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Abstract

Analysis of noninvasive microvascular blood flow can improve the diagnosis,
prognosis, and management of many medical conditions, including cardiovascular,
peripheral vascular, and sickle cell disease. This paper introduces SAM2Flow, an
interactive optical flow estimation model to analyze long Oblique Back-illumination
Microscopy (OBM) videos of in vivo microvascular flow. Inspired by the Segment
Anything Model (SAM2), SAM2Flow enables users to specify regions of interest
through user prompts for focused flow estimation. SAM2Flow also incorporates a
dual memory attention mechanism, comprising both motion and context memory,
to achieve efficient and stable flow estimations over extended video sequences.
According to our experiments, SAM2Flow achieves SOTA accuracy in foreground
optical flow estimation on both microvascular flow and public datasets, with a fast
inference speed of over 20 fps on 512 x 512 inputs. Based on the temporally robust
flow estimation, SAM2Flow demonstrated superior performance in downstream
physiological applications compared to existing models. The code is available at:
https://github.com/DurrLab/SAM2Flow,

1 Introduction

Microvascular blood flow parameters, such as flow velocity, provide critical insight to understand
and manage diseases that affect blood rheology and vascular mechanics. Noninvasive microvascular
imaging allows visualization of vessel and blood cell dynamics at the single-cell level in vivo,
providing a window into the early progression of diseases and the real-time rheological status of
the patient. Some applications include measuring microvascular elasticity to diagnose coronary
microvascular dysfunction [1H3]], monitoring tumor angiogenesis to assess cancer progression and
treatment response [4]], and evaluating blood cell function in sickle cell disease [3. 16].

Established techniques for measuring vascular flow include Laser Doppler Flowmetry (LDF) [7] and
Laser Speckle Contrast Imaging (LSCI) [8]. But these techniques acquire low-resolution data and are
most sensitive to arterioles and venules, which are much larger and deeper beneath the skin compared
to capillaries. Orthogonal Polarization Spectral (OPS) imaging [9] and Side-stream Dark Field (SDF)
imaging [[10] have also been explored for capillary-resolution microvascular measurement of the
human oral cavity and finger nailfold. Recently, Oblique Back-illumination Microscopy (OBM) [11]
has demonstrated the potential for non-invasive microvascular measurements with high-speed imaging
and subcellular resolution. Green-light OBM can simultaneously record phase and absorption contrast
from individual blood cells flowing through superficial capillaries [12].

For all microvascular imaging techniques, quantitative, accurate, and efficient video analysis is
critical to enable clinical impact. Current analysis approaches often use semiquantitative metrics
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as the Microvascular Flow Index (MFI) [13]], or automated spatiotemporal diagram analysis [[14]],
which are labor-intensive, requiring extensive pre-processing, including background correction, video
stabilization, vessel segmentation, and manual refinement. While a cell tracking model [15] has been
explored for flow characterization, the computational cost increases drastically for longer videos or
large vessels packed with more cells, such as arterioles and venules. To achieve meaningful clinical
impact with microvascular flow technologies, efficient, fully automatic flow estimation is critical.

Optical flow (OF) models predict the motion of objects in a video by estimating 2D vector fields that
represent pixel-wise displacements between consecutive frames. Despite the impressive performance
of deep learning-based OF models in various applications, their application to in vivo microvascular
flow estimation remains unexplored. Existing models, such as RAFT [16] and GMA [17]], are
mostly constrained to the analysis of two frames or short segments. More recent models incorporate
mechanisms for longer sequences [18}[19]], such as memory [20]. However, challenges persist in
achieving robust flow estimation over long videos. Moreover, conventional OF models estimate
optical flow maps across all pixels, which is unnecessary when the background movements are not
relevant. Lastly, the limited availability of high-quality datasets, especially non-synthetic videos, also
hinders the adaptation of OF neural networks to various domains.

The Segment Anything Model (SAM) [21]] and its successor SAM2 [22] were introduced as founda-
tion models for instance segmentation in images and videos. Pre-trained with an unprecedentedly
large dataset, SAM2 demonstrated superior scene and object understanding, as well as object memory
across frames. Although these models are trained on natural scene datasets, impressive generalizable
performance has been achieved by initializing with these pre-trained weights and fine-tuning with
task- and modality-specific datasets, particularly in the medical field [23H25]].

To bridge the gap between the latest deep learning research for video analysis and non-invasive blood
flow estimation, we introduce SAM2Flow, an optical flow estimation model for vessel-emphasized
blood flow analysis of long in vivo OBM videos. Inspired by SAM2, SAM2Flow accepts user
prompts to select the regions of interest (ROI), such as target capillary segments or specific branches
of a complex vascular structure, for fine-grained flow estimation. To ensure robust flow estimation
across long videos, SAM2Flow also incorporates a dual memory mechanism, comprising both motion
memory and context memory. Fig. [T]showcases the improved clinical workflow by incorporating
SAM2Flow as the efficient end-to-end microvascular flow estimation model.

SAM2Flow represents five major contributions to the field of optical flow estimation and microvascu-
lar flow analysis: 1) Introduction of SAM2Flow: The first optical flow neural network specifically
designed for blood flow estimation. 2) Interactive ROI optical flow estimation: Enables user-guided
selection of regions of interest for efficient flow analysis. 3) Dual memory mechanism: Incorporates
motion and context memories to ensure efficient and stable flow estimation in long video sequences.
4) In vivo blood flow dataset for optical flow estimation: Establishes a large human capillary
flow video dataset with paired optical flow maps to facilitate future research. 5) General-purpose
foreground optical flow model: The experiment on the public benchmark, Spring, demonstrates the
promising performance of SAM2Flow on joint motion foreground detection and ROI-centric optical
flow estimation, beyond the microscopic domain.

2 Related Works

2.1 In Vivo Blood Flow Estimation

Superficial microvascular measurement is critical to study skin perfusion [26], wound healing [27],
peripheral vascular diseases [28]], and neurological blood flow changes [29]. LDF [7] is a widely
adopted non-invasive technique to estimate blood flow by measuring the Doppler shift of a low-power
laser beam source caused by moving RBCs. The result is typically reported in units of perfusion, a
combination of RBC concentration and velocity. Another popular imaging-based technique, LSCI [8]],
maps perfusion by the blur of coherent laser speckle grains from light-scatter of flowing red blood
cells. Both methods qualitatively measure flow and typically display in units of relative blood flow
instead of absolute flow velocity. In addition, the limited spatial or temporal resolutions of these
techniques hinder their ability to localize blood flow changes in specific microvessels. Lastly, both
techniques are very sensitive to patient or probe motions. Alternative techniques for flow perception
use special sensors, such as event cameras [30] and spike cameras [31]], but the limited quality of the
reconstructed frames hampers the visualization of clinically relevant anatomical details.



More recent flow estimation techniques using OPS [9] and SDF [10] image superficial capillaries
at various sites, including oral cavity, nailfold, and retina. With these techniques, microvascular
flow can be differentiated from the background tissue due to the strong green-light absorption of
hemoglobin in red blood cells. Previous flow estimation work relied on the movement of absorption
gