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Abstract

Bounding box (bbox) regression is a fundamental task in computer vision. So far,
the most commonly used loss functions for bbox regression are the Intersection
over Union (IoU) loss and its variants. In this paper, we generalize existing IoU-
based losses to a new family of power IoU losses that have a power IoU term
and an additional power regularization term with a single power parameter α.
We call this new family of losses the α-IoU losses and analyze properties such
as order preservingness and loss/gradient reweighting. Experiments on multiple
object detection benchmarks and models demonstrate that α-IoU losses, 1) can
surpass existing IoU-based losses by a noticeable performance margin; 2) offer
detectors more flexibility in achieving different levels of bbox regression accuracy
by modulating α; and 3) are more robust to small datasets and noisy bboxes.

1 Introduction

Bounding box (bbox) regression localizes an object in an image/video by predicting a bbox for the
object, which is fundamental to object detection, localization, and tracking. For example, the most
advanced object detectors often consist of a bbox regression branch and a classification branch with
the bbox regression branch generating bboxes to localize objects for classification. In this work, we
explore more effective loss functions for bbox regression in the context of object detection.

Whilst early works in object detection use `n-norm losses [11] for bbox regression, recent works
directly adopt the localization performance metric, i.e., Intersection over Union (IoU), as the local-
ization loss [28, 39]. Compared with `n-norm losses, the IoU loss is invariant to bbox scales, thus
helping train better detectors. However, the IoU loss suffers from the gradient vanishing problem
when the predicted bboxes are not overlapping with the ground truth, which tends to slow down
convergence and result in inaccurate detectors. This has motivated the design of several improved
IoU-based losses including Generalized IoU (GIoU), Distance-IoU (DIoU) and Complete IoU (CIoU).
GIoU introduces a penalty term into the IoU loss to alleviate the gradient vanishing problem [32],
while DIoU and CIoU consider the central point distance and aspect ratio between predicted bboxes
and their ground truth in penalty terms [43].

In this paper, we present a new family of IoU losses obtained by applying power transformations
to existing IoU-based losses. We first apply the Box-Cox transformation [2] to the IoU loss LIoU =
1− IoU and generalize it to a power IoU loss: Lα-IoU = (1− IoUα)/α, α > 0, denoted as α-IoU.
We further simplify α-IoU to Lα-IoU = 1− IoUα for α 9 0 and extend it to a more general form
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with an additional power regularization term (see equation (3)). This allows us to generalize existing
IoU-based losses, including GIoU, DIoU, and CIoU, to a new family of power IoU losses (see
equation (4)) for more accurate bbox regression as well as object detection.

We show that, relative to LIoU, Lα-IoU with α > 1 up-weights both the loss and gradient of high IoU
objects, leading to improved bbox regression accuracy. When 0 < α < 1, it down-weights high
IoU objects which we find hurts regression accuracy. The power parameter α can serve as a knob
to adapt α-IoU losses to meeting different levels of bbox regression accuracy (precision measured
under different IoU thresholds), with α > 1 for high regression accuracy (i.e., high IoU thresholds)
by focusing more on those high IoU objects. We also empirically show that α is not overly sensitive
to different models or datasets, with α = 3 performing consistently well in most cases. The family of
α-IoU losses can be easily applied for improving state-of-the-art detectors under both clean and noisy
bbox settings without introducing additional parameters to these models (making any modifications
to training algorithms), nor increasing their training/inference time.

In summary, our main contributions are as follows:

• We propose a new family of power IoU losses called α-IoU for accurate bbox regression and object
detection. α-IoU presents a unified power generalization of existing IoU-based losses.

• We analyze a set of properties of α-IoU, including order preservingness and loss/gradient reweight-
ing, to show that a proper choice of α (i.e., α > 1) can help improve bbox regression accuracy by
adaptively up-weighting the loss and gradient of high IoU objects.

• We empirically show, on multiple benchmark object detection datasets and models, that α-IoU
losses can consistently outperform existing IoU-based losses and provide more robustness for small
datasets and noisy bboxes.

2 Related Work

Object Detection Models. There exist two mainstream types of detection models: anchor-based
and anchor-free detectors. Anchor-based detectors can be further divided into two-stage and one-
stage models. Two-stage anchor-based detectors (e.g., R-CNN series [11, 31, 14, 3], HTC [5], and
TSD [33]) are firstly proposed in object detection tasks, which are composed of region proposal
networks (RPNs) and classifiers. RPNs generate a large number of foreground and background
region proposals, followed by networks to classify objects in the proposals. Towards real-time object
detection, one-stage anchor-based detectors (e.g., YOLO series [29, 30, 1], RetinaNet [21], and SSD
[24]) are developed to predict bboxes and categories at the same time, thus no longer need RPNs.
Anchor boxes with prior scales and aspect ratios should be defined before training anchor-based
detectors. Techniques have been proposed to mitigate the sensitivity of these models to hand-picked
anchor boxes, for example, attention-based fusion networks [31] and clustering algorithms [30].
These techniques learn prior anchors from the training set for every sliding window or grid cell.

