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ABSTRACT

From large-scale organizations to decentralized political systems, hierarchical
strategic decision making is commonplace. We introduce a novel class of struc-
tured hierarchical games (SHGs) that formally capture such hierarchical strategic
interactions. In an SHG, each player is a node in a tree, and strategic choices of
players are sequenced from root to leaves, with root moving first, followed by its
children, then followed by their children, and so on until the leaves. A player’s util-
ity in an SHG depends on its own decision, and on the choices of its parent and all
the tree leaves. SHGs thus generalize simultaneous-move games, as well as Stackel-
berg games with many followers. We leverage the structure of both the sequence of
player moves as well as payoff dependence to develop a novel gradient-based back
propagation-style algorithm, which we call Differential Backward Induction (DBI),
for approximating equilibria of SHGs. We provide a sufficient condition for con-
vergence of DBI and demonstrate its efficacy in finding approximate equilibrium
solutions to several SHG models of hierarchical policy-making problems.

1 INTRODUCTION

The COVID-19 pandemic has revealed considerable strategic tension among the many parties involved
in decentralized hierarchical policy-making. For example, recommendations by the World Health
Organization are sometimes heeded, and other times discarded by nations, while subnational units,
such as provinces and urban areas, may in turn take a policy stance (such as on lockdowns, mask
mandates, or vaccination priorities) that is not congruent with national policies. Similarly, in the US,
policy recommendations at the federal level can be implemented in a variety of ways by the states,
while counties and cities, in turn, may comply with state-level policies, or not, potentially triggering
litigation Hill & Varone (2021). Central to all these cases is that, besides this strategic drama, what
ultimately determines infection spread is how policies are implemented at the lowest level, such as by
cities and towns, or even individuals. Similar strategic encounters routinely play out in large-scale
organizations, where actions throughout the management hierarchy are ultimately reflected in the
decisions made at the lowest level (e.g., by the employees who are ultimately involved in production),
and these lowest-level decisions play a decisive role in the organizational welfare.

We propose a novel model of hierarchical decision making which is a natural stylized representation
of strategic interactions of this kind. Our model, which we term structured hierarchical games
(SHGs), represents each player by a node in a tree hierarchy. The tree plays two roles in SHGs. First,
it captures the sequence of moves by the players: the root (the lone member of level 1 of the hierarchy)
makes the first strategic choice, its children (i.e., all nodes in level 2) observe the root’s choice and
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follow, their children then follow in turn, and so on, until we reach the leaf node players who move
upon observing their predecessors’ choices. Second, the tree partially captures strategic dependence:
a player’s utility depends on its own strategy, that of its parent, and the strategies of all of the leaf
nodes. The sequence of moves in our model naturally captures the typical sequence of decisions
in hierarchical policy-making settings, as well as in large organizations, while the utility structure
captures the decisive role of leaf nodes (e.g., individual compliance with vaccination policies), as well
as hierarchical dependence (e.g., employee dependence on a manager’s approval of their performance,
or state dependence on federal funding). Significantly, the SHG model generalizes a number of
well-established models of strategic encounters, including (a) simultaneous-move games (captured
by a 2-level SHG with the root having a single dummy action), (b) Stackelberg (leader-follower)
games (a 2-level game with a single leaf node) Von Stackelberg (1952); Fiez et al. (2020), and (c)
single-leader multi-follower Stackelberg games (e.g., a Stackelberg security game with a single
defender and many attackers) Basilico et al. (2016); Coniglio et al. (2020).

Our second contribution is a novel gradient-based algorithm for approximately computing subgame-
perfect equilibria of SHGs. Specifically, we propose Differential Backward Induction (DBI), which
is a backpropagation-style gradient ascent algorithm that leverages both the sequential structure of
the game, as well as the utility structure of the players. As DBI involves simultaneous gradient
updates of players in the same level (particularly at the leaves), convergence is not guaranteed in
general (as is also the case for best-response dynamics Fudenberg et al. (1998)). Viewing DBI as a
dynamical system, we provide a sufficient condition for its convergence to a stable point. Our results
also imply that in the special case of two-player zero-sum Stackelberg games, DBI converges to a
local Stackelberg equilibrium Fiez et al. (2020); Wang et al. (2020).

Finally, we demonstrate the efficacy of DBI in finding approximate equilibrium solutions to several
classes of SHGs. First, we use DBI to solve a recently proposed game-theoretic model of 3-level
hierarchical epidemic policy making. Second, we apply DBI to solve a hierarchical variant of a
public goods game, which naturally captures the decentralization of decision making in public good
investment decisions, such as investments in sustainable energy. Third, we evaluate DBI in the context
of a hierarchical security investment game, where hierarchical decentralization (e.g., involving federal
government, industry sectors, and particular organizations) can also play a crucial role. In all of these,
we show that DBI significantly outperforms the state of the art approaches that can be applied to
solve games with hierarchical structure.

Related Work SHGs generalize both simultaneous-move games and Stackelberg games with
multiple followers (Leyffer & Munson, 2005; Basilico et al., 2016). They are also related to graphical
games Kearns et al. (2001) in capturing utility dependence structure, although SHGs also capture
sequential structure of decisions. Several prior approaches use gradient-based methods for solving
games with particular structure. A prominent example is generative adversarial networks (GANs),
though these are zero-sum games (Goodfellow et al., 2014; Jin et al., 2020; Nagarajan & Kolter, 2017;
Daskalakis & Panageas, 2018; Mertikopoulos & Zhou, 2019; Mescheder et al., 2017). Ideas from
learning GANs have been adopted in gradient-based approaches to solve multi-player general-sum
games (Mazumdar et al., 2020; Balduzzi et al., 2018; Chasnov et al., 2020; Ibrahim et al., 2020;
Letcher, 2021; Lin et al., 2020; Mertikopoulos & Zhou, 2019). However, all of these approaches
assume a simultaneous-move game. A closely-related thread to our work considers gradient-based
methods for bi-level optimization (Li & Başar, 1987; Shaban et al., 2019). Several related efforts
consider gradient-based learning in Stackelberg games, and also use the implicit function theorem
to derive gradient updates (Amin et al., 2016; Fiez et al., 2020; Nguyen et al., 2020; Wang et al.,
2020; 2021). We significantly generalize these ideas by considering an arbitrary hierarchical game
structure.

Jia et al. (2021) recently considered a stylized 3-level SHG for pandemic policy making, and proposed
several non-gradient-based algorithms for this problem. We compare with their approach in Section 4.

2 STRUCTURED HIERARCHICAL GAMES

Notation We use bold lower-case letters to denote vectors. Let f be a function of the form
fpx,yq : Rd ˆ Rd1 Ñ Rd2 . We use ∇xf to denote the partial derivative of f with respect to x.
When there is functional dependency between x and y, we use Dxf to denote the total derivative of
fpx,ypxqqwith respect to x. We use ∇2

x,xf and ∇2
x,yf to denote the second-order partial derivatives
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and D2
x,xf to denote the second-order total derivative of f . For a mapping f : Rd Ñ Rd, we use

f tpxq to denote t iterative applications of f on x. For mappings f1 : Rd Ñ Rd and f2 : Rd Ñ Rd,
we define pf1 ˝ f2qpxq fi f1pf2pxqq and pf1 ` f2qpxq fi f1pxq ` f2pxq. Moreover, for a given
ε P Rě0 and x P Rd, we define the ε-ball around x as Bεpxq “ tx1 P Rd | }x´ x1}2 ă εu. Finally,
I denotes an identity matrix.

