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Abstract

We present an empirical study of adapting001
an existing pretrained text-to-text model for002
long-sequence inputs. Through a comprehen-003
sive study along three axes of the pretraining004
pipeline – model architecture, optimization ob-005
jective, and pretraining corpus, we propose an006
effective recipe to build long-context models007
from existing short-context models. Specifi-008
cally, we replace the full attention in transform-009
ers with pooling-augmented blockwise atten-010
tion, and pretrain the model with a masked-011
span prediction task with spans of varying012
lengths. In terms of the pretraining corpus, we013
find that using randomly concatenated short-014
documents from a large open-domain corpus015
results in better performance than using exist-016
ing long document corpora, which are typically017
limited in their domain coverage. With these018
findings, we build a long-context model that019
achieves competitive performance on long-text020
QA tasks and establishes the new state of the art021
on five long-text summarization datasets, often022
outperforming previous methods with larger023
model sizes.024

1 Introduction025

NLP applications like summarization and question026

answering often require processing long text se-027

quences. While there have been tremendous em-028

pirical breakthroughs (Vaswani et al., 2017; Devlin029

et al., 2019) from large pretrained language models030

(PLMs), most of these successes have been con-031

fined to short-context tasks (Rajpurkar et al., 2016;032

Wang et al., 2019). On long-context NLP bench-033

marks (Kočiský et al., 2018; Zhong et al., 2021;034

Pang et al., 2022b), where the input sequences are035

often longer than 10,000 tokens, there is still a sig-036

nificant gap between human performance and the037

state-of-the-art models.038

Extending the success of PLMs to long texts039

is nontrivial for the following reasons. First, the040

quadratic complexity of self-attention makes it pro-041

hibitive to directly apply full-attention to long se- 042

quences. Any long-range architecture needs to be 043

computationally efficient and at the same time cap- 044

ture long-distance dependency.1 Second, the train- 045

ing objectives used by existing PLMs have largely 046

focused on short text and have not been well- 047

studied for long-context scenarios. For instance, 048

BART (Lewis et al., 2020) pretraining involves re- 049

constructing the whole corrupted input sequence, 050

which is impractical for long sequences given the 051

computational overhead of decoder-side attention. 052

Additionally, while abundant short documents can 053

be easily collected from web dumps to pretrain 054

short-context models that work well across differ- 055

ent domains, long documents are much scarcer and 056

are often collected from specific domains as books 057

or movie scripts (Gao et al., 2021). It is unknown 058

whether the existing corpora are more effective 059

for pretraining a versatile long-context model com- 060

pared to using artificially constructed long texts. 061

In this work, we conduct a thorough experi- 062

mental study to find a recipe for building high- 063

performing long-context models. In contrast to a 064

recent work (Guo et al., 2022) that pretrains a long- 065

context model from scratch, we choose to adapt an 066

existing short-text model for long texts with further 067

pretraining. Our empirical results demonstrate the 068

effectiveness of this strategy by achieving stronger 069

performance on various downstream tasks, while 070

saving on the high cost of pretraining from scratch. 071

More specifically, we explore three axes of the 072

pretraining pipeline, namely efficient long-range 073

model architectures, long text corpora creation and 074

the choice of pretraining objectives. Our main find- 075

ings are summarized as follows: 076

1) Among long-range mechanisms, such as 077

1While there exists a long list of efficient attention vari-
ants (Tay et al., 2020), their efficacy is only validated in syn-
thetic or small-scale experiments and it is unknown whether
these variants are scalable and suitable for large-scale pre-
training for natural language (Xiong et al., 2022; Tay et al.,
2022).
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global tokens and sliding-window attention, we078

