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Abstract
As modern networks grow in complexity with virtualized soft-
ware components, ensuring the correctness of such networks
becomes a challenge. Conventional network verification re-
lies on manually constructed models, which are difficult to
build and maintain especially for the software components,
thus limiting the viability of network verification. On the
other hand, network testing through emulation provides high
fidelity, but it lacks coverage of the packet header space and
forwarding nondeterminism (e.g., ECMP, orderings of con-
current packets). In this work, we propose Neo, a hybrid
data plane testing framework that combines model check-
ing and emulation-based testing, with an aim to balance the
benefits from both worlds. Neo provides and utilizes formal
models for the standardized behavior where models can be
easily maintained, and allows the software components in
the network to be emulated where an accurate model is not
readily available. As a result, Neo covers all possible execu-
tion where models are available, including the packet header
space and forwarding nondeterminism of typical devices and
protocols, while sacrificing these formal guarantees for the
software components to obtain accuracy and applicability via
emulation. We show that our approach can detect data planes
issues that would otherwise be missed by the existing methods
alone and that, with our optimizations, it performs reasonably
well on various network datasets.

1 Introduction

Verification and testing are an essential part of network opera-
tion to ensure conformance to the desired correctness proper-
ties. Several techniques have been proposed to either verify or
test data plane states [14,21,22,30,32–35,38,39,46,62–65,68].
Among these techniques, verification approaches [22, 30, 32–
35, 39, 46, 63–65, 68] require an abstract model of the en-
tire network being verified and provide strong guarantees
about the properties of the verified states, assuming the model
accurately represents the network. In contrast, testing ap-
proaches [14, 21, 38] validate correctness properties by send-
ing traffic through test networks, which are typically emulated
with similar configuration to real deployments. By emulating
with software implementations instead of abstract models,
these testing approaches can validate correctness properties
with high accuracy without having to create models in ad-
vance, while potentially sacrificing soundness.

However, both approaches have fundamental limitations
when applied to modern networks containing virtualized net-
work functions (NFs), such as software firewalls, NATs, prox-
ies, load-balancers (LBs), etc. On one hand, formal verifi-
cation relies heavily on the accuracy of models. If a model
does not accurately represent the real network, false positives
and negatives can occur, which adversely impacts trust in the
verifier. More importantly, the availability of models varies
significantly in practice. For standardized behavior such as
L2/L3 packet forwarding, ECMP, etc., models may be manu-
ally created with a reasonable one-time effort. However, for
software components such as NFs, it is impractical to build
and maintain high-fidelity models for each implementation,
as these implementations may contain arbitrary code, evolve
rapidly, and mostly do not have a formal specification. On
the other hand, emulation-based testing requires no up-front
effort for modeling, but it is known to produce results with
potential false negatives when the system under test is non-
deterministic or has an inexhaustible state space with testing
alone [15, 25, 26], as modern networks do.

To strike a balance between verification and testing, we
propose Neo, a stateful data plane testing framework that
combines model checking and emulation-based testing, de-
signed for modern networks with software NFs. The core
idea is that it does not have to be all or nothing in either direc-
tion (i.e., either all formal verification or all emulation-based
testing). Inspired by concolic testing in traditional program
analysis [24, 25, 44], Neo allows any part of a network to
be emulated for concrete execution where accurate models
are not available while symbolically analyzing the remaining
modeled components, for which we call concolic network
execution. For standard components that constitute most of
the network (e.g., switches and routers), Neo provides formal
models to explore all behavior exhaustively. For the emulated
components (e.g., software NFs), Neo creates isolated virtual
environments where the emulations are executed as black
boxes on appropriate inputs and the outcomes are interpreted
accordingly back to the abstract domain. As a result, Neo
enables testing for a whole spectrum of networks where previ-
ous verification approaches cannot be applied due to the lack
of models for the software NFs in the network, and where
previous network-wide testing approaches may lead to higher
rates of false negatives due to the lower coverage of the packet
header space and forwarding nondeterminism (e.g., ECMP,
orderings of concurrent packets).
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Several challenges arise from this hybrid approach. First,
to integrate emulation-based testing with model checking, we
need to be able to (1) run arbitrary code at each state transition
and (2) modify any state variable during the process of model
checking. To this end, we build a framework around the SPIN
model checker [29] by dynamically instrumenting the verifier
generated by the model checker and linking our own code as
a library of callback functions invoked at each state transition
(§3.3.1, §3.3.2). Second, since the model checking process
is unaware of the emulated devices, we need to synchronize
the state of the emulations with the state of their counterparts
within the model. To do so, we design an efficient represen-
tation to keep track of the emulation states and introduce the
ability to rewind the state of any emulation instances (§3.3.3).
Third, as the emulated devices are treated as black boxes, by
definition there is no direct way to know if a previously sent
packet is dropped by an emulated device or if it is still being
processed. We design three methods with varying degrees
of applicability and reliability to detect packet drops within
emulations (§ 3.3.4). Fourth, to translate packets between the
abstract and the concrete domains and to reliably interpret
the concrete execution results, we compute the network-wide
packet equivalence classes (PECs) at the beginning of each
run based on the input data plane configuration (§3.4). Lastly,
with the state explosion problem of model checking [12, 40]
compounded with emulation overhead, a naive implemen-
tation of Neo may not scale well, especially if we want to
reason about concurrent packets and connections. Conse-
quently, we devise a series of optimizations that make the
prototype scalable to practical network sizes (§3.5).

We design and implement a prototype of Neo, showing that
(1) it extends model checking for the networks with software
NFs where models are unavailable, (2) it fully explores all
possible behavior of the modeled components, thus reduc-
ing the rate of false negatives, and (3) it can detect problems
where model-based and emulation-based approaches alone
either cannot be applied or cannot guarantee to detect such
issues. In addition, Neo scales well with both real-world net-
work datasets and synthesized large-scale networks, where
multiple cores can be utilized for testing in parallel. In most
scenarios, invariant checks can be done within a few seconds.
Compared to the unoptimized version, our optimizations im-
proved the run time by 2× to 1648× faster (the improvement
increases with the network scale).