Recently, anchor-free detectors such as CornerNet [16], CenterNet1 [8], ExtremeNet [45], and
CentripetalNet [7], have also been proposed to get rid of anchor priors. These models first predict
locations of keypoints (corners, centroids, or extreme points), then group them into the same bboxes
if they are geometrically aligned. There also exist other models that generate pixel-wise results. For
example, CenterNet2 estimates pixel-level categories of objects along with their sizes and offsets
[44]. FCOS generates pixel-wise classification, centerness, and bbox (top, down, left, right) results
using multi-head CNNs [34], followed by the Adaptive Training Sample Selection (ATSS) [40] as
an improvement on automatically selecting positive and negative samples. In addition, transformers
(e.g., DETR series [4, 46]) have also been developed for object detection without anchor generation
or non-maximum suppression (NMS), achieving the performance on par with the above CNN-based
detectors. In this work, we propose a new family of generalized IoU losses to improve the performance
of these detectors without any architectural modifications, which is orthogonal to the above research.

Bounding Box Regression Losses. Anchor-based detectors regress offsets between ground-truth
bboxes and their closest anchors, while anchor-free detectors predict keypoints of objects with some
frameworks also generating the sizes of the bboxes. The predicted offsets or keypoints (w/ or w/o
bbox sizes) are then mapped back to the pixel space for generating the bboxes. Localization losses
usually compare the generated bboxes with their ground truth. Early works adopt `n-norm losses [11]
for bbox regression, which have been found sensitive to varying bbox scales. Recent works replace
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them with the IoU loss and its variants such as BIoU, GIoU, DIoU and CIoU for bbox regression, as
IoU is the metric for localization and it is scale-invariant [28, 39]. The Bounded IoU (BIoU) loss
maximizes the IoU overlap between the region of interest (RoI) and the ground truth based on a
set of IoU upper bounds [35]. GIoU is proposed to address the problem of gradient vanishing on
non-overlapping examples, which are examples having non-overlapping predicted bboxes with the
ground truth (IoU is zero) [32]. DIoU and CIoU [43] losses further consider the overlapping area,
central point distance, and aspect ratio in IoU and the regularization terms. These regularization terms
can help improve the convergence speed as well as the final detection performance. There are also
losses designed to focus more on high IoU objects, for example, the Rectified IoU (RIoU) loss [36],
and the Focal and Efficient IoU (Focal-EIoU) loss [41]. These loss functions increase gradients of
those examples that are in high bbox regression accuracy. However, RIoU and Focal-EIoU are neither
concise nor generalized compared with other IoU-based losses. In this paper, we apply a power
transformation to generalize the above vanilla IoU loss and regularized IoU-based losses for both
their IoU and regularization terms. The new family of generalized losses improve bbox regression
accuracy by adaptively reweighting the loss and gradient of high and low IoU objects.

There are also works on AutoML-based loss function search for computer vision tasks [23, 18, 17].
Despite their advantage in saving human efforts, these methods are very expensive in searching
qualified loss functions (e.g., days of searching time on multiple GPUs), and probably with limited
performance improvement based on existing losses [23]. We will empirically compare with one of
these losses in our experiments.

3 α-IoU Losses for Bounding Box Regression

3.1 Preliminaries

We study the problem of bbox regression in object detection. Let X ∈ Rdx be the input space and
Y ∈ Rdy be the annotation space, with dx and dy denoting the input and annotation dimensions,
respectively. Given a dataset D = {(xi,yi)}ni=1 of n training examples with each (xi,yi) ∈
(X × Y ), the task is to learn a function f (represented by a detector network) that maps the input
space to the annotation space f : X → Y . In object detection, each yi = (ci,k, Bi,k)

mi
k=1, where mi

is the total number of objects in xi, ci,k is the category of the kth object in xi and Bi,k is its bbox.

The bbox regression performance is measured by the Intersection over Union (IoU) metric between
the predicted bboxB and the ground truthBgt: IoU = |B∩Bgt|/|B∪Bgt|. Positive examples (both
true and false positives) are determined from the set of predictions according to an IoU threshold,
based on which the Average Precision (AP) over all categories of objects can be calculated. E.g.,
AP50 measures the AP of objects localized by bboxes with an IoU that is above the threshold 0.5.
The final performance of a detector is commonly evaluated by the mean Average Precision (mAP)
across multiple IoU thresholds. For instance, the popular metric mAP50:95 measures the mAP of
examples across the set of IoU thresholds ranging from 0.5 to 0.95 with a stride of 0.05.

3.2 α-IoU Losses

The vanilla IoU loss is defined as LIoU = 1− IoU . We first apply the Box-Cox transformation3 [2]
and generalize the IoU loss to an α-IoU loss:

Lα-IoU =
1− IoUα

α
, α > 0. (1)

By modulating the parameter α in α-IoU, one can derive most of the IoU terms in existing losses,
e.g., log(IoU), IoU and IoU2. When α → 0, we obtain limα→0 Lα-IoU = −log(IoU) = Llog(IoU)
[39] (see the proof in Appendix A). We recover the IoU loss with α = 1: L1-IoU = 1− IoU = LIoU.
And L2-IoU = 1

2 (1− IoU
2) = 1

2LIoU2 , when α = 2. We can also extend the above α-IoU formula to
loss functions with multiple IoU terms (e.g. RIoU [36]) by using multiple α values.

