,A and Z = z will use the Gumbel Max process to
queries a sample from the common randomness W :

K1,B = K1,A K2,B = Gumbel(BK1,A
; P̃Y |Z=z, QY) KB = (K1,B − 1)N +K2,B ,

and output YB = YKB
. The procedure Gumbel(.) corresponds to Step 1,2 in Algoirhm 1.

Given the above setup, we have the following bound on the matching event {YA = YB}:

Proposition G.1. Let KA,KB , PY |X(.|X = x) and P̃Y |Z(.|z) defined above and set PA
Y =

PY |X=x, P
B
Y = P̃Y |Z=z . For N ≥ 2, we have:

Pr(YA = YB |YA = y,X = x, Z = z) ≥
(
1+µ′

1(N)+
PA
Y (y)

PB
Y (y)

(1 + µ′
2(N))

)−1

, (419)

where µ′
1(N) and µ′

2(N) are defined as in Appendix G.1 and we note that µ′
1(N), µ′

2(N) −→ 0 as
N −→ ∞ with rate N−1under mild assumptions on the distributions PY |X(y|x) and QY (.).

Proof. See Appendix G.2.

G.1 Coefficients in Proposition G.1

We define the coefficient µ′
1(N) and µ′

2(N) in Proposition G.1.

µ′
1(N) =

3ω

N
(420)

µ′
2(N) =

ω

N
IN (ω, 2)d2(QY ||PY |X=x) (421)

where we define IN (ω, i) ≜ (21N>i + ω1N=i) as in Proposition F.3 and ω = maxy
PY |X(y|x)

QY (y) .

G.2 Proof of Proposition G.1

We now formally prove the bound Proposition G.1. First, we define:

Ẑ(PY |X=x, y1:N) =

N∑
i=1

PY |X(yi|x)
QY (yi)

, Ẑ(P̃Y |Z=z, y1:N) =

N∑
i=1

P̃Y |Z(yi|z)
QY (yi)

(422)

52

Recall that K2,A is the local index within the selected batch by party A and YK1,A,1:N are the samples
within the selected batch, we have:

Pr(YA = YB |YA = y1, X = x, Z = z) (423)
= Pr(YKA

= YKB
|YKA

= y1, X = x, Z = z) (424)
≥ Pr(K2,A = K2,B |YKA

= y1, X = x, Z = z) (425)

=

N∑
i=1

Pr(K2,A = K2,B = i|YKA
= y1, X = x, Z = z) (426)

= N Pr(K2,A = K2,B = 1|YKA
= y1, X = x, Z = z) (Due to Symmetry) (427)

= N Pr(K2,A = K2,B |YKA
= y1,K2,A = 1, X = x, Z = z)

nothinghere× Pr(K2,A = 1|YKA
= y1, X = x, Z = z) (428)

= Pr(K2,A = K2,B |YKA
= y1,K2,A = 1, X = x, Z = z) (429)

=

∫ ∞

−∞
P (YK1,A,2:N = y2:N |YKA

= y1,K2,A = 1, X = x, Z = z)

× Pr(K2,A = K2,B |YKA
= y1,K2,A = 1, YK1,A,2:N = y2:N , X = x, Z = z)dy2:N , (430)

where (429) is due to Pr(K2,A = 1|YKA
= y1, X = x, Z = z) = N−1. Let Y1:N ∼ Q are N i.i.d.

proposal samples, then {YKA,1:N = y1:N} = {Y1:N = y1:N , A accepts Y1:N} and we have:

Pr(K2,A = K2,B |YKA
= y1,K2,A = 1, YK1,A,2:N = y2:N , X = x, Z = z) (431)

= 1− Pr(K2,B ̸= 1|YK1,A,1:N = y1:N ,K2,A = 1, YKA
= y1, X = x, Z = z)

= 1− Pr(min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N)

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N)

|Y1:N = y1:N , A selects 1st index,

A accepts Y1:N , YKA
= y1, X = x, Z = z) (432)

= 1− Pr(min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N)