2 Motivation

Difficulties of creating accurate formal models Let’s be-
gin with a simple example as shown in Figure 1, with the
purpose of illustrating the difficulties of creating formal mod-
els that accurately represent real implementations. In this
example, an internal host configured with multipath routing
sends a web request via a stateful firewall to some external
service. With a typical configuration, one may expect the
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Figure 1: An example of an invariant violation due to reverse-
path filtering (RPF).
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Figure 2: An example of an individually verified NF (LB) still
containing bugs and causing end-to-end invariant violation.

following network invariants to be true: (1) all outbound traf-
fic is allowed, and (2) all inbound traffic is blocked except
for replies to previous requests. However, if a Linux-based
software implementation is deployed as the firewall, invari-
ant (1) may sometimes be violated. Specifically, when the
kernel parameter rp_filter is enabled, the firewall performs
reverse-path filtering (RPF) [6, 58], causing the outbound
packets to be dropped if multipath routing happens to forward
the reverse flow through a different router.

To apply verification approaches to prove or disprove such
invariants, one needs to first create models (or formal specifi-
cations) for each device, which would be virtually impossible
given the presence of the software firewall. To accurately
model the firewall’s behavior, ultimately it is required to for-
mally specify all behavior of the entire kernel networking
stack, including the minute details of every kernel parameter
that may affect the packet forwarding behavior, which takes
an enormous amount of effort and does not scale with the
network size and the number of software NFs. Moreover, this
process of manual model specification often introduces bugs
and inconsistencies between the model and the implementa-
tion, as is the case of BUZZ [22] described in [42], which
makes it even more unattainable to keep all models updated
with every implementation idiosyncrasy across revisions.

2
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Figure 3: An example of an invariant violation that occurs
only under specific event orderings.

Individually verified NFs In Figure 2, we show an exam-
ple web service network consisting of the LB implementation
from Klint [49], which demonstrates that having individually
verified NFs is insufficient to guarantee end-to-end correct-
ness at the network level due to the incompleteness of manual
specification (i.e., models not capturing necessary details of
implementations). Klint is an automated verifier that veri-
fies the individual NF implementations conform to manually
constructed formal specifications [49]. In this example, the
LB realizes the Maglev algorithm [19]. However, when the
LB is used together with an off-the-shelf stateful firewall, we
discovered that occasionally the requests were dropped by the
firewall, because the LB incorrectly split the packets within
the same flow across different paths, making subsequent pack-
ets dropped by firewalls where the connection handshake had
not been established. If we were to apply formal verification
with a model of the LB, assuming it correctly implements the
Maglev algorithm (flow-level load-balancing with ECMP),
we would not have caught the issue, leading to false nega-
tives. Interestingly, when we used the LB together with the
Klint-verified firewall, we did not observe the packet drops,
because the firewall did not strictly enforce stateful filtering,
allowing packets to pass through before a connection is fully
established. Similarly, we would have false positives if we
were to use a model for the Klint-verified firewall, instead
of the real implementation. This illustrates that, even with
individually verified NFs, using manually specified models
can still lead to incorrect results.

Flaky issues due to forwarding nondeterminism Figure 3
depicts an example that shows the importance of exploring as
much nondeterministic behavior in the network as possible.
In this example, a cache proxy is configured and expected
to only query the backend servers for the first request (of
the same asset), which seems to be a natural invariant in
the situation. However, this invariant may be violated if the
first request is somehow delayed, either due to congestion in
the network path or queuing caused by a higher load at the
queried backend server, and this violation only happens under
specific event orderings. To fully test how NFs would and
should behave in similar cases, one must examine all possible
orderings of concurrent packets, which is one example of for-

Accuracy / Applicability
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Formal 
verification

Network-
wide testing Neo

Figure 4: The scope of Neo compared to existing techniques.

warding nondeterminism. As a result, network-wide testing
approaches typically would not be able to detect such issues
reliably, causing false negatives.

In fact, the examples above exhibit more than one concern.
The invariant violations in Figure 1 and 2 are also flaky, as
the issues only manifest when multipath routing happens to
forward packets to specific next hops, which means testing
approaches may not always exercise the problematic execu-
tion. The scenario in Figure 3 involves a software NF that
is typically implemented in a general-purpose language and
may contain arbitrary code, which makes it difficult to obtain
an accurate model to apply formal verification.

Scope of Neo Hence, the goal of Neo is to extend high-
quality testing to the types of networks that (1) involve soft-
ware NFs that are hard to model, and (2) contain nondeter-
ministic behavior in the part of the network that can be easily
modeled. Figure 4 illustrates the scope of Neo. By hybridiz-
ing the approaches at two ends of the spectrum, Neo enables
stateful testing for networks where the previous techniques
alone either cannot be applied or cannot reliably detect the
issues. We discuss the design details below.

3 System Design

3.1 Architecture Overview
At first, Neo takes an input network configuration file

(network.toml) that describes (1) the initial data plane state,
including the topology, the configuration of individual de-
vices, and the configuration of the control processes if needed
(§3.2), and (2) the correctness properties under test as a list
of network invariants (§3.6). Figure 5 shows an excerpt of
an input file. After parsing the input and setting up the initial
state, Neo systematically and symbolically explores all possi-
ble execution of the modeled components while concretely
executing the emulated NFs through a lightweight hypervisor
whenever the network execution involves the emulated nodes
(§3.3). Figure 6 shows the system architecture of Neo. At
each reachable state, Neo checks for the configured network
invariants whether the current execution path (up until the

3
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1 # Example configuration of a modeled device.
2 [[nodes]]
3 name = "r1"
4 type = "model"
5 [[nodes.interfaces]]
6 name = "eth0"
7 ipv4 = "192.168.1.2/24"
8 [[nodes.routes]]
9 network = "0.0.0.0/0"
10 next_hop = "192.168.1.1"
11 # Example configuration of an emulated device.
12 [[nodes]]
13 name = "fw1"
14 type = "emulation"
15 driver = "docker"
16 [[nodes.interfaces]]
17 name = "eth0"
18 ipv4 = "192.168.1.1/24"
19 [nodes.container]
20 image = "<redacted>/firewall:latest"
21 command = ["/start.sh"]
22 # ...
23

24 [[links]]
25 node1 = "r1"
26 intf1 = "eth0"
27 node2 = "fw1"
28 intf2 = "eth0"
29 # ...
30

31 [[invariants]]
32 type = "reachability"
33 target_node = "server"
34 reachable = true
35 [[invariants.connections]]
36 protocol = "tcp"
37 src_node = ".*"
38 dst_ip = "10.0.0.1"
39 dst_port = [80]
40 # ...

