
Published as a conference paper at ICLR 2025

CIRCUITFUSION: MULTIMODAL CIRCUIT REPRESEN-
TATION LEARNING FOR AGILE CHIP DESIGN

Wenji Fang Shang Liu Jing Wang Zhiyao Xie ∗

The Hong Kong University of Science and Technology
{wfang838,sliudx,jwangjw}@connect.ust.hk, eezhiyao@ust.hk

ABSTRACT

The rapid advancements of AI rely on the support of integrated circuits (ICs).
However, the growing complexity of digital ICs makes the traditional IC design
process costly and time-consuming. In recent years, AI-assisted IC design meth-
ods have demonstrated great potential, but most methods are task-specific or focus
solely on the circuit structure in graph format, overlooking other circuit modalities
with rich functional information. In this paper, we introduce CircuitFusion, the
first multimodal and implementation-aware circuit encoder. It encodes circuits
into general representations that support different downstream circuit design
tasks. To learn from circuits, we propose to fuse three circuit modalities: hardware
code, structural graph, and functionality summary. More importantly, we identify
four unique properties of circuits: parallel execution, functional equivalent
transformation, multiple design stages, and circuit reusability. Based on these
properties, we propose new strategies for both the development and application of
CircuitFusion: 1) During circuit preprocessing, utilizing the parallel nature of cir-
cuits, we split each circuit into multiple sub-circuits based on sequential-element
boundaries, each sub-circuit in three modalities. It enables fine-grained encoding
at the sub-circuit level. 2) During CircuitFusion pre-training, we introduce three
self-supervised tasks that utilize equivalent transformations both within and across
modalities. We further utilize the multi-stage property of circuits to align repre-
sentation with ultimate circuit implementation. 3) When applying CircuitFusion
to downstream tasks, we propose a new retrieval-augmented inference method,
which retrieves similar known circuits as a reference for predictions. It improves
fine-tuning performance and even enables zero-shot inference. Evaluated on five
different circuit design tasks, CircuitFusion consistently outperforms the state-
of-the-art supervised method specifically developed for every single task, demon-
strating its generalizability and ability to learn circuits’ inherent properties1.

1 INTRODUCTION

The fast advancements of AI require the support of hardware circuits (e.g., GPU, TPU, NPU). How-
ever, the increasing complexity of the digital integrated circuit (IC) has led to skyrocketing IC design
costs, challenging traditional IC design methodologies. In recent years, AI-assisted IC design tech-
niques have demonstrated unprecedented potential in enabling agile chip design process (Rapp et al.,
2021). Existing explorations include automated chip design planning (Mirhoseini et al., 2021; Bai
et al., 2023; Yu et al., 2018), early chip quality evaluation (Du et al., 2024; Fang et al., 2024a;
Zheng et al., 2023; Wang et al., 2023b), automated chip design assistance (Pei et al., 2024; Liu et al.,
2023b;a; Yao et al., 2024), etc. These works are mostly task-specific and trained supervisely with
a small amount of labeled circuit data. In this work, we target essentially general and multi-tasking
AI models for circuits by exploring customized circuit representation learning techniques.

Learning hardware representation. Several recent works have proposed either supervised (Yang
et al., 2022; Li et al., 2022b; Shi et al., 2023; Vasudevan et al., 2021; Yang et al., 2022; Deng
et al., 2024) or self-supervised contrastive methods (Wang et al., 2022; Xu et al., 2023; Fang et al.,

∗Corresponding Author
1CircuitFusion is available at: https://github.com/hkust- zhiyao/CircuitFusion

1

Published as a conference paper at ICLR 2025

2025) to learn circuit representations. Most works only focus on the circuit structure by converting
circuits into a graph format and learning circuit embeddings based on the graph alone. However,
circuit is a unique data type and inherently exhibits multimodal characteristics. A register-transfer
level (RTL) circuit can be described with hardware description language (HDL) code, a graph of
operators, or a natural-language summary of functionality. Generally, we view each circuit as a
structured implementation of certain functionality. The graph modality highlights the structure, the
functionality summary emphasizes the functionality, while the HDL code incorporates information
from both aspects.

Learning multimodal representation. To encode information from diverse modalities, multimodal
representation learning has been successfully applied for various modality fusions, such as vision-
language (Radford et al., 2021; Li et al., 2021; 2022a; 2023a; Akbari et al., 2021; Bao et al., 2022),
graph-language (Yin et al., 2020; Gao et al., 2020), and software-graph (Guo et al., 2022a; Zhang
et al., 2024). However, no existing work has ever exploited inherent multi-modalities of RTL
circuits. More importantly, there are significant differences between the mechanisms of circuits and
other common data types during multimodal representation learning, as we will summarize later.

To this end, we present CircuitFusion, the first multimodal fused and implementation-aware circuit
encoder to capture informative general circuit representations. Leveraging the multimodal nature of
circuits, we first encode circuits separately under three modalities (i.e., HDL code, structural graph,
and functionality summary) through three independent unimodal encoders. A multimodal encoder
then fuses the modalities via a cross-attention mechanism. Additionally, we enrich CircuitFusion
with downstream circuit implementation information using an auxiliary netlist encoder.

To learn this special multimodal circuit data, we identify four unique circuit properties (P1-4) and
propose four corresponding innovative strategies (S1-4), applied to circuit preprocessing (S1), Cir-
cuitFusion pre-training (S2,3), and application of CircuitFusion in downstream tasks (S4):

P1: Parallel execution. Hardware circuit operates with inherent parallelism, where all combina-
tional logic calculates simultaneously, and all sequential elements are updated at every clock cycle.
S1: Sub-circuit generation. Exploiting this parallel mechanism, we propose to split the entire
circuit into multiple sub-circuits based on sequential element boundaries. This preprocessing step
allows for scalable CircuitFusion learning across the entire circuit.

P2: Functional equivalent transformation. The same functionality of a circuit can be imple-
mented in various ways, as each logic expression can be equivalently transformed. Therefore,
circuits with similar functionality may have entirely different structures. S2: Semantic-structure
pre-training on circuit. Leveraging this property, we design three pre-training tasks to simulta-
neously capture both structural (i.e., masked graph modeling) and semantic (i.e., masked summary
modeling, functional contrastive) circuit representations within and across the three modalities.
The circuit data for these tasks is further augmented through equivalent transformations, generating
circuits that maintain the same functionality but have entirely different structures.

P3: Multiple design stages. In standard digital IC design flow, the functional behavior is de-
scribed with HDL codes at the RTL stage. Then the RTL circuits will be automatically synthe-
sized into gate-level netlists, representing the circuit implementation in connected logic gates. The
netlists are then transformed into the chip layout for ultimate manufacturing. This multi-stage de-
sign process involves various levels of circuit abstraction, with earlier stages (e.g., RTL) capturing
more semantics and later stages (e.g., netlist) introducing more implementation details. S3: Cir-
cuit implementation-aware alignment. Based on this multi-stage property, we propose to align
the RTL circuits with their netlist implementations within a shared latent space during pre-training.
This alignment integrates implementation information into circuit representations, significantly ben-
efiting downstream tasks that predict the circuit implementation metrics at early RTL stages.

P4: Circuit reusability. In realistic circuit development, circuits exhibit high reusability, with com-
panies tending to use intellectual property (IP) blocks rather than designing circuits from scratch.
This reusability inspires us to leverage the similarity of circuit embeddings generated by CircuitFu-
sion to improve inference. S4: Retrieval-augmented inference. When applying CircuitFusion to
downstream tasks of new circuits, we propose retrieving the most similar known circuits as refer-
ences and calibrating the final predictions utilizing these retrieved circuits. This method not only
improves the fine-tuning results but also enables zero-shot inference for circuits.

2

Published as a conference paper at ICLR 2025

0

20

40

WNS TNS Power Area

Er
ro

r (
%

)
SOTA baseline w/o S1 w/o S2 w/o S3 w/o S4 only graph only code only summary

Strategy Modality

Figure 1: Preview of results on the effectiveness of proposed strategies and circuit modalities.

We evaluate the effectiveness of our proposed method across various tasks, where CircuitFusion’s
general solution consistently outperforms state-of-the-art (SOTA) task-specific models, demonstrat-
ing that CircuitFusion learns the truly general circuit embeddings applicable to various tasks. Addi-
tionally, as shown in Figure 1, we provide preview results on the impact of each proposed strategy
and circuit modality, with more details provided in Appendix E.3. Specifically, relying on only a sin-
gle circuit modality also leads to increased error. Similarly, removing any strategy results in a notice-
able increase in prediction error, highlighting the effectiveness of our proposed multimodal fusion
and circuit-specific strategies. Furthermore, we also evaluate the scalability of CircuitFusion by scal-
ing both model size and data size, with details presented in Section 4.5. This suggests the potential
for incorporating more diverse circuit datasets and larger models in future work. We believe our scal-
able and versatile CircuitFusion holds significant promise for enhancing other circuit-related tasks.

2 RELATED WORKS

Hardware representation learning. Several latest works have started exploring the learning of
general circuit representations based on pretrain-finetune paradigms. However, these works (Wang
et al., 2022; Li et al., 2022b; Xu et al., 2023; Shi et al., 2023) only focus on the circuit’s graph format.
Moreover, most studies (Wang et al., 2022; Li et al., 2022b; Shi et al., 2023) target the functional
verification tasks for netlist, a late stage of the design flow. In comparison, we target learning circuit
representation at the early RTL stage, when designers design circuit functionality with HDL code.
This early stage offers more flexibility for design quality optimization. Additionally, there are also
explorations for FPGAs (Sohrabizadeh et al., 2023) and analog circuits (Zhu et al., 2022).

Multimodal representation learning. Multimodal learning has achieved remarkable success in
multiple other domains, such as vision-language learning (Radford et al., 2021; Li et al., 2021;
2022a; 2023a; Akbari et al., 2021; Bao et al., 2022) and graph-language learning (Yin et al., 2020;
Gao et al., 2020). Among all multimodal learning applications, software code is the most similar
to hardware circuits. Existing software encoders primarily target the summary and code modali-
ties (Feng et al., 2020; Li et al., 2023b; Wang et al., 2023a; Zhang et al., 2024), while some (Guo
et al., 2022a; Zhang et al., 2024) consider the syntactic graph format. However, multimodal software
encoders cannot be directly applied to hardware tasks due to clearly different underlying mecha-
nisms. For example, all four circuit properties (P1-P4) introduced in the Introduction do not apply
to software code. Additionally, most existing software encoders are only validated on short code
snippets within 1024 tokens, which are even shorter than the HDL of a simple circuit.