find a simple pooling-augmented blockwise atten-079

tion to be the most effective choice for various080

tasks.081

2) For the pretraining corpus, we surprisingly082

find that using randomly concatenated documents083

from a large open-domain corpus (CommonCrawl)084

performs better than using existing long-document085

corpora such as book collections.086

3) We experiment with various pretraining ob-087

jectives including standard masked-span predic-088

tion (Raffel et al., 2020), primary sentence predic-089

tion (Zhang et al., 2020), and a novel model-based090

span prediction objective. While we find all of091

these objectives can bring gains over models that092

are not pretrained on long texts, we consider the093

masked-span prediction objective (using both short094

and long spans) remains as the best choice, thanks095

to its simplicity and balanced effectiveness on both096

short- and long-output tasks.097

Using these findings, we build a strong long-098

context text-to-text model that establishes new099

state-of-the-art on five long-text summarization100

tasks (with > 10% relative ROUGE-2 improve-101

ments on three of the datasets) and achieves com-102

petitive performance on long-text QA tasks despite103

its modest size.104

2 Model and Data105

2.1 Efficient Models for Long Sequences106

Our model is based on a standard transformer with107

block-sparse self-attentions (Zaheer et al., 2020)108

on the encoder side. While various new architec-109

tures (Wang et al., 2020; Choromanski et al., 2021;110

Lei, 2021; Gu et al., 2021) have been proposed,111

we stick to the simple architecture for the follow-112

ing reasons: 1) it makes it easy to reuse existing113

pretraining pipelines, which are often highly op-114

timized specifically for vanilla transformers, e.g.,115

learning rate schedules, normalization layers, opti-116

mizers; 2) using local attentions, where each token117

attends to only tokens in the local context, allows118

our model to reuse all the model parameters from119

existing PLMs, while other attention variants use120

different parameterizations that prohibit inheriting121

the weights of an existing pretrained model.122

In addition to block attention, we investigate123

three mechanisms that enable long-range connec-124

tions in the encoder:125

1) Global-token mechanism: Previous work126

(Guo et al., 2022; Zaheer et al., 2020; Beltagy et al.,127

Figure 1: The pooling augmented self-attention layer.
The pooling attention parameters marked separately are
newly introduced and randomly initialized.

2020) has proposed augmenting block-sparse atten- 128

tion with a small set of “global tokens” that attend 129

to the entire sequence and hence enable long-range 130

interactions in the encoder. Specifically, we mark 131

the first 64 tokens in each attention block as global 132

tokens and share the projection matrices for both 133

the global and regular tokens. This mechanism 134

has proven effective in encoder-only models, espe- 135

cially for question answering tasks as shown by the 136

aforementioned methods. 137

2) Overlapping (strided) attention windows: 138

Sliding-attention with overlap is a straightforward 139

way to introduce long-range connections in local 140

attention models. As we stack the layers in the 141

encoder, the receptive field of each token would in- 142

crease exponentially. For example, (Beltagy et al., 143

2020) use the stride of one token and each token 144

attends to an equal number of tokens from both 145

sides. We develop a simpler and faster block-wise 146

version which makes the parallelization easier to 147

implement; namely, tokens in each block will at- 148

tend to all the tokens inside the block, and half of 149

the tokens from its immediate left and right blocks. 150

3) Pooling layers: Recent work (Zhang et al., 151

2021; Pang et al., 2022a) has explored using pool- 152

ing operations to reduce the number of key and 153

value states in transformers. We implement a sim- 154

pler version that only requires standard average 155
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pooling operations. All illustration of the pooling-156

augmented attention layer is shown in Figure 1.157

Specifically, in the top n layers of the transformer158

encoder, we add a second attention module which159

takes as input the hidden states output by the ith160

block self-attention layer Xi ∈ RL×h, where L is161

the sequence length and h is the size of the hidden162

states. As in the vanilla attention layers, Xi is first163

projected to create the key, query, value matrices164

Qp
i ,K

p
i ,V

p
i ∈ RL×h.2 We first average pool the165

Kp
i and Vp

i sequences, with a fixed kernel/stride166

size, into smaller lengths Ṽp
i , K̃p

i ∈ RL̃×h, where167

L̃ ≪ L. We then apply standard attention using168

Qp
i , K̃p

i and Ṽp
i resulting in O(L× L̃) complexity.169

The output of the pooling layers is added with Xi170

to form a residual connection.171

We compare these variants via the performance172

on downstream long-sequence tasks in Sec 3.2.173

2.2 Pretraining Corpus174

The choice of the corpus has a significant impact175

on the downstream results. We consider long176

documents from formal text domains, including177

Books3 (Gao et al., 2021), STORIES (Trinh and Le,178

2018), RealNews (Zellers et al., 2019); and long179

dialogues including MediaSum (Zhu et al., 2021)180

and OpenSubtitles (Tiedemann, 2016). While col-181

lecting a long-document corpus seems to be a nat-182

ural choice for long-sequence downstream tasks,183

as they are more likely to include long-range de-184

pendencies than common short texts on the inter-185

net, pretraining only on these datasets also brings186

the risk of overfitting to specific domains, instead187

of achieving consistent gains on a range of tasks.188

Thus, we also consider a general-domain corpus189

– C4 as used by T5 (Raffel et al., 2020). Addi-190

tionally, instead of using randomly concatenated191

sequences, we also tried to concatenate semanti-192

cally similar C4 documents (using similarity metric193

learned by dense retrieval models) with the hope194

that the model can learn to capture more long-range195

dependencies across relevant documents. We dis-196

cuss the effects of these corpus variants in Sec 3.3.197

2.3 Pretraining Objectives198

A variety of self-supervised pre-training objectives199

have been proposed for sequence-to-sequence mod-200

els (Lewis et al., 2020; Raffel et al., 2020; Guo201

et al., 2022). In the long document setting, we202

2The projection layers to create these matrices are not used
in existing pretrained models and will be randomly initialized
before further pretraining