Figure 5: Part of an input configuration file (network.toml).
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Figure 6: System architecture.

System-wide state variables

Ci State of the ith connection, i ∈ [0,nconn).
nconn Number of concurrent connections.
semu State of all emulated nodes.
nchoice Number of nondeterministic choices at the current step.
choice The selected nondeterministic choice in [0,nchoice).

Per-connection state variables in each Ci

Pi j The jth symbolic packet in Ci.
sconn Connection control state.

Per-packet state variables in each Pi j

loc Current packet location.
sproto Protocol state.
ipsrc Source IP address.
ipdst Destination IP address.
portsrc Source L4 port number (0 if no L4).
portdst Destination L4 port number (0 if no L4).

Table 1: A subset of the model state variables.

current state) constitutes an invariant violation. If a violation
is found, the exploration halts with the violation reported.
However, if the exploration exhausts all reachable states and
no violation is found, Neo reports the test succeeded with all
configured network invariants validated.

This design draws inspiration from prior verification ap-
proaches like VeriFlow, NetPlumber, and Plankton [33,35,52].
However, the key distinction between Neo and the verification
approaches lies in the tight integration with emulation-based
testing. For ease of discussion, we first introduce the symbolic
network model which encodes all modeled components in
the network (§3.2) to clarify and provide the basis for formal
reasoning. Afterward, we discuss concolic network execution
with the integration between symbolic model checking and
testing (§3.3), assuming we have derived the packet equiva-
lence classes (PECs). However, due to the black-box nature
of the emulated NFs, deriving true PECs may not always be
possible. We describe the process of PEC calculation at the
beginning of each run and the necessary conditions where the
calculation would result in true PECs, including the potential
consequences (§3.4). Finally, we explain the optimizations
which greatly improved the performance of Neo (§3.5), and
the supported network invariants (§3.6).

3.2 Network Model

The network model in Neo is a shared-memory model de-
fined as a nondeterministic finite automaton (NFA), which
includes a set of state variables that may contain symbolic or
concrete values, and a set of transition functions (provided by
the control processes) that determine the valid transitions at
each given state. Table 1 shows a subset of the state variables
in the network model, which we describe below.

4
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Packet equivalence classes (PECs) A packet equivalence
class (PEC) defines a packet set where all elements exhibit an
identical forwarding behavior across the network. The set of
all PECs constitutes the abstract domain of our model, which
are derived at the beginning of each run (§3.4). These PECs
may be represented in various formats, including ternary bit-
vectors [33, 34], multidimensional tries [35, 52], binary deci-
sion diagrams (BDDs) [27, 63, 68], sets of mutually disjoint
intervals [30], or customized data structures [9]. In this work,
we represent a PEC as a set of mutually disjoint intervals
for its simplicity and ease of implementation. However, all
other common representations will work with Neo’s design.
Specifically, a PEC is defined based on the 5-tuple values, in
addition to sproto, which encodes not only the protocol types
but also any protocol-specific states such as TCP flags and
ICMP types. A symbolic packet Pi j in Table 1 represents one
PEC together with its current location loc.

Connection equivalence classes (CECs) To reason about
stateful behavior with one or more concurrent connections, we
extend the notion of PECs to connection equivalence classes
(CECs). A CEC is uniquely defined as a set of PECs that occur
within the same connection.12 This notion does not fundamen-
tally change the problem but helps assign semantic meaning
across the PECs of the same connection. Ci in Table 1 en-
codes the state of a CEC, which includes its current symbolic
packet Pi j and the connection control state, sconn, which is
crucial for coordinating concurrent connections (§3.5.1).

Model state For the system-wide state variables, nconn de-
notes the number of concurrent CECs, which is determined
by the input configuration at the beginning of each run, where
Ci represents the state of ith CEC. nchoice and choice represent
nondeterministic decisions during the execution of the NFA.
However, the exact semantic of nchoice and choice depends
on the state of the system. They may represent the choice of
forwarding next hops, concurrent connections, active control
processes, or route updates. Lastly, semu represents the state
of all emulated NF nodes in the network. We later expand on
its definition and how Neo synchronizes semu with the actual
emulation instances in § 3.3.3.

Control processes Control processes define the transition
functions of the NFA, which mutate the state variables and
progress the model to the next states. When more than one
control processes are active, all valid transitions will be ex-
plored nondeterministically by the model checker. Three
control processes are crucial to network execution, as shown

1We use the term connection loosely to refer to the communication ses-
sions with fixed endpoints of both connection-oriented protocols like TCP
and connectionless protocols like UDP or ICMP.

2In theory, it is possible for one PEC to belong to more than one CEC
when two separate connections are initiated by the exact same but reverse
endpoints at the same time. However, this rarely happens in practice.

1 do
2 :: nchoice > 0 ->
3 select(choice: 0 .. nchoice - 1);
4 c_code { exec_step(&now); };
5 :: else -> break;
6 od
7 assert(!violated);

Figure 7: The model checker’s view of the entire system
in Promela. select implements nondeterministic decision.
now is the global state vector for the model state. violated
is a flag indicating an invariant violation. exec_step is an
external function that is linked to our control processes.

in Figure 6. The forward process maintains a forwarding
state machine for each Pi j and forwards the symbolic packets
one step at a time, the route update process updates the data
plane forwarding entries based on the configuration, and the
connection coordinator process nondeterministically explores
all possible orderings of concurrent packets and connections.
During the execution of the NFA, each reachable state is
then checked against the configured network invariants for
potential violations.

The symbolic model described so far may seem comparable
to those of the prior verification approaches [30, 33, 35, 63].
However, the key distinction of Neo is the integration with
emulation-based testing and the support for reasoning about
concurrent connections, as discussed below.

3.3 Concolic Network Execution

3.3.1 Symbolic Model Checking with SPIN

At the core of Neo’s design is a model checker that sys-
tematically explores all reachable model states in depth-first
order. To have fine-grained control over the state variables
and transitions, Neo leverages SPIN [29], an explicit-state
model checker, to pilot model exploration given a skeleton
model written in Promela [28], as shown in Figure 7. This
allows running arbitrary code (including spawning emula-
tions) and modifying the model state. Thus, the underlying
network semantics are mostly hidden from the model checker
and implemented as separate control processes (§3.2).