3 PROPOSED METHOD: CIRCUITFUSION

In this section, we present our CircuitFusion encoder framework in detail. We will first outline the
circuit preprocessing steps and the model architecture, followed by an illustration of the pre-training
process and its applications: 1) Circuit preprocessing (Section 3.1): We first split the entire circuit
into multiple sub-circuits according to the parallel execution of sequential registers in circuits. Each
sub-circuit is represented in three modalities: HDL code, circuit graph, and functionality summary.
2) Model architecture (Section 3.2): We encode the three circuit modalities via three unimodal
encoders, with a multimodal encoder for modality fusion and an auxiliary netlist encoder to integrate
implementation information. 3) Pre-training of CircuitFusion (Section 3.3 and Section 3.4): We
propose 4 self-supervised pre-training tasks to jointly train CircuitFusion, achieving multimodal
fusion and implementation-aware alignment to capture both structural and semantic information
from circuits. 4) Application of CircuitFusion (Section 3.5): We propose a new retrieval-augmented
inference method to improve CircuitFusion to downstream tasks.

3

Published as a conference paper at ICLR 2025

Data Align

EDA Tools

Sub-circuit
Netlist

HDL Code Parser

AST-to-Graph

AST

LLM
Netlist-to-Graph

R0 R1

R2

ADD
XOR

MUX

reg [1:0] R0,R1;
reg [2:0] R2;
wire [2:0] W1,W2;
...
assign W1 = R0 + R1;
...
always @(posedge clk)
R2 <= W2;

R0 [0] R1 [1] R1 [0]

R2 [2] R2 [1]

…

R2 [0]

R0 [1]

FA
AOI

INV

AND

MUX

M1: Code (𝑪) M2: Summary (𝑺) M3: Graph (𝑮)

v Functionality
Summary

vImplementation
Details

Sub-circuit
RTL

Netlist Graph (𝑵)

NOT OR

Register / DFF HDL Operator Netlist Logic Gate(<512 tokens)(<32K tokens)

RTL Modalities

VLSI Design Stage &
Flow

RTL-Stage Netlist-Stage

Sub-circuit
Generation

R2 R3 Ri

[Prompt]
Please act as a professional Verilog designer. I will provide a
combinational Verilog design with multiple inputs and a single output.
In less than 500 words, summarize the design by first explaining its
overall functionality and then describing the implementation details.
Here is the Verilog code:
[Input]
(Sub-circuit Verilog code)

[Response]
Functionality Summary
The Verilog design is a combinational module named `div_neg_out` that
generates a single output `div_neg_out` based on multiple input signals.
The module is designed to handle division operations and provides a
negative output when the division operation results in a negative
quotient.

Implementation Details
The module consists of several input signals, including clock (`clk`), reset
(`rst`), and various control and data signals. The output `div_neg_out` is
a 1-bit signal. The module uses several temporary signals to store
intermediate results, such as `_ex_rs_T_8`, …

The module uses a combination of logic operations, including bitwise
AND, OR, and NOT, to generate the output `div_neg_out`. The logic is
divided into several sections: 1. Input Processing: … 2. Division Logic: …
3. Quotient Sign Determination: … 4. Negative Output Generation: …

…

R2

R1R0

R4

R3

C1
C2

C3

…

…

R2

R1R0

R4

R3

C1’
C2’

C3’

…

R2
R1

R0
C1 RiCn…R3

R0
C2

… R2
R1

R0
C1’ R3

R0
C2’

… RiCn’…

R2 R3 Ri

Physical
Implementation

(a) Circuit preprocessing flow

Cross-Stage

Align

EDA Tools

Sub-circuit
Netlist

HDL Code Parser

AST-to-Graph

AST

LLM
Netlist-to-Graph

R0 R1

R2

ADD
XOR

MUX

reg [1:0] R0,R1;
reg [2:0] R2;
wire [2:0] W1,W2;
...
assign W1 = R0 + R1;
...
always @(posedge clk)
R2 <= W2;

R0 [0] R1 [1] R1 [0]

R2 [2] R2 [1]

…

R2 [0]

R0 [1]

FA
AOI

INV

AND

MUX

M1: Code M2: Summary M3: Graph

v Functionality
Summary

vImplementation
Details

Sub-circuit
RTL

Graph

NOT OR

Register / DFF HDL Operator Netlist Logic Gate(<512 tokens)(<8K tokens)

RTL Modalities

VLSI Design Stage &
Flow

RTL-Stage Netlist-Stage

Sub-circuit
Split

SC R2 SC R3 SC Ri

[Prompt]
Please act as a professional Verilog designer. I will provide a
combinational Verilog design with multiple inputs and a single output.
In less than 500 words, summarize the design by first explaining its
overall functionality and then describing the implementation details.
Here is the Verilog code:
[Input]
(Sub-circuit Verilog code)

[Response]
Functionality Summary
The Verilog design is a combinational module named `div_neg_out` that
generates a single output `div_neg_out` based on multiple input signals.
The module is designed to handle division operations and provides a
negative output when the division operation results in a negative
quotient.

Implementation Details
The module consists of several input signals, including clock (`clk`), reset
(`rst`), and various control and data signals. The output `div_neg_out` is
a 1-bit signal. The module uses several temporary signals to store
intermediate results, such as `_ex_rs_T_8`, …

The module uses a combination of logic operations, including bitwise
AND, OR, and NOT, to generate the output `div_neg_out`. The logic is
divided into several sections: 1. Input Processing: … 2. Division Logic: …
3. Quotient Sign Determination: … 4. Negative Output Generation: …

…

R2

R1R0

R4

R3

C1
C2

C3

…

…

R2

R1R0

R4

R3

C1’
C2’

C3’

…

R2
R1

R0
C1 RiCn…R3

R0
C2

… R2
R1

R0
C1’ R3

R0
C2’

… RiCn’…

SC R2 SC R3 SC Ri

(b) A prompt example on summary
Figure 2: Multimodal and multi-stage circuit preprocessing flow. We split circuits into sub-circuits
for fine-grained encoding, representing RTL in three modalities (HDL code, functionality summary,
and graph) and netlists as graphs, ensuring data alignment across modalities and design stages.

3.1 PREPROCESSING: MULTIMODAL AND MULTI-STAGE CIRCUIT DATA

Figure 2 illustrates our circuit data preprocessing workflow. For each circuit, we split it into multiple
subcircuits, then express each subcircuit in three modalities (i.e., code, graph, summary). Each
training circuit data is in both RTL and netlist, two primary circuit design stages. More preprocessing
details with a concrete example of the circuit data can be found in Appendix B.

Generation of three circuit modalities. (1) HDL code: A circuit may be initially designed with
different HDL code formats, such as Verilog, VHDL, and Chisel. For consistency, all HDL code is
automatically converted into Verilog format with open-source tools (Wolf et al., 2013). (2) Circuit
graph: To further capture circuit structure, each circuit in HDL code will be converted to a graph of
logic operators and sequential registers. (3) Functionality summary: To further capture circuit se-
mantics, as Figure 2b shows, we prompt GPT-4 to summarize the functionality and implementation
details of each sub-circuit. We introduce the generation of sub-circuit below.

Sub-circuit generation. Utilizing the parallel execution mechanism of circuits, we split an entire
circuit into multiple sub-circuits, each corresponding to one register. Specifically, for each register,
we capture a sub-circuit by backtracing all its combinational input logic operators. This process
applies to both RTL and netlist stages, and across all modalities, ensuring that the sub-circuits are
consistently split and functionally aligned. The detailed sub-circuit generation algorithm is in Ap-
pendix B. CircuitFusion will encode each sub-circuit into an embedding, supporting various down-
stream tasks.

There are several key advantages of splitting circuits based on the register: (1) The sub-circuits for
multimodal RTL and the cross-stage netlist are strictly aligned and functionally equivalent, ensuring
consistency across both modalities and design stages. (2) Each sub-circuit captures the complete
state transition of the register within a single clock cycle, including all timing paths and logic com-
putations. This serves as a foundation for our model to learn both the combinational and sequential
behavior of circuits. (3) The sub-circuit provides an intermediate level of granularity, bridging the
gap between detailed tokens/nodes and the overall circuit. This granularity also enables generating
summaries for the state update function of each register, offering a more fine-grained understanding
compared to summarizing the entire circuit.

3.2 CIRCUITFUSION MODEL ARCHITECTURE

Figure 3 shows the model architecture of CircuitFusion. It consists of three unimodal encoders, one
for each modality. Then a multimodal fusion encoder integrates the output information from all three
unimodal encoders. Additionally, an auxiliary netlist encoder is employed only during pretraining.

4

Published as a conference paper at ICLR 2025

Graph
& Code

(&)

Graph &
Summary &

Code
Contrastive RTL-Netlist

Contrastive

[C]
P

P

Masked Summary
Modeling

-Summary
Matching

Transformer

Self Attention

Cross Attention

Fusion Encoder

[C]
LLM-Encoder

Code
Encoder

Graph [C]

[C]

[C]

Masked Graph
ModelingGraph

Transformer

Graph
Encoder

Summary [C]

[C]

[C]

Transformer

Summary
Encoder

Graph
Contrastive

Summary
Contrastive

Task #3:
Multimodal Fusion

Task #4:
Implementation-
Aware Alignment

RTL-Stage

Netlist

Pre-trained
GNN

Netlist
Encoder

Netlist-Stage

Task #1:
Intra-modal

Learning

Task #2:
Cross-modal
Alignment

(Q)

…

R2

R1R0

R4

R3

C1
C2

C3
…

…

R2

R1R0

R4

R3

C1’
C2’

C3’
…

CircuitFusion

Code

Sub-circuit [CLS] embeds[C]

Tunable model Frozen model

Auxiliary model (only for pre-training)

Pooled embedsP

Negative sample embeds

Anchor/positive sample embeds

...

...

...

...

...

...

...

𝐺! 𝐺"𝐺#$%

𝑆! 𝑆& 𝑆#$%

𝐶! 𝐶' 𝐶#$%
... ...

...
𝑁𝑝𝑜𝑜𝑙 𝑁1 𝑁𝑤

...

...

Figure 3: CircuitFusion pre-training workflow. CircuitFusion includes three unimodal encoders
(graph, summary, and code) and a multimodal fusion encoder, with an auxiliary netlist encoder used
only in pre-training. Leveraging the circuit’s unique properties, we propose four tasks to capture
structural and semantic information, while aligning the netlist stage for implementation awareness.

Here we introduce each unimodal encoder: (1) Graph encoder: Unlike text or image encoders (De-
vlin, 2018; Dosovitskiy, 2020) that benefit from extensive pre-trained models, pre-trained
general-purpose graph models are relatively scarce, requiring us to build our graph encoder from
scratch. We adopt a 7-layer graph transformer (Ying et al., 2021) with graph positional encoding.
Each sub-circuit graph is encoded into a sequence of graph embeddings {Gcls, G1, . . . , Gn}, where
n is the number of nodes in the graph. (2) Summary encoder: We employ a 6-layer transformer
to process the functionality summary with m tokens into summary embeddings {Scls, S1, . . . , Sm},
initialized using the first 6 layers of BERTbase (Devlin, 2018). (3) Code encoder: To handle long
HDL code snippets, we use an LLM-based text encoder NV-Embed-V1 (Lee et al., 2024), capable
of a maximum of 32K input tokens. It encodes the HDL code with q tokens into a sequence of
code embeddings {Ccls, C1, . . . , Cq}. We freeze this code encoder to allow integration with various
potential LLM-based encoders, including both open-source and commercial models, supporting
scalability to larger models in the future. In all three encoders, the [CLS] token represents the
embedding of the entire sub-circuit.

