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Abstract
In situations where people report in a free-form
way, we need to condition on the fact that some-
one did not report something. While we need to
take into account that something was not reported,
often there are too many statements that could
be reported to consider each one; we only want
to reason about those that were reported. In this
paper we start with two simple, common mod-
els, namely Naive Bayes and logistic regression,
which are equivalent models that are trained dif-
ferently as to how missing data is handled. Naive
Bayes is traditionally trained in a generative way,
to make optimal predictions assuming only one
value is observed (and making independence as-
sumptions for the rest) and logistic regression
is traditionally trained in a discriminative way,
assuming no data is missing. It is generally as-
sumed that these are qualitatively different, but
in this paper we show there is a continuum be-
tween them. In particular, we show a model that
is more general than both, but still simple, that
can be trained to condition on missing data. In
particular, it conditions on “and nothing else [was
reported]” enabling us to avoid reasoning about
the myriad of things that were not reported, but
still take them into account.

1. Introduction
Bayesian conditioning is subtle in that one must condition
on all available evidence. That fact that someone did not
specify something is evidence that should be taken into
account.

Example 1: Consider an application where someone vol-
unteers information about themself, or a biographical knowl-
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edge graph about a person. In general:

P(has sibling) 6=P(has sibling | sibling was not mentioned)

because people often mention having a sibling if they
have one, and don’t mention a sibling if they don’t
have one. For example, if half the people have sib-
lings, and siblings were mentioned in 90% of the cases
where there were siblings and never mentioned when there
were no siblings, P(has sibling) = 0.5 but P(has sibling |
sibling was not mentioned) = 5/55≈ 0.09.

Similarly, if patients typically specify a headache when they
have one but it is not mentioned otherwise, not specifying
a headache is information that needs to be conditioned on.
Such cases are far from missing at random. We need to
condition on the fact that something was not mentioned. In
general, we need to be careful about the language we use to
specify observations (Halpern, 2003).

There are typically too many things that were not mentioned,
particularly in relational cases and cases where there are
combinatorially many possible statements. In some sense
we need a way to specify some formula is “all I know”
(Levesque, 1990), or that some formula “and nothing else”
was observed. This paper is about how to specify “and
nothing else” for simple models.

One could build a sophisticated model of missing data (Lit-
tle & Rubin, 1987; Marlin et al., 2011; Shpitser et al., 2015),
but many applications are built with much simpler represen-
tations. Two common simple probabilistic representations,
from which other representations are often built, are naive
Bayes and logistic regression. For example, a common rela-
tional model, Markov logic networks (Domingos & Lowd,
2009) and its directed counterpart, relational logistic regres-
sion (Kazemi et al., 2014), often become equivalent to naive
Bayes or logistic regression (Poole et al., 2012).

In this paper, we only consider Boolean variables, and no
zero probabilities. We write Boolean variables in upper case,
e.g., Xi, where true is represented as 1 and false as 0. Lower
case variant, e.g. xi, is the proposition Xi = 1, and ¬xi is the
proposition Xi = 0. Extending this to multi-valued discrete
variables (multinomials) is straightforward (using a softmax
and indicator variables), but some of the results do not hold
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for continuous variables.

Suppose we want a representation for P(Y | X1 . . .Xn). Lo-
gistic regression uses n+1 weights, with

P(y | X1 . . .Xn) = sigmoid(w0 +w1X1 + · · ·+wnXn)

where Xi is a 0/1 variable that is 1 when Xi is true and 0
when Xi is observed to be false, and y means Y = true.

Naive Bayes uses P(Y ), and P(Xi |Y ) for each i (i.e., 2n+1
parameters to represent the model). Note that Naive Bayes is
a model of a distribution, and logistic regression is a model
of a conditional distribution, but they can be compared when
the Xi are observed.

We show in Section 2 that when the Xi are all observed,
these are equivalent models in that they can be mapped to
and from each other.

Naive Bayes and logistic regression are typically trained (Ng
& Jordan, 2002) with different objective functions; naive
Bayes is trained in a generative way, and logistic regression
in a discriminative way. In particular, Naive Bayes is trained
to optimize the case when only one of the Xi is observed.
That is, P(Y ) and P(Xi | Y ) for each Xi are optimized inde-
pendently, and so modularly, whereas logistic regression
is trained for the case where all of the Xi are observed. In
this paper, we look at training essentially the same model
for the case where some of the Xi are observed. Both naive
Bayes and logistic regression are able to be represented, but
it can be trained to make predictions with missing data. In
particular, we show that there is an interesting intermediate
case between the generative and discriminative models.

This paper focuses on data that is Missing Not At Ran-
dom (MNAR) and discrete. Rubin (1976) emphasizes the
need to distinguish between Missing at Random (MAR) and
MNAR data. For continuous data, Mohan et al. (2018) and
Tang et al. (2003) apply regression to continuous missing
data. The former focuses primarily on MNAR data, while
the latter numerically computes the MLE, with constraints
depending on the structure of missingness.