The model executes in a single loop with nondeterminis-
tic branching where one state transition occurs per iteration.
At different model states, the nondeterministic choice may
have different semantic meanings (§3.2). When a particular
choice is made, Neo interprets this choice and invokes the
corresponding transition function within the control processes
to continue the execution. After each transition, the model
state is checked against the configured network invariants to
see whether a violation is possible. Therefore, eventually the
loop ends when there is no more choice to make (nchoice = 0)

5
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because of either an invariant violation or all states having
been explored (i.e., no valid transition to an unexplored state).

However, since SPIN operates on explicit, concrete values
for state variables, to extend it for symbolic values such as Pi j,
Neo maintains internal symbolic stores for each variable that
may contain symbolic values, including Pi j and semu, and uses
raw pointer values as identifiers for each distinct symbolic
value. The raw pointer values are used as concrete values and
stored in SPIN’s state vector. However, inside exec_step,
Neo reinterprets the raw pointer values via dynamic casting
to the proper types (data structures) that contain the real sym-
bolic values. These symbolic stores are duplicate-eliminated
(§3.3.3) to ensure that each distinct raw pointer value corre-
sponds to one distinct symbolic value and vice versa.

3.3.2 Concolic Execution with Emulations

Analogous to concolic execution in program analysis [25],
to incorporate emulation into model checking, our emulation
hypervisor must: (1) control and observe all network I/O of
the emulation processes, (2) pause and resume the emulation
processes, and (3) reset and restore the states of the emulation
processes. To this end, Neo employs container virtualiza-
tion for the emulated devices, each of which resides in an
isolated network namespace [18] with virtual interfaces [36]
created according to the input configuration. This allows our
hypervisor to achieve (1) and (2). We expand on (3) in §3.3.3.

During state exploration, when a symbolic packet reaches
an emulated device, since no accurate model is available, Neo
has the packet processed by the real software by translating
the symbolic packet from the abstract domain (PECs) to the
concrete domain (packets with concrete values) and sending
the concrete packet to the appropriate virtual interface (Fig-
ure 6). The forward process then interprets the outcome as
the action performed on the symbolic packet by translating
the concrete results back to the abstract domain.

To instantiate a concrete packet from a symbolic one, by
definition, it suffices to pick one arbitrary packet from the
PEC. If the set of all PECs we derive is true, then this con-
cretization process would be sound, which means that using
any concrete value within a PEC to represent the symbolic
packet would result in the same behavior. To ensure determin-
istic execution traces, Neo picks the first (smallest) packet
in the PEC as the concrete representative. Interpreting the
concrete results back to the abstract domain can be achieved
similarly. Assuming after sending a concrete packet, the emu-
lated device emits one or more packets,3 we can easily map
the output concrete packets back to their corresponding PECs
by looking up the set of all PECs. However, as the emulated
devices are run as black boxes, without additional knowledge
about the emulated devices, it cannot be guaranteed to al-
ways derive the set of true network-wide PECs, for which we
discuss the necessary conditions and implications in §3.4.

3We discuss the cases of silent packet drops in §3.3.4.

P1
P2
P3

E1

E2

E1

E2

System state 1
  E1: P1 P2
  E2: P1

System state 2
  E1: P1 P2 P3
  E2: P1 P2

(E: Emulation, P: Packet)

Figure 8: Duplicate-eliminated emulation states.

3.3.3 Managing Emulation States

One major challenge with this concolic design is representing
the states of the emulated devices in the model state and the
synchronization between the two. Since the model checker
and the emulated devices are unaware of each other, during
the depth-first traversal of the model state space, the em-
ulation states may not be synchronized with model states.
For example, after exploring one specific execution path of
the NFA, the model checker would backtrack to a previous
branching state and continue exploring the next branch, while
the emulated devices remain in the state at the end of the last
execution path without backtracking. Therefore, it is crucial
to be able to record and restore the states of emulated devices.

To achieve this, Neo defines the state of each emulated de-
vice as the list of events the device has ever seen since the start
of its execution, such as the list of all previously processed
packets. The state of all emulated devices in a network is then
defined as semu = {(i,ei) | ∀i}, where ei is the state of the ith

emulated device. Conceptually, semu is effectively a map that
captures the entire snapshot of all histories of events of all
emulated devices in the network. When a concrete packet is
to be sent to an emulated device, the actual state of the emula-
tion (tracked by the hypervisor) is first compared against the
emulation state in the model (semu). If there is a mismatch,
possibly due to state backtracking by the model checker, Neo
resets the actual state of the emulated device to be aligned
with the current model state, either by resetting and replaying
the history of events, or simply fast-forwarding the emulation
state if the current state is a prefix of the desired state in the
model. This approach is relatively simple and more tractable
than taking snapshots of the entire virtual memory.

However, a naive implementation would still lead to scal-
ability issues due to the number of different combinations
of event histories that need to be recorded for all emulated
devices. We rely on two observations to make this approach
scalable: (1) The same event may be part of multiple histo-
ries. (2) Many histories differ from each other only by a few
events. As a result, we can leverage these redundancies for
optimization. All events (e.g., concrete packets) are kept in
a hash table and reused. No event is duplicated at any point
during the entire state traversal. Moreover, any sequence and
sub-sequence of events are also duplicate-eliminated. Fig-

6
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ure 8 illustrates this layout. As a result, all elements of semu
are effectively pointers to their event histories.

3.3.4 Drop Detection

Another challenge is to reliably interpret the outcome after
sending a concrete packet to an emulated device, especially
when the emulated device silently drops the packet. To tell
packet drops from delayed responses, Neo provides three
detection mechanisms: drop timeout, in-kernel drop monitor
(drop_mon) [54], and drop tracing with eBPF [1, 45].

Drop timeout estimate Waiting for a timeout is the more
general approach applicable to any type of emulation. We
dynamically estimate the timeout value based on past packet
latency, similar to TCP’s retransmit timeout [11,17,31,47,51].
At first, a relatively high timeout value is assigned to avoid
false positives. During state exploration, each Ln, the latency
of the nth concrete packet, is recorded and the drop timeout
estimate DTO is calculated as shown below. µn and σn refers
to the arithmetic mean and mean deviation, respectively. α

and β are gain factors, empirically set to 0.2 [31, 47], while
C is the mean deviation scalar used to account for system
load. This method is the most applicable but may lead to
potential false positives when there are sudden changes in
packet processing latency in the emulated devices.