Formal Model A structured hierarchical game (SHG) G consists of the set N of n players. Each
player i is associated with a set of actions Xi Ď Rdi . The players are partitioned across L levels,
where Nl is the set of nl players occupying level l. Let li denote the level occupied by player i. This
hierarchical structure of the game is illustrated in Figure 1 where players correspond to nodes and
levels are marked by dashed boundaries. The hierarchy plays two crucial roles: 1) it determines
the order of moves, and 2) it partly determines utility dependence among players. Specifically, the
temporal pattern of actions is as follows: level 1 has a single player, the root, who chooses an action
first, followed by all players in level 2 making simultaneous choices, followed in turn by players
in level 3, and so on until the leaves in the final level L. Players of level l only observe the actions
chosen by all players of levels 1, 2, ..., l ´ 1, but not their peers in the same level.

So, for example, pandemic social distancing and vaccination policies in the US are initiated by
the federal government (including the Centers for Disease Control and Prevention), with states
subsequently instituting their own policies, counties reacting to these by determining their own, and
behavior of people ultimately influenced, but not determined, by the guidelines and enforcement
policies by the local county/city.

Next, we describe the utility structure of the game as entailed by the SHG hierarchy. Each player i in
level li ą 1 (i.e., any node other than the root) has a unique parent in level li´1; we denote the parent
of node i by PApiq. A player’s utility function is determined by 1) its own action, 2) the action of its
parent, and 3) the actions of all players in level L (i.e., all leaf players). To formalize, let xl denote
the joint action profile of all players in level l. Player i’s utility function then has the form uipxi,xLq
if li “ 1, uipxi, xPApiq,xLq if 1 ă li ă L, and uipxi, xPApiq,xL,´iq if li “ L, where xL,´i is the
action profile of all players in level L other than i. For example, in our running pandemic policy
example, the utility of a county depends on both the policy and enforcement strategy of its state (its
parent) and on the ultimate pandemic spread and economic impact within it, both determined largely
by the behavior of the county residents (leaf nodes). Note the considerable generality of the SHG
model. For example, an arbitrary simultaneous-move game is a SHG with 2 levels and a “dummy”
root node (utilities of all leaves depend on one another’s actions), and an arbitrary Stackelberg game
(e.g., Stackelberg security game), even with many followers, can be modeled as a 2-level SHG with
the leader as root and followers as leaves. Furthermore, while we have defined SHGs with respect
to real-vector player action sets, it is straightforward to represent mixed strategies of finite-action
games in this way by simply using a softmax function to map an arbitrary real vector into a valid
mixed strategy.

Solution Concept Since an SHG has important sequential structure, it is natural to consider the
subgame perfect equilibrium (SPE) as the solution concept (Osborne & Rubinstein, 2004). Here, we
focus on pure-strategy equilibria. To begin, we note that in SHGs, the strategies of players in any level
l ą 1 are, in general, functions of the complete history of play in levels 1, . . . , l´ 1, which we denote
by hăl “ px1,x2, . . . ,xl´1q. Formally, a (pure) strategy of a player i is denoted by siphălq, which
deterministically maps an arbitrary history hăl into an action xi P Xi. A Nash equilibrium of an SHG
is then a strategy profile s “ ps1, . . . , si, . . . , snq such that for all i P N , uipsi, s´iq ě uips

1
i, s´iq

for all possible alternative strategies for i, s1i. Here, we denote the realized payoff of i from profile s
by uipsi, s´iq. Next, we define a level-l-subgame given hăl as an SHG that includes only players at
levels ě l, with actions chosen in levels ă l fixed to hăl. A strategy profile s is a subgame perfect
equilibrium of SHG if it is a Nash equilibrium of every level-l-subgame of SHG for every l and
history hăl. We prove in appendix A that our definition of SPE is equivalent to the standard SPE in
an extensive-form representation of SHG.

While in principle we can compute an SPE of an SHG using backward induction, this cannot be done
directly (i.e., by complete enumeration of actions of all players) as actions are real vectors. Moreover,
even discretizing actions is of little help, as the hierarchical nature of the game leads to exponential
explosion of the search space. We now present a gradient-based approach for approximating SPE
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along the equilibrium path in an SHG that leverages the game structure to derive backpropagation-
style gradient updates.

3 DIFFERENTIAL BACKWARD INDUCTION

In this section, we describe our gradient-based algorithm, Differential Backward Induction (DBI), for
approximating an SPE, and then analyze its convergence. Just as gradient ascent does not, in general,
identify a globally optimal solution to a non-convex optimization problem, DBI in general yields a
solution which only satisfies first-order conditions (see Section B.1 for further details). Moreover, we
leverage the structure of the utility functions to focus computation on an SPE in which strategies of
players are only a function of their immediate parents.1 In this spirit, we define local best response
functions φi : RdPApiq Ñ Rdi mapping a player i’s parent’s action xPApiq to i’s action xi; note that
the notation φi is distinct from si above for i’s strategy to emphasize the fact that φi is only locally
optimal. Now, suppose that a player i is in the last level L. Local optimality of φi implies that if
xi “ φipxPApiqq, then ∇xiui

`

xi,xPApiq,xL,´i
˘

“ 0 and ∇2
xi,xiui

`

xi,xPApiq,xL,´i
˘

ă 0.2

Let φl denote the local best response for all the players in level l given the actions of all players in level
l´1. We can compose these local best response functions to define the function Φl :“ φL˝φL´1˝. . .˝
φl`1 : Rdnl Ñ RdnL i.e., the local best response of players in the last level L given the actions of the
players in level l.3 Then for any player piq in level li ă L, Dxiui

`

xi, xPApiq,Φl pxxi,xl,´iyq
˘

“ 0

and D2
xi,xiui

`

xi, xPApiq,Φl pxxi,xl,´iyq
˘

ă 0, where Dxi is the total derivative with respect to xi
(as Φlpxxi,xl,´iyq is also a function of xi). Note that the functions φ and Φ are implicit, capturing
the functional dependencies between actions of players in different levels at the local equilibrium.

Throughout, we make the following standard assumption on the utility functions (Dontchev &
Rockafellar, 2009; Wang et al., 2020).

Assumption 1. For any xi P Xi, the second-order partial derivatives of the form ∇2
xi,xiui are

non-singular.

3.1 ALGORITHM

The DBI algorithm works in a bottom-up manner, akin to back-propagation: for each level l, we
compute the total derivatives (gradients) of the utility functions and local best response maps (φ, Φ)
based on analytical expressions that we derive below. We then propagate this information up to level
l ´ 1, as it is used to compute gradients for that level, and so on until level 1. Algorithm 1 gives the
full DBI algorithm. In this algorithm, CHDpiq denotes the set of children of player i (i.e., nodes in
level li ` 1 for whom i is the parent).

1Note that while we cannot guarantee that an SPE exists in SHGs in general, let alone those possessing the
assumed structure, we find experimentally that our approach often yields good SPE approximations.

2For simplicity, we omit degenerate cases where ∇2
xi,xiui “ 0 and assume all local maxima are strict.