2. Equivalence of Models for Conditional
Predictions

Here we give some basic results on probability and logistic
regression. These results are/should be well known; “In
both the discrete and continuous cases, it is well known
that the discriminative analogue of naive Bayes is logistic
regression” (Ng & Jordan, 2002).

First, P(y | X1 . . .Xn) = sigmoid(logodds(y | X1 . . .Xn))

For a naive Bayes

P(y,X1 . . .Xn) = P(y)
n

∏
i=1

P(Xi | y)

So

odds(y | X1 . . .Xn) =
P(y,X1 . . .X1)

P(¬y,X1 . . .X1)

=
P(y)

P(¬y)

n

∏
i=1

P(Xi | y)
P(Xi | ¬y)

(1)

logodds(y | X1 . . .Xn) = log
P(y)

P(¬y)
+

n

∑
i=1

log
P(Xi | y)

P(Xi | ¬y)

Note that in the log-odds sum above, there is one value in
the sum for each Xi. From this, we can derive the bias w0
and any wi for i > 0. Details are provided in the appendix.

These are all numbers that are specified as part of the naive
Bayes model. Note that if the model does not obey the inde-
pendence of the graphical model for naive Bayes, logistic
regression can learn different parameters.

Theorem 1. Any naive Bayes model for P(Y,X1 . . .Xn) (with
root Y ) has an equivalent logistic regression model for the
conditional distribution P(Y | X1 . . .Xn).

A constructive proof is in the appendix.

Theorem 2. Any logistic regression model for P(Y |
X1 . . .Xn) has many equivalent naive Bayes model with the
same conditional probability when the Xi are observed.

Given the values of wi, for i > 0, there is one weight and
two parameters to be assigned. One of them, say P(xi | ¬y)
can be assigned arbitrarily, and the other is

P(xi | y) =
1

1+ e−w1−logodds(xi|¬y)

which is always in the range [0,1] because the exponential is
always positive. Given w0 and the values given or assigned
above, P(y) can be set to satisfy the above condition.

3. Missing Data
Naive Bayes allows arbitrarily many of the Xi to be missing,
and so provides a model of how to handle missing data.
The graphical model of naive Bayes (Pearl, 1988) gives
the independence that the Xi are independent of each other
given Y . But the naive Bayes trained traditionally also gives
a model of missingness, which might not be appropriate
even if the conditional probabilities are appropriate.

Naive Bayes has 2n+1 parameters as opposed to the n+1
parameters for logistic regression. These extra parameters
allow it to handle missing observations.

Consider what happens in naive Bayes when xi is observed.
As shown in Equation (1), the contribution to odds – the
number that is multiplied by the odds as compared to if Xi

was not mentioned in the model – is P(xi|y)
P(xi|¬y) ; call this value
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αi. When ¬xi is observed, the contribution to the odds is
1−P(xi|y))
1−P(xi|¬y) ; call this value βi. Given an arbitrary αi and βi,
we can solve for P(xi | y) and P(xi | ¬y), giving:

P(xi | y) =
αi(1−βi)

αi−βi
, P(xi | ¬y) =

1−βi

αi−βi

Because all of the probabilities are on the range [0,1], it is
straightforward to show that
Theorem 3. One of the following must hold for each αi and
βi: (1) αi > 1 and βi < 1 (2) αi = 1 and βi = 1 (3) αi < 1
and βi > 1

We can now build a logistic regression model that corre-
sponds to the naive Bayes model, including the way to
handle missing data. We call this a logistic regression(±)
model. Each Boolean random variable Xi is represented by
two weights: w+

i used when Xi is observed to be true, and
w−i used when Xi is observed to be false.

The model is defined by having two indicator functions for
each Xi: X+

i has value 1 when Xi is observed to true and
value 0 otherwise, and X−i has value 1 when Xi is observed
to false and value 0 otherwise. Note that if there are no
observations for Xi, then X+

i and X−i are both zero.

Then we have

P(y | X1 . . .Xn and nothing else)

= sigmoid(w0 +
n

∑
i=1

w+
i X+

i +w−i X−i )

This is a logistic regression model that also covers naive
Bayes. In particular, to represent a naive Bayes model, using
the notation above, w+

i = logαi and w+
i = logβi.

In naive Bayes, trained in a generative way, the probability
that is predicted when nothing is observed is P(y), but here
it is sigmoid(w0) = P(y | nothing was observed).