µn = µn−1 +α× (Ln−µn−1)

σn = σn−1 +β× (|Ln−µn−1|−σn−1)

DTO = µn +σn×C

Drop monitor For better accuracy, Neo can utilize the in-
kernel drop monitor via Netlink API [53] for emulated devices
based on Linux. The drop monitor traces all kfree_skb in-
vocations as well as hardware-level packet drops [54], and
then sends alerts to the subscribed userspace processes. This
ensures detection of packet drops in the kernel networking
stack without false positives or negatives. However, since it is
a system-wide API, all packet drops in the OS will generate
an alert even for packets not related to Neo. This inefficiency
leads us to explore a third option.

Drop tracing with eBPF To avoid unrelated alerts, Neo pro-
vides a drop tracing module based on eBPF [1, 45], which al-
lows fine-grained control to filter out irrelevant events directly
within the kernel space. This filtering is carried out based on
the inode number of each emulation’s network namespace,
the ingress interfaces, and other header fields based on the
PEC of the concrete packet being processed. Similar to drop
monitor, this method guarantees correctness when a packet is
discarded along the networking stack, but it avoids unneces-
sary communication between the kernel and the userspace.

Multipath rules

(1) SYN (2) SYN/ACK

(3) ACK (4.1) HTTP request

(5) HTTP response (4.2) HTTP request

Next DFS path

Packets of 1st exec. path
Packets of 2nd exec. path

Figure 9: An example of an incorrectly modeled HTTP com-
munication with multipath routing at the packet level.

3.3.5 Handling Multipath Routing

Naive modeling of multipath routing at the packet level can in-
troduce false positives with model state exploration. Figure 9
shows an HTTP communication explored in depth-first or-
der with packet-level multipath routing. The initial sequence
of the TCP handshake and the HTTP request-response are
modeled correctly. However, in the next execution path af-
ter backtracking, the HTTP request takes an alternate path
and gets dropped by the firewall that did not observe the TCP
handshake. Naturally, this is an invalid execution as multipath
routing typically happens at the flow level. To avoid invalid
executions and improve performance, we maintain additional
states for devices with multipath configured, so that nonde-
terministic choices for multipath are available only for the
first packet of a 5-tuple flow, ensuring all subsequent packets
within the same flow follow the same path.

3.4 PEC Calculation
Before exploring the state space, Neo computes the PECs
by first collecting all traffic specification values found in the
input configuration file, such as IP prefixes and port numbers,
and then carrying out a series of packet set intersections and
differences to produce the PECs. This process captures the
true PECs for the modeled devices. However, for the emu-
lated devices, since no accurate model is available for such
devices, we prioritize applicability over precision — Neo al-
lows users to provide a list of configuration files inside each
emulation’s file system, which are scanned to extract any
traffic specification values for PEC calculation.4 Therefore,

4Neo also takes into account any packet-related values from the execu-
tion environment of each emulated device, including environment variables,
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Figure 10: Two common patterns of dynamically created
concurrent connections with a TCP session.

the derived PECs are generally an approximation for the em-
ulated devices. This calculation process would lead to the
true network-wide PECs if the distinctive packet forwarding
behavior of each emulated device is solely affected by their
execution environment (configuration files, environment vari-
ables, command-line arguments). In other words, the derived
PECs would be sound if there is no hard-coded values within
the implementations of the emulated devices.

Another approach of deriving accurate PECs from the em-
ulated devices is through white-box program analysis, which
essentially equates to constructing formal models for soft-
ware implementations and suffers from similar limitations as
described in §1 and §2.

3.5 Optimizations
3.5.1 Efficient Exploration of Concurrent Connections

To test stateful properties, it is crucial to efficiently explore
all interleavings of concurrent packet flows or connections, as
illustrated in §2. In Neo, there are two sources of concurrent
connections. They may be specified by the network invariants
right from the start, or dynamically created by the emulated
devices in the network during execution. Figure 10 shows two
common patterns of dynamically created concurrent connec-
tions, where a client initiates a TCP session to a server, and,
along the paths, the TCP packets pass through a masquerad-
ing NAT or a proxy. Recall that, in our network model, we
define a connection to be the communication between a set of
fixed endpoints with the same 5-tuple flow in both directions
(§3.2). Therefore, in both cases, the communication is mod-
eled as two separate connections: one between the client and
the NAT/proxy, one between the NAT/proxy and the server.

With multiple concurrent connections, a naive design of
exploring every possible combination of packet orderings in
all connections would not scale. Therefore, we introduce an
optimization with partial-order reduction (POR) [10, 48] for
concurrent connections based on these observations: (1) the
forwarding behavior of stateless devices remains the same
regardless of packet orderings, (2) most devices in a network

command-line arguments, etc.

are stateless, and (3) even with concurrent connections, a
connection is sometimes frozen due to the lack of an active
packet (Figure 10). Thus, we can soundly reduce the state
space with Algorithm 1, where sconn is defined as

sconn(Ci) =


2, Ci is arbitrarily executable.
1, Ci is about to enter a stateful device.
0, Ci is frozen (no active packet).

For the modeled devices, Neo knows whether a device is
stateful or stateless based on the given model. However, for
the emulated devices, since they are run as black boxes, Neo
regards all of them as stateful to fully explore the packet order-
ings. This POR greatly reduces the state space and alleviates
the state explosion problem with concurrent connections.

Algorithm 1: Interleaving connections with POR.

1 Function ChooseConnection():
2 if ∃i. sconn(Ci) = 2 then

// Deterministic execution.
3 nchoice← 1;
4 i← pick the first i where sconn(Ci) = 2;
5 return {i};
6 else if ∃i. sconn(Ci) = 1 then

// Nondeterministic execution.
7 nchoice← |{Ci | sconn(Ci) = 1}|;
8 return {i ∈ Z | 0≤ i < n ∧ sconn(Ci) = 1};
9 else

10 return ∅;

3.5.2 State Fragmentation and Hashing

In Neo, the model checker stores every state visited during
exploration, which can lead to increased memory usage. To
mitigate this, we introduce an optimization called state frag-
mentation, which stores portions of the state in separate mem-
ory chunks, with only pointers to these chunks kept in the
model state. This reduces the memory cost for unused state
variables and avoids storing copies of unchanged variables
across states. For example, pointers of currently unused vari-
ables are set to null, and variables that do not change often
contain only a single or a few copies.