3The Box-Cox transformation has also been applied for generalizing the Cross Entropy (CE) loss into the
Generalized Cross Entropy (GCE) loss [42]. Such a generalization unifies the Mean Absolute Error (MAE)
and the CE loss, increasing the robustness to noisy labels for classification tasks. However, GCE may slow
down convergence and lead to degraded performance [37, 25]. In contrast, our α-IoU generalization is for bbox
regression and can improve the localization performance on both clean and noisy bbox datasets.
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Figure 1: Correlation between IoU and Lα-IoU = 1 − IoUα (left) and its absolute gradient
|∇IoULα-IoU| (right) with different α ∈ [0.5, 3]. According to both plots, Lα-IoU reweights all
objects adaptively and distinctively for 0 < α < 1 vs. α > 1 (α = 1 marks the IoU loss).

We simplify the above α-IoU formula for α > 0 and α 9 0, as in this case, the denominator α in
equation (1) is just a positive constant in the objective. This gives us two cases of the α-IoU loss for
α→ 0 and α9 0, respectively:

Lα-IoU =

{
−log(IoU), α→ 0,

1− IoUα, α9 0.
(2)

Here, we are more interested in the case α 9 0 as most state-of-the-art IoU-based losses have an
α ≥ 1. We then extend the above α-IoU loss for α 9 0 to a more general form by introducing a
power penalty/regularization term into the formula:

Lα-IoU = 1− IoUα1 + Pα2(B,Bgt), (3)

where α1 > 0, α2 > 0, and Pα2(B,Bgt) denotes any penalty term computed based on B and Bgt.
This simple extension allows a straightforward generalization of existing IoU-based losses to their
α-IoU versions. In Appendix B.2.1, we empirically show that Lα-IoU is not sensitive to α2. We thus
maintain the power consistency between the IoU term and the penalty term and take α1 = α2 as a
simple choice when training the detectors.

With the above α-IoU formula, we can now generalize the commonly used IoU-based losses including
LIoU, LGIoU, LDIoU, and LCIoU using the same power parameter α for the IoU and penalty terms:

LIoU = 1− IoU =⇒ Lα-IoU = 1− IoUα,

LGIoU = 1− IoU +
|C \ (B ∪Bgt)|

|C|
=⇒ Lα-GIoU = 1− IoUα + (

|C \ (B ∪Bgt)|
|C|

)α,

LDIoU = 1− IoU +
ρ2(b, bgt)

c2
=⇒ Lα-DIoU = 1− IoUα +

ρ2α(b, bgt)

c2α
,

LCIoU = 1− IoU +
ρ2(b, bgt)

c2
+ βv =⇒ Lα-CIoU = 1− IoUα +

ρ2α(b, bgt)

c2α
+ (βv)α,

(4)

where C in LGIoU denotes the smallest convex shape enclosing B and Bgt; b and bgt in LDIoU denote
central points of B and Bgt with ρ(·) being the Euclidean distance and c being the diagonal length of
the smallest enclosing box; and in LCIoU, v = 4

π2 (arctan
wgt

hgt − arctan
w
h )

2, β = v
(1−IoU)+v . They

give us the family of power IoU losses for bbox regression with their original versions recovered
at α = 1. Note that the above α-IoU generalization can be easily extended to more complex loss
functions that have multiple IoU or penalty terms (e.g., Lα-CIoU). Next, we will analyze the properties
of α-IoU losses when α takes different values.

3.3 Properties of α-IoU Losses

Here, we focus on the vanilla α-IoU formula Lα-IoU = 1 − IoUα to analyze its properties, as the
penalty terms may affect these properties differently. Figure 1 illustrates the correlation between
IoU and Lα-IoU (left) and the magnitude of its gradient w.r.t. IoU, i.e., |∇IoULα-IoU| (right). One
key observation is that the IoU loss (i.e., α = 1) has a linear correlation with IoU and the gradient
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is a constant, while Lα-IoU reweights objects adaptively (according to their IoU values) following
different reweighting schemes with 0 < α < 1 versus α > 1.

The power transformation in Lα-IoU preserves key properties of LIoU as a performance metric, includ-
ing non-negativity, identity of indiscernibles, symmetry, and triangle inequality [32]. Furthermore, we
analyze the following important properties of Lα-IoU with detailed derivations deferred to Appendix
A. We first let Bi and Bj be two predicted bboxes by two different models Mi and Mj respectively,
and Bi and Bj correspond to the same ground truth Bgt with IoU(Bi, B

gt) < IoU(Bj , B
gt). Then

we have the first property of Lα-IoU:
Property 1 (Order Preservingness). Lα-IoU preserves the orders of both IoU and LIoU:
IoU(Bi, B

gt) < IoU(Bj , B
gt) ⇐⇒ LIoU(Bi, B

gt) > LIoU(Bj , B
gt) ⇐⇒ Lα-IoU(Bi, B

gt) >
Lα-IoU(Bj , B

gt).