As for the fusion encoder, we initialize the multimodal encoder using the last 6 layers of BERTbase,
equipped with the widely adopted cross attention mechanism for multimodal fusion (Li et al.,
2021; 2022a; 2023a). We propose a summary-centric fusion to fuse the three modalities, since
the summary provides higher-level semantic insights, while code and graph capture details of the
circuit. More details of different fusion strategies are discussed in Appendix E.5. Specifically,
we first perform a mixup (Zhang, 2017) of the graph node embeddings and code token embed-
dings, controlled by an interpolation coefficient λ. The resulting mixup embedding is defined as
λ{G1, G2, . . . , Gn} + (1 − λ){C1, C2, . . . , Cq}, where the two modality embedding vectors are
padded into the same dimension first. The mixup strategy facilitates pre-fusion between the graph
and code modality for better fusion with the summary modality. In the fusion encoder, the summary
token embeddings are directly fed as queries for cross attention at each layer, while the mixup em-
beddings serve as the keys and values. Ultimately, the initial RTL sub-circuit is encoded into fused
embeddings {Rcls, R1, . . . , Rm}.
In addition, an auxiliary GNN-based netlist graph encoder is already pre-trained on netlist before
being applied to CircuitFusion. This auxiliary encoder encodes each sub-circuit netlist graph with w
nodes into node embeddings {N1, N2, . . . , Nw} and a graph-level embedding Npool by mean pooling
all node embeddings. Please note that the netlist encoder is discarded during the inference process,
as netlist data is unavailable in our RTL-stage downstream tasks. The implementation details of the
netlist encoder are provided in Appendix C.3.

3.3 PRE-TRAINING WITHIN CIRCUITFUSION: MULTIMODAL FUSION

Figure 3 also shows the pre-training process of CircuitFusion. To learn informative representations
utilizing the unique circuit properties, we carefully design four pre-training tasks to train CircuitFu-
sion: #1 Intra-modal learning on unimodal encoders to extract features within its specific modality.
#2 Cross-modal contrastive learning for modality alignment. #3 Masked summary modeling and

5

Published as a conference paper at ICLR 2025

mixup-summary matching on the fusion encoder for multimodal fusion. #4 Implementation-aware
alignment between CircuitFusion and netlist encoder by cross-design-stage contrastive learning.

Task #1 Intra-modal learning. For the circuit graph modality, we first introduce the masked graph
modeling pre-training objective. It captures the structural information of different circuit operators
in relation to their connectivity within the circuit graph. Specifically, we randomly mask the graph
nodes (i.e., operators) with the special token [MASK]. Then their operator type (e.g., ADD, OR,
MUX, etc.) will be predicted based on surrounding graph node embeddings. Denote the input
circuit masked graph as Ĝ. The ground-truth operator type of masked nodes is denoted as a one-
hot vector ymsk

Ĝ
. The predicted operator type of masked nodes is denoted as pmsk(Ĝ), where the

prediction is based on the surrounding graph node embeddings. The objective is to minimize the
mean squared error (MSE) between ymsk

Ĝ
and pmskas formulated below:

L#1
MGM = E(Ĝ)∼D

[(
ymsk
Ĝ
− pmsk(Ĝ)

)2
]
, (1)

where E(Ĝ)∼D represents the expectation E over the circuit graph dataset D.

Additionally, it’s crucial to capture the functional semantics of each sub-circuit. To achieve this, we
employ intra-modal contrastive learning for both the graph and summary encoders. Specifically,
we augment each sub-circuit with positive samples (denoted as +) generated through functionally
equivalent transformations, which create new sub-circuits with the same functionality but entirely
different structures. All other functionally different sub-circuits in the batch are treated as negative
samples (−). A contrastive objective pulls functionally similar circuits closer together in their re-
spective modality embedding space while pushing dissimilar circuits further apart. Specifically, we
minimize the InfoNCE (Oord et al., 2018) loss (defined as CL) for sub-circuit embeddings in both
the graph (Gcls) and summary (Scls) modalities, as formulated below:

L#1
CLG

= E(G)∼D[CL(Gcls, G
+
cls, G

−
cls)], L

#1
CLS

= E(S)∼D[CL(Scls, S
+
cls, S

−
cls)]. (2)

Task #2 Cross-modal alignment. We employ cross-modal contrastive learning to align graph,
summary, and code representations. This task aligns representations from different modalities in
a shared latent space, benefiting the subsequent modality fusion. We formulate the cross-modal
contrastive loss as follows:

L#2
CLmodal

= E(S,G,C)∼D
[
CL(Scls, G

+
cls, G

−
cls) + CL(Scls, C

+
cls, C

−
cls)

]
. (3)

Task #3 Multimodal fusion. We adopt two pre-training tasks for modality fusion: (1) Mask sum-
mary modeling: This objective involves randomly masking parts of the high-level summary tokens
with [MASK] and predicting them based on the fusion embeddings R. This helps the model capture
the relationship between the modalities and reinforces its understanding of the summary. The model
takes the masked summary embeddings Ŝ as the cross-attention query, and the graph-code mixup
embeddings mixGC as the key and value. The probability for a masked token pmsk(R̂ is predicted
by the model. This objective minimizes a cross-entropy (CE) loss:

L#3
MSM = E(Ŝ,G,C)∼DCE

(
ymsk
Ŝ

,pmsk(R̂)
)
, (4)

where ymsk
Ŝ

is ground-truth in one-hot vocabulary distribution.

(2) Summary and mixup-embedding matching: We employ a binary classification task that pre-
dicts whether a pair of given summary-mixup embeddings is positive (matched) or negative (un-
matched). This task ensures that the model correctly fuses the summary with the mixup embed-
dings. Denote the binary prediction in probability as pmatch and its ground-truth value as ymatch,
we formulate the training objective as follows:

L#3
match = E(S,G,C)∼DCE

(
ymatch,pmatch(R+, R−)

)
. (5)

3.4 PRE-TRAINING BEYOND CIRCUITFUSION: IMPLEMENTATION-AWARE ALIGNMENT

Task #4 Implementation-aware alignment. Besides the above three tasks within CircuitFusion,
we further pre-train CircuitFusion to integrate the later-stage netlist implementation information.

6

Published as a conference paper at ICLR 2025

CircuitFusion
Encoder

Sub-circuit
VectorStore

Retriever

New
circuit

S1
S2
Sk

[C] Retrieved
Quality Metrics

Zero-shot

Few-shot

Design Quality
ü Performance
ü Power
ü Area

split

store

split

query

Known
circuits

S1
S2
Si

Known sub-circuits
Indexing

Retrieval & Inference

New sub-circuits

Graph

Summary

Code

Figure 4: CircuitFusion retrieval-augmented inference flow. For downstream tasks, CircuitFusion
retrieves the most similar known circuits as references to improve fine-tuning and enable zero-shot.

Specifically, we utilize an auxiliary netlist encoder with an implementation-aware contrastive objec-
tive, which aligns the embeddings of the whole sub-circuit in both the RTL (i.e., Rcls) and netlist
(i.e., Npool) within a shared latent space. The contrastive loss is formulated below:

L#4
CLimpl

= E(R,N)∼D

[
CL(Rcls, N

+
pool, N

−
pool) + CL(Npool, R

+
cls, R

−
cls)

]
. (6)

Before the alignment, the netlist encoder is already pre-trained using masked graph modeling and
graph contrastive objectives on netlist, with tasks similar to those employed in the CircuitFusion
graph encoder. These objectives help the netlist encoder to capture the structure of the netlist graph.

To this end, we formulate the complete self-supervised pre-training objective of CircuitFusion by
jointly employing the four tasks:

L = (L#1
MGM + L#1

CLG
+ L#1

CLS
) + L#2

CLmodal
+ (L#3

MSM + L#3
match) + L

#4
CLimpl

. (7)

3.5 APPLICATION: RETRIEVAL-AUGMENTED INFERENCE FOR DOWNSTREAM TASKS

When applying CircuitFusion to downstream tasks, we propose a retrieval-augmented inference
method2, leveraging the circuit reuse property, as illustrated in Figure 4. Given the similarity across
different chip product generations and the extensive reuse of IP blocks, there is a vast pool of func-
tionally similar known circuits that can be used as references. The key idea is to utilize the pre-
trained CircuitFusion encoder to retrieve these similar circuits during inference on new designs,
using their design quality metrics as references for downstream tasks.

Specifically, Figure 4 details the two steps: 1) Indexing: This step stores already known circuit3
embeddings for future retrieval. The known multimodal circuits are first split into sub-circuits,
converted into fusion embeddings by CircuitFusion, and stored in a VectorStore, denoted as VSkn. 2)
Retrieval and inference: For each new sub-circuit, the top-k most similar sub-circuits are retrieved
from VSkn by measuring their cosine similarity in the embedding space.

During fine-tuning, the retrieved metrics (e.g., timing, power, area) from these similar circuits are
concatenated with the fusion embeddings of the target unknown circuit and fed into fine-tuning mod-
els, which are trained with task-specific labels. These metrics act as additional reference points, al-
lowing the fine-tuning model to calibrate and improve accuracy. Leveraging the retrieval-augmented
strategy, the pre-trained CircuitFusion is fine-tuned with task labels by adding a simple regression
model. Moreover, the retrieved metrics can directly serve as the final prediction, enabling zero-shot
inference, where no further model training or task-specific labels are required. We provide more
retrieval-augmented inference implementation details in Appendix C.5.

4 EXPERIMENTS

Circuit dataset. We construct a dataset with 41 RTL designs collected from various representative
open-source benchmarks (Corno et al., 2000; URL, b; VexRiscv, 2022; Amid et al., 2020), with
detailed statistics provided in Table 1. We provide more introductions on the benchmarks in Ap-
pendix A. The original dataset consists of 7,166 aligned RTL and netlist sub-circuit pairs, where each

2Please note this retrieval is optional during inference. If no similar design exists, omitting this strategy will
result in only a slight performance decrease, with more detailed evaluations shown in Figure 9.

3In practice, known circuit designs may come from previous version of circuit product, IP libraries, etc.