We can now learn this model in a generative way that takes
missing information into account. Theorem 3 has an in-
teresting consequence. w+

i and w−i are not independent
parameters, but have to be of opposite signs. The way to
think about them is that a prediction that has X+

i = X−i = 0
has not observed anything about Xi. If observing Xi = true
has a positive effect, then observing it is false must have a
negative effect, and vice versa. If observing Xi = true has
no effect (so w+

i = 0) then observing Xi = f alse must also
have no effect1.

Example 2: Consider how to represent a model where we
want to model how HappyAlone depends on HaveSibling

1Recall that we are assuming no zero probabilities. If we allow
zero probabilities, the closed world assumption (Reiter, 1978),
where a value is false if not specified, could be used in which case
one of the ws could be zero. However, the closed world assumption
provides a very blunt instrument for handling missing values.

and Anxiety. Suppose the ground truth of P(HappyAlone |
HaveSibling,Anxiety) can be represented as either naive
Bayes (Figure 1 (a)) or logistic regression (Figure 1 (b)).

Suppose we have, for the Naive Bayes model,
P(happyAlone) = 0.6, P(haveSibling | happyAlone) = 0.3
and P(haveSibling | ¬happyAlone) = 0.8, P(anxious |
happyAlone) = 0.2, P(anxious | ¬happyAlone) = 0.5.
Then P(haveSibling) = 0.5, and P(anxious) = 0.3.

The logistic regression model with the same
P(HappyAlone | HaveSibling,Anxiety) is sigmoid(2.13+
−2.23 ∗ HaveSibling − 1.38 ∗ anxious). The logistic
regression model of Figure 1 (b) with P(haveSibling) = 0.5,
and P(anxious) = 0.3, has the same marginals HaveSibling
and Anxious, and the same conditional distribution as the
Naive Bayes model, but the distributions are different. In
particular, HaveSibling and Anxious are independent in the
model of Figure 1 (b), but are not independent in the naive
Bayes model.

Suppose also that HaveSibling and Anxiety are sometimes
missing, but are not missing at random. In particular
HaveSibling is missing as in Example 1, and Anxiety is
missing with people rarely reporting that they don’t have
anxiety. Given Anxiety is true, it is reported 80% of the time,
and Given Anxiety is false, it is reported 10% of the time.
Assume the people are honest; that is they never report a
value that isn’t accurate.

Using the method of (Mohan et al., 2013; Marlin et al.,
2011), for each variable X there is a Boolean variable which
we write RepX , that is true when X was reported, and a
variable X∗ which has the domain of X together with an
extra value meaning there was no report. For Boolean X ,
the range of X∗ is {true, f alse,no report}. The parents of
X∗ are X and RepX , and P(X∗ | X ,RepX) is a deterministic
function: the value of X∗ is the value of X if RepX = true;
otherwise it is no report. For simplicity, assume that what
was reported for X only depends on the value for X ; that
is X is the only parent of RepX . Augmenting the previous
two models with this is depicted in the belief networks of
Figure 1 (c) and (d). For the experiments below we assume
that RepX is marginalized out.

A LR± model corresponding to this example has five pa-
rameters, as follows:

P(happyAlone) = sigmoid(w0 +w+
1 haveSibling+

+w−1 haveSibling−+w+
2 anxiety++w−2 anxiety−)

Note that haveSibling+ corresponds to the characteristic
function for HaveSibling∗ = true and haveSibling− corre-
sponds to HaveSibling∗ = False. When HaveSibling is not
observed, both are zero. We evaluate the effectiveness of
this in the results section:
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HappyAlone

HaveSibling Anxiety

HappyAlone

HaveSibling Anxiety

HappyAlone

HaveSibling Anxiety

HaveSibling* Anxiety*

(a) (b)

(c) (d)

RepHaveSibling RepAnxiety

HappyAlone

HaveSibling Anxiety

HaveSibling* Anxiety*

RepHaveSibling RepAnxiety

Figure 1. Belief networks from Example 2

4. Evaluation
For evaluation, we performed three main sets of experiments,
generating 600 synthetic datasets in total - each with 20000
training samples and 5000 test samples - based on ground
truth diagrams c) and d) in Figure 1. We evaluate on:

• 200 datasets generated for when the ground truth is the
graphical model of (c) - we will call them C datasets,

• 200 datasets for when the ground truth is the graphical
model of (d) where P(HappyAlone | HaveSibing, Anx-
iety) is a logistic regression (with 3 free parameters) -
we will call them DLR datasets,

• 200 datasets for when the ground truth is the graphical
model of (d) where P(HappyAlone | HaveSibing, Anx-
iety) is a table (with 4 free parameters) - D4 datasets.