The above property indicates that both Lα-IoU and LIoU are monotonically decreasing functions w.r.t.
IoU . As Lα-IoU preserves the order of LIoU strictly, it is guaranteed that arg minBLα-IoU(B,B

gt) is
identical to arg maxBIoU(B,Bgt) and arg minBLIoU(B,B

gt). In other words, the optimal solution
arg maxBIoU(B,Bgt) can be obtained by minimizing either Lα-IoU or LIoU. Following this, the
adaptive relative loss reweighting scheme of Lα-IoU can be characterized by the second property:
Property 2 (Relative Loss Reweighting). Compared with LIoU, Lα-IoU adaptively reweights the
relative loss of all objects bywLr = Lα-IoU/LIoU = 1+(IoU−IoUα)/(1−IoU), withwLr (IoU =
0) = 1, and limIoU→1 wLr = α.

The second property indicates that Lα-IoU will adaptively down-weight and up-weight the relative
loss of all objects according to their IoUs when 0 < α < 1 and α > 1, respectively. We further note
that, when α > 1, the reweighting factor wLr increases monotonically with the increase of IoU (wLr
grows from 1 to α) while decreasing monotonically with the increase of IoU when 0 < α < 1 (wLr
decays from 1 to α). We will empirically show that the up-weighting scheme of Lα-IoU with α > 1
can help the model focus more on high IoU objects to improve both the localization (i.e., predict
more high IoU objects) and detection (i.e., more accurate at high APs) performance4. Similarly, we
can obtain the third property of adaptive relative gradient reweighting owned by Lα-IoU as follows:
Property 3 (Relative Gradient Reweighting). Compared with LIoU, Lα-IoU adaptively reweights the
relative gradient of all objects by w∇r = |∇IoULα-IoU|/|∇IoULIoU| = αIoUα−1, with the turning
point at IoU = α

1
1−α ∈ (0, 1e ) when 0 < α < 1 and IoU = α

1
1−α ∈ ( 1e , 1) when α > 1.

When α > 1, the above reweighting factor w∇r increases monotonically with the increase of
IoU, while decreasing monotonically with the increase of IoU when 0 < α < 1. This relative
gradient reweighting scheme is also adaptive to IoU, with the turning point from up-weighting to
down-weighting at IoU = α

1
1−α ∈ (0, 1e ) when 0 < α < 1, and from down-weighting to up-

weighting at IoU = α
1

1−α ∈ ( 1e , 1) when α > 1. The gradient reweighting scheme is bounded
by w∇r (IoU = 1) = α, i.e., 0 ≤ w∇r ≤ α when α > 1, and w∇r ≥ α when 0 < α < 1. This
relative gradient reweighting scheme allows the model to learn objects with adaptive speeds (i.e.,
different gradients) according to their IoUs. Theoretically, when α = 2, |∇IoULα-IoU| > |∇IoULIoU|
for IoU ∈ (0.5, 1], which accelerates the learning of all positive IoU objects at AP50. However, we
empirically show that α-IoU losses with α = 3 perform more competitively than those with α = 2 in
most cases. It is probable that α-IoU losses with α = 3 further up-weight the relative loss of objects
with IoU ∈ (0.5, 1], although α-IoU losses with α = 2 also beat existing baselines (see Figure 6).
This property is both data-agnostic and model-agnostic, so we recommend α = 3 or α ∈ [2, 3] in
practical use for other datasets and models.

The above loss and gradient reweighting schemes can also be inferred from Figure 1, with detailed
proofs in Appendix A. To summarize, Lα-IoU trains better detectors than LIoU for the following
reasons. First, the same optimal IoU can be achieved by Lα-IoU as that by LIoU (Property 1). Second,
Lα-IoU with α > 1 focuses more on high IoU objects by up-weighting their relative loss (Property

4The relative loss reweighting scheme of Lα-IoU is reminiscent of the reweighting scheme of the focal loss
FL(p̂) = −(1−p̂)γ log(p̂), γ > 0, which was proposed to encourage the learning of low confidence foreground
objects in the presence of a large number of high confidence backgrounds [21]. In contrast, Lα-IoU with α > 1
focuses more on high IoU objects as the final performance is comprehensively measured by mAP50:95, with
low IoU objects (here IoU < 0.5) suppressed at evaluation. Note that focal loss is usually designed for the
classification branch of object detectors while our α-IoU is for the bbox regression branch.
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2). Third, Lα-IoU with α > 1 helps detectors learn faster on high IoU objects (here IoU ∈ (α
1

1−α , 1])
through up-weighting their relative gradient (Property 3). In Appendix A, we also provide an
analysis of the absolute loss and gradient reweighting properties (Property 4 and 5), showing the
additions of α-IoU to IoU. Specifically, when α > 1, Lα-IoU adds an absolute loss weight to LIoU
(i.e., wLa = Lα-IoU − LIoU = IoU − IoUα > 0 for IoU ∈ (0, 1)), which creates more space
for optimization on all levels of objects (Property 4). Likewise, Lα-IoU puts an absolute gradient
weight for high IoU objects (i.e., w∇a = |∇IoULα-IoU| − |∇IoULIoU| = αIoUα−1 − 1 > 0 for
IoU ∈ (α

1
1−α , 1]) such that the learning of high IoU objects is accelerated (Property 5). Both of

the absolute and relative properties of Lα-IoU are adaptive to the IoU values of the objects. Such
reweighting schemes will provide more flexibility in achieving different levels of bbox regression
accuracies (AP measured under different IoU thresholds).