7

Published as a conference paper at ICLR 2025

Table 1: Statistics of Circuit Benchmarks.
Source

Benchmarks
#

Circuit
Circuit Size {Min, Avg, Max} Sub-circuit Size {Min, Avg, Max} Original

HDL Type# Node (Graph) # Token (Code) # Sub-circuit # Node (Graph) # Token (Code)
ITC’99 7 {3, 6, 9}K {30, 70, 108}K {12, 21, 31} {12, 106, 252} {68, 1k, 2K} VHDL

OpenCores 5 {1, 23, 54}K {12K, 1M, 2M} {12, 96, 173} {8, 18, 1K} {74, 2K, 91K} Verilog
VexRiscv 17 {4, 147, 521}K {144K, 6M, 20M} {39, 168, 694} {15, 47, 4K} {68, 3K, 123K} SpinalHDL
Chipyard 12 {1, 13, 83}K {9K, 1M, 5M} {28, 461, 23K} {24, 50, 1K} {70, 6K, 109K} Chisel

RTL sub-circuit is represented through three modalities. To enable contrastive learning, we perform
circuit augmentation using functionally equivalent transformations through open-source tools like
Yosys (Wolf et al., 2013) and ABC (Brayton & Mishchenko, 2010), generating positive samples and
resulting in a total of 57,328 sub-circuits across the dataset. Theoretically, the dataset can be further
augmented with an unlimited number of designs. We apply an 80/20 training/test split, ensuring the
split is based on complete designs, with 33 designs used for training and 8 reserved for testing.

Effectiveness of sub-circuit generation. The effectiveness of our proposed sub-circuit generation
is demonstrated in Table 1. The original circuit consists of tens of thousands of graph nodes and
millions of code tokens, making it extremely challenging for existing graph and text models to
handle. In comparison, sub-circuits are approximately 1000× smaller in the number of nodes and
code tokens, thus enabling scalable and fine-grained representation learning.

4.1 VISUALIZATION OF CIRCUIT MULTIMODAL FUSION

Before delving into the quantitative experiment results, we first visualize the impact of cross-
attention between the centric summary modality and corresponding code and graph modalities,
as shown in Figure 5. Specifically, we use the Grad-CAM technique (Selvaraju et al., 2017) to
highlight the graph nodes and code tokens with the highest cross-attention scores. For example,
in Figure 5a, when the summary describes input signals, cross-attention highlights the correspond-
ing signal names in both code and graph modalities. In Figure 5b, for conditional logic, both the
relevant operations and signals are highlighted in the code modality, while conditional operations are
highlighted in the graph modality. This visualization shows CircuitFusion’s ability to focus on rele-
vant elements across modalities: the graph provides structural information, the code offers semantic
details, and the summary guides the fusion, enabling comprehensive representation learning.

The design takes two data inputs: `P2_reg3` (a 32-bit input data)
and `P2_state` (a single-bit input that determines the current state)

module P2_reg2 (clk, rst,
P2_state, P2_reg3, P2_reg2);
input clk;
input rst;
input [31:0] P2_reg3;
input P2_state;
output reg [31:0] P2_reg2;
...
assign _0_ = ~ P2_state
assign _1_ = _3_ ? P2_reg2 : _5_;
assign _2_ = _4_ ? P2_reg2 : _6_;
always @(posedge clk) begin
 P2_reg2 <= _7_;
end
endmodule

Code Graph

Summary

Input Output Combinational Logic

(a) Cross attention on input signals

Conditional Logic: The circuit uses conditional assignments to
perform different operations based on the values of input signals

module P3_reg2 (clk, rst, state,
P3_reg3, P3_reg2);
input clk;
input rst;
output reg [31:0] P3_reg2;
...
assign _3_ = ~ state
assign _2_ = _1_ ? P3_reg3 : _7_;
assign _4_ = _0_ ? P3_reg3 : _5_;
...
always @(posedge clk) begin
 P3_reg2 <= _8_;
end
endmodule

Code Graph

Summary

Input Output Combinational Logic

(b) Cross attention on conditional logics
Figure 5: Visualization of cross attention between summary and code/graph.

4.2 DESIGN QUALITY PREDICTION TASKS AND BASELINE METHODS

CircuitFusion is pre-trained based on our proposed four self-supervised tasks, with implementation
details in Appendix C. Then we apply pre-trained CircuitFusion to RTL-stage circuits, targeting five
different prediction tasks about ultimate circuit qualities. These predictions are critical for designers
to receive early feedback on design quality while writing HDL code, without going through time-
consuming downstream design processes with EDA tools. These tasks are highly challenging, as the
RTL-stage circuit only contains functional information, lacking the implementation details related
to design quality. Recently, there have been several task-specific explorations (Sengupta et al., 2022;
Xu et al., 2023; 2022; Fang et al., 2023; 2024b;a) on individual tasks.

Design quality evaluation tasks at RTL stage. We detail the five design quality prediction tasks as
follows: (1) Register slack prediction: Predicting the slack for individual registers, which indicates

8

Published as a conference paper at ICLR 2025

the margin by which the register meets or misses the timing constraints post-synthesis. This task
helps identify critical registers that might cause timing violations. (2) WNS prediction: Estimating
the worst negative slack (WNS) for the entire design, which measures the largest timing violation
in the circuit. A key metric for determining whether the design meets timing requirements. (3)
TNS prediction: Predicting the total negative slack (TNS), which sums up all the negative slack
across the circuit. This metric indicates the overall severity of timing violations and helps prioritize
timing optimization efforts. (4) Total power prediction: Estimating the total power consumption
of the circuit, to assess the energy efficiency. (5) Total area prediction: Evaluating the total silicon
area required to implement the circuit, which is critical for determining the physical feasibility and
cost. Please note that the slack prediction task is directly evaluated at the sub-circuit level, whereas
the other four tasks are ultimately evaluated on the entire circuit design. Moreover, we discuss the
potential applications of CircuitFusion in multi-clock circuits in Appendix G, as well as optimization
tasks and RTL generation in Appendix F, highlighting its adaptability and future research directions.

Evaluation metrics. We evaluate the accuracy with regression metrics including correlation coeffi-
cient (R) and mean absolute percentage error (MAPE) between labels and predictions.

Baselines. We comprehensively compare CircuitFusion against SOTA methods from diverse do-
mains, including hardware task-specific solutions, general text encoders, and software code en-
coders. Hardware solution baselines include task-specific supervised methods RTL-Timer (Fang
et al., 2024a) and MasterRTL (Fang et al., 2024b), as well as the self-supervised pre-trained circuit
encoder SNS v2 (Xu et al., 2023). Software solution baselines include recent pre-trained software
code encoders, including CodeSage (Zhang et al., 2024), the encoder from CodeT5+ (Wang et al.,
2023a), and UnixCoder (Guo et al., 2022a), a multimodal code encoder. These models have an
input token limit of 1024, which prevents them from directly processing the longer HDL code, and
therefore we crop the input HDL code to fit this token limit. As for the general text encoders, we
use NV-Embed-V1 (Lee et al., 2024), with a 32k input token capacity, one of the top-performing
text encoders on the MTEB LeaderBoard (Muennighoff et al., 2022).

4.3 SUPERVISED FINE-TUNING FOR DESIGN QUALITY TASKS

We first compare CircuitFusion against the aforementioned baselines across the five design quality
prediction tasks. The detailed experimental results are demonstrated in Table 2.

Table 2: Comparison between CircuitFusion and baseline methods across all five design quality
prediction tasks. CircuitFusion consistently outperforms all baseline methods, including hardware
solutions, general LLM-based text encoders, and software code encoders across all tasks.

Slack WNS TNS Power AreaType Method R MAPE R MAPE R MAPE R MAPE R MAPE

Hardware
Solution

RTL-Timer 0.85 17% 0.9 16% 0.96 25% N/A N/A
MasterRTL N/A 0.89 18% 0.94 28% 0.89 26% 0.98 16%

SNS v2 N/A 0.82 22% N/A 0.76 28% 0.93 25%
Text Encoder NV-Embed-v1 N/A 0.49 17% 0.97 55% 0.85 44% 0.86 24%

Software Code
Encoder

UnixCoder N/A 0.46 21% 0.95 44% 0.83 29% 0.85 26%
CodeT5+ Encoder N/A 0.55 21% 0.63 43% 0.49 46% 0.45 39%

CodeSage N/A 0.23 25% 0.86 45% 0.8 38% 0.77 41%
Ours CircuitFusion 0.87 12% 0.91 11% 0.99 15% 0.99 13% 0.99 11%

Overall performance summary. CircuitFusion consistently outperforms all the hardware solutions,
general text encoders, and software code encoders across all five design quality prediction tasks. Its
high correlation and low MAPE demonstrate its effectiveness and reliability in learning HDL code
representations. Compared to SOTA baseline methods, CircuitFusion achieves a MAPE improve-
ment of 5% for slack, WNS, and area prediction, 10% for TNS, and 13% for power prediction.

Unlike hardware solutions that often require intensive, task-specific modifications, CircuitFusion
serves as a flexible foundation for multiple tasks, allowing fine-tuning without significant adjust-
ments, which enhances its versatility. Moreover, the significant performance gap between CircuitFu-
sion and text/software-based models highlights the importance of building hardware-specific models
like CircuitFusion for tasks within the hardware design realm.

We conduct ablation studies to demonstrate the effectiveness of each modality and proposed
strategy, as shown in Figure 1, with detailed evaluations provided in Appendix E.3. Furthermore,
we apply our strategies to baseline methods and assess the improvements in Appendix E.4.

9

Published as a conference paper at ICLR 2025

4.4 ZERO-SHOT RETRIEVAL AND REGRESSION

Compared with the existing hardware solutions, CircuitFusion is the first method to support
zero-shot circuit quality prediction due to our innovative retrieval-augmented method. We provide
a detailed evaluation of how the number of retrievals affects the prediction results, and we also
compare it with the LLM-based and software code encoders. As shown in Table 3, CircuitFusion
consistently performs best at top-1 retrieval for all tasks, achieving the lowest MAPE across the
board. According to this result, we set the retrieval number to 1 in our retrieval-augmented inference
to minimize error. Additionally, this result demonstrates that the encoded circuit embeddings contain
rich semantic circuit information, enabling effective search and differentiation of functionally simi-
lar circuits. In contrast, other general text or software code encoders struggle to identify functionally
similar HDL code snippets. This gap highlights the importance of integrating circuit-specific prop-
erties into hardware circuit learning. We also perform detailed few-shot fine-tuning experiments by
increasing the training data from 0% (i.e., zero-shot) to 100%, as demonstrated in Appendix E.2.

Table 3: MAPE(%) results of the zero-shot top-k similar circuit retrieval.
Slack Sub-circuit Power Sub-circuit AreaMethod top-1 top-3 top-5 top-10 top-1 top-3 top-5 top-10 top-1 top-3 top-5 top-10

LLM Encoder 51 35 33 34 92 90 90 90 90 88 88 88
UnixCoder 56 36 36 36 90 89 90 91 89 88 89 89

CodeT5+ Embedding 57 35 35 36 88 87 89 90 87 86 87 88
CodeSage 50 36 36 36 89 87 88 91 88 85 86 87

Ours 21 22 23 26 36 40 42 53 35 40 42 51

4.5 DOWNSTREAM PERFORMANCE SCALING WITH MODEL SIZE AND DATA SIZE
Av

g.
 M

AP
E

(%
)

Scaling Up

270M

350M

500M

25%

50%

100%

10

15

20

25

Model Size Data Size

Figure 6: On the downstream task perfor-
mance scaling with pre-trained CircuitFusion
model size and data size.