We trained LR±, Naive Bayes, model (c) and model (d)
where P(HappyAlone | HaveSibing, Anxiety) is a table with
4 free parameters (Full-(d) in table below). Models (c)
and Full-(d) were trained using a maximum of 15 steps of
expectation maximization (EM). In the models of (c) and
(d) we assume that RepHaveSibling and RepAnxiety are
marginalized out. In the following, for each set of datasets,
we compare the logloss of every model compared to the
logloss of ground truth model; the numbers are the average
percentage increase in logloss compared to the ground truth
model (lower is better):

Dataset Naive Bayes Model (c) Full (d) LR±
C 1.9% 1.0% 1.9% 0.1%
DLR 0.9% 0.9% 1.0% 0.1%
D4 2.7% 2.3% 1.8% 1.6%

Note that LR± is always better on average. Despite the rel-
ative simplicity of our model, we can obtain log-loss errors

better than Naive Bayes and the other more complex models
that require EM to train. EM does not always converge to
a global optima, which explains why the trained model (c)
did not consistently get an optimal logloss on C datasets and
trained full-(d) model did not consistently get an optimal
logloss on D4 datasets. They should do better with multiple
restarts on EM, which we did not do. We also observed that
in all of the datasets, the comparison made by Ng & Jordan
(2002) holds even in missing data setting: LR± always has
less logloss compared to Naive Bayes in our datasets, which
have large number of samples. Box plots showing the distri-
butions of the above improvements and a link to the code
are in the appendix.

5. Conclusions
This paper started off from building applications where we
wanted a simple model, but where most of the potential
observations were missing and they were not missing at
random. They were missing because the person provid-
ing the information did not think they were worth report-
ing (e.g. they they did not have a headache) or that they
were not something they thought of (e.g., that they do not
have a sibling or that their finger is still connected to their
hand). Logistic regression did not seem applicable, and
naive Bayes gives the wrong answer (for the reasons ex-
plained above). The obvious solution was to include weights
for both positive and the negative for each Boolean condi-
tion, and the bias was the probability when nothing was
observed. We were surprised that this is not a common and
well-understood model.
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Appendices
A. Equivalent Logistic Regression and Naive

Bayes models
The derivation from section 2, of the equivalent Logistic
Regression to the Naive Bayes model is provided here: (Ng
& Jordan, 2002)

As long as all probabilities are positive (no zero probabili-
ties)

P(h | e) = P(h∧ e)
P(e)

=
P(h∧ e)

P(h∧ e)+P(¬h∧ e)

=
1

1+P(¬h∧ e)/P(h∧ e)

=
1

1+ e− log P(h∧e)
P(¬h∧e)

= sigmoid(logodds(h | e))

Where sigmoid(x) = 1/(1+ e−x) and

odds(h | e) =de f
P(h∧ e)

P(¬h∧ e)

=
P(h | e)

P(¬h | e)

=
P(h | e)

1−P(h | e)

We will now show that for a naive Bayes, odds is a product
and so the log-odds is a sum of one value for each xi.

B. Derivation of bias and weights
The bias and weights from section 2 are derived here.

The bias w0 is the number used when all of the xi are false:

w0 = log
P(y)

P(¬y)
+

n

∑
i=1

log
P(¬xi | y)

P(¬xi | ¬y)

= log
P(y)

1−P(y)
+

n

∑
i=1

log
1−P(xi | y)

1−P(xi | ¬y)

For i > 0, wi is the value that is added when xi is true.

wi = log
P(xi | y)

P(xi | ¬y)
− log

P(¬xi | y)
P(¬xi | ¬y)

= log
P(xi | y)

1−P(xi | y)
1−P(xi | ¬y)

P(xi | ¬y)

Figure 2. Box plots comparing logloss for every model with the
ground logloss for truth model in C datasets

C. Extended Experiment results
In Figures 2, 3 and 4, for each set of datasets, box plots
are shown comparing the logloss for every model with the
logloss for the ground truth model for those datasets.

For the synthetic datasets used in this analysis, data was
generated by sampling from categorical distributions. The
parameters of these distributions are drawn from uniform
probability distributions, and the sampling procedure de-
pends on the relevant graph structure: Figure 1c) for dataset
C, and Figure 1d) for the DLR and D4 datasets.

For reference, example 2 contains one set of categorical
parameters corresponding to figure 1c).

Specifically, as described in section 4, we had 600 synthetic
datasets (200 for each of C, DLR, D4), each with 20000 and
5000 training and test points respectively.

The expectation maximization for training models (c) and
(d) was implemented using PyMC3 by Salvatier J (2016).
Naive Bayes and LR± was implemented using scikit-
learn by Pedregosa et al. (2011). Our code is available
on GitHub at https://github.com/alimm1995/
logistic-regression-pm .

https://github.com/alimm1995/logistic-regression-pm
https://github.com/alimm1995/logistic-regression-pm
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Figure 3. Box plots comparing logloss for every model with the
logloss for ground truth model in DLR datasets

Figure 4. Box plots comparing logloss for every model with the
logloss for ground truth model in D4 datasets