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N)

|Y1:N = y1:N , A selects 1st index,

A accepts Y1:N , YKA
= y1, X = x) (433)

= 1− Pr

min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N)

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N)

|Y1:N = y1:N , A selects 1st index, X = x


(434)

≥
(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N)

Ẑ(PY |X=x, y1:N)

)
, (435)

where (433) is due to Markov property Z − (X,Y)−W ,i.e. Z has no effects on the statistics of the
exponential random variables. Line (434) is due to the fact that conditioning on A selected the 1st
index, whether A selects Y1:N or not depends only on U . The final inequality is due to conditional
matching lemma from [35].

Recall that ω = maxy
PY |X(y|x)

QY (y) , we have:

P (YK1,A,2:N = y2:N |YKA
= y1,K2,A = 1, X = x, Z = z) (436)

= P (YK1,A,2:N = y2:N |YKA
= y1,K2,A = 1, X = x) (437)

=
P̄Y,K2,A|X(y1:N , 1|x)
PY |X(y1|x)N−1

(438)

=
NQY (y2:N)

∆PY |X=x
(Ẑ(PY |X=x, y2:N) + ω)

(439)

where P̄Y,K2,A|X(y1:N , 1|x) is the ERS target distribution (151) where we use PY |X(.|x) as the
target distribution and ∆PY |X=x

< 1 is the normalized constant. We now shorthand PA
Y ≜ PY |X=x ,

53

PB
Y ≜ P̃ (Y |Z = z) and ∆PA

Y
≜ ∆PY |X=x

, and combining the two expressions, we have:

Pr(YA = YB |YA = y1, X = x, Z = z) (440)

≥ EY2:N∼QY

 N

(Ẑ(PA
Y , y2:N) + ω)∆PA

Y

(
1 +

PA
Y (y1)

PB
Y (y1)

Ẑ(PB
Y ,y1:N)

Ẑ(PA
Y ,y1:N)

)
 (441)

≥ EY2:N∼QY

 N

(Ẑ(PA
Y , y2:N) + ω)

(
1 +

PA
Y (y1)

PB
Y (y1)

Ẑ(PB
Y ,y1:N)

Ẑ(PA
Y ,y1:N)

)
 (Since ∆PA

Y
≤ 1) (442)

≥
(
EY2:N∼QY

[
(Ẑ(PA

Y , y2:N) + ω)

N

(
1 +

PA
Y (y1)

PB
Y (y1)

Ẑ(PB
Y , y1:N)

Ẑ(PA
Y , y1:N)

)])−1

(By Jensen’s Inequality)

(443)

Since:

EY2:N∼QY

[
Ẑ(PA

Y , y2:N) + ω

N

]
≤ N − 1

N
+

ω

N
(444)

and:

EY2:N∼QY

[(
Ẑ(PA

Y , y2:N) + ω

N

)
Ẑ(PB

Y , y1:N)

Ẑ(PA
Y , y1:N)

]
(445)

= EY2:N∼QY

[
Ẑ(PA

Y , y2:N)

N

Ẑ(PB
Y , y1:N)

Ẑ(PA
Y , y1:N)

+
ω

N

Ẑ(PB
Y , y1:N)

Ẑ(PA
Y , y1:N)

]
(446)

≤ N − 1

N
+

PB
Y (y1)/QY (y1)

N
+

ω

N
EY2:N∼QY

[
Ẑ(PB

Y , y1:N)

Ẑ(PA
Y , y1:N)

]
(447)

where we have:

EY2:N∼QY

[
Ẑ(PB

Y , y1:N)

Ẑ(PA
Y , y1:N)

]
= EY2:N∼QY

[
PB
Y (y1)/QY (y1)

Ẑ(PA
Y , y1:N)

+
Ẑ(PB

Y , y2:N)

Ẑ(PA
Y , y1:N)

]
(448)

≤ EY2:N∼QY

[
PB
Y (y1)/QY (y1)

PA
Y (y1)/QY (y1)