In Figure 6, we study how the downstream task per-
formance of CircuitFusion scales with both model
size and pre-training data size. The plot shows the
average performance across all five design quality
prediction tasks after fine-tuning. The results indi-
cate that increasing both model size and data size
significantly enhances performance, demonstrating
the scalability of CircuitFusion. This indicates the
potential that further scaling of both model and data
size in the future could lead to even greater improve-
ments in accuracy and generalization.

Specifically, when the model size is increased from
270M to 500M parameters, the error decreases from
19% to 12%. This trend shows that larger models are able to capture more complex structural and
semantic details from the circuit data, leading to better performance. Similarly, scaling the data
size also leads to a noticeable reduction in error. Similarly, scaling the pre-training data size from
25% to 100% (i.e., 7k RTL sub-circuits) of the dataset reduces the error from around 24% to 12%,
highlighting the importance of using a large, diverse circuit dataset for pre-training. We also provide
model size statistics for the baseline methods as a comparison in Appendix E.1.

5 CONCLUSION AND FUTURE WORK

In this work, we propose CircuitFusion, the first multimodal fusion and implementation-aware cir-
cuit encoder tailored for hardware circuits. We introduce four innovative strategies that leverage
the unique properties of circuits, spanning from circuit preprocessing to CircuitFusion’s pre-training
and application in downstream tasks. CircuitFusion is evaluated across five design quality prediction
tasks, where it consistently achieves state-of-the-art performance after fine-tuning and even enables
zero-shot inference.

Limitations and future work. While CircuitFusion is already trained in several different bench-
marks and outperforms the existing hardware task-specific approaches, the amount of training data
used is still limited compared to what would be ideal for a robust circuit foundation model. For
future work, we aim to explore circuit data generation techniques and further scale CircuitFusion by
pre-training on larger sets of synthetic circuit data. We will also release large-scale CircuitFusion as
a foundation model to support different tasks for other users.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work is supported by National Natural Science Foundation of China 62304192, Hong Kong Re-
search Grants Council (RGC) CRF Grant C6003-24Y, and ACCESS – AI Chip Center for Emerging
Smart Systems, sponsored by InnoHK funding, Hong Kong SAR.

REPRODUCIBILITY STATEMENT

We provide references to relevant sections and materials to assist readers and researchers in repli-
cating our results.

Dataset description: All datasets used in our experiments are from open-source benchmarks. A
summary of these datasets is available in Appendix A, with a demonstration example shown in Ap-
pendix B.2. Detailed preprocessing methods are described in Appendix B, including the different
circuit modality generation, sub-circuit generation, and downstream task label collection. The cor-
responding scripts can be found in our open-source repository.

Open access to CircuitFusion code: The source code for CircuitFusion is publicly available
at: https://github.com/hkust-zhiyao/CircuitFusion. The repository includes
scripts with step-by-step instructions to replicate the primary results presented in this paper.

REFERENCES

NanGate 45nm Open Cell Library. https://si2.org/open-cell-library/, a.

OpenCores: The reference community for Free and Open Source gateware IP cores.
https://opencores.org/, b.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing
Gong. Vatt: Transformers for multimodal self-supervised learning from raw video, audio and
text. Advances in Neural Information Processing Systems, 34:24206–24221, 2021.

Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew,
Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, et al. Chipyard: Integrated design,
simulation, and implementation framework for custom socs. IEEE Micro, 40(4), 2020.

Chen Bai, Jiayi Huang, Xuechao Wei, Yuzhe Ma, Sicheng Li, Hongzhong Zheng, Bei Yu, and Yuan
Xie. Archexplorer: Microarchitecture exploration via bottleneck analysis. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 268–282, 2023.

Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mohammed, Kriti Aggarwal, Sub-
hojit Som, Songhao Piao, and Furu Wei. Vlmo: Unified vision-language pre-training with
mixture-of-modality-experts. Advances in Neural Information Processing Systems, 35:32897–
32912, 2022.

Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool. In
Computer Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings 22, pp. 24–40. Springer, 2010.

Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. Rt-level itc’99 benchmarks and first
atpg results. IEEE Design & Test of computers (ITC), 2000.

Chenhui Deng, Zichao Yue, Cunxi Yu, Gokce Sarar, Ryan Carey, Rajeev Jain, and Zhiru Zhang.
Less is more: Hop-wise graph attention for scalable and generalizable learning on circuits. arXiv
preprint arXiv:2403.01317, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

11

https://github.com/hkust- zhiyao/CircuitFusion

Published as a conference paper at ICLR 2025

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Yufan Du, Zizheng Guo, Xun Jiang, Zhuomin Chai, Yuxiang Zhao, Yibo Lin, Runsheng Wang, and
Ru Huang. Powpredict: Cross-stage power prediction with circuit-transformation-aware learning.
In Proceedings of 2024 ACM/IEEE Design Automation Conference (DAC), pp. 1–6. ACM, 2024.

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and Zhiyao
Xie. Masterrtl: A pre-synthesis ppa estimation framework for any rtl design. In Proceedings of
2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–9. IEEE,
2023.

Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie. Annotating slack directly on your verilog:
Fine-grained rtl timing evaluation for early optimization. In Proceedings of 2024 ACM/IEEE
Design Automation Conference (DAC), pp. 1–6. ACM, 2024a.

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and
Zhiyao Xie. Transferable pre-synthesis ppa estimation for rtl designs with data augmentation
techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2024b.

Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie. A self-supervised, pre-trained, and cross-
stage-aligned circuit encoder provides a foundation for various design tasks. In Asia and South
Pacific Design Automation Conference (ASP-DAC), 2025.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Difei Gao, Ke Li, Ruiping Wang, Shiguang Shan, and Xilin Chen. Multi-modal graph neural net-
work for joint reasoning on vision and scene text. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 12746–12756, 2020.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850, 2022a.

Zizheng Guo, Mingjie Liu, Jiaqi Gu, Shuhan Zhang, David Z Pan, and Yibo Lin. A timing engine
inspired graph neural network model for pre-routing slack prediction. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 1207–1212, 2022b.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604, 2022.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694–9705, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

12

Published as a conference paper at ICLR 2025

Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. Deepgate: Learning
neural representations of logic gates. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 667–672, 2022b.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023b.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–8. IEEE, 2023a.

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder: Outper-
forming gpt-3.5 in design rtl generation with our open-source dataset and lightweight solution.
arXiv preprint arXiv:2312.08617, 2023b.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Niklas Muennighoff, Nouamane Tazi, Loı̈c Magne, and Nils Reimers. Mteb: Massive text embed-
ding benchmark. arXiv preprint arXiv:2210.07316, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Zehua Pei, Huiling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog
generation with discriminative guidance. In Forty-first International Conference on Machine
Learning (ICML), 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Z Pan, Marilyn Wolf, and Jörg Henkel.
Mlcad: A survey of research in machine learning for cad keynote paper. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 41(10):3162–3181, 2021.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu. How good is your verilog rtl code?
a quick answer from machine learning. In Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–9, 2022.

Zhengyuan Shi, Hongyang Pan, Sadaf Khan, Min Li, Yi Liu, Junhua Huang, Hui-Ling Zhen, Mingx-
uan Yuan, Zhufei Chu, and Qiang Xu. Deepgate2: Functionality-aware circuit representation
learning. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp.
1–9. IEEE, 2023.

Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. Robust gnn-based representa-
tion learning for hls. In 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pp. 1–9. IEEE, 2023.

Shobha Vasudevan, Wenjie Joe Jiang, David Bieber, Rishabh Singh, C Richard Ho, Charles Sut-
ton, et al. Learning semantic representations to verify hardware designs. Advances in Neural
Information Processing Systems, 34:23491–23504, 2021.

VexRiscv. VexRiscv: A FPGA friendly 32 bit RISC-V CPU implementation, 2022. URL https:
//github.com/SpinalHDL/VexRiscv.

13

https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv

Published as a conference paper at ICLR 2025

Minjie Yu Wang. Deep graph library: Towards efficient and scalable deep learning on graphs. In
ICLR workshop on representation learning on graphs and manifolds, 2019.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv
preprint arXiv:2305.07922, 2023a.

Ziyi Wang, Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Bei Yu, and
Yu Huang. Functionality matters in netlist representation learning. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 61–66, 2022.

Ziyi Wang, Siting Liu, Yuan Pu, Song Chen, Tsung-Yi Ho, and Bei Yu. Restructure-tolerant tim-
ing prediction via multimodal fusion. In 2023 60th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6. IEEE, 2023b.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In Pro-
ceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), volume 97, 2013.

Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills. SNS’s not a synthesizer: a deep-learning-based
synthesis predictor. In Proceedings of the 49th Annual International Symposium on Computer
Architecture (ISCA), pp. 847–859, 2022.

Ceyu Xu, Pragya Sharma, Tianshu Wang, and Lisa Wu Wills. Fast, robust and transferable predic-
tion for hardware logic synthesis. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 167–179, 2023.

Shuwen Yang, Zhihao Yang, Dong Li, Yingxueff Zhang, Zhanguang Zhang, Guojie Song, and Jianye
Hao. Versatile multi-stage graph neural network for circuit representation. Advances in Neural
Information Processing Systems, 35:20313–20324, 2022.

Xufeng Yao, Yiwen Wang, Xing Li, Yingzhao Lian, Ran Chen, Lei Chen, Mingxuan Yuan, Hong
Xu, and Bei Yu. Rtlrewriter: Methodologies for large models aided rtl code optimization. arXiv
preprint arXiv:2409.11414, 2024.

Yongjing Yin, Fandong Meng, Jinsong Su, Chulun Zhou, Zhengyuan Yang, Jie Zhou, and Jiebo Luo.
A novel graph-based multi-modal fusion encoder for neural machine translation. arXiv preprint
arXiv:2007.08742, 2020.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human
knowledge. In Proceedings of the 55th Annual Design Automation Conference, pp. 1–6, 2018.

Dejiao Zhang, Wasi Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma,
and Bing Xiang. Code representation learning at scale. arXiv preprint arXiv:2402.01935, 2024.

Hongyi Zhang. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412,
2017.

Su Zheng, Lancheng Zou, Peng Xu, Siting Liu, Bei Yu, and Martin Wong. Lay-net: Grafting netlist
knowledge on layout-based congestion prediction. In 2023 IEEE/ACM International Conference
on Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

Keren Zhu, Hao Chen, Walker J Turner, George F Kokai, Po-Hsuan Wei, David Z Pan, and Haoxing
Ren. Tag: Learning circuit spatial embedding from layouts. In Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1–9. IEEE, 2022.