Learning Dynamics of Lα-IoU. Training with Lα-IoU is a dynamic process and should be interpreted
based on both the absolute and relative properties. With α > 1, easy examples will be learned
first with increasing speed towards IoU = 1, while hard examples will be learned gradually and
accelerated later on as their IoU improves. We will empirically show in Figure 3 that up-weighting
the loss and gradient of high IoU objects can boost the training at the later stage. As a comparison,
we will also show that α-IoU losses with 0 < α < 1 tend to degrade the final performance in Section
4.4. Reducing the loss and gradient of high IoU objects ends up with more poorly localized objects.

4 Experiments

4.1 Datasets and Training Setup

We conduct all experiments on two popular benchmarks, i.e., PASCAL VOC [9] and MS COCO [22].
On the PASCAL VOC benchmark, we train all models on the trainval set 2007+2012 (containing
16, 551 images from 20 categories) and evaluate them on the test set 2007 (containing 4, 952 images)
[9]. On the MS COCO benchmark, we train all models on the training set 2017 (containing 118K
images from 80 categories) and evaluate them on the val set 2017 (containing 5K images) [22]. We
train all state-of-the-art models with the original implementation released by the authors. Specifically,
we follow the original implementation’s training protocol with default parameters and the number
of training epochs with different losses [31, 32, 43, 4]. Implementation details of all models are
given in Appendix B.1. All experiments are run with NVIDIA V100 GPUs. Code is available at
https://github.com/Jacobi93/Alpha-IoU.

4.2 Results and Analysis

We first validate the effectiveness of α-IoU losses in training both anchor-based and anchor-free
models on the two datasets. We choose YOLOv5s (i.e., YOLOv5 small) and YOLOv5x (i.e., YOLOv5
extra large) as one-stage anchor-based models, and DETR (ResNet-50) as an anchor-free model. Both
α-IoU losses (i.e., Lα-IoU and Lα-DIoU) are generalized from existing baselines following equation (4).
From Table 1, we can observe that α-IoU losses surpass existing losses consistently across multiple
models and datasets in terms of both mAP and mAP75:95, especially at the high bbox regression
accuracy mAP75:95. The superiority of α-IoU losses is more pronounced at high accuracy levels,
which might reach more than 60% relative improvement at AP95. Interestingly, α-IoU losses tend
to help more of light models (e.g., YOLOv5s with 7.3M parameters and 17 GFLOPs) than heavy
models (e.g., YOLOv5x with 87.7M parameters and 218.8 GFLOPs). This indicates that α-IoU
losses hold more advantage while training light models in computing-resource-limited scenarios,
such as mobile devices, autonomous vehicles, and robots.

The consistent improvements on both PASCAL VOC and MS COCO demonstrate the stability of
α-IoU losses across different datasets. In addition, we also verify its robustness to extremely small
training sets in Appendix B.2.2, where α-IoU losses beat existing losses at various scales, i.e., from
4K (25% trainval set of PASCAL VOC 2007+2012) to 118K (the entire training set of MS COCO
2017) samples. It is possible that α-IoU losses may not perform well if measured by a single low AP
metric. For example, there may be less than 0.5% performance drop at AP50 when α = 3, however,
this is compensated by the significant boost at high APs. With some examples from the test set of
PASCAL VOC 2007 (Figure 4) and the val set of MS COCO 2017 (Figure 5), we show that α-IoU
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Table 1: The performance of YOLOv5s, YOLOv5x and DETR models trained using different
localization losses on PASCAL VOC and MS COCO benchmarks. Results are obtained on the test
set of PASCAL VOC 2007 and the val set of MS COCO 2017. mAP denotes mAP50:95; mAP75:95

denotes the mean AP over AP75,AP80, · · · ,AP95. "rela. improv." stands for the relative improvement.
α = 3 is used for all α-IoU losses in all experiments.

Method Loss PASCAL VOC MS COCO

AP50 AP75 AP85 AP95 mAP mAP75:95 AP50 AP75 AP85 AP95 mAP mAP75:95

YOLOv5s

LIoU 78.81 58.04 35.07 2.34 52.74 32.45 55.51 38.59 23.58 2.07 36.29 21.82
Lα-IoU 78.62 58.78 38.16 3.64 53.61 34.46 55.25 39.69 25.85 3.35 37.01 23.66

rela. improv. -0.24% 1.27% 8.81% 55.56% 1.65% 6.21% -0.47% 2.85% 9.63% 61.84% 1.98% 8.43%

LDIoU 78.19 57.77 34.89 2.36 52.30 32.17 55.67 39.01 23.56 2.03 36.36 21.95
Lα-DIoU 78.33 59.24 38.46 3.50 53.76 34.66 55.84 39.49 25.49 3.30 36.74 23.34

rela. improv. 0.18% 2.54% 10.23% 48.31% 2.79% 7.72% 0.31% 1.23% 8.19% 62.56% 1.05% 6.32%

YOLOv5x

LIoU 85.24 70.08 53.08 10.88 63.95 46.78 67.36 52.15 38.22 9.31 48.42 34.42
Lα-IoU 84.83 70.20 53.75 13.74 64.25 48.06 67.72 52.61 38.62 9.76 48.67 34.72

rela. improv. -0.48% 0.17% 1.26% 26.29% 0.47% 2.73% 0.53% 0.88% 1.05% 4.83% 0.52% 0.87%