ideally seek an objective that promotes long-range 203

reasoning ability in the model. We investigate the 204

following different pretraining objectives and the 205

effect of input length during pretraining. 206

1) T5 Span Denoising: Applying BART’s de- 207

noising objective to long sequences is computa- 208

tionally expensive as it requires reconstructing 209

the entire input and incurs significant computa- 210

tion overhead on the decoder-side attention. More- 211

over, reconstructing the entire input would be at 212

odds with most downstream tasks such as question- 213

answering and summarization, which require gener- 214

ating shorter text. Thus, we adopt T5-style denois- 215

ing for pretraining our model, i.e., we randomly 216

pick a set of spans in the input sequence as the de- 217

coding target and mark them with special sentinel 218

tokens. The model is then trained to generate the 219

uncorrupted spans. This objective is readily appli- 220

cable to long documents as we can control both the 221

length and the number of spans. We experiment 222

with both fixed span lengths as in (Raffel et al., 223

2020), and also mixed span lengths with both short 224

and long spans, with which we hope the model is 225

able to perform well on a range of tasks requiring 226

differing output lengths. 227

2) Pegasus – Primary Sentence Prediction: 228

Originally proposed for summarization pretrain- 229

ing in (Zhang et al., 2020) and recently used for 230

long documents by Guo et al. (2022), this objective 231

identifies and masks out a set of principle sentences, 232

i.e., sentences with a high ROUGE score with the 233

rest of the document. The model is then trained 234

to generate these principle sentences. The output 235

length can be controlled by choosing the number 236

of principle sentences to mask. 237

3) Model-based Denoising: Apart from ran- 238

domly selecting the decoding targets, we also ex- 239

plore a novel model-based objective. Here we use 240

a separate encoder-only model (with local atten- 241

tion) to select decoding targets for the sequence- 242

to-sequence model. This approach is inspired by 243

ELECTRA (Clark et al., 2020) and we hope the 244

prediction loss of the encoder-only model can be 245

a good proxy to select spans that require long- 246

range dependencies to predict. Specifically, we 247

first mask a larger number of tokens (5,120 tokens 248

instead of 1,024) in the input sequence. We then 249

apply an encoder-only masked language model to 250

recover the masked spans. Based on the losses of 251

the masked language model, we only keep the top 252

20% hard spans to train the text-to-text model. The 253
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encoder-only model can either be frozen or jointly254

trained with the sequence-to-sequence model.255

3 Experiments256

3.1 Downstream Tasks & Finetuning Setup257

We evaluate the models on six summarization258

datasets and four QA datasets. The summariza-259

tion datasets are from formal domains, includ-260

ing GovReport (Huang et al., 2021), ArXiv &261

PubMed (Cohan et al., 2018) and BookSum Chap-262

ters (Kryściński et al., 2021); or informal conver-263

sational domains , such as TVMegaSite & Forever-264

Dreaming (Chen et al., 2022). For QA, we consider265

Qasper (Dasigi et al., 2021), which contains ques-266

tions over NLP papers; QMSum3 (Zhong et al.,267

2021), longform QA over meeting scripts, and two268

QA datasets on books: QuALITY (Pang et al.,269

2022b) and NarrativeQA (Kočiský et al., 2018).270

We finetune the model with a maximum of271

16,384 tokens. For long-sequence QA tasks, we272

adopt the input format as used by the state-of-the-273

art open-domain QA system (Izacard and Grave,274

2021). Specifically, we repeat the question/query275

at the start of each attention block. We also utilize276

the robust finetuning technique proposed by Agha-277

janyan et al. (2021). We conduct a grid search over278

finetuning hyperparameters, such as learning rate279

and dropout rate, the details of which are presented280

in Table 8 in Appendix A. We report ROUGE4281

scores for summarization datasets. For QA, we282

report Exact Match (EM) scores for datasets with283

short answers and F1 scores for datasets with long284

answers.285

3.2 Effect of Architectures286

To study the effectiveness of different model287

choices with modest computation cost, we initialize288

a base-size block-attention model using BART’s289

weights. We augment the model with three ad-290

ditional long-range mechanisms, as described in291

Sec 2.1. Note that only the pooling layers introduce292

additional parameters that will be randomly initial-293

ized. Table 1 shows the results on both QA and294

summarization tasks. For the global-token mecha-295

nism, we mark the first 64 tokens of each block as296

global tokens. We see that pooling layers produce297

the most consistent improvements even for Gov-298

3QMSum is proposed as a "query-based summarization"
dataset. We consider it as a special case of QA as our model
uses the same input format for QMSum and other QA datasets.