14

Published as a conference paper at ICLR 2025

A MORE ON CIRCUIT HDL DATASET

This section provides an overview of the various circuit HDL datasets used in our work, includ-
ing ITC’99, OpenCores, VexRiscv, and Chipyard. These datasets offer diverse designs that span a
range of hardware implementations, enabling comprehensive benchmarking of CircuitFusion across
different circuit design tasks.

A.0.1 ITC’99

The ITC’99 benchmark suite (Corno et al., 2000) is a widely used collection of hardware circuit
designs, primarily designed for logic synthesis and verification. ITC’99 provides diverse designs
ranging from simple combinational logic to more complex sequential circuits. VHDL

A.0.2 OPENCORES

The OpenCores repository (URL, b) offers open-source hardware designs, including a wide variety
of digital systems, such as CPUs, memory controllers, communication protocols, etc. OpenCores
is a rich dataset for benchmarking HDL models because of its diverse collection of designs, which
range from small, simple circuits to large, complex ones. Its open-source nature allows for flexibility
in circuit modification, making it ideal for research and development in hardware design.

A.0.3 VEXRISCV

VexRiscv (VexRiscv, 2022) is an open-source, RISC-V compliant CPU core designed using Spinal-
HDL. This dataset focuses on CPU design and features a highly configurable architecture, allowing
for variations in pipeline stages, instruction sets, and optimizations. The VexRiscv dataset is partic-
ularly useful for testing the scalability and flexibility of models in handling CPU-level design tasks,
making it a valuable resource for benchmarking models like CircuitFusion on processor design tasks.

A.0.4 CHIPYARD

Chipyard (Amid et al., 2020) is a comprehensive framework for building RISC-V-based system-on-
chip (SoC) designs. It includes a collection of CPU cores, accelerators, memory systems, and I/O
components, offering a complete design ecosystem for hardware developers. The Chipyard dataset
enables testing at the SoC level, providing a broad set of circuits with varying complexities and
design objectives.

B MORE ON CIRCUIT DATA PREPROCESSING

B.1 DATASET AND FINE-TUNING LABEL COLLECTION

The labels for fine-tuning (i.e., post-synthesis PPA metrics) are generated through an industrial-
standard logic synthesis process applied to benchmark RTL designs. In the open-source bench-
marks, the HDL code of RTL circuits is provided, where the RTL stage describes the functional
behaviors of the circuit. We then use the EDA tool Synopsys Design Compiler® to automatically
synthesize the RTL circuits into gate-level netlists. The netlists represent real circuit implementa-
tions, consisting of logic gates (e.g., ADD, INV, AND, etc.) and registers (DFF). The synthesis
process is performed with the open-source NanGate 45nm technology library (URL, a). Following
the synthesis process in our baseline method (Fang et al., 2023), we use the “compile ultra”
command in Design Compiler to ensure that the synthesized netlists achieve high-quality PPA met-
rics at the Pareto frontier, with minimal variance across different configurations and optimization
objectives. The design quality metrics of netlists are then obtained through Synopsys Prime Time®

after synthesis, including slack of each register and WNS, TNS, total power, and total area for each
RTL design.

B.2 MULTIMODAL AND MULTI-STAGE CIRCUIT: A CASE STUDY

In this subsection, we provide a detailed example demonstrating the three modalities of RTL circuits.

15

Published as a conference paper at ICLR 2025

module coi (clk, rst, shift_cnt, shift_tip, shift_data, wb_adr_i,
clgen_pos_edge, ctrl, clgen_neg_edge, wb_stb_i, wb_cyc_i, shift_s_out);

input clk, rst, clgen_neg_edge, clgen_pos_edge, ctrl;
input [4:0] wb_adr_i;
input shift_cnt, shift_data, shift_tip, wb_cyc_i,wb_stb_i;
output reg shift_s_out;
wire _008_, _019_, _056_, _088_, _093_, _096_, _097_, _177_;
wire [7:0] _184_, _185_;
wire clgen_last_clk, shift_tx_clk, _179_, _180_, _194_;
wire [7:0] shift_tx_bit_pos;
wire [127:0] _510_ = shift_data;
assign _008_ = wb_cyc_i & wb_stb_i;
assign spi_tx_sel[1] = _008_ & _019_;
assign _019_ = wb_adr_i[4:2] == 32'd1;
assign shift_tx_clk = _194_ && _096_;
assign _088_ = ! shift_tip ;
assign _093_ = ! _177_;
assign clgen_last_clk = ! _179_;
assign _096_ = ! clgen_last_clk ;
assign _097_ = shift_tx_clk || _088_;
assign _177_ = | ctrl[6:0];
assign _179_ = | shift_cnt ;
assign _180_ = _510_[shift_tx_bit_pos[6:0] +: 1];
assign _184_ = { _093_, ctrl[6:0] } - shift_cnt ;
assign _185_ = shift_cnt - 8'h01;
assign _056_ = _097_ ? _180_ : shift_s_out ;
assign shift_tx_bit_pos = ctrl[11] ? _184_ : _185_;
assign _194_ = ctrl[10] ? clgen_neg_edge : clgen_pos_edge ;
always @(posedge clk) begin
 shift_s_out <= _056_;
end

endmodule

(a) Code

Input

Output

Condition

Concat
Arithmetic Boolean

Sequential Register Combinational Logic

(b) Graph

Functionality Summary
The Verilog design, `shift_s_out`, is a combinational circuit that takes multiple inputs and produces a
single output, `shift_s_out`. The circuit appears to be a part of a larger system, likely a SPI (Serial
Peripheral Interface) transmitter, and is responsible for shifting data out of a shift register.
The circuit's functionality can be broken down into several key components:
1. **Shift Register Control**: The circuit takes input `shift_cnt` and uses it to control the shift register.
It also takes input `shift_tip` to determine when to stop shifting.
2. **SPI Transmission**: The circuit generates a clock signal, `shift_tx_clk`, and uses it to shift data out
of the shift register. It also generates a bit position signal, `shift_tx_bit_pos`, to select the current bit
being transmitted.
3. **Control Signals**: The circuit takes input `ctrl` and uses it to control the shift register and SPI
transmission. It also generates several control signals, such as `clgen_pos_edge` and `clgen_neg_edge`,
which are used to control the clock signal.
4. **Data Shifting**: The circuit takes input `shift_data` and shifts it out of the shift register using the
`shift_tx_clk` signal.

Implementation Details
The Verilog design uses a combination of assignment statements and an always block to implement
the circuit's functionality.
* Assignment statements are used to define the relationships between the circuit's inputs and
outputs. For example, `assign _008_ = wb_cyc_i & wb_stb_i;` defines the value of `_008_` as the
logical AND of `wb_cyc_i` and `wb_stb_i`.
* The always block is used to update the `shift_s_out` output signal on the rising edge of the `clk`
signal. The always block contains a single statement, `shift_s_out <= _056_;`, which assigns the value
of `_056_` to the `shift_s_out` output signal.
* The design uses several intermediate signals, such as `_008_`, `_019_`, and `_180_`, to simplify the
implementation and improve readability. These signals are used to compute the final output value,
`shift_s_out`.

Overall, the design is well-structured and easy to follow, with clear and concise assignment statements
and a simple always block.

(c) Summary
Figure 7: An example for multimodal circuit

B.2.1 HDL CODE

As shown in Figure 7a, the HDL code for each sub-circuit is directly used as one of the input
modalities, capturing the functional description of the circuit’s behavior at the RTL stage. In this
Verilog HDL code, a module represents an entire sub-circuit, where input and output specify
the primary signals, wire connects the internal signals, assign represents combinational logic
operations, and the always block triggered by a clock signal defines the behavior of sequential
registers.

B.2.2 STRUCTURAL GRAPH

Each sub-circuit HDL code is parsed into an abstract syntax tree (AST), which is then used to con-
struct a control data flow graph, following a similar process in Fang et al. (2023). As demonstrated
in Figure 7b, the nodes represent sequential registers and combinational operators (e.g., AND, ADD,
EQUAL, MUX), while the wires connecting elements in the HDL code serve as the edges between
these nodes.

16

Published as a conference paper at ICLR 2025

B.2.3 FUNCTIONALITY SUMMARY

We employ GPT-4o (Achiam et al., 2023) from Open-AI to summarize both the functionality and the
implementation details of each sub-circuit HDL code. An example generated summary is illustrated
in Figure 7c. A sub-circuit contains only combinational logic for a single register within a single
clock cycle, making it simpler for the LLM to analyze without dealing with the complex sequential
state transitions of the entire circuit.

B.2.4 NETLIST GRAPH

We follow a similar widely adopted method (Wang et al., 2022) to convert netlists into the graph
format. Specifically, register flip-flops (FF) and logic gates (e.g., AOI, INV, FA, AND) are treated
as the nodes, and the wires connecting these gates form the edges of the graph.

B.3 SUB-CIRCUIT GENERATION ALGORITHM

We convert the HDL code into sub-circuit code snippets and the circuit graph into corresponding
sub-graphs, using the same sub-circuit generation method for both modalities to ensure functional
alignment. The detailed splitting algorithm is provided in Algorithm 1. Specifically, for each reg-
ister, we apply a breadth-first search starting from that register, backtracking through all connected
combinational logic until reaching the related input/output registers. This process is highly paral-
lelized within a design, ensuring minimal runtime.

Algorithm 1 Sub-circuit generation(s)

1: V ← {s} ▷ Set of visited nodes
2: Q← {s} ▷ Queue with start node
3: R← ∅ ▷ Set to store registers and inputs
4: while Q ̸= ∅ do
5: u← dequeue Q ▷ Current node
6: for all v ∈ u.outgoing do
7: if type(v) ∈ {reg, in} then
8: R← R ∪ {v} ▷ Add register/input to set
9: continue ▷ Skip to next node

10: if v /∈ V then
11: Q← Q ∪ {v} ▷ Add unvisited node to queue
12: V ← V ∪ {v} ▷ Mark node as visited
13: v.setParent(u) ▷ Set parent node
14: return R ▷ Return set of all registers and inputs

C IMPLEMENTATION OF CIRCUITFUSION

C.1 MODEL HYPERPARAMETERS

We first detail the hyperparameters for the proposed unimodal encoders: For the Graph encoder,
we train a 7-layer graph transformer Graphormer (Ying et al., 2021) from scratch to capture the
complex relationships in circuit graph semantics and structure. This encoder uses graph positional
encodings supporting up to 256 in-degrees and out-degrees for centrality encoding, a maximum
distance of 5 for spatial encoding, and an edge dimension of 12. It produces graph embeddings with
a dimension of 768. The node features are represented by one-hot encoding of the node type, and the
edge features are based on one-hot encoding of edge types, determined by the types of connected
nodes. The encoder has a hidden dimension of 256 and utilizes 3 attention heads. For the Code
encoder, we employ a frozen LLM-based general text encoder NV-Embed-V1 (Lee et al., 2024),
which handles a maximum input size of 32K tokens. This model is based on Mistral-7B-v0.1 and
was ranked No. 1 on the Massive Text Embedding Benchmark (MTEB) as of May 24, 2024. It
generates embeddings with a dimension of 4096, which are then linearly projected to 768. As for
the Summary encoder, it is initialized using the first 6 layers of BERTbase (Devlin, 2018), following
the setup in (Li et al., 2021).