LDIoU 85.04 71.05 53.71 11.11 64.21 47.30 67.54 52.03 38.02 8.58 48.38 34.16
Lα-DIoU 84.90 71.34 54.23 13.85 64.49 48.40 67.42 52.65 39.28 10.29 48.81 35.42

rela. improv. -0.16% 0.41% 0.97% 24.66% 0.44% 2.32% -0.18% 1.19% 3.31% 19.93% 0.89% 3.68%

DETR

LIoU 76.50 53.85 29.54 1.62 49.78 28.82 59.38 41.67 26.13 3.52 39.23 24.37
Lα-IoU 76.22 55.03 32.30 2.28 51.12 31.08 59.61 42.65 28.57 5.09 40.18 26.44

rela. improv. -0.37% 2.19% 9.34% 40.74% 2.69% 7.84% 0.39% 2.35% 9.34% 44.60% 2.42% 8.49%

LDIoU 76.26 54.09 29.23 1.56 49.91 28.68 59.28 41.62 26.09 3.54 39.25 24.48
Lα-DIoU 76.44 54.89 31.48 2.44 50.96 30.60 59.38 42.34 28.23 5.36 39.94 26.05

rela. improv. 0.24% 1.48% 7.70% 56.41% 2.10% 6.69% 0.17% 1.73% 8.20% 51.41% 1.76% 6.41%
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Figure 2: IoU distributions between predicted
bboxes and their ground truth after NMS.
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Figure 3: Validation mAPs (mAP50:95) across
300 training epochs.

losses are able to localize objects more accurately than the baselines with more true positives and
fewer false positives.

We further analyze the bbox regression accuracy by showing the IoU distributions between the
predicted bboxes and their ground truth for YOLOv5s trained using different losses on PASCAL
VOC. After NMS with the IoU threshold being 0.5, we visualize the number of positively predicted
bboxes under different IoU thresholds from 0.5 to 0.9 in Figure 2, showing that α-IoU losses detect
more positive objects than baseline losses across all IoU thresholds. Particularly, α-IoU losses detect
approximately 1% more positive objects than the baselines when IoU ≥ 0.5, and 11% more high
IoU objects when IoU ≥ 0.9. This demonstrates that α-IoU boosts both the precisions and recalls
of detectors. α-IoU is extremely advantageous in pushing low IoU objects to high IoU objects by
up-weighting their loss, thus outperforming baseline losses significantly at the high accuracy level
and contributing to the improvement of the final detection performance (Table 1).

Moreover, Figure 3 shows that α-IoU losses are able to boost the late training stage (e.g., after 200
epochs) through up-weighting the gradient of high IoU objects, while almost having no negative
impact on the early training stage (e.g., the first 100 epochs). When α > 1, the relative gradient
weight is 0 ≤ w∇r < 1 for 0 ≤ IoU < α

1
1−α , while 1 ≤ w∇r ≤ α for α

1
1−α ≤ IoU ≤ 1,

as analyzed in Property 3 and illustrated in Figure 1 (right). This property helps tune down the
gradients of low IoU objects at the early training stage, which has a smoothing effect (reduces the high
variance in parameter update caused by hard examples) that helps stabilize the model training when
gradients are large at the early stage. On the other hand, the gradient up-weighting is well-bounded
by w∇r ≤ α, which makes up-weighting relatively safe for high IoU objects, as the original loss and
gradient are small for these examples, so is the learning rate.
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Figure 4: Example results on the test set of PASCAL VOC 2007 using YOLOv5s trained by LIoU (top
row) and Lα-IoU with α = 3 (bottom row). Lα-IoU performs better than LIoU because it can localize
objects more accurately (image 1 and 2), thus can detect more true positive objects (image 3 to 5)
and fewer false positive objects (image 6 and 7).

Figure 5: Example results on the val set of MS COCO 2017 using YOLOv5s trained by LIoU (top
row) and Lα-IoU with α = 3 (bottom row). Lα-IoU performs better than LIoU because it can localize
objects more accurately (image 1), thus can detect more true positive objects (image 2 to 5) and fewer
false positive objects (image 4 to 7). Note that Lα-IoU detects both more true positive and fewer false
positive objects in image 4 and 5 than LIoU.

We also conduct an experiment to compare our α-IoU with a set of existing IoU-based losses in
training a popular two-stage anchor-based model, Faster R-CNN (ResNet-50-FPN). In Table 2, results
at the top are reproduced using the MMDetection toolbox [6] while those in the middle are reported
results in the original papers [43, 41, 23]. Results at the bottom are obtained by replacing existing
losses with their α-IoU versions (i.e., improve based on top results using MMDetection). The results
on MS COCO demonstrate that α-IoU losses are quite competitive compared with existing baselines
in terms of both mAP and mAP75:95. Note that the Autoloss searches both the classification loss and
the localization loss, thus taking a huge amount of searching time [23]. In contrast, α-IoU losses
only need an easy modification of the localization loss and win the Autoloss without causing any
additional computational overhead.