4https://github.com/pltrdy/files2rouge

Report, where the baseline already achieves strong 299

numbers. Consistent with a prior study on encoder- 300

only models (Xiong et al., 2022), attention win- 301

dow overlaps fail to produce further improvements 302

over the disjoint block-attention layers. Adding 303

global tokens consistently helps on QA tasks but 304

not on summarization tasks. We hypothesize that 305

in encoder-decoder models, the cross-attention can 306

offset the effect of global tokens, as each decoding 307

position has access to all input tokens’ representa- 308

tions. When finetuning our final pretrained model, 309

we also try to combine global tokens with pooling 310

layers for QA tasks, but we did not observe further 311

improvements. 312

3.3 Effect of Pretraining Corpus 313

With the assumption that models should be exposed 314

to as many long dependencies as possible at pre- 315

training time, we initially tried to only pretrain 316

the model with natural long documents that are 317

collected from sources like books, news, and TV 318

dialogues. However, we did not achieve consis- 319

tent improvements with this corpus alone. Instead, 320

we found it is important to include sufficient doc- 321

uments from diverse domains, even if those docu- 322

ments are mostly short sequences. We present our 323

ablation analysis in Table 2. We reported results on 324

small summarization datasets where the gaps are 325

more visible. Note that the sizes of long-document 326

corpora are usually smaller than open-domain cor- 327

pus. To remove the size factor that affects model 328

performance, we limit the pretraining steps such 329

that the model does not see repeated examples from 330

each corpus. The length statistics of document 331

sources can be found in the Appendix. 332

We see that pretraining on corpora that only have 333

long documents, which are often from specific do- 334

mains, hurts the downstream performance for most 335

of the datasets, except for NarrativeQA, which is 336

from a very close domain. On the other hand, pre- 337

training on randomly concatenated C4 documents 338

brings visible gains for most of the tasks. In addi- 339

tion to directly using concatenations of random C4 340

documents, we tried to assemble long sequences 341

using semantically similar C4 documents, with the 342

hope of creating more long-range connections in 343

the pretraining sequences. For each document, we 344

use a dense retrieval model (Izacard et al., 2021) 345

to find similar documents and concatenate them as 346

long pretraining sequences. We denote this corpus 347

as “C4-linked". However, this new corpus is either 348

4
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Models GovReport ArXiv QMSum Qasper QuALITY
R-1 R-L R-1 R-L R-1 R-L Ans F1 Ans EM

block-attn baseline. 60.5 57.5 49.0 44.2 35.2 30.4 28.0 31.6

+ attn window overlaps 60.6 57.6 49.0 44.3 34.8 30.2 28.0 31.6
+ global tokens 60.3 57.3 49.1 44.3 35.4 30.7 29.8 32.5
+ pooling layers 61.0 58.1 49.1 44.3 35.9 31.2 30.6 32.9

Table 1: Ablation of different long-range mechanisms using base-size models.

Models QMSum Qasper QuALITY NarrativeQA
R-1 Ans F1 Ans EM Ans F1

non-pretrain 35.9 30.6 32.9 20.4

Long corpus 34.7 29.9 31.3 21.2
C4 36.3 32.8 32.8 21.6
C4-linked 35.7 32.1 32.8 21.3

Table 2: Effects of pretraining corpus. Base size models pretrained for 20k steps to avoid repetitions. Long corpus:
Books3 + RealNews + STORIES + MediaSum + OpenSubtitles; C4: randomly concatenated documents to form
long sequences.; C4-linked: concatenate related short documents using a retriever model.

Models QMSum Qasper
R-1 Ans F1

no-pretraining 35.9 30.6

+ T5 avg span_len 5 - 8k 36.7 32.9
+ T5 avg span_len 5 - 16k 37.0 34.6
+ T5 mixed span_len 37.0 35.4
+ pegasus 37.4 34.4
+ model-based 37.0 32.5