17

Published as a conference paper at ICLR 2025

Pre-trained
CircuitFusionSi

Retrieved
Quality Metrics

[C]

S1
S2
Si

Retrieved
Quality Metrics

[C] Regression
Model

Circuit Feature

concat

concat

x M
(sum)

x M
(sum)

Regression
Model

Pre-trained
CircuitFusion

(a) Sub-circuit-level inference.

Pre-trained
CircuitFusionSCi

Retrieved
Quality Metrics

[C]

SC1

SC2

SCM

Retrieved
Quality Metrics

[C] Regression
Model

Circuit Feature

concat

concat

x M
(sum)

x M
(sum)

Regression
Model

Pre-trained
CircuitFusion

…

(b) Circuit-level inference.
Figure 8: Retrival-augmented inference implementation for tasks at different granularities.

For the multimodal fusion encoder, we initialize it with the last 6 layers of BERTbase. The fusion
encoder is equipped with cross-attention mechanisms to enable the effective fusion of embeddings
generated from the three unimodal encoders.

For the auxiliary netlist encoder, since graph transformers struggle with large and bit-blasted netlist
graphs, we instead use a 3-layer GraphSAGE (Hamilton et al., 2017) GNN with a hidden dimension
of 256. It encodes the netlist sub-circuit graphs into embeddings of 768 dimensions.

C.2 SELF-SUPERVISED PRE-TRAINING TASKS IMPLEMENTATION

For masked graph modeling on both RTL and netlist sub-circuit graphs (used in Task #1 and netlist
encoder), we adopt an approach inspired by GraphMAE (Hou et al., 2022). Specifically, 30% of
the nodes in both the RTL and netlist graphs are randomly masked and reconstructed during each
training epoch. A three-layer MLP with a hidden dimension of 256 is used to reconstruct the node
types. Mean Squared Error (MSE) loss is applied to minimize the error between the original node
type vectors and the reconstructed outputs, with the node types represented using one-hot encoding.

For the contrastive learning tasks (i.e., Task #1, #2, and #4), we utilize the InfoNCE loss function
across all contrastive schemes. To balance the contributions of the different contrastive schemes, we
assign an intra-modal weight of 1.0, while the cross-modal and implementation-aware weights are
set to 0.2. The InfoNCE loss is formulated as follow:

NCE(E,E+, E−) = −
[
log

exp (sim(E,E+)/τ)

exp (sim(E,E+)/τ) +
∑

E− exp (sim(E,E−)/τ)

]
, (8)

where τ is the temperature scaling parameter that controls the sharpness of the similarity scores,
E represents the circuit embeddings with positive samples (E+) and negative samples (E−). All
temperature parameters are set to 0.3.

For the multimodal fusion tasks, including masked summary modeling and mixup embedding-
summary matching, we adhere to the widely adopted tasks as described in (Li et al., 2021; 2022a;
2023a).

C.3 NETLIST ENCODER IMPLEMENTATION

The auxiliary netlist encoder is pre-trained using the graph modality of gate-level netlists, as these
netlists are flattened and contain limited semantics compared to RTL. The models and pre-training
tasks are adapted from those in the graph encoder of CircuitFusion, with two key tasks: (1) Masked
Graph Modeling: This task reconstructs the gate-level netlist nodes (e.g., logic gates) rather than
RTL operators. (2) Graph Contrastive Learning: Positive samples are generated through Boolean
equivalent transformations, ensuring structural variations retain functionality.

18

Published as a conference paper at ICLR 2025

C.4 TRAINING HYPERPARAMETERS

During the pre-training phase, the four self-supervised tasks are trained simultaneously for 50
epochs, with a total training time of approximately 20 hours. We use GELU as the activation func-
tion and set the batch size to 128. For optimization, we select AdamW, known for its ability to
handle large-scale data effectively. The learning rate is warmed up to 1e−4 during the first 1000
iterations, after which it follows a cosine decay schedule, gradually reducing to 1e−5. This sched-
ule ensures smooth convergence while avoiding abrupt gradient updates that could destabilize the
training process.

In the fine-tuning phase, the pre-trained CircuitFusion model is frozen to preserve the learned rep-
resentations, and lightweight models are applied to adapt to specific downstream tasks. To comple-
ment the learned sub-circuit representations, we integrate design-level features, such as the number
of different operator types, to capture the overall design scale. Specifically, we explore various
lightweight models, including additional MLP layers, GNN layers, and tree-based models like XG-
Boost. XGBoost consistently delivers the best performance due to its capability to efficiently handle
the concatenation of sub-circuit embeddings with design-level features, treating them as tabular data.

Regarding the model development time, pre-training the model for 50 epochs takes approximately
10 hours using 4 Nvidia A4000 GPUs or around 32 hours on a single A4000 GPU. Fine-tuning is
significantly faster, taking only around 5 minutes per task. Fine-tuning runtime efficiency is a key
advantage of our method compared to task-specific solutions (i.e., our baselines). These task-specific
methods often require time-consuming task-related feature engineering or model modifications, and
lack generalizability to other tasks. In contrast, our pre-trained model allows developers to efficiently
fine-tune for various design quality evaluation tasks, ensuring both flexibility and speed.

C.5 RETRIEVAL-BASED INFERENCE IMPLEMENTATION

Our proposed retrieval-augmented inference process for CircuitFusion is illustrated in Figure 4. It
is designed for two types of downstream tasks: sub-circuit-level and circuit-level.

Sub-circuit-level inference: For each sub-circuit, the pre-trained CircuitFusion encoder generates
the corresponding multimodal embedding. We employ a retrieval process to fetch the most function-
ally similar sub-circuits from a vectorstore that contains previously seen circuits. These retrieved
sub-circuits provide their design quality metrics, which are directly concatenated with the embed-
ding generated by CircuitFusion. The concatenated feature vector is then fed into a regression model
to predict the final design quality metric for the sub-circuit.

Circuit-level inference: At the circuit-level, the entire design is composed of multiple sub-circuits.
Each sub-circuit is individually encoded by the CircuitFusion encoder, producing embeddings. Sim-
ilar to the sub-circuit-level inference, we retrieve quality metrics for each sub-circuit from the vec-
torstore. The embeddings and retrieved quality metrics for all sub-circuits are added to generate a
comprehensive circuit-level feature vector. We also concatenate this with design-level features (e.g.,
operator counts) to reflect the overall scale of the design. The combined feature vector is then fed
into a regression model to predict circuit-level design quality metrics.

C.6 BASELINE METHOD IMPLEMENTATION

For all the baselines, we directly employ the open-sourced code provided in their papers if available.
For methods without open-source code, we carefully re-implement their approaches based on their
published descriptions to ensure a fair comparison. Regarding the comparisons with baseline meth-
ods, we use the same pre-trained CircuitFusion model across all tasks, only fine-tuning different
task-specific downstream models, following the standard pretrain-finetune paradigm.

D EXPERIMENTAL SETTINGS

Our CircuitEncoder is implemented in Python, utilizing Pytorch and DGL (Wang, 2019) for self-
supervised pre-training and model implementation. Experiments are conducted on a server equipped
with a 2.9 GHz Intel Xeon(R) Platinum 8375C CPU and 512 GB RAM, with four NVIDIA A4000
GPUs for model pre-training.

19

Published as a conference paper at ICLR 2025

E MORE EXPERIMENTAL RESULTS

E.1 BASELINE MODELS (EXTENDED)

We summarize the baseline model size compared with CircuitFusion in Table 4.

Table 4: Pre-trained baseline model statistics.

Model Model Size Embedding Dim. Max Token Training Data Source
NV-embed-V1 7B 4096 32768 Various text

UnixCoder 125M 768 1024 Software code
Code T5+ Encoder 110M 768 1024 Software code

CodeSage 1.3B 768 1024 Software code
CircuitFusion 500M (+7B frozen) 768 32768 Hardware circuit

E.2 ZERO-SHOT AND FEW-SHOT INFERENCE (EXTENDED)

Tables 5 to 9 illustrate the performance of CircuitFusion compared to SOTA baselines for zero-
shot and few-shot learning on five design quality prediction tasks. The baseline method is selected
as the top-performing model from all baselines in Table 2. The x-axis represents the fraction of
training data used, ranging from zero-shot (0%) to full-shot (100%), while the y-axis shows the
MAPE. These results demonstrate CircuitFusion’s effectiveness in both zero-shot and few-shot set-
tings, making it a versatile and reliable model for early-stage design quality prediction tasks, where
access to large datasets is often restricted.

Zero-shot. Only CircuitFusion supports this zero-shot capability due to our innovative retrieval-
augmented method. While the baselines do not provide predictions in the zero-shot setting, Circuit-
Fusion achieves reasonable prediction accuracy without any training data, demonstrating its unique
advantage.

Few-shot. CircuitFusion is particularly effective when training data is limited, which is crucial
given the data availability challenges in hardware circuit design. As more training data is introduced
(from 1/8 to full-shot), CircuitFusion consistently outperforms the baselines across all tasks, show-
ing steeper performance improvements. It achieves lower MAPEs in nearly all cases, highlighting
its superior ability to generalize and learn with minimal data.

Table 5: Few-shot results (MAPE) on slack prediction (Sub-Circuit-level).

Task: Slack 100% 50% 25% 13% 0%
SOTA (RTL-Timer) 15% 16% 19% 30% N/A%

CircuitFusion 12% 14% 16% 19% 21%

Table 6: Few-shot results (MAPE) on WNS prediction (Circuit-level).

Task: WNS 100% 50% 25% 13% 0%
SOTA (RTL-Timer) 16% 29% 36% 43% N/A

CircuitFusion 11% 17% 18% 25% 27%

Table 7: Few-shot results (MAPE) on TNS prediction (Circuit-level).

Task: TNS 100% 50% 25% 13% 0%
SOTA (RTL-Timer) 25% 35% 49% 74% N/A

CircuitFusion 15% 24% 41% 52% 59%

20

Published as a conference paper at ICLR 2025

Table 8: Few-shot results (MAPE) on Power prediction (Circuit-level).

Task: Power 100% 50% 25% 13% 0%
SOTA (MasterRTL) 26% 37% 46% 55% N/A

CircuitFusion 13% 34% 43% 54% 62%

Table 9: Few-shot results (MAPE) on Area prediction (Circuit-level).