State fragmentation alone already improves memory usage,
as new states often differ only slightly from previous ones.
However, the model checker may still produce multiple copies
for the same value across different execution paths. To prevent
this, we store all allocated chunks in hash tables, representing
each distinct value with a single copy. This further reduces
memory usage and allows representing symbolic values in
an explicit-state model checker (§3.3.1). Figure 11 illustrates
how state fragmentation and hashing conserve memory.
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Figure 11: State fragmentation and hashing.

3.6 Network Invariants

Neo supports several invariants out of the box, as shown in
Table 2. One might expect Neo to use linear temporal logic
(LTL) [50] for invariant specification given our use of SPIN.
However, LTL cannot capture some interesting invariants,
such as ensuring consistency across all execution paths of
multiple devices, since LTL operates over a linear sequence
of states. CTL [16] or CTL* [20] could address this, but SPIN
lacks native support for them. Our use of symbolic values
also prevents us from using these temporal logics since SPIN
could not interpret the semantics of symbolic values. Instead
of relying on extensions [60, 61], we implement the checks
for each invariant type (Table 2). Each type is parameterized
with one or more traffic specifications and other type-specific
parameters (e.g., target devices, sub-invariants). Given the
depth-first state space traversal, Neo maintains and checks
the states necessary for each invariant type. Most data plane
properties can be expressed through these invariants [30, 34,
35, 39, 46, 65, 68], which is more practical and efficient than
requiring network operators to use LTL. Neo can also be
extended to support new invariant types if needed.

4 Implementation

We built a prototype of Neo in C++ and Promela, supporting
container-based emulation with Docker [41] and common pro-
tocols like HTTP, TCP, UDP, and ICMP. We packaged various
software NFs as container images for evaluation, including
software routers, firewalls, NATs [3], load-balancers [2], and
the DPDK-based, individually verified implementations from
Klint [49]. Container images can be used in Neo by simply
specifying the image name and tag in the input configuration

file (Figure 5). While we primarily test software NFs, any
software with visible network I/O can be packaged and used
within Neo. It is also possible to incorporate other forms
of emulation, such as virtual machines or hardware testbed,
which we leave as future work. All experiments are conducted
on a machine running Linux 6.6.2 with an Intel i7-1370P and
64 GiB RAM.

5 Evaluation

5.1 Dataset

To evaluate our design, we perform a series of experiments
with various network datasets, as shown in Table 3, including
the ISP topology data from Rocketfuel [57], the Stanford net-
work dataset [37], our campus network,5 synthesized fat-tree
data center network for evaluating scalability, and a small web-
service network with concurrent connections to demonstrate
Neo’s ability to soundly cover all packet orderings efficiently.
The total number of CECs in Table 3 denotes all CECs com-
puted from the input data plane configuration. However, the
exact number of CECs required to be checked depends on
each invariant specification.

5.2 Comparison with Full Emulation

5.2.1 Flaky tests from in-network nondeterminism

We first examine the qualitative difference between Neo and
prior work that emulates the entire network. Note that we
could not compare Neo with the prior formal approaches, as
the lack of accurate models would prevent them from being
applied in the first place, especially for networks with com-
plex software components. To compare with full-network
emulation, we adopt containerlab to use containers to form
any specified network directly parsed from Neo’s data plane
input configuration. This use of container also aims to align
with Neo’s design to alleviate the performance overhead be-
tween different emulation techniques (e.g., virtual machines).

Recall the reverse-path filtering example from Figure 1, §2.
Here we expand the number of hosts to 10, and repeatedly
query a server behind the firewall, with rp_filter enabled,
for 100 times. As a result, on average, 60% of the requests
passed through the firewall, which means that, for this exam-
ple, 60% of the time, simple testing with network emulators
would not detect the configuration error and would lead to
flaky false negatives. In contrast, since Neo would explore
all potential paths of multi-path forwarding, we successfully
detect the configuration issue 100% of the time.

5The campus network is anonymized for double-blind reviews and NDAs.
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Type Description

Reachability The specified target endpoints should be always reachable.
Segmentation The specified target endpoints should be always unreachable.
Reply-reachability After querying the specified target endpoints, the replies should always reach the original sender.
Waypoint The specified traffic should pass through (one of) the specified waypoints.
Loop absence There should be no forwarding loop.
Load-balancing The dispersion index across the specified target endpoints should be within the specified threshold.
Consistency All specified sub-invariants should contain the same truth value. (“A = B = C = ...”)
Implication The implication chain of invariants is true. (“A =⇒ (B =⇒ (C ...))” is true.)

Table 2: List of network invariants currently provided.

Network Nodes Links Total CECs

ISP-1 (AS 3967) 79 147 441
ISP-2 (AS 1755) 87 161 483
ISP-3 (AS 1221) 108 153 459
ISP-4 (AS 6461) 141 374 1122
ISP-5 (AS 3257) 161 328 984
ISP-6 (AS 1239) 315 972 2916
ST-1 (Stanford AS-level) 103 239 717
ST-2 (Stanford AS-level) 1470 3131 9393

Anon. campus network (core1) 65 134 2426
Anon. campus network (core2) 74 172 2321
Anon. campus network (core4) 67 146 2038
Anon. campus network (core5) 38 81 1250
Anon. campus network (core8) 30 46 848
Anon. campus network (core9) 33 79 1336
Anon. campus network (all) 236 524 7349

4-ary fat-tree DCN 97 124 262–277
6-ary fat-tree DCN 312 428 908–961
8-ary fat-tree DCN 717 1020 2166–2293
10-ary fat-tree DCN 1372 1996 4240–4489
12-ary fat-tree DCN 2337 3452 7334–7765

Table 3: Networks used in evaluation

5.2.2 Real-world datasets with end-to-end connectivity

To examine Neo’s performance compared to full emulation,
we conduct identical network testing with both Neo and con-
tainerlab on the real-world datasets we collected (i.e., ISP
topology from Rocketfuel [57], Stanford AS topology [37],
and the anonymized campus network). Due to the lack of pub-
lic data for detailed network configuration, for the ISP and AS
topology, we sample a number of nodes as emulated firewalls
and software routers running as containers, and check for the
end-to-end connectivity between leaf nodes in the network.
Within our anonymized campus network, however, we parsed
the real device configuration files and deployed the parsed
ACL rules and converged OSPF routes as realistic routing
policies, and check for pair-wise connectivity between all
buildings within the same network.