3Note that in particular ΦL “ φL.
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Figure 1: Schematic representation of an SHG. The utility of player i can have direct functional
dependence only on the joint action of all shaded players.

Algorithm 1 Differential Backward Induction (DBI)
Input: An SHG instance G
Parameters: Learning rate α, maximum number of iterations T for gradient update
Output: A strategy profile

Randomly initialize x0 “ xx0
1, . . . ,x

0
Ly

for t “ 1, 2, . . . , T do
for l “ L,L´ 1, . . . , 1 do

for i “ 1, 2, . . . , nl do
if l “ L then

Back-propagate DxiΦi “ I to PApiq
Set xti Ð xt´1

i ` α∇xiui
else

Compute ∇xiui,∇xLui at xt´1

Compute Dxiφj ,@j P CHDpiq (Eqn. equation 5)
Compute DxiΦl (Eqn. equation 4)
Back-propagate DxiΦl to PApiq
Compute Dxiui “ ∇xiui `∇xLuiDxiΦl
Set xti Ð xt´1

i ` αDxiui
Return xT

DBI works in a backward message-passing manner, comparable to back-propagation: after each
player has computed its total derivative, it passes (back-propagates) DxiΦl to its direct parent; this
information is, in turn, used by the parent to compute its own total derivative, which is passed to its
own parent, and so on.

Algorithm 1 takes the total derivates as given. We now derive closed-form expressions for these. We
start from the last level L. Given the actions of players in level L´ 1, the total derivative of a player
i P NL with respect to xi is

Dxiui
`

xi, xPApiq,xL,´i
˘

“ ∇xiui. (1)

For a player i in level L´ 1, the total derivative (at a local best response) is

Dxiuipxi, xPApiq,φLpxxi,xL´1,´iyqq

“ ∇xiui ` p∇xLuiq pDxiφLq , (2)

where ∇xLui is a 1ˆ dnL vector and DxiφL is a dnL ˆ d matrix. The technical challenge here is
to derive the term DxiφL for i P NL´1. Recall that φL is the vectorized concatenation of the φj
functions for j P NL. Since the local best response strategy of a player in level L only depends on its
parent in level L´ 1, the only terms in φL that depend on xi are the actions of CHDpiq in level L.
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Consequently, it suffices to derive Dxiφj for j P CHDpiq. Note that for these players j, ∇xjuj “ 0
(by local optimality of φL). We will use this first-order condition to derive the expression for the total
derivative using the implicit function theorem.
Theorem 1 (Implicit Function Theorem (IFT) (Dontchev & Rockafellar, 2009, Theorem 1B.1)).
. Let fpx1,x2q : Rd ˆ Rd Ñ Rd be a continuously differentiable function in a neighborhood of
px˚1 ,x

˚
2 q such that fpx˚1 ,x

˚
2 q “ 0. Also suppose ∇x2f , the Jacobian of f with respect to x2, is

non-singular at px˚1 ,x
˚
2 q. Then around a neighborhood of x˚1 , we have a local diffeomorphism

x˚2 px1q : Rd Ñ Rd such that Dx1x2 “ ´p∇x2fq
´1 ∇x1f .

To use Theorem 1, we set f “ ∇xjuj (which satisfies the conditions of Theorem 1 by Assumption 1),
x1 “ xi and x2 “ xj (recall that j P CHDpiq). By IFT, there exists φjpxiq such that Dxiφj “
´p∇2

xj ,xjujq
´1∇2

xj ,xiuj . Define ∇2
j :“ ∇2

xj ,xiuj . Then

p∇xLuiq pDxiφLq “ ´
ÿ

jPCHDpiq

`

∇xjui
˘

Dxiφj

“ ´
ÿ

jPCHDpiq

`

∇xjui
˘

p∇2
xj ,xjujq

´1∇2
j .

Plugging this into Equation equation 2, we obtain
Dxiui

`

xi, xPApiq, φL pxL´1q
˘

“ ∇xiui ´
ÿ

jPCHDpiq

`

∇xjui
˘

p∇2
xj ,xjujq

´1∇2
j . (3)

For a level l ă L ´ 1, the total derivative of player i P Nl in a local best response is Dxiui “∇xiui ` p∇xLuiq pDxiΦlq , where

DxiΦl “
`

Dxl`1Φl`1

˘

pDxixl`1q

“
ÿ

jPCHDpiq

`

DxjΦl`1

˘

pDxiφjq . (4)

Applying IFT, we get
Dxiφj “ ´p∇

2
xj ,xjujq

´1∇2
xj ,xiuj , (5)

for j P CHDpiq. We can apply the above procedure recursively for Dxl`1
Φl`1 to derive the total

derivative for players i P Nl for l ă L´ 1:

Dxiui “ ∇xiui `

¨

˝

ÿ

jPLEAFpiq

p´1qL´l∇xjui

ź

ηPPATHpjÑiq

`

∇2
xη,xηuη

˘´1 ∇2
xη,xPApηq

uη

˛

‚, (6)

where PATHpj Ñ iq is an ordered list of nodes (players) lying on the unique path from j to i,
excluding i. Note that Equation equation 6 is a generalization of Equation equation 3 where the PATH
only consists of the leaf player.

While the above derivation assumes the φ and Φ functions are local best responses, in our algorithm
in each iteration we evaluate these functional expressions for the total derivatives at the current joint
action profile. This significantly reduces computational complexity and ensures that Algorithm 1
satisfies the first-order conditions upon convergence.

3.2 CONVERGENCE ANALYSIS

We analyze the convergence properties of our algorithm in appendix B

4 EXPERIMENTS

In this section, we empirically investigate the behavior of DBI in games where we can verify global
stability. All our code is written in python. We ran our experiments on an Intel(R) Core(TM) i9-9820X
CPU @ 3.30GHz.
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We evaluate the performance in terms of quality of equilibrium approximation as a function of the
number of iterations of a given algorithm, or its running time. Ideally, given a collection of actions x
played by players along the (approximate) equilibrium path computed, we wish to find the largest
utility gain any player can have by deviating from this path, which we denote by εpxq. However, this
computation is impossible in our setting, as it would need to consider all possible histories as well,
whereas our approach and alternatives only return x along the path of play (moreover, considering all
possible histories is itself intractable).

We use the global SPE regret to evaluate our methods. It considers for each player i in level l a
discrete grid of alternative actions, and uses best response dynamics to compute an approximate SPE
of the level-pl ` 1q subgame to evaluate player i’s utility for each such deviation. This approach then
returns the highest regret among all players computed in this way.

4.1 DECENTRALIZED EPIDEMIC POLICY GAME

First, we consider DBI for solving a class of games inspired by hierarchical decentralized policy-
making in the context of epidemics such as COVID-19 (Jia et al., 2021). The hierarchy has levels
corresponding to the (single) federal government, multiple states, and county administrations under
each state. Each player’s action (policy) is a scalar in r0, 1s that represents, for example, the extent
of social distancing recommended or mandated by a player (e.g., a state) for its administrative
subordinates (e.g., counties). Crucially, these subordinates have considerable autonomy about setting
their own policies, but incur a non-compliance cost for significantly deviating from recommendations
made by the level immediately above (of course, non-compliance costs are not relevant for the
root player). The full cost function of each player additionally includes infection prevalence within
the geographic territory of interest to the associated entity (e.g., within the state), as well as the
socio-economic cost of the policy itself (complete details are provided in Appendix C).