Table 3: Ablation of different pre-training objectives on
C4 corpus

similar or worse compared to directly using C4.349

We conjecture that it is because the retrieved doc-350

uments may contain redundant information, mak-351

ing some of the masked spans trivial to predict —352

the training perplexity after 100k updates on “C4-353

linked" is significantly lower than that on the origi-354

nal C4 corpus (10.5 vs 12.2).355

3.4 Effect of Pretraining Objectives356

We compare the effects of different pretraining ob-357

jectives in Table 3. The generation targets are usu-358

ally paragraph-length for QMSum, while Qasper359

expects the model to predict spans or single sen-360

tences most of the time. All the models are pre-361

trained for 100k updates on the C4 corpus. To in-362

vestigate the effect of pretraining sequence length,363

we compare the 16k model with a model pretrained364

with 8k sequence length. We double the batch size365

for the 8k length pretraining such that the input to-366

kens in each batch stays the same. We also increase367

the masking ratio for the 8k model to 1/8 so that368

the decoding sequence length remains 1,024. Note369

that under this setting, pretraining with 8k-length370

batches is a bit slower compared to the 16k batches 371

due to the decoder-side self-attention. 372

Pretraining with longer sequences is useful. 373

While a prior work (Guo et al., 2022) pretrains their 374

model with sequences shorter than downstream 375

tasks, we find it is generally better to directly pre- 376

train with longer sequences. In terms of conver- 377

gence rate, we find pretraining with 8k and 16k 378

sequences are similar (the loss curves can be found 379

in Appendix A). For downstream results, we find 380

that training with longer sequences lengths is in- 381

deed helpful for low-resource datasets — QMSum 382

and Qasper are both small with a few thousand ex- 383

amples (T5 avg span_len 5 - 8k vs T5 avg span_len 384

5 - 16k). We find using a range of short spans 385

(mixed span_len) tends to give more gains on QA 386

tasks. 387

Alternative objectives works similar as random 388

masking. While the Pegasus objective is effec- 389

tive for summarization, we do not find it to be 390

consistently better than T5 denoising. It also in- 391

curs more data processing costs compared to T5’s 392

random masking. We also find that model-based 393

denoising fails to yield better performance than ran- 394

dom denoising, even though it introduces a harder 395

pretraining task, i.e., larger training losses. We 396

conjecture that, while this objective might provide 397

more training signals that are related to long-range 398

dependencies, it can also introduce noisy supervi- 399

sion, which is harmful for the model to learn a wide 400

range of language understanding skills. 401
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Model # Param GovReport BookSum ArXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

BigBird 580M - - - 31.8 6.5 14.2 46.6 19.0 41.8 46.3 20.7 42.3
LED 460M 59.4 26.5 56.6 32.8 7.5 14.6 46.6 19.6 41.8 47.0 20.2 42.9
PageSum 440M 59.9 27.2 57.1 - - - 49.7 21.1 44.7 48.2 21.1 44.3
BART-Hepos 440M 56.9 22.6 53.8 - - - 48.2 20.3 41.8 48.1 21.1 42.7
DYLE 525M 61.0 28.8 57.8 - - - 46.4 18.0 41.5 - - -
LongT5-large 750M - - - - - - 48.3 21.6 44.1 50.0 24.7 46.5
LongT5-xl 3B - - - - - - 48.4 21.9 44.3 50.2 24.8 46.7
Top-down (AvgP) 460M - - - 37.9 9.1 18.0† 48.7 20.7 43.9 48.3 21.4 44.2
Top-down (AdaP) 660M∗ - - - 38.3 9.2 18.1† 51.0 21.9 45.6 51.1 23.3 46.5

BART-LS 440M 62.0 30.9 59.2 38.5 10.3 36.4 50.2 22.1 45.4 50.3 24.3 46.3

Table 4: Results on long-document summarization. Pipelined approaches are highlighted in gray. LED’s results
on GovReport are from PageSum (Liu et al., 2022). ∗: The AdaPool version of the Top-Down model requires an
additional encoder model to predict the weights in its pooling layers. †: The baseline R-L scores on BookSum are
taken from Pang et al. (2022a) and may not be rigorously comparable due to the unknown ROUGE script version
used in their paper.