Figure 12 shows the overall time and memory required to
run Neo and full emulation. In addition to the amount of
network nodes running as emulations, one key distinction
between Neo and full network emulation is the fact that Neo
keeps track of the states of the emulated devices. If multiple
packets may trigger state changes within an emulated node,

Neo would explore all possible orderings of packet entrants by
rewinding the emulation states, while full network emulators
typically do not track the emulation states, which may further
lead to potential false positives or negatives. Full-network
emulators may implement similar state tracking mechanisms.
However, in most network emulators, restarting a large por-
tion of the network frequently can lead to severe performance
degradation. We notice that, in Figure 12(d), although Neo
utilizes slightly more memory, our design scales better with
larger networks compared to full emulation.

5.3 Scalability
To evaluate our design at scale, Figure 13 shows a tenant
subnet of a multi-tenant fat-tree DCN, inspired by [23]. Each
ToR switch is connected to an individual tenant subnetwork,
which carries two types of traffic, whitelisted and graylisted,
and two types of servers, public and private. All traffic is
allowed to access the public servers, but only the whitelisted
traffic is allowed for private servers. A typical stateful filtering
policy is enforced on graylisted traffic, where only replies to
past requests are allowed. The invariant specifies that this
policy should not be violated. A key distinction between Neo
and the past work [23, 46] is the use of real implementation,
which allows us to truthfully capture the behavior in reality. In
our test, we assume that some tenants now wish to reclassify
HTTP from graylisted to whitelisted, which is realized by
updating the two routers. However, during the experiments,
Neo finds the following violation where legitimate replies to
past requests are dropped. R2 gets updated before seeing the
request packet, which is then forwarded directly to R1 without
passing through the firewall. Subsequently, the reply reaches
R1 before R1 is updated with the new policy. Abiding by
the old policy, R1 forwards the reply to the firewall. Finally,
the firewall drops the reply for it has not seen the request.
We perform the above experiment with different numbers of
tenants and varying percentages of tenants (0%, 50%, and
100%) that go through the policy change. When at least
one tenant is updating the whitelisting policy as described
above, we correctly caught the violation and reported the
steps leading to the violating state.

Figure 14(a) show the time and memory usage with increas-
ing network scale. When tenants update their whitelisting
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Figure 12: Comparison with full emulation for real-world networks.
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Figure 13: A tenant subnet of a fat-tree data center network.

policies, it leads to quick detection of invariant violations.
When the model checker finds an invariant violation, the trace
is reported immediately and the exploration is terminated,
which means the model checker did not have to exhaust the
state space. In contrast, the invariant checking is the most
difficult when no issue occurs, since all executions need to be
exhausted to confirm that no violations are possible. On the
other hand, we observe that the memory requirement grows
slowly with the network size regardless of whether the state
space is fully explored.

We also examined the scalability with parallel processes,
as shown in Figure 14(b). Since independent CECs and the
individual invariants can be checked in parallel, Neo accepts
a command-line option for specifying the maximum number
of parallel tasks. We see that as the number of parallel pro-
cesses increases, the overall performance improves, though
the improvement gradually slows down. The overhead comes
from the fact that all the processes share the same underly-
ing resources, including the container API service and the
OS. However, the design allows the possibility of running
emulations across machines, which we leave as future work.

5.4 Emulation and Drop Detection Overhead

Besides overall scalability, we recorded microbenchmarks for
each packet injection and the use of emulations, as shown in
Figure 15. Figure 15(a) summarizes the emulation and packet
injection overhead for checking one CEC. “Total check time”
refers to the time to check one CEC for one invariant. “Emula-
tion overhead” includes the “emulation startup” time (creating
and starting containers), “state rewind” time (rewinding the
emulation states as described in § 3.3.3), “packet latency” (la-
tency between sending the concrete packet(s) and interpreting
the results), and other bookkeeping tasks such as updating
emulation states. We can see that, for each CEC, the emula-
tion overhead occupies the majority of the overall run time,
while the emulation startup and state rewind, when it happens,
constitute most of the emulation overhead. The actual packet
latency only contributes a very small portion of the resource
utilization.

When a packet injection generates one or multiple packets
from the emulation (received by the emulation hypervisor),
we observe that there is no significant difference in terms of
latency across different drop detection methods (the lower
50% of Figure 15(c)), which is expected since the packets are
received by a dedicated listening thread without triggering
drop detection. However, when a packet is dropped, the
eBPF method has the fastest reaction time among the three
methods, with the drop monitor method being slightly slower
and the timeout method being the slowest (the higher 50% of
Figure 15(c)), which is because the timeout method requires
Neo to wait until the timeout expires before it learns about
the packet being dropped.

Figure 15(b) shows the latency of all packet reception
events with different drop detection methods, and Figure ??
shows the latency when the packets are dropped. The drop
timeout in both figures denotes the actual timeout values from
the timeout estimation used for each packet injection. We see
that when the packets are received (Figure 15(b)), there is
no major difference in latency between drop detection meth-
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ods (except for the occasional spike when the system was
under high load), which is expected because the listening
thread would receive the packets before the drop detection
mechanisms are triggered.

5.5 Optimizations

5.5.1 Load-balancing with concurrent connections

Figure 16 is a web service network designed to experiment
with multiple concurrent connections. We create the net-
works with varying numbers of HTTP applications, each load-
balanced through NAT with IPVS/LVS [2] across servers. We
check that the incoming requests are distributed across servers
evenly by computing the dispersion indices at each step to see
if it satisfies the specified threshold. Different load-balancing
algorithms were tested, such as source/destination-hashing,
Maglev-hashing [19], and least-connection. Neo successfully
detected the cases where the invariant was violated.