Since the actions are in a one-dimensional compact space and the depth of the hierarchy is at most 3,
our baseline is the best response dynamics (BRD) algorithm proposed by Jia et al. (2021) (detailed
in Appendix C), and we use global regret as a measure of efficacy in comparing the proposed DBI
algorithm with BRD. The results of this comparison are shown in Figure 2 for two-level (government
and states) and three-level (government, states, counties) variants of this game. We consider two-level
games with 20 and 50 leaves (states), and three-level games with 2 players in level 2 (states) and 4
and 10 leaves (counties).
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Figure 2: Global regret (top) and running time (bottom) for the decentralized epidemic policy game.
Left (resp., right) column corresponds to result for games with 2(resp., 3) levels.

As we can see from the top plots in Figure 2, BRD can have poor convergence behavior in terms of
global regret, whereas DBI appears to converge quite reliably to a path of play with a considerably
lower global regret. Notably, the improvement in solution quality becomes more substantial as we
increase the game complexity either in terms of scale (number of leaves) or in terms of the level of
hierarchy (moving from 2- to 3-level games).

Running time (in seconds) demonstrates the relative efficacy of DBI even further (bottom plots in
Figure 2). In particular, observe the significant increase in the running time of BRD as we increase
the number of leaves. In contrast, DBI is far more scalable: indeed, even more than doubling the
number of players appears to have little impact on its running time. Moreover, BRD is several orders
of magnitude slower than DBI for the more complex games.
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4.2 HIERARCHICAL PUBLIC GOODS GAMES

Next, we consider hierarchical public goods games. A conventional networked public goods game
endows each player iwith a utility function uipxi, x´iq “ ai`bixi`

ř

j gjixixj´cipxiq, where gji is
the impact of player j on player i (often represented as a weighted edge on a network), and xi P r0, 1s
the level of investment in the public good by player i (Bramoullé & Kranton, 2007). We construct a
3-level hierarchical variant of such games by starting with the karate club network (Zachary, 1977)
which represents friendships among 34 individuals. Level-2 nodes are obtained by partitioning the
network into two (sub)clubs, with leaves (level-3 nodes) representing all the individuals. The utility
of level-2 nodes is the sum of utilities of individual members of associated clubs, with the utility of
the root being the sum of the utilities of all individuals. Furthermore, we introduce non-compliance
costs with investment policies in the level immediately above, as we did in the decentralized epidemic
policy game (Section 4.1). Further details are provided in Appendix C.2.
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Figure 3: (a) Performance (ε) in the Public Goods Game (Section 4.2); the scatter points show the
results of BRD with discretized factors 0.5, 0.2, 0.1, 0.05, and best response rounds 2, 3. (b), (c)
Results on p1, 3, 6q hierarchical security games (Section 4.3); legend is shared.

Figure 3(a) presents the global regret as a function of running time for DBI (black line) and BRD
with different levels of discretization (dots). We observe that DBI yields considerably lower regret in
these games than BRD even as we discretize the latter finely. Moreover, DBI reaches smaller regret
orders of magnitude faster than BRD.

4.3 HIERARCHICAL SECURITY GAMES

In the final set of experiments, we evaluate DBI on a hierarchical extension of interdependent security
games (Bachrach et al., 2013). In these games, n defenders can each invest xi ě 0 in security. If
defender i is attacked, the probability that the attack succeeds is 1{p1` xiq. Furthermore, defenders
are interdependent, so that a successful attack on defender i cascades to defender j with probability
qji. In the variant we adopt, the attacker strategy is a uniform distribution over defenders (e.g., the
“attacker” is just nature, with attacks representing stochastic exogenous failures). The utility of the
defender is the probability of surviving the attack less the cost of security investment.

We extend this simultaneous-move game to a hierarchical structure consisting of one root player
(e.g., government), three level-2 players (e.g., sectors), and six leaf players (e.g., organizations). The
policy-makers in the first two levels of the game recommend an investment policy to the level below,
and aim to maximize total welfare (sum of utilities) among the leaf players in their subtrees. Just
as in both hierarchical epidemic and public goods games, whenever a player in level l does not act
according to the recommendation of their parent in level l ´ 1, they incur a non-compliance cost.
Complete model details are deferred to Appendix C.3. We conduct experiments with two weights κ
that determine the relative importance of non-compliance costs in the decisions of non-root players in
the game: κ P t0.1, 0.5u.

Figures 3(b) and 3(c) present the results of comparing DBI with BRD on this class of games, where
BRD is again evaluated with different levels of action space discretization (note, moreover, that
in this setting discretizing actions is not enough, since these are unbounded, and we also had to
impose an upper bound). We can observe that for either value of κ, DBI yields high-quality SPE
approximation (in terms of global SPE regret) far more quickly than BRD. In particular, when we
use relatively coarse discretization, BRD is approximately an order of magnitude slower, and yields
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significantly higher regret. In contrast, if we use finer discretization for BRD, global regret for BRD
and DBI becomes comparable, but now BRD is several orders of magnitude slower. For example,
DBI converges within several seconds, whereas if we discretize xi into multiples of 0.02, BRD takes
nearly 2 hours, while discretization at the level of 0.01 results in BRD taking nearly 7 hours.

5 CONCLUSION

We introduced a novel class of hierarchical games, proposed a new game-theoretic solution concept
and designed an algorithm to compute it. We assume a specific form of utility dependency between
players and our solution concept only guarantees local stability. Improvement on each of these two
fronts is an interesting direction for future work.

Given the generality of our framework, our approach can be used for many applications characterized
by a hierarchy of strategic agents e.g., pandemic policy making. However, our modeling requires the
full knowledge of the true utility functions of all players and our analysis assumes full rationality for
all the players. Although the model we have addressed here is already challenging, these assumptions
are unlikely to hold in many real-world applications. Therefore, further analysis is necessary to fully
gauge the robustness of our approach before deployment.
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A OMITTED DETAILS FROM SECTION 2

Proposition 1. The SPE notion we defined for an SHG model corresponds exactly to the SPE of its
extensive-form game (EFG) representation.

Proof. First we show how to construct the EFG representation of an SHG. Since within level l players
act simultaneously, we can designate a canonical player order for player in level l, say we label
them as pl, 1q, pl, 2q, . . . , pl, nlq. Then in the EFG representation, we sequentialize the playing order
as always be p1, 1q, p2, 1q, p2, 2q, . . . , p3, 1q, . . . , pL, 1q, . . . , pL, nLq. For every pl, 1q, l “ 1, . . . , L,
its information sets are all in the form of some singleton thălu for some history hăl. While for
pl, nlq, l ą 1, its information sets are sets that consist of some hăl concatenated with all possible
moves of pl, 1q, . . . , pl, nl´1q. Then according the the classical definition of the subgame notion Selten
(1975); Mas-Colell et al. (1995), the only well-defined subgames are those rooted at pl, 1q,@l since
these are the only ones with singleton information set. So every level-l subgames corresponds to a
subgame in the EFG representation, and every subgame in the EFG representation maps to a level-l
subgame of the EFG by investigating the player index. Then the SPE for both representations are
also equivalent.