3.5 Main Results402

Best Model Configuration. Following the anal-403

ysis of base-size models, we pretrain a large-size404

model with the best configuration, which consists405

of (a) block attention and pooling layer augmen-406

tations applied to the vanilla Transformer archi-407

tecture, (b) long-sequence training data batches408

formed by randomly concatenating the documents409

from C4 corpus, and (c) T5 denoising loss with a410

mix of short and long spans as the training loss. We411

pretrain the model for 100K steps. Our model is412

denoted as “BART-LS" in the following sections.413

3.5.1 Summarization414

Table 4 shows results of formal long-document415

summarization. We first compare our model with416

models that directly reuse existing models’ weights417

without further pretraining and newly introduce418

parameters. Apart from BigBird and LED that419

simply use encoder-side local attention to allow420

existing PLM to take longer context, we also421

consider more recent baselines including Page-422

Sum (Liu et al., 2022) which investigates the local-423

ity bias on both encoder and decoder side; BART-424

Hepos (Huang et al., 2021) which applies head-425

wise cross-attentions; DYLE (Mao et al., 2022)426

which combines a context extractor with a gen-427

erator that only takes short text as input, and uses428

a complex training pipeline to provide supervision429

for the extractor. Our model outperforms BigBird,430

LED, and BARTHepos by a large margin. With431

simple sequence-to-sequence finetuning, our model432

also consistently outperforms PageSum and DYLE433

which are specifically designed for summarization434

tasks. Note that PageSum proposes the idea of us-435

ing a weighted combination of multiple decoder436

predictions (corresponding to taking the encodings 437

of different parts of the input sequences as inputs), 438

which could be orthogonal to our method. 439

Compared to LongT5 (large and xl), our model 440

achieves stronger performance on ArXiv and is 441

on-par on PubMed, even with much fewer param- 442

eters. The recently proposed Top-Down Trans- 443

former (Pang et al., 2022a) applies a similar pool- 444

ing operation at the finetuning stage. Our model 445

architecture is similar to their “Average Pooling“ 446

variant but conceptually simpler. With the pro- 447

posed pretraining method, our model outperforms 448

“Top-down (AvgP)" on all tasks. Besides“Top- 449

down (AvgP)", the authors also proposes a more 450

advanced pooling layer that uses the token impor- 451

tance predicted by another encoder-only model to 452

aggregate the hidden states for each pooling opera- 453

tion, i.e., “Top-down (AdaP)". While this method 454

should be orthogonal to our model during finetun- 455

ing, we find the model-based adaptive pooling hard 456

to replicate. Our model matches the performance 457

of “Top-down (AdaP)" performance on ArXiv and 458

PubMed in terms of R-2/R-L, and surpass their 459

results on BookSum. 460

In contrast to formal documents, dialogue texts, 461

especially multi-person conversations, can be nois- 462

ier, more unstructured, and cover more diverse top- 463

ics within each document. We test our model on 464

two summarization datasets collected from popu- 465

lar TV series (Chen et al., 2022). As shown in 466

Table 5, our model achieves even stronger relative 467

gains compared to gains on formal-domain datasets. 468

Note that DialogLM (Zhong et al., 2022) is specif- 469

ically designed for the dialog domain and further 470

pretrained a PLM checkpoint on dialog corpus. The 471

large improvements over their results again suggest 472
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Model TVMegaSite ForeverDreaming
R-1 R-2 R-L R-1 R-2 R-L

BART-large 43.5 10.3 41.4 33.8 7.5 29.1
DialogLM 45.6 10.8 43.3 35.8 8.3 30.8
Top-down (AvgPool) 49.3 14.4 47.5 35.8 8.9 31.1
Top-down (AdaPool) 51.0 14.7 49.0 36.8 9.2 31.1

BART-LS w/o pretrain 50.9 14.5 48.9 37.1 9.6 32.5

BART-LS 51.8 17.2 50.0 39.1 10.7 33.5

Table 5: Results of on long dialogue (scripts from TV series) and narrative summarization.

Model QMSum
R-1 R-2 R-L

BART-large 32.2 8.0 27.7
DialogLM 34.0 9.2 30.0
DYLE 34.4 9.7 30.1
LED 34.2 10.3 30.0
SecEnc 37.1 13.0 32.6
SecEnc-W 37.8 13.4 33.4

Block-BART (ours) 36.6 12.1 32.4

BART-LS 37.9 12.1 33.1

Table 6: Results on query-based meeting summarization
(QMSum). The highlighted row indicates additional
data has been used for training.

Model Qasper NarrativeQA QuALITY
F1 EM EM-T/H

LongT5-base 46.6 23.0 37.9/36.6
LongT5-large 53.3 27.2 40.6/38.6
LongT5-3B 53.1 29.3 46.0/42.1

Block-BART (dev) 38.1 24.1 35.7
BART-LS (dev) 40.6 25.4 37.6

BART-LS 48.7 26.2 37.8/34.0

Table 7: Test results on QA tasks. LongT5’s num-
bers are taken from the Scrolls benchmark (Shaham
et al., 2022). We also compare our model with a block-
attention baseline that reuses BART’s weights on the
dev set, as shown in gray rows. Note that our model’s
size is in between LongT5-base and LongT5 large.