]
+ EY2:N∼QY

[
Ẑ(PB

Y , y2:N)

Ẑ(PA
Y , y2:N)

]
(449)

≤ PB
Y (y1)

PA
Y (y1)

+ IN (ω, 2)d2(QY ||PA
Y) (450)

Then, combining (450) into (447), then combine with (444) into the term (443), we have:
Pr(YA = YB |YA = y1, X = x, Z = z) (451)

≥
(
1+

ω

N
+
PA
Y (y1)

PB
Y (y1)

(
N−1

N
+
PB
Y (y1)/QY (y1)

N
+

ω

N

(
PB
Y (y1)

PA
Y (y1)

+IN (ω, 2)d2(QY ||PA
Y)

)))−1

(452)

=

(
1+

ω

N
+
PA
Y (y1)

PB
Y (y1)

(
N−1

N
+
PB
Y (y1)/QY (y1)

N
+

ω

N

(
PB
Y (y1)

PA
Y (y1)

+IN (ω, 2)d2(QY ||PA
Y)

)))−1

(453)

≥
(
1 +

3ω

N
+

PA
Y (y1)

PB
Y (y1)

(
1 +

ω

N
IN (ω, 2)d2(QY ||PA

Y)
))−1

(454)

=

(
1 + µ′

1(N) +
PA
Y (y1)

PB
Y (y1)

(1 + µ′
2(N))

)−1

, (455)

where we repeatly use the fact that PA
Y (y)/QY (y) ≤ ω. This completes the proof.

54

H Proof of Proposition 5.6

Algorithm 2: Wyner-Ziv Distributed Compression Protocol

1

Encoder: Receives X = x and W , performs:
1. Select KA = ERS(W ;PY ′|X=x, QY ′); 2. Sends (K1,A, VKA

) to the decoder.
Decoder: Receives Z = (VKA

,K1,A, X
′) and W , performs:

1. Keep batch K1,A; 2. Remove all j where VK1,A,j ̸= VKA
; 3. Select KB with PY ′|X′=x′ .

Main Proof. We remind the protocol in Algorithm 2. The encoder and decoder’s target distribution
for this case are:

PA
Y (y, v) = PY |X(y|x)PV (v) PB

Y (y, v) = PY |X′(y|x)IV (v) (456)

For a sufficient large batch size N and apply Proposition G.1, we have:

Pr(Y ′
KA

̸= Y ′
KB

|(Y ′
KA

, VKA
) = (y′, v), X = x, Z = (x′, v)) (457)

= Pr((Y ′
KA

, VKA
) ̸= (Y ′

KB
, VKB

)|(Y ′
KA

, VKA
) = (y′, v), X = x, Z = (x′, v)) (458)

≤ 1−
(
1 + ϵ+

PY ′|X(y′|x)PV (v)

PY ′|X′(y′|x′)Iv(v)
(1 + ϵ)

)−1

(459)

≤ 1−
(
1 + ϵ+ V−1(1 + ϵ)

PY ′|X(y′|x)
PY ′|X′(y′|x′)

)−1

(460)

= 1−
(
1 + ϵ+ V−1(1 + ϵ)

PY ′|X(y′|x)
P ′
Y (y

′)

P ′
Y (y

′)

PY ′|X′(y′|x′)

)−1

(461)

= 1−
(
1 + ϵ+ V−1(1 + ϵ)2iY ′;X(y′;x)−iY ′;X′ (y′;x′)

)−1

(462)

Finally, taking the expectation of both sides yields the final result.

Coding Cost. In terms of the bound on r, recall the following bound on batch acceptance probability:

∆ = EY1:N∼PY (.)

[
N

Z̄(1, Y ′
1:N)

]
≥ N

EY ′
1:N∼PY (.)[Z̄(1)]

=
N

N − 1 + ω
(463)

Here for N = ω, we have ∆ > 1
2 and thus the chunk size L = ⌊∆−1⌋ in the ERS coding scheme is 1

and thus do not need to send K̂1. Using the fact that E[logL] ≤ 1, we have r ≤ H[L] + 1 = 4bits
by entropy coding with Zipf distribution [28].