Task: Area 100% 50% 25% 13% 0%
SOTA (MasterRTL) 16% 33% 46% 56% N/A

CircuitFusion 11% 30% 45% 51% 58%

E.3 ABLATION STUDY

Effectiveness of proposed strategies. Figure 9 shows our ablation study by removing key com-
ponents employed in CircuitFusion strategies. Removing the sub-circuit generation severely limits
CircuitFusion’s ability to handle large-scale circuits, leading to the most significant error increases
across all tasks. Without this splitting, the model struggles to capture fine-grained circuit details,
which is essential for tasks like slack prediction that require sub-circuit-level embeddings. We fur-
ther assess the impact of each pre-training objective by selectively removing them. In every case,
this leads to a clear rise in MAPE, indicating the importance of each pre-training task in enhancing
both structural and semantic circuit understanding. Excluding retrieval-augmented inference results
in a substantial increase in MAPE across all tasks. This highlights the significant role retrieval plays
in enhancing fine-tuning performance by utilizing functionally similar existing circuits as references.

13 11

29

1615
1817

21

15 1515 1618
22

18 17
20

1415 16

0

20

40

Power Area

M
AP

E
(%

)

12 11
1517

23

16
19

24

1818

30

1514 16 16
19

24
20

15
19 19

14

23 23

14 15 16

0

20

40

Slack WNS TNS

M
AP

E
(%

)

w/o cross-modal align (S2 ℒ!"#$)
w/o retrieval (S4)

w/o intra-modal contrastive (S2 ℒ!"#%)
w/o implementation-aware (S3 ℒ!"#&)

w/o MGM (S2 ℒ'('#%)

w/o matching (S2 ℒ)*+,-#.)

w/o splitting (S1)

w/o MSM (S2 ℒ'/'#.)w/o modality mixup (S2 #3)

N/A

Figure 9: Ablation study on the effectiveness of proposed strategies.

Impact of circuit modality. In addition to the ablation study that evaluates the use of each modality
individually in Figure 1, we also conduct an extended study on the selective removal of each modal-
ity. This study aims to further quantify the contribution of each modality (i.e., code, graph, and
summary) to the model’s overall performance. Specifically, when either the hardware code or graph
modality is removed, there is a significant rise in prediction error across all tasks, highlighting their
critical role in capturing both the structural and functional details of circuits. The graph modality,
in particular, contributes more, as it contains rich structural information essential for circuit repre-
sentation. These results demonstrate the necessity of leveraging modality fusion to fully capture the
diverse characteristics of circuits.

21

Published as a conference paper at ICLR 2025

12 11
15 13 11

22 24 22

15 17
14 13 15 16 1516

28

19
16 1415

26 27

20
1718

39

18 19
14

0

20

40

Slack WNS TNS Power Area
M

AP
E

(%
)

CircuitFusion w/o graph modality w/o code modality

only graph only code only summary

Figure 10: Ablation study on the impact of circuit modalities.

Table 10: Evaluation results when applying strategy S1 and S4 to other pre-trained encoders.

Method Slack WNS TNS Power Area
R MAPE R MAPE R MAPE R MAPE R MAPE

NV-Embed-v1 ori N/A 0.49 26% 0.97 55% 0.85 44% 0.86 24%
w/ S1&4 0.85 15% 0.81 17% 0.95 27% 0.99 20% 0.97 17%

CodeSage ori N/A 0.23 21% 0.86 45% 0.8 38% 0.77 41%
w/ S1&4 0.84 14% 0.9 25% 0.95 24% 0.96 18% 0.96 17%

CodeT5+ Encoder ori N/A 0.55 30% 0.63 43% 0.49 46% 0.45 39%
w/ S1&4 0.83 14% 0.8 21% 0.94 24% 0.95 19% 0.93 21%

UnixCoder ori N/A 0.46 21% 0.95 44% 0.83 29% 0.85 26%
w/ S1&4 0.84 14% 0.83 20% 0.96 22% 0.96 18% 0.96 16%

CircuitFusion 0.87 12% 0.91 11% 0.99 15% 0.99 13% 0.99 11%

E.4 APPLYING PROPOSED STRATEGIES TO BASELINE ENCODERS

As shown in Table 10, applying the sub-circuit generation (S1) and retrieval-augmented inference
(S4) strategies to other pre-trained baseline encoders significantly boosts their performance across
all tasks. By encoding sub-circuits instead of the entire circuit, all baseline methods are now able to
handle the fine-grained slack prediction task, which they originally could not support.

For example, the LLM-based encoder NV-Embed-v1, despite its ability to process 32k tokens, strug-
gles to encode entire circuit code sequences. When enhanced with S1 and S4, it achieves a notable
reduction in MAPE for WNS (from 26% to 17%), TNS (from 55% to 27%), power (from 44% to
20%), and area (from 24% to 17%). Similarly, other software code encoders, such as CodeSage,
CodeT5+ Encoder, and UnixCoder, also benefit significantly from these strategies. This shows that
S1 and S4 not only improve fine-tuning accuracy but also enhance generalization across various
design quality prediction tasks. Despite these improvements, CircuitFusion still outperforms all
baselines, underscoring the effectiveness of its hardware-specific pre-training strategies.

E.5 DISCUSSION ON DIFFERENT MULTIMODAL FUSION IMPLEMENTATIONS

In CircuitFusion, we propose a summary-centric fusion strategy, where graph and code embeddings,
capturing detailed structural and semantic information, are first mixed. The Fusion Encoder then
combines these mixup embeddings with summary embeddings to generate the final circuit represen-
tation. To evaluate the effectiveness of this strategy, we implemented multiple variants of CircuitFu-
sion, including (1) other modality-centric (i.e., graph-centric and code-centric), (2) summary-centric
partial fusion (i.e., summary+graph and summary+code), (3) simple alignment and inference with
one modality (i.e., aligned graph, aligned code, and aligned summary), and (4) only single modality
(i.e., graph, code, summary).

The experimental results, summarized in Table 11, demonstrate the superiority of CircuitFusion’s
summary-centric fusion strategy. It consistently outperforms other modality-centric, partial fusion,
simple alignment, and single-modality approaches across all metrics, with significant improvements
over SOTA baselines. These findings underscore the effectiveness of combining detailed structural
and semantic information (from graph and code) with high-level functional insights (from summary)
for comprehensive circuit evaluation.

22

Published as a conference paper at ICLR 2025

Table 11: Evaluation results (MAPE%) for different multimodal fusion implementation variants.

Variant Type Method Slack WNS TNS Power Area Avg.
CircuitFusion 12 11 15 13 11 12

1. Other modality-centric aligned graph-centric 17 12 22 16 13 15
aligned code-centric 20 16 16 16 11 16

2. Partial fusion aligned summary+graph 14 13 15 16 15 15
aligned summary+code 22 24 22 15 17 20

3. Only modality alignment
aligned graph 15 13 17 19 14 16
aligned code 25 26 27 20 17 23

aligned summary 16 21 15 14 15 16

4. Single modality
only graph 16 28 19 16 14 19
only code 25 26 27 20 17 23

only summary 18 39 18 19 14 22
SOTA Baselines 17 16 25 26 16 20

Table 12: Evaluation results on applying CircuitFusion for multi-clock circuit designs.

Test Circuit Slack WNS TNS
Clock Design Frequency R MAPE MAPE MAPE

Single-Clock itc1 1.5GHz 0.91 6% 5% 8%
chipyard1 1.5GHz 0.88 12% 16% 15%

Multi-Clock itc1 1.5GHz 0.91 6% 5% 8%
chipyard1 1GHz 0.89 13% 15% 16%

F APPLING CIRCUITFUSION FOR MORE AGILE CHIP DESIGN PROCESSES

In addition to the various design quality tasks supported by CircuitFusion, here we also discuss the
application scenario of CircuitFusion for the agile chip design process. Inspired by (Fang et al.,
2024a), these predictions can be further applied for early timing optimization, such as setting fine-
grained timing optimization options for logic synthesis. Our better prediction results can seamlessly
support the optimization method in [4] and would enable similar or even better optimization results.

Furthermore, a recent trend involves leveraging LLMs for direct RTL code generation and optimiza-
tion (Liu et al., 2023b; Yao et al., 2024). Combining the multimodal RTL embeddings captured by
our CircuitFusion encoder with such code generation decoders opens up a promising future research
direction for designing and optimizing RTL code more efficiently.

G APPLING CIRCUITFUSION FOR MULTI-CLOCK CIRCUIT DESIGNS.

Currently, most AI-based timing evaluation methods (Wang et al., 2023b; Guo et al., 2022b; Fang
et al., 2024a), including ours, primarily focus on circuits within a single clock domain (i.e., syn-
chronous circuits). Multi-clock designs were not explicitly addressed in this work. However, our
proposed S1 sub-circuit generation strategy inherently divides circuits into register cones by back-
tracing logic to their driving registers. This process captures state transitions and all timing paths
within each register cone. For multi-clock designs, timing predictions can be handled within indi-
vidual clock groups by fine-tuning the model with timing labels specific to each group.

To demonstrate this capability, we combine two circuits from separate timing groups into a single
design and perform logic synthesis. Then our CircuitFusion fine-tuned with different clock fre-
quencies is used to predict the timing metric within each timing group. The prediction results with
CircuitFusion are shown in Table 12. CircuitFusion achieves similar timing prediction accuracy to
that observed in single-clock scenarios. However, challenges such as signal transfers across asyn-
chronous clock domains (i.e., clock-domain crossing) are significantly more complex and currently
fall beyond the scope of our method. This remains a promising direction for future exploration.

23

	Introduction
	Related works
	Proposed Method: CircuitFusion
	Preprocessing: Multimodal and Multi-stage Circuit Data
	CircuitFusion Model Architecture
	Pre-Training within CircuitFusion: Multimodal Fusion
	Pre-Training beyond CircuitFusion: Implementation-Aware Alignment
	Application: Retrieval-Augmented Inference for Downstream tasks

	Experiments
	Visualization of Circuit Multimodal Fusion
	Design Quality Prediction Tasks and Baseline Methods
	Supervised Fine-Tuning for Design Quality Tasks
	Zero-Shot Retrieval and Regression
	Downstream Performance Scaling with Model Size and Data Size

	Conclusion and Future Work
	More on Circuit HDL Dataset
	ITC'99
	OpenCores
	VexRiscv
	Chipyard

	More on Circuit Data Preprocessing
	Dataset and Fine-Tuning Label Collection
	Multimodal and Multi-stage Circuit: A Case Study
	HDL Code
	Structural Graph
	Functionality Summary
	Netlist Graph

	Sub-Circuit Generation Algorithm

	Implementation of CircuitFusion
	Model Hyperparameters
	Self-Supervised Pre-Training Tasks Implementation
	Netlist Encoder Implementation
	Training Hyperparameters
	Retrieval-based Inference Implementation
	Baseline Method Implementation

	Experimental Settings
	More Experimental Results
	Baseline Models (Extended)
	Zero-shot and Few-shot Inference (Extended)
	Ablation Study
	Applying Proposed Strategies to Baseline Encoders
	Discussion on Different Multimodal Fusion Implementations

	Appling CircuitFusion for More Agile Chip Design Processes
	Appling CircuitFusion for Multi-Clock Circuit Designs.