the importance of open-domain pretraning corpus.473

3.5.2 QA and Query-Based Summarization474

As mentioned in Sec 3.1, we use the same input475

format for finetuning QA tasks and query-based476

summarization. As there are no existing baselines477

of long models that reuse the weights of short-478

sequence models, we also report the performance479

of our implementation of block-attention BART. As480

shown in Table 6, our model outperforms all previ-481

ous methods that do not apply data augmentation.482

SecEnc (Vig et al., 2022) is also a block-attention483

version of BART – it distribute overlapped texts (in-484

stead of disjoint text blocks) into each self-attention485

window and reuses the position embeddings of the 486

first 1,024 tokens. On long-document QA datasets 487

(as shown in Table 7), our best model is consis- 488

tently better than our block-attention baseline and 489

is aligned with LongT5 in terms of scaling effect 490

– our model’s size is between the base and large 491

versions of LongT5. 492

3.6 Performance Analysis on Input Lengths 493

To further investigate the performance gains of 494

our proposed model, we compare the performance 495

of the proposed model against the base model 496

as a function of source document length for two 497

summarization datasets, namely SummScreen and 498

TVMegaSite. To conduct our analysis, we divide 499

the validation split of both the datasets into short 500

and long documents. The cutoff length to separate 501

the two groups is chosen such that approximately 502

75% of the documents are classified as short doc- 503

uments. Figure 2 presents the results of this com- 504

parison. For both the datasets: (a) there’s a perfor- 505

mance drop for both the best and the base model for 506

longer documents, and (b) the best model is better 507

than the base model on all data splits. For Summ- 508

Screen the performance gap between the best and 509

the base model is bigger for long documents than 510

for short documents – relative ROUGE-L increase 511

of 0.80% and 3.96% for short and long documents 512

respectively. This suggests that the performance 513

gains for the best model can be attributed to better 514

long-context modeling. For TVMegaSite this trend 515

of increasing performance gap between the best 516

and the base model with an increase in document 517

length still holds true, though the increase in perfor- 518

mance gap is modest in comparison to the increase 519

observed for SummScreen – relative ROUGE-L 520

increase of 2.43% and 2.75% for short and long 521

documents respectively. 522
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(a) SummScreen (b) TVMegaSite

Figure 2: ROUGE-L scores as a function of source document length for the base model and the best model for two
dialogue summarization datasets.

4 Related Work523

4.1 Efficient Transformer Architectures524

A long list of works has been proposed to reduce525

the complexity of the attention layers of transform-526

ers. The simplest paradigm is to restrict each to-527

ken’s attending context to a subset of the whole528

sequences, e.g., Reformer (Kitaev et al., 2020)529

and the Routing transformer (Roy et al., 2021)530

proposes hashing or clustering based attention,531

where each token only attends to tokens of a sin-532

gle bucket/cluster. Our model architecture is influ-533

enced by previous work like Longformer (Beltagy534

et al., 2020), BigBird (Zaheer et al., 2020) and535

ETC (Ainslie et al., 2020) that demonstrate strong536

downstream performance. These models assume537

strong locality bias in language data and restrict538

each token’s attending context to nearby tokens.539

In contrast, we augment the block attention with540

pooling layers and study the effect of additional541

pretraining on long sequences. Other approaches542

tackling the efficiency bottleneck includes kernel-543

based (Choromanski et al., 2021; Peng et al., 2021)544

and low-rank approximation (Wang et al., 2020) of545

the N×N attention matrix. However, in contrast546

to local attention transformers, the effectiveness of547

these approximation approaches is yet to be vali-548

dated in downstream tasks.549

4.2 Generation from Long Text Inputs550

To apply pretrained models to long-sequence tasks,551

early studies (Zaheer et al., 2020; Beltagy et al.,552

2020) reuse parameters from models pretrained on553

short sequences and replaces the encoder full atten-554

tion with sparse local attentions. While the mod-555

els are not exposed to long sequences at pretrain-556

ing time, they demonstrates consistent improve-557

ments over previous models that can only take trun-558

cated inputs. Complementary to local attentions,559

Zhang et al. (2021) show that pooling layers can560

be inserted into a pretrained transformer at finetun- 561

ing time and bring additional performance gains 562

on summarization. Instead of relying on a sin- 563

gle model that directly processes the whole input, 564

Mao et al. (2022) proposes a two-stage extract-and- 565

generate approach, where the extractor can lever- 566

age the supervision signal learned by the generator. 567

However, despite the complicated training recipe, it 568

does not bring consistent gains and underperforms 569

our non-pretrain baselines. The most relevant work 570

to ours is LongT5 (Guo et al., 2022), which adopts 571

both global tokens as well as local attention, and 572

pretrains the model with 4k text sequences from C4. 573

Compared to LongT5, we augment local attentions 574

with pooling layers and present a more compre- 575

hensive study on pretraining strategies. Without 576

pretraining from scratch, we achieve stronger sum- 577

marization performance. Concurrent to our work, 578

Phang et al. (2022) also present an empirical study 579

on adapting short-text models for long document 580

summarization. While their study mostly focuses 581

on architectures, we present additional analysis on 582

the choices of pretraining corpus and learning ob- 583

jectives. 584

5 Conclusion 585

Through a comprehensive study on the effects of 586

model architectures, training losses and pretraining 587

dataset, we present an effective recipe to adapt 588

existing pretrained text-to-text models for long- 589

sequence NLP tasks. The resulting model sets new 590

state-of-the-art on five long-sequence summariza- 591

tion tasks and achieves consistent gains on QA over 592

local-attention models that simply reuse BART’s 593

parameters. Apart from presenting a stronger 594

checkpoint for finetuning on downstream tasks, we 595

hope our findings in the study can provide insights 596

for future works that aim to develop stronger long- 597

sequence models for downstream tasks. 598
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Build the linked C4 corpus We attempt to use876

text retrieval techniques to assemble long text se-877

quences with the hope that the model can learn878

more long-range dependencies from linked rele-879

vant documents. We first encode all the documents880
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Figure 3: Document length distribution of each source
corpus. The sizes of each corpus (file sizes of tokenized
texts) are also shown in the x-axis. The median and
mean lengths are denoted via the while line and the
triangle. We did not show the statistics of the Books3
corpus (60G) here as it has much longer documents with
mean/medium over 100k tokens.