Compressing Multiple Samples. When compressing n samples jointly, let the rate per sample
(without the overhead for batch communication) be r′ where log(V) = nr′ consider the following
approximation:

n∑
i=1

i(y′i;xi)− i(y′i;x
′
i) ≈ nI(X;Y ′|X ′),

Then we have:

2
∑n

i=1[i(y
′
i;xi)−i(y′

i;x
′
i)]−log(V) ≈ 2nI(X;Y ′|X′)−log(V) (464)

= 2n(I(X;Y ′|X′)−r′), (465)

and thus, if r′ > I(X;Y ′|X ′), by increasing n we reduces the mismatching probability while
maintaining the compression rate per sample. We visualize this in the experimental results with
N = 219 in Figure 9.

55

0 1 2 3 4 5 6
Rate (bits)

0.4

0.6

0.8

1.0

M
at

ch
in

g
P

ro
b

ab
ili

ti
es

d = 1

d = 2

d = 3

Figure 9: Matching Probabilities with N = 219 and jointly compressing 1, 2, 3 i.i.d. samples
respectively. Target distortion σ2

Y ′|X = 0.008 for every samples.

I Feedback Scheme

In distributed compression, decoding errors can lead to significant average reconstruction distortion.
To address this, feedback communication from the decoder can be employed to correct errors and
enhance rate-distortion performance, as proposed in [35]. The feedback mechanism is identical for
both ERS and IML, except that ERS additionally transmits the batch index to the decoder.

We recall that K1,A and K2,A denote the batch index and local index, respectively, of samples
selected by party A through the ERS sample selection. On the other hand, party B uses Gumbel-Max
selection process to output its selected local index K2,B within the K1,A batch, then the ERS process
can be described as follows:

1. Index Selection. After transmitting the batch index K1,A, the encoder sends the log2(V)
least significant bits (LSB) of the selected index K2,A to the decoder.

2. Decoding and Feedback. The decoder outputs K2,B and sends the log2(N/V) most signifi-
cant bits (MSB) of KB to the encoder.

3. Re-transmission. Based on the received MSB feedback, if the index is correct, the encoder
responds with an acknowledgment bit, say 1. Otherwise, it sends 0 along with the MSB of
its selection to the decoder.

We note that, in this context, using LSB instead of random bits in step 1 does not yield a noticeable
difference in performance. For the rate-distortion analysis, the rate is computed based on the
total length of messages transmitted during index selection and re-transmission, including any
acknowledgment messages. However, the rate of the feedback message is excluded from this
calculation, which can be justified in scenarios with asymmetric communication costs in the forward
and reverse directions, such as in wireless channels.

J Neural Contrastive Estimator

In our ERS scheme, the selection rule requires estimating the following ratio at the decoder side:

K̃B = argmin
1≤k≤N

Sik

PY |X′ (y|x′)IV (v)

QY (Yik)V−1

, where i = K1,A, (466)

where the normalization term can be ignored as it is the same for every sample in the batch K1,A.
Our goal is to learn the ratio PY |X′(Yik|x′)/QY (Yik) from data. In particular, we can access the data
samples from the joint distribution PX,Y,X′ .

To this end, we construct a binary neural classifier h′(y, x′) = 1
1+exp[−h(y,x′)] which classifies if the

input (y, x′) is distributed according to the marginal distribution QY (.)×PX′(.) (positive samples) or
the joint PY,X′ (negative samples). Once converged, we can use the logits value h(y, x′) to compute
the log of the ratio of interest [22]. In particular:

h(y, x′) ≈ − log
PY |X′(Yik|x′)

QY (y)
(467)

56

This allows us to estimate the ratio without needing to obtain the exact ratio’s value. Finally, to
generate the positive samples, we simply generate Y ∼ QY (.) and get a random X ′ from the training
data. For negative samples, we generate the data according to the Markov sequence X ′ −X − Y .
The ratio between the two labels should be the same.