To assess the benefit of Neo’s optimized design, we perform
the experiments while disabling most of the optimizations,
including POR for concurrent connections, state hashing, and

LB_1

Servers

LB_N

Servers

Figure 16: A web service network with LBs and concurrent
connections.
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Algorithm
Optimization 2 LBs, 4 servers 4 LBs, 16 servers 6 LBs, 36 servers

enabled? (4 concurrent CECs) (8 concurrent CECs) (12 concurrent CECs)

Maglev [19]
Yes 0.73 s 0.50 s (violation) 0.50 s (violation)
No 1.95 s 0.42 s (violation) 0.48 s (violation)

Destination-hashing
Yes 0.86 s 0.43 s (violation) 0.54 s (violation)
No 2.60 s 0.51 s (violation) 0.55 s (violation)

Source-hashing
Yes 0.76 s 10.31 s 5 m 41 s
No 1.97 s > 4 h 43 m (killed) > 5 h 23 m (killed)

Least-connection
Yes 0.78 s 10.64 s 5 m 40 s
No 1.85 s > 4 h 46 m (killed) > 5 h 34 m (killed)

Table 4: Concurrent CECs with and without optimizations (N3)

the duplicate-eliminated emulation states. Table 4 summa-
rizes the time needed to check the load-balancing invariant for
N3 with and without optimizations. For the smaller network
(2 LBs), the performance improvement is not as significant.
However, for the relatively larger networks (4-6 LBs), Maglev
and the destination-hashing resulted in invariant violations
due to the higher dispersion indices larger than the given
threshold,6 and hence the violations were quickly reported.
With source-hashing and least-connection algorithms, the un-
optimized version did not finish the check and was killed
for running out of memory (32G), which is to be expected
because, without POR and state hashing, every ordering of
connection interleavings needs to be explored and the val-
ues of the state variables would be copied several times. In
summary, the optimizations improved not only the memory
usage but also the run time by 2.35 to 3.01 times faster for
the smaller network and 57 to 1648 times faster for the larger
networks.

6 Limitations and Future Work

Support for emulation formats It is possible to extend the
system to other formats of emulation such as virtual machines
and hardware middleboxes (as long as Neo can send packets
and reset states). However, our current implementation fo-
cuses on emulating software NFs as containerized processes.
We plan to expand the support for other emulation formats in
the future.

Coverage within emulation black boxes As described
in § 3.3.3, certain types of internal nondeterminism in the
emulated software (such as multithreading, random number
generators, custom hash functions, etc.) may cause missed
execution paths since we do not have visibility into the black
boxes.7 For this problem, Neo allows sending multiple pack-

6The dispersion index threshold of the invariant is configurable by the
user and should be configured based on individual networks. We set it to 2.5
in this example for desmonstrative purposes.

7However, it may not be easier to create truthful models for these features
with formal modeling.

ets for each injection to cover the common cases of potential
behavior, which means Neo may not achieve complete cov-
erage within the emulated software. In particular, we don’t
expect to catch corner cases in NFs that escape a robust and
complete testing regime. For network-level nondeterminism
from data plane dynamics, Neo is exhaustive in contrast with
simple testing, while avoiding the need for a full behavioral
model and the lack of fidelity that is inherent in model-based
techniques.

7 Related Work

Data plane verification Data plane verification tools [30,
33–35, 39, 56] verify that a given data plane meets specified
correctness requirements. These tools rely on having accurate
models for software NFs in the network and sometimes as-
sume deterministic or history-free networks. To achieve better
accuracy and high-fidelity models, attempts have been made
to simplify the creation of models using custom languages
such as SEFL [59], NetSMC [65], or through FSM-based
model extraction such as Alembic [42]. However, they ei-
ther still require an understanding of the NFs and non-trivial
manual effort to create the model, or are limited in scope of
applicable NFs. With emulation, Neo simplifies data plane
verification for a large fraction of real-world networks.

Configuration verification Configuration verification at-
tempts to verify device configurations for a network before
deployment, to catch issues ahead of time. Tools such as
Tiramisu [5], Plankton [52], and Minesweeper [8] are exam-
ples of configuration verifiers. Such tools, at least the existing
ones, are not capable of checking the evolution of network be-
havior under stateful forwarding of packets and interleavings
of concurrent connections, as Neo can.

Network emulation Emulation-based testing [14, 21, 38]
checks the correctness of networks by emulating them on a
separate, usually virtualized, infrastructure with a configura-
tion close to that of the deployment, and thus achieves high

13



Submitted to the Journal of Systems Research (JSys) 2024

fidelity. For networks with nondeterministic components,
however, emulation-based techniques may not always exer-
cise the executions where issues occur. We propose a tight
integration between the emulation-based and model-based ap-
proaches by interpreting emulation behaviors directly within
the model-checking process.

NF verification NF verification [49,66,67] focuses on veri-
fying the properties of individual NF implementations, such
as liveness, crash-free, and conformance to given specifica-
tions, via theorem proving or symbolic execution. The focus
is fundamentally orthogonal, as we aim to check for data
plane properties (Table 2), against the complex data planes
where previous methods could not apply. One cannot rea-
son about these properties without the knowledge of other
devices in the network. More importantly, verifying NFs
against specifications is different from model/specification
synthesis, which means the existing work [49, 66, 67] cannot
be extended for our purpose.

Model checking In the networking domain, past efforts
with model checking have focused on individual software,
protocol implementations [13,43,55], and configurations [52].
In contrast, Neo uses it for verifying data planes with stateful
software components.

Symbolic and concolic execution Neo’s approach of exe-
cuting symbolic models as well as real software together to
perform verification is similar to the concolic testing tech-
nique used in software verification [7,24,25]. Our motivation
for using real software, however, is that it is impractical to
obtain faithful models for complex NFs in the context of data
plane verification. Namely, we focus more on the data plane
issues manifested from the network-visible behavior of the
software, rather than those within the software itself.

8 Conclusion

We proposed Neo, a concolic data plane testing framework
for networks incorporating complex network functions. By
combining emulation of real NF implementations with model
checking for standardized data plane components, Neo strikes
a balance between accuracy and coverage. Our experiments
show that Neo can be a powerful tool in ensuring the correct-
ness of heterogeneous networks in cases where the conven-
tional methods fall short.

Artifacts

Please visit our anonymized repository [4] for detailed de-
scription of how to use the tool and how to reproduce certain
experiments from the paper. The only experiment that cannot
be reproduced is the one based on the anonymized campus

network. The campus network dataset is under NDA and
cannot be released due to security reasons. However, there
are other comparable experiments based on publicly available
datasets (e.g., the ISP and AS-level networks). Also, the ag-
gregated performance statistics of the campus network tests
can also be found in the repository, which have been sanitized
and do not include specific configuration values or sensitive
information.
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