B CONVERGENCE ANALYSIS AND PROOFS

B.1 CONVERGENCE ANALYSIS

Our task is to provide sufficient conditions for the DBI algorithm to converge to a stable point. A
few notes are in order. First, as we remarked earlier, stable points of DBI are not guaranteed to be
SPE just as stable points of gradient ascent are not guaranteed to be globally optimal with general
non-convex objective functions. Furthermore, DBI algorithm entails what are effectively iterative
better-response updates by players, and it is well-known that best response dynamic processes in
games will in general lead to cycles (Fudenberg et al., 1998).

To begin, we observe that the gradient updates in DBI can be interpreted as a discrete dynamical
system, xt`1 “ F pxtq, with F pxtq “ pI ` αGqpxtq where G is an update gradient vector. This
discrete system can be viewed as an approximation of a continuous limit dynamical system 9x “ Gpxq
(i.e., letting αÑ 0). A standard solution concept for such dynamical systems is a locally asymptotic
stable point (LASP).
Definition 1 (Galor (2007)). A continuous (or discrete) dynamical system 9x “ Gpxq (or xt`1 “

F pxtq) has a locally asymptotic stable point (LASP) x˚ if Dε ą 0, limtÑ8 xt “ x˚,@x0 P Bεpx˚q.

There are well-known necessary and sufficient conditions for the existence of an LASP.
Proposition 2 (Characterization of LASP (Wiggins, 2003, Theorem 1.2.5, Theorem 3.2.1)). A point
x˚ is an LASP for the continuous dynamical system 9x “ Gpxq if Gpx˚q “ 0 and all eigenvalues of
Jacobian matrix ∇xG at x˚ have negative real parts. Furthermore, for any x˚ such that Gpx˚q “ 0,
if ∇xG has eigenvalues with positive real parts at x˚, then x˚ cannot be an LASP.

Note that an LASP of DBI is an action profile of all players that satisfies the first-order conditions,
i.e., it has the property that no player can improve their utility through a local gradient update. While
the existence of an LASP depends on game structure, we show that under Assumption 1, and as long
as the sufficient conditions for LASP existence in Proposition 2 are satisfied, DBI converges to LASP.
We defer all the omitted proofs to Appendix C.
Proposition 3. Let λ1, . . . , λd denote the eigenvalues of the updating Jacobian ∇xG at an LASP
x˚ and define λ˚ “ arg maxiPrdsRepλiq{ |λi|2, where Re is the real part operator. Then with a
learning rate α ă ´2Repλ˚q{ |λ˚|2, and an initial point x0 P Bεpx˚q for some ε ą 0 around x˚,
DBI converges to an LASP. Specifically, if the choice of learning rate equals α˚ and the modulus of
matrix ρpI`α˚∇xGq “ 1´κ ă 1, then the dynamics converge to x˚ with the rate ofOpp1´κ{2qtq.

Proposition 3 states that there exists a region such that, if the initial point is in that region, then DBI
will converge to an LASP. We next show that if we assume first-order Lipschitzness for the update
rule, then we can also characterize the region of initial points which converge to an LASP.
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Proposition 4. Suppose G is L-Lipschitz.4 Then for all x0 P Bκ{2Lpx˚q, ε ą 0 and after T rounds
of gradient update, DBI will output a point xT P Bεpx˚q as long as T ě r 2κ log

∥∥x0 ´ x˚
∥∥ {εs

where κ is as defined in Proposition 3.

We further show that through random initialization, the probability of reaching a saddle point is 0,
which means that with probability 1, DBI converges to an LASP in which players are playing local
best responses.

Proposition 5. Suppose G is L-Lipschitz. Let α ă 1{L and define the saddle points of the dynamics
G as X ˚sad “ tx˚ P X | x˚ “ pI ` αGqpx˚q, ρppI ` α∇xGqpx

˚qq ą 1u. Also let X 0
sad “ tx

0 P

X | limtÑ8pI ` αGq
tpx0q P X ˚sadu denote the set of initial points that converge to a saddle point.

Then µpX 0
sadq “ 0, where µ is Lebesgue measure.

While our convergence analysis does not guarantee convergence to an approximate SPE, our experi-
ments show that DBI is in fact quite effective in doing so in practice.

Proof of Proposition 3. The learning dynamics of DBI can be written as xt “ pI ` αGqpxt´1q.
Since G has eigenvalues λ1, . . . , λd at x˚, the matrix I ` α∇xG at a stationary point x˚ has
eigenvalues 1 ` αλ1, . . . , 1 ` αλd. Since the set of LASPs is non-empty, Repλiq ă 0 for all λi.
Then for the choice of α˚ in the Proposition, the modulus of the Jacobian

ρpI ` α˚∇xGq “ max
iPrds

|1` α˚λi| “ max
iPrds

b

1` 2α˚Repλiq ` pα˚q2 |λi|2 ă 1.

Proofs for the convergence rate of Opp1 ´ κ{2qtq can be found in previous work (e.g., Fiez et al.
(2020, Proposition F.1) or Wang et al. (2020, Proposition 4))). For completeness, we provide a proof.
Since ρppI ` α∇xGqpx

˚qq “ 1 ´ κ, according to Horn & Johnson (2012, Lemma 5.6.10), there
exists a matrix norm ‖¨‖ such that ‖I ` α∇xG‖ ă 1 ´ κ ` ε, for @ε ą 0. We choose ε “ κ

4 The
Taylor expansion of pI ` αGq at x˚ is

pI ` αGqpxq “ pI ` αGqpx˚q ` pI ` α∇xGqpx
˚qpx´ x˚q `Rpx´ x˚q,

where Rpx ´ x˚q “ op‖x´ x˚‖q. Let R1px ´ x˚q “ 1
αRpx ´ x˚q, Then we have

limxÑx˚
R1px´x˚q
‖x´x˚‖ “ 0. Then we can choose δ ą 0 such that ‖R1px´ x˚q‖ ď κ

4 ‖x´ x˚‖
when ‖x´ x˚‖ ă δ.

‖Gpxq ´Gpx˚q‖ ď ‖∇xGpx
˚qpx´ x˚q‖` ‖R1px´ x˚q‖

ď ‖∇xGpx
˚q‖ ‖px´ x˚q‖` κ

4
‖x´ x˚‖

ď p1´
κ

2
q ‖x´ x˚‖ .

This shows the operator pI`αGq is a contract mapping with contraction constant p1´ κ
2 q. Therefore

the convergence rate is Opp1´ κ{2qtq

Before we present the proof of Proposition 4, we state the following lemma.

Lemma 1. The update gradient vector G is L-Lipchitz if and only if ‖∇xG‖ ď L at all x P X .

Proof. First we prove for ”if” direction. Consider x1,x2 P X ,

Gpx2q ´Gpx1q “

ż 1

0

∇xGpx1 ` τpx2 ´ x1qqpx2 ´ x1qdτ

ñ ‖Gpx2q ´Gpx1q‖ “
∥∥∥∥ż 1

0

∇xGpx1 ` τpx2 ´ x1qqpx2 ´ x1qdτ

∥∥∥∥
ď

∥∥∥∥ż 1

0

∇xGpx1 ` τpx2 ´ x1qqdτ

∥∥∥∥ ‖x2 ´ x1‖

4Formally, this means that DL ą 0 such that @x,x1 P X , }Gpxq ´Gpx1q}2 ď L}x´ x1}2.
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ď

ż 1

0

‖∇xGpx1 ` τpx2 ´ x1qq‖ dτ ‖x2 ´ x1‖

ď L ‖x2 ´ x1‖ .
Then we prove for the ”only if” direction. Take ε ą 0, then for @x1,x2 P X ,∥∥∥∥ż ε

0

p∇xGpx1 ` τx2qq ¨ x2dτ

∥∥∥∥ “ ‖Gpx1 ` εx2q ´Gpx1q‖ ď εL ‖x2‖

ñ lim
εÑ0

∥∥şε
0
p∇xGpx1 ` τx2qq ¨ x2dτ

∥∥
ε ‖x2‖

“
‖∇xGpx1q ¨ x2‖

‖x2‖
ď L.