4.3 Robustness to Noisy Bounding Boxes

It happens quite often that people annotate inaccurate bboxes in images/videos as the ground truth,
even with computer-assisted annotation tools. However, there is little work on the robustness of
localization losses to noisy bboxes, even though a number of methods have been proposed for robust
learning with noisy labels, anchors, and bboxes [27, 26, 12, 10, 15, 37, 38, 25, 19, 20]. Here, we fill
this gap by conducting a set of experiments to evaluate the robustness of different localization losses
to noisy bboxes. We show that α-IoU is more robust to noisy bboxes as they focus less on the low
IoU objects, creating a suppression effect on the learning of the noisy bbox examples. Considering
that open datasets like PASCAL VOC and MS COCO are carefully annotated, we synthesize a set of
common noisy bboxes by perturbing normalized bboxes in the entire training set. The perturbations
follow a uniform noise distribution in [−ηw, ηw] at horizontal coordinates (x and w) and [−ηh, ηh]
at vertical coordinates (y and h), where η is the noise rate [20]. We then constrain all the noisy bboxes
by the following boundary conditions:

0 < w < 1, 0 < h < 1,
1

2
w ≤ x ≤ 1− 1

2
w,

1

2
h ≤ y ≤ 1− 1

2
h. (5)
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Table 2: The performance of Faster R-CNN (ResNet-50-FPN) with 1× schedule and single scale
training on MS COCO using different localization losses. Results are obtained on the val set of MS
COCO 2017. mAP denotes mAP50:95; mAP75:95 denotes the mean AP over AP75,AP80, · · · ,AP95.
APs, APm, and APl denote the AP for small, medium, and large objects, respectively. † marks the
reproduced results from the MMDetection toolbox [6], while ∗ marks the results in the original papers.
"–" represents the missing results in papers. α = 3 is used for all α-IoU losses in all experiments.
The top two best results in every column are boldfaced.

Loss AP50 AP75 AP80 AP85 AP90 AP95 mAP mAP75:95 APs APm APl
†`1 58.13 40.45 33.56 23.39 11.09 1.24 37.37 21.95 21.20 40.96 48.13
†LIoU 58.12 41.23 34.03 24.43 12.42 1.61 37.88 22.74 21.61 41.63 49.11
†LGIoU 58.18 41.00 33.52 24.13 11.97 1.51 37.62 22.43 21.49 41.07 48.90
†LBIoU 58.05 40.57 33.54 23.85 11.10 1.19 37.43 22.05 21.57 41.00 48.17

∗LIoU – 40.79 – – – – 37.93 – 21.58 40.82 50.14
∗LGIoU – 41.11 – – – – 38.02 – 21.45 41.06 50.21
∗LDIoU – 41.11 – – – – 38.09 – 21.66 41.18 50.32
∗LCIoU – 41.96 – – – – 38.65 – 21.32 41.83 51.51
∗LFocal-EIoU 59.10 42.40 – – – – 38.90 – 21.20 41.10 50.20
∗Autoloss 58.60 41.80 – – – – 38.50 – 22.00 42.20 50.20

Lα-IoU 58.81 41.94 34.81 25.36 13.27 1.81 38.96 23.44 22.14 42.11 50.36
Lα-GIoU 59.01 42.00 35.13 25.14 13.09 2.03 39.18 23.46 22.05 42.19 50.08
Lα-DIoU 59.27 42.18 35.25 25.47 13.32 1.95 39.43 23.65 22.10 42.10 50.43
Lα-CIoU 59.09 41.92 35.01 25.08 13.04 1.98 39.25 23.41 21.94 41.88 50.01

Table 3: The performance of YOLOv5s trained using different localization losses on simulated noisy
trainval sets of PASCAL VOC 2007+2012 under noise rates η = 0.1, 0.2, and 0.3. Results are
obtained on the clean test set of PASCAL VOC 2007. mAP denotes mAP50:95; mAP75:95 denotes the
mean AP over AP75,AP80, · · · ,AP95. "rela. improv." stands for the relative improvement. α = 3 is
used for all α-IoU losses in all experiments.

Noise Loss AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 mAP mAP75:95

0.1

LIoU 74.48 71.57 68.08 63.29 56.55 47.12 33.06 17.53 4.16 0.26 43.61 20.43
Lα-IoU 74.67 71.94 68.73 64.27 57.75 48.50 36.88 21.25 6.30 0.28 45.06 22.64

rela. improv. 0.26% 0.52% 0.95% 1.55% 2.12% 2.93% 11.55% 21.22% 51.44% 7.69% 3.32% 10.85%

LDIoU 74.09 71.46 67.88 63.09 56.18 46.71 32.67 17.50 4.43 0.23 43.42 20.31
Lα-DIoU 74.38 71.95 68.10 63.52 57.18 48.47 35.90 20.89 6.37 0.33 44.71 22.39

rela. improv. 0.39% 0.69% 0.32% 0.68% 1.78% 3.77% 9.89% 19.37% 43.79% 43.48% 2.97% 10.26%

0.2

LIoU 67.82 63.93 58.22 50.11 39.31 26.33 13.51 4.55 0.66 0.05 32.45 9.02
Lα-IoU 68.20 64.21 58.77 51.59 40.66 29.20 16.11 6.06 1.31 0.10 33.62 10.56

rela. improv. 0.56% 0.44% 0.94% 2.95% 3.43% 10.90% 19.25% 33.19% 98.48% 100% 3.61% 17.03%