K Distributed Compression with MNIST

K.1 Training Details

β-VAE Architecture. We adopt a setup similar to [35]. Our neural encoder-decoder model comprises
an encoder network y = enc(x), a projection network proj(x′), and a decoder network x̂ =
dec(y,proj(x′)), as detailed in Table 1. The encoder network converts an image into two vectors
of size 3 (total 6D output), with the first vector representing the output mean µ(x) and the second
representing the output variance σ2(x). Here, we define pY |X(.|x) = N (µ(x), σ2(x)) and use the
prior distribution pY (.) = N (0, 1). At the decoder side (party B), the projection network first
maps the side information image X ′ to a 128-dimensional vector, which is then combined with a
3-dimensional vector from the encoder. This concatenated vector is input to the decoder network,
producing a reconstructed output of size 28× 28.

Table 1: Architecture of the encoder, projection network, and decoder for distributed MNIST image
compression. Convolutional and transposed convolutional layers are denoted as “conv” and “upconv,”
respectively, with specifications for the number of filters, kernel size, stride, and padding. For
“upconv,” an additional output padding parameter is included.

(a)Encoder
Input 28× 28× 1

conv (128:3:1:1), ReLU
conv (128:3:2:1), ReLU
conv (128:3:2:1), ReLU

Flatten
Linear (6272, 512), ReLU

Linear (512, 6)

(b)Projection Network
Input 14× 14× 1

conv (32:3:1:1), ReLU
conv (64:3:2:1), ReLU

conv (128:3:2:1), ReLU
Flatten

Linear (2048, 512), ReLU
Linear (512, 128)

(c)Decoder Network
Input-(3+128)

Linear-(132, 512), ReLU
upconv (64:3:2:1:1), ReLU
upconv (32:3:2:1:1), ReLU

upconv (1:3:1:1), Tanh

Loss Function We train our β-VAE network by optimizing the following rate-distortion loss function:

L = β(X − X̂)2 + EX [DKL(pY |X(.|v)||pY (.))] (468)

where we vary β for different rate-distortion tradeoff.Each model is trained for 30 epochs on
an NVIDIA RTX A4500, requiring approximately 30 minutes per model. We use random hor-
izontal flipping and random rotation within the range ±15o. We use the following values of
β ∈ {0.225, 0.28, 0.31, 0.4} that corresponds to the target distortions {6.6, 6.3, 6.1, 5.8} × 10−2 in
Figure 6.

Neural Contrastive Estimator Network. The neural estimator network comprises two subnetworks.
The first subnetwork projects the side information into a 128-dimensional embedding. The second
subnetwork combines this 128D embedding with a 4D embedding, derived from either pY |X or the
prior pY , and outputs the probability that X ′, Y originate from the joint or marginal distributions.
The model is trained for 100 epochs.

Table 2: Neural Estimator Networks for Distributed Image Compression.
(a)Projection Network

Input 14× 14× 1
conv (32:3:1:1), ReLU
conv (64:3:2:1), ReLU

conv (128:3:2:1), ReLU
Flatten

Linear (2048, 512), ReLU
Linear (512, 128)

(b) Combine and Classify
Input 128 + 3

Linear (132, 128), l-ReLU
Linear (128,128), l-ReLU
Linear (128,128), l-ReLU

Linear (128, 1)

57

Rate (bits/image) Model Embedding MSE Pixel MSE
8.75 Gaussian Regressor 0.7300 0.0696

ERS (NCE) 0.6024 0.0683
9.60 Gaussian Regressor 0.5260 0.0660

ERS (NCE) 0.4807 0.0647
10.10 Gaussian Regressor 0.4310 0.0638

ERS (NCE) 0.3616 0.0623
10.60 Gaussian Regressor 0.3600 0.0626

ERS (NCE) 0.2930 0.0606

Table 3: Comparison of Gaussian regressor vs. ERS (with NCE) under different rates. Distortion is
reported as MSE (lower is better).