Since it holds for any x2, it must be ‖∇xGpx1q‖ ď L. And since it applies for any x1 P X , this
completes the proof.

Proof of Proposition 4. From the proof from Proposition 3 notice that in order to make ‖xt ´ x˚‖ ď
ε we only have to let t ě r 2κ log

∥∥x0 ´ x˚
∥∥ {εs since now ‖xt ´ x˚‖ ď p1 ´ κ

2 q
t
∥∥x0 ´ x˚

∥∥ ď
exp p´κ{2tq ď ε. Now we need to characterize the region of initial points that can converge to x˚

by characterizing the maximum possible radius of such initial point to x˚. Recall in the proof of
Proposition 3, this is captured by the. parameter δ. On one hand by using the Lipschitzness, we can
bound the residual function by

‖R1px´ x˚q‖ ď
ż 1

0

‖I ` α∇xGpx
˚ ` τpx´ x˚qq ´ pI ` α∇xGpx

˚qq‖ ‖x´ x˚‖ dτ ď L

2
‖x´ x˚‖2 .

One the other hand to maintain this convergence rate we should let ‖R1px´ x˚q‖ ď κ
4 ‖x´ x˚‖.

Then we simply letď L
2 ‖x´ x˚‖2 ď κ

4 ‖x´ x˚‖ we get an initial point should satisfy ‖x´ x˚‖ ď
κ
2L .

To prove Proposition 5, we need a few more machinery.
Proposition 6. With α ă 1{L, I ` αG is a diffeomorphism.

Proof. First we show pI ` αGq is invertible. Suppose x1,x2 P X such that x1 “ x2 and pI `
αGqpx1q “ pI ` αGqpx2q. Then x1 ´ x2 “ αpGpx2q ´ Gpx1qq. And by α ă 1{L we have
‖x1 ´ x2‖ ď αL ‖x1 ´ x2‖ ă ‖x1 ´ x2‖, which is a contraction.

Next we show we show its invert function is well-defined on any point of X . Notice that ρpα∇xGq ď
‖α∇xG‖ ď αL ă 1. And notice that since the eigenvalues of I ` α∇xG is the eigenvalues of
α∇xG plus 1, the only way that makes detpI ` α∇xGq “ 0 is to have one of the eigenvalues of
α∇x to be ´1. This contradicts to ρpα∇xGq ă 1. Therefore by the implicit function theorem,
pI ` αGq is a local diffeomorphism on any point of X , and therefore pI ` αGq´1 is well defined on
X .

Theorem 2 (Center and Stable Manifold (Shub, 1987, Theorem III.7, Chapter 5)). Suppose x˚ “
hpx˚q is a critical point for the Cr local diffeomorphism h : X Ñ X . Let X “ Xs ‘ Xu, where
Xs is the stable center eigenspace belonging to those eigenvalues of ∇xhpx

˚q whose modulus
is no greater than 1, and Xs is the unstable eigenspace belonging to those whose modulus is
greater than 1. Then there exists a Cr embeded disk W cs

locpx
˚q that is tangent to Xs at x˚ called

the local stable center manifold. Moreover there Dε ą 0, hpW cs
locpx

˚qq
Ş

Bεpx˚q Ă W cs
loc and

Ş8

t“0 h
´tpBεpx˚qq ĂW cs

locpx
˚q.

Proof of Proposition 5. For @x˚ P X ˚sad, let εpx˚q ą 0 be the radius of neighborhood provided by
Theorem 2 for diffeomorphism h “ I ` αG and point x˚. Then define B “

Ť

x˚PX˚sad
Bεpx˚qpx˚q.

And since X is a subset of Euclidean space so it is second-countable. By Lindelöf’s Lemma Kelley
(1955), which stated that every open cover there is a countable subcover, we can actually write
B “

Ť8

i“1 Bεpx˚i qpx
˚
i q for a countable family of saddle points tx˚i u

8
i“1 Ď X ˚sad. Therefore for

@x0 P X 0
sad that converges to a saddle point, it must converge to x˚i for some i. And DT px0q ą 0,

such that @t ą T px0q, htpx0q P Bεpx˚i qpx
˚
i q. From Theorem 2 we have htpx0q PW sc

locpx
˚
i q. Since

h is a diffeomorphism on X we have x0 P h´tpW sc
locpx

˚
i qq. We furthermore union over all finite time
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step x0 P
Ť8

t“0 h
´tpW sc

locpx
˚
i qq. Then we have X 0

sad Ď
Ť8

i“1

Ť8

t“0 h
´tpW sc

locpx
˚
i qq. For each i

since x˚i is a saddle point, it has an eigenvalue greater than 1, so the dimension of unstable eigenspace
dimpXupx˚i qq ě 1. Therefore the dimension of W sc

locpx
˚
i q is less than full dimension. This leads

to µpW sc
locpx

˚
i qq “ 0 for any i. Again since h is a diffeomorphism, h´1 is locally Lipschitz which

are null set preserving. Then µph´tpW sc
locpx

˚
i qqq “ 0 for @i, t. And since the countable union of

measure zero sets is measure zero, µp
Ť8

i“1

Ť8

t“0 h
´tpW sc

locpx
˚
i qqq “ 0. So µpX 0

sadq “ 0.

C OMITTED DETAILS FROM SECTION 4

C.1 DETAILS OF COVID-19 GAME EXPERIMENTS

Subgame Perfect Equilibrium in an SHG We here elaborate how we evaluate the regret of a
profile. First let’s imagine when solving a two-level games with n2 players at the second-level. Given
p1, 1q’s action choice, the problem of computing SPE in the second-level is equivalent to computing
a Nash equilibrium in the second-level. However, an exact pure Nash equilibrium may not exist. So
which profile should we choose to propagate back to p1, 1q? To resolve this issue, we define ε-Nash
equilibrium.

Definition 2. For a simultaneous-move game, a profile x˚ is an ε-Nash if for any player n, @x1n P
Xn, unpx1n,x˚´nq ď unpx

˚q ` ε.

In another word, an ε-Nash is a profile where for every player a unilateral deviation cannot offer
benefit more than ε while fixing other’s profile. In the context of our example for the two level
game, given p1, 1q’s action, we select the profile with the minimum ε of the simultaneous-move game
defined on level 2 as an SPE back to p1, 1q.

We now generalize this example to formally define the notion of ε-SPE in an SHG. First
let us define Φl,ipxq P RdL that returns the equilibrated profile at level L. In this profile,
leaves that are not descendants of pl, iq are fixed in x, while LEAF pl, iq moved to a profile
that corresponding to an SPE of Gl,ipxq with an minimum ε. Then we define the εl,ipxq as
maxx1l,iPXl,i ul,ipx

1
l,i,xPApl,iq,Φpx

1
l,iqq ´ ul,ipxl,i,xPApl,iq,Φpxl,iqq and define εpxq “ maxl,i εpxq

as the ε of profile x in an SHG G.