LDIoU 67.39 62.94 57.29 49.25 39.40 27.13 13.78 4.52 0.68 0.02 32.24 9.23
Lα-DIoU 68.26 64.49 59.59 51.99 41.19 29.12 15.77 5.84 1.25 0.21 33.77 10.44

rela. improv. 1.29% 2.46% 4.01% 5.56% 4.54% 7.34% 14.44% 29.20% 83.82% 950% 4.75% 13.14%

0.3

LIoU 56.54 49.69 40.67 30.80 19.99 11.13 4.81 1.43 0.31 0.04 21.54 3.54
Lα-IoU 58.59 51.58 43.23 32.93 22.27 12.52 5.91 2.16 0.73 0.12 23.00 4.29

rela. improv. 3.63% 3.80% 6.29% 6.92% 11.41% 12.49% 22.87% 51.05% 135% 200% 6.78% 20.99%

LDIoU 56.84 49.82 41.50 32.06 20.80 11.22 4.84 1.51 0.46 0.07 21.91 3.62
Lα-DIoU 58.45 51.94 43.9 33.78 22.57 12.89 6.34 2.42 0.65 0.16 23.31 4.49

rela. improv. 2.83% 4.26% 5.78% 5.36% 8.51% 14.88% 30.99% 60.26% 41.30% 129% 6.39% 24.09%

We test η = 0.1, 0.2, 0.3 in our experiments, with the average IoU between the noisy bboxes and their
clean versions dropping to 0.833, 0.710, and 0.613, respectively. Examples of the synthesized noisy
bboxes can be found in Appendix B.4. As shown in Table 3, α-IoU improves the baseline losses (i.e.,
LIoU and LDIoU) considerably in these noisy scenarios. We gain increasing relative improvements
from AP50 to AP95, which accumulate to a more significant improvement in mAP75:95. Note that
α-IoU losses also outperform the baselines at AP50 across all noisy scenarios, which is not always
the case when bboxes are clean (Table 1). Furthermore, α-IoU losses are noticeably more robust
against more severe noises. For instance, the relative improvement of Lα-DIoU over LDIoU increases
from 2.97%/10.26% to 6.39%/24.09% according to mAP/mAP75:95 when the noise rate η rises from
0.1 to 0.3. These results confirm the advantage of α-IoU losses in noisy bbox scenarios.
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Figure 6: The performance of YOLOv5 models trained using α-IoU with different α values and
evaluated on the clean test set of PASCAL VOC 2007. Black dashed lines denote baselines (i.e., the
family of α-IoU with α = 1) while red dashed lines denote the family of α-IoU with α = 3.

4.4 Sensitivity to power parameter α

Here, we evaluate the performance of α-IoU with varying α values (α ∈ [0.5, 5]) via a set of
experiments with Lα-IoU and Lα-DIoU. The results are shown in Figure 6 for YOLOv5s on PASCAL
VOC in both clean and various noisy bbox scenarios. It is evident that α-IoU losses with α ∈ [2, 4]
perform competitively well across all scenarios, with α = 3 performing the best in most cases. When
α > 3, α-IoU losses tend to perform worse on low APs than the baselines (i.e., α-IoU with α = 1),
although the performance at high APs gains more improvement. We also test an extreme case with
α = 10, in which the performance drops by 5.61%/10.92%/23.88%/31.82% on average compared
with α = 3 under noise rates η = 0/0.1/0.2/0.3, respectively. More specifically, it becomes worse
than the baselines according to either mAP or mAP75:95. This indicates that a proper choice of α is
crucial for α-IoU losses. Our recommendation is to tune α ∈ [2, 3] for most applications or directly
use α = 3 when tuning is too expensive. Note that α ∈ [3, 4] may be a better choice when high
levels of bbox regression accuracy is desired, e.g., mAP75:95 is the preferred performance metric. It
is possible that α < 1 is a better choice for certain applications, although α-IoU losses with α < 1
perform consistently worse than the baselines in our experiments.

5 Conclusions

In this paper, we proposed a unified formula α-IoU to generalize existing IoU-based losses to a new
family of power IoU losses. By modulating the power parameter α, α-IoU offers the flexibility to
achieve different levels of bbox regression accuracy when training an object detector. We analyzed the
order preservingness and the loss/gradient reweighting properties of α-IoU, and showed that α-IoU
can improve bbox regression accuracy through up-weighting the loss and gradient of high IoU objects.
Experiments with multiple detection models and benchmark datasets demonstrated that α-IoU losses
can consistently outperform existing IoU-based losses, especially at the high Average Precisions
(APs). α-IoU has the potential to be widely applied in real-world object detection applications as
1) it improves existing IoU-based losses, 2) it benefits light models, 3) it is extremely advantageous
on small datasets, and 4) it is more robust to noisy bboxes. For future work, we will explore new
generalization formulas for other metric-derived loss functions [13], such as Dice, Hausdorff distance,
and Chamfer distance losses.

Societal Impacts

The proposed loss functions can help train high-performance object detectors for impactful applica-
tions such as self-driving, face recognition and video surveillance. While not our initial intention,
these models could potentially be manipulated by adversaries or unauthorized users for malicious
purposes. This could compromise the safety or privacy of certain individuals. We believe strict
regulations should be established to prevent such illegitimate exploitations.
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