logV N N∗ Target dB
9.6 0.6e6 1.0e6 −21.5dB
10.6 0.7e6 1.1e6 −22dB
11.6 0.8e6 1.5e6 −22.5dB
12.6 1.04 1.6e6 −23dB

Table 4: Details for ERS Gaussian Experiment in Figure 5 (right)

K.2 Decoder Estimation with Neural Contrastive Estimator: Gaussian Assumption for PML

In our experiment, the decoder uses a NCE to directly estimate the likelihood ratio without assuming
a specific form—such as Gaussian—for the posterior. Consequently, computing the local constant
needed for PML becomes intractable. If we instead assume a Gaussian form, PML becomes feasible;
however, our experimental results show that this assumption introduces a mismatch that worsens the
rate–distortion tradeoff.

Table 3 reports the distortion results across different rates. Here, Embedding MSE refers to the
error measured with respect to the encoder’s neural network output, while Pixel MSE captures the
distortion at the image level. Lower values indicate better performance.

L Wyner-Ziv Gaussian Experiment

In Figure 5 (left), the batch size of ERS are N ∈ {219, 220} respectively for the average number of
proposals N∗ ∈ {1.1, 1.6} × 106. For Figure 5 (right), details for ERS are shown in Table 4.

M Additional Experiment on CIFAR-10 Dataset

We conduct experiments on the CIFAR-10 dataset and compare our method with implicit neural
representations [20], the quantization approach [2], and the IML [35]. We use Mean Squared Error
(MSE) as the distortion metric across all schemes, where lower values indicate better performance.
Our approach consistently achieves lower distortion by leveraging side information within the
encoding scheme.

Table 5: Comparison of distortion (MSE) on CIFAR-10 at different rates (bits/image). Lower is
better.

Rate (bits/image) Ballé et al. [2] RECOMBINER [20] IML [35] ERS Ours
∼ 9 0.0972 0.0968 0.0711 0.0703
∼ 10 0.0915 0.0912 0.0668 0.0659
∼ 11 0.0802 0.0810 0.0621 0.0606

58

	Introduction
	Related Work
	Problem Setup
	Channel Simulation
	Distributed Matching
	Distributed Matching Without Communication
	Distributed Matching With Communication

	Bounding Condition

	Rejection Sampling
	Ensemble Rejection Sampling
	Background
	Channel Simulation with ERS
	Distributed Matching Probabilities
	Lossy Compression with Side Information

	Experiments
	Synthetic Gaussian Sources
	Distributed Image Compression

	Conclusion
	Runtime of ERS.
	Coding Cost of Standard Rejection Sampling
	Extension of braverman2014public's Method for Continuous Setting
	The Sorting Method
	Proof for Inequality (40)
	Proof for Inequality (46)

	Overall Coding Cost.

	Matching Probability of Rejection Sampling
	Distributed Matching Probabilities of RS
	Proof.

	Comparision with Poisson Matching Lemma

	Greedy Rejection Sampling.
	Coding Cost
	Matching Probability in Greedy Rejection Sampling

	ERS Coding Scheme
	Prelimaries
	Encoding K1.
	Coding Cost of L
	Coding Cost of 1

	Encoding K2.
	Total Coding Cost of K
	Bound on E1
	Proof of Inequality (164)

	ERS Matching Lemmas
	Preliminaries
	Distributed Matching Without Batch Communication
	Coefficients in Proposition F.4
	Proof of Proposition F.4
	Coefficients in Proposition F.5
	Proof of Proposition F.5

	ERS Matching with Batch Communication
	Coefficients in Proposition G.1
	Proof of Proposition G.1

	Proof of Proposition 5.6
	Feedback Scheme
	Neural Contrastive Estimator
	Distributed Compression with MNIST
	Training Details
	Decoder Estimation with Neural Contrastive Estimator: Gaussian Assumption for PML

	Wyner-Ziv Gaussian Experiment
	Additional Experiment on CIFAR-10 Dataset