We next provide an approximate algorithm (see Algorithm 2) to compute ε in an SHG. Pay attention
here that x : xi Ñ x1i means replacing xi of x with x1i. The functions in Algorithm 2 operate as
follows. The procedure SEARCH takes a given joint profile x, player index pl, iq and returns a best
response profile for a given player pl, iq. Our approach is that for each action in x1l,i P Xl,i, we
re-equilibriate subgames Gl,ipx : xl,i Ñ x1l,iq, and then compute the corresponding payoff. In our
actual implementation, we discretize Xl,i in a bucket of grid points, and search within such bucket.
The procedure RE-EQ returns the re-equilibrated profile of Gl,ipxq given pl, iq and x. The procedure
SHG SOLVE solve a simultaneous-move game at level l ` 1. It applies an iterative best response
approach for CHDpl, iq to generate diverse profiles, and select the one with minimum possible ε.
In each iteration, for each pl ` 1, jq P CHDpl, iq, it computes its best response action against the
previous joint profile xt´1. And then in the next iteration it replace those descendant-profiles of
pl ` 1, jq in xt´1 by computed re-equilibrated profiles when pl ` 1, jq selected its best response.
Then it will return the joint profile with the minimum ε found so-far.

To solve the whole game, we just call SHG SOLVEpp0, 0q,xq, where x is some other action profile.
To compute the ε of a given profile, we just call COMPUTE ε, where it just compute the maximum
unilateral deviation for every player using SEARCH to compute the best response action and payoff.

Structured Game Model Inspired by COVID-19 Policy-Making We will now describe in detail
the particular subclass of SHGs that we studied in our experiments reported in Section 4.1. This class
is based on the SHG proposed in Jia et al. (2021) which we describe in detail here. The exposition is
in terms of a cost function Cipxi,xPApiq,xLq for each player, which is more natural in this context,
rather than the payoff function ul,i introduced in Section 2, with the understanding that ui ” ´Ci.

There are L “ 3 levels in the hierarchy such that player p1, 1q represents the federal government (or,
simply, government), the players p2, iq, i P t1, 2, . . . , n2u are state governments (or, simply, states),
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Algorithm 2 Procedures for computing ε of profile x and an algorithm for computing an approximate
SPE
Input: An SHG instance G
Parameters: Best response iterations T

procedure SEARCH(x, pl, iq)
for x1l,i P Xl,i do

ure´eql,i px1l,iq, εDESpl,iqpx
1
l,iq,x

re´eqpl,iqpx1l,iq Ð RE-EQppl, iq,x : xl,i Ñ x1l,iq

Find x˚l,i Ð arg maxx1l,i
ure´eql,i px1l,iq

return x˚l,i, u
re´eq
l,i px˚l,iq,x

re´eqpl,iqpx˚l,iq
end procedure
procedure RE-EQ(G,x, pl, iq)

εÐ 0
if l ă L then

x, εÐ SHG SOLVEppl, iq,xq
return ul,ipxq, ε,x

end procedure
procedure SHG SOLVE(pl, iq,x)

x0 Ð x
@pl ` 1, jq P CHDpl, iq, replace its action in x0 with other random initialization
for t “ 1, 2, . . . , T do Ź level-wise best response

for pl ` 1, jq P CHDpl, iq do
ure´eql`1,j , εDESpl`1,jq,x

re´eqpl`1,jq Ð RE-EQpG,xt´1, pl ` 1, jqq

x1l`1,j , u
re´eq´max
l`1,j ,xre´eq´maxpl`1,jq Ð SEARCHpxt´1, pl ` 1, jqq

εt´1
l`1,j “ maxtεDESpl`1,jq, u

re´eq´max
l`1,j ´ ure´eql`1,j u

xt Ð xt´1

for @pl ` 1, jq P CHDpl, iq do
Replace dimensions of xt belonging to DESpl ` 1, jq with the ones in

xre´eq´maxpl`1,jq

εt´1
l`1 Ð maxi ε

t´1
l`1,j

t˚ Ð arg mint ε
t
l`1

return xt
˚

, εt
˚

l`1
end procedure
procedure COMPUTE ε(x)

for pl, iq do
x˚l,i, u

˚
l,i,x

re´eqpl,iq Ð SEARCHpx, pl, iqq

εl,i Ð u˚l,i ´ ul,ipxq
return maxl,i εl,i

end procedure

and the players p3, iq, i P t1, 2, . . . , n3u are county governments (or, simply, counties) partitioned
into groups such that each group shares a single state as a parent.

Each player piq takes a bounded, scalar action xi P r0, 1s which is a social-distancing factor that
(multiplicatively) reduces the proportion of post-intervention contacts among individuals — a lower
number implies a stronger policy intervention, hence a lower number of infections but a higher cost
of implementation (see below). The actions taken by counties represent policies that get actually
implemented (hence directly impact the realized cost of every player — one of the defining attributes
of SHGs) while those taken by the government and states are recommendations. Similar to Jia et al.
(2021), we also study a restricted variant where each county is non-strategic and constrained to
comply with the action (recommendation) of its parent-state, effectively reducing the model to a
2-level hierarchy. We call this special case a two-level game (Figure 2(a)) and the more general model
a three-level game (Figure 2(b)).

The cost function of each player piq has, in general, three components: a policy impact cost Cinci pxLq
which we will elaborate on below; a policy implementation cost Cdeci pxLq, e.g. economic and
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psychological costs of a lockdown; and, for each player in levels l ą 1, a non-compliance cost
CNC
i pxi,xPApiqq, a penalty incurred by a policy-maker for deviating from the recommendation of its

parent in the hierarchy (e.g., a fine, litigation costs, or reputation harm).

Let Np3,iq ą 0 denote the fixed population under the jurisdiction of county p3, iq for ev-
ery i P t1, 2, . . . , n3u. By construction, the population under each state is given Np2,iq “
ř

p3,jqPCHDp2,iqNp3,jq and the population under the government is Np1,1q “
řn2

i“1Np2,iq. We next
define the expressions for each component of the cost function.

Policy Impact Cost: This cost component is a quadratic closed-form approximation to the
agent-based model introduced by Wilder et al. (2020). This is inspired by the infection cost com-
putation approach in Jia et al. (2021) but they used a different closed-form approximation. For
each each county p3, iq, let N init

p3,iq denote the number of infected individuals within the popula-
tion of the county prior to policy intervention; thus, the number of post-intervention susceptible
individuals is pNp3,iq ´ N init

p3,iqqx3,i. Another parameter in the game is the the transport matrix
R “ traa1ua,a1Pp3,1q,p3,2q,...,p3,n3q, where raa1 ě 0 is the proportion of the population of county a1
that is active in county a in the absence of an intervention. Thus, in the number of post-intervention
infected individuals of county a1 that is active in county a is raa1N init

a1 xa1 . The last parameter in
the model is M , the average number of contacts with active individuals that a susceptible individual
makes, and finally µ is the probability that a susceptible individual gets infected upon contact with an
active infected individual is µ P p0, 1q.