into dense vectors with the Contriver (Izacard et al., 881

2021) encoder. For documents that have more than 882

512 tokens, we use primary sentences (Zhang et al., 883

2020) as the input to the encoder. Directly retriev- 884

ing documents from the whole index (340M vec- 885

tors) is prohibitive in terms of computation cost. 886

We follow the idea inverted indices, we first k- 887

means to get 256 clusters of documents and then 888

assemble long sequences within each cluster. Start- 889

ing from each documents, we concatenate it with 890

its top-k nearest neighbors until the length exceeds 891

certain threshold. To avoid repeated documents, 892

we enforce that each documents can appear in at 893

most 2 sequences. 894
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Figure 4: Training curves with 8k/16k sequence lengths.
Pretraining with different sequence lengths shows simi-
lar level of data efficiency.

Hyperparameters We use a fixed set of hyperpa- 895

rameters for pretraining: we set the learning rate to 896

be 1e− 4, the weight decay coefficient to be 0.01 897

and applies polynomial decay with 500 warm up 898
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steps; we use a batch size of 256 (16,384 tokens899

per sample) and fix the random seed to 42. The900

hyperparameter grids for the downstream tasks are901

shown in Table 8.902

B Limitations903

Pretraining language models is a costly endeavor,904

and even more so in the case of long-context PLMs.905

Because of computational budget constraints, we906

only explored a limited space of the hyperparame-907

ter search space.908

• We experiment with training on either just909

long document corpora or a pseudo long doc-910

ument corpora formed by concatenating short911

documents. Future work can investigate using912

a combination of the two.913

• We have a surprising empirical finding that914

pretraining on pseudo long documents formed915

by concatenating random documents of a916

short-document corpora (C4) outperforms917

both: (a) pretraining on actual long documents918

from a long-document corpora, and (b) pre-919

training on pseudo long documents formed920

by concatenating related documents from the921

same short-document corpora. Future work922

can investigate in more detail the reasons for923

these empirical gains, and also test these mod-924

els on their discourse understanding.925

• Due to the human evaluation cost for long-926

context summarization tasks, we rely on au-927

tomatic metrics which can be unreliable as928

suggested by prior work (Kryscinski et al.,929

2019; Fabbri et al., 2021).930
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Downstream Task learning rate batch size max epoch dropout warmup steps (polynomial lr decay)

arXiv 1e-4, 3e-4, 4e-4 128 8 0, 0.1 200

GovReport 5e-5, 3e-4, 4e-4 128 70 0, 0.1 200

PubMed, BookSum 3e-4, 4e-4 64 60 0, 0.1 200

SummScreen 5e-5, 3e-5, 1e-4 64 130 0, 0.1 200, 500, 1000

Qasper, QMSum, Quality 1e-4, 5e-5, 3e-5 32, 64 150 0, 0.1 100, 200

NarrativeQA 5e-5, 3e-5 64 8 0, 0.1 200

Table 8: Hyperparamter grid for downstream task finetuning. We use Adam optimizer (β = (0.9, 0.999), ϵ = 1e-6)
for all tasks.

Downstream Task generation parameters

arXiv beam: 4, max_len: 300, min_len: 50, length_penalty: 5.0, no_repeat_ngram: 3

GovReport beam: 4, max_len: 740, min_len: 50, length_penalty: 4.0, no_repeat_ngram: 3

PubMed beam: 4, max_len: 400, min_len: 40, length_penalty: 4.0, no_repeat_ngram: 3

BookSum beam: 4, max_len: 550, min_len: 20, length_penalty: 4.0, no_repeat_ngram: 3

SummScreen-FD beam: 4, max_len: 300, min_len: 50, length_penalty: 4.0, no_repeat_ngram: 3

SummScreen-TVM beam: 4, max_len: 640, min_len: 50, length_penalty: 5.0, no_repeat_ngram: 3

Qasper beam: 4, max_len: 80, length_penalty: 1.0, no_repeat_ngram: 3

NarrativeQA beam: 4, max_len: 20, length_penalty: 3.0, no_repeat_ngram: 3

QMSum beam: 4, max_len: 256, min_len: 40, length_penalty: 4.0, no_repeat_ngram: 3

QuALITY beam: 4, max_len: 50, length_penalty: 3.0, no_repeat_ngram: 3

Table 9: Generation parameters for each task.
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