Putting these together, the policy impact cost is defined by the fraction of post-intervention infected
individuals in county a “ p3, iq, i P t1, 2, . . . , n3u:

Cinca pxLq “ µMxa
Na ´N

init
a

N2
a

p
ÿ

a1

raa1N
init
a1 xa1q.

For a higher-level player piq,

Cinci pxLq “
1

Npiq

ÿ

aPCHDpiq

NaC
inc
a pxLq.

Policy Implementation Cost: For each county p3, iq, the policy implementation cost is given by

Cdec3,i pxLq “ 1´ x3,i.

For a higher-level player piq,

Cdeci pxLq “
1

Npiq

ÿ

aPCHDpiq

NaC
dec
a pxLq.

Non-Compliance Cost: The non-compliance cost of player piq for l P t2, 3u is given by Euclidean
distance between its action and that of its parent:

CNC
i pxi, xPApiqq “ pxi ´ xPApiqq

2.

Finally, each player piq for l ą 1 has an idiosyncratic set of weights κi ě 0 and ηi ě 0 that trade its
three cost components off against each other via a convex combination, and account for differences
in ideology; the overall cost of such a player is given by

Cipxi, xPApiq,xLq “ κiC
inc
i pxLq ` ηiC

dec
i pxLq ` p1´ κi ´ ηiqC

NC
i pxi, xPApiqq. (7)

The player p1, 1q obviously has no non-compliance issues, hence it has only one weight κ1,1 ą 0, its
overall cost being

C1,1pxi,xLq “ κ1,1C
inc
1,1pxLq ` p1´ κ1,1qC

dec
1,1 pxLq.

In our experiments, we set raa1 “ 1{n3 for every pair of counties pa, a1q, M “ 20 and µ “ 0.3.
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Experimental Setup and Further Results We formally define the algorithm BRD as the procedure
SHG SOLVEpp0, 0q,xq for some randomly initilized x. We start by defining the concept of one full
algorithm iteration for each of DBI and BRD. For DBI(1, 20), DBI(1, 50), DBI(1, 2, 4), DBI(1,
2, 10), one algrithm iteration consists of 50 steps of gradient ascent, with a learning rate of 0.01.
For BRD(1, 20) and BRD(1, 50), one algorithm iteration consists of 20 iterations of level-wise best
response during the recursive procedure in SHG SOLVE; for BRD(1, 2, 4) and BRD(1, 2, 10), it
corresponds to 500 and 200 iterations of level-wise best response, respectively. For DBI we adopt a
projector operator that project the resulted action into the nearest point in r0, 1s.

We discretize each action space uniformly into 101 grid points for two-level games, and 11 grid points
for three-level games. We let T “ 100 for BRD(1, 20) and BRD(1, 50) and T “ 20 for BRD(1,
2, 4) and BRD(1, 2, 10). In the three-level experiments, the κ is set to be 0.5 for counties and the
states and 0.8 for the government. The η is set to be 0.2 for the states, 0.3 for the counties in (1,2,4)
setting , and 0.2 for (1,2,10) experiment. In the two-level experiments, the κ is set to be 0.2 for the
government, 0.5 for counties and the states. The η is set to be 0.2 for counties and states.
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(a) Two-level games.
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(b) Three-level games.

Figure 4: The run-time (in secs) on COVID-19 Game Models. T = 20 for BRD experiments.

To further study the scalability of the BRD and DBI algorithms, we compare the run-time that (1) the
DBI algorithm converges and (2) the BRD algorithm terminates. The convergence of DBI is defined
as the convergence of the action profile. When DBI converges, the action profile remains unchanged.
In the projected gradient descent method, if all the gradients go to zero, DBI converges. Besides, it is
also likely to hit the boundary of the constraints. The DBI is possible to converge with a non-zero
gradient norm. The BRD algorithm terminates either T achieves, or ε goes to zero for all players.
Under these conditions, the two algorithms find their optimal solutions. Figure 4 demonstrates the
run-time results. We conduct each experiment four times with different random seeds. In two-level
problems, the DBI algorithm is more than two times faster than BRD algorithms. Although the action
spaces are discretized to 11 grid points for three-level games rather than 101 grids, DBI algorithms
still perform better. In practice, discretizing the action spaces in 101 grids for three-level games is
computational intensively. The performance and run-time of the BRD algorithm are more dependent
on randomization and the initial points for the best responses at each level. When we face many
players or multiple levels, the DBI algorithm is a natural choice. The DBI algorithm is significantly
more efficient and more stable than the BRD algorithm.

C.2 DETAILS OF HIERARCHICAL PUBLIC GOODS GAME EXPERIMENTS

We extend the described public good game on Zachary’s Karate club network to a (1-2-34) hierarchical
game by introducing the non-compliance costs similar to the COVID-19 game model. The overall
utility of the club individuals should be the combination of public good utility ui and CNC

i pxi, xPA(i)q “

pxi ´ xPA(i)q
2.

U3,ipxi, xPA(i),xLq “ p1´ κ3,iquipxi,xLq ´ κ3,iCNC
i pxi, xPA(i)q. (8)

18



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

In the second level, the administrator and instructor’s utility is composed of the total public good
utility of their group members, and their own non-compliance costs.

U2,ipxi, xPA(i),xLq “ p1´ κ2,iq
ÿ

jPCHDpiq

ujpxj ,xLq ´ κ2,iCNC
i pxi, xPA(i)q. (9)

The root player’s utility is considered as the social welfare of the whole club.

U1,1pxi, xPA(i),xLq “
ÿ

j

ujpxj ,xLq (10)

In our experiments, we set κ2,i “ κ3,j “ 0.5, @i, j. Other parameters of the public good utility are
set to be ai “ 0, bi “ 1, ci “ 6, @i. We use learning rate 0.1 in DBI. We project the results to r0, 1s.
To compare with the DBI, we use BRD with discretized factors 0.5, 0.2, 0.1, 0.05, and best response
rounds 2, 3.

C.3 DETAILS OF HIERARCHICAL SECURITY GAME EXPERIMENTS

Let a “ pa1, . . . , anq be the attacker strategy, the probability distribution over which defenders
are attacked. In our experiments, a is set to follow a logit distribution softmaxpλp1 ´ xLqq, with
defenders having lower security investment more likely to be attacked. Let cipxiq “ cixi be the cost
of security investment for defender i, which is assumed to be linear. The utility of defender i is then
as follows:

uipxi,xLq “ ai
xi

1` xi
`

ÿ

j‰i

ajp1´ qji
1

1` xj

1

1` xi
q ´ cipxiq

.

We then build the (1,3,6) structured hierarchical game by introducing the non-compliance costs
CNC
i pxi, xPA(i)q “ pxi ´ xPA(i)q

2. The utility of each agent in different levels are the same as that of
public good game (Eq. 8, 9, 10).

In the experiments, we consider the agents who almost obey the parent’s suggestion (κ “ 0.1) and
the somewhat selfish agents (κ “ 0.5). The influence probability qji, @i, j are set to be equal among
the agents, and other parameters are set to ci “ 0.2, λ “ 5. We use a learning rate of 0.1 in DBI.
To compare with the DBI, we use BRD with discretized factors 0.2, 0.1, 0.05 and best response
rounds 2, 3. Since there is no upper bound of the strategy profile, we set xi ď 1.0 according to the
performance. Then we search the strategy space x P r0, 1s in the BRD execution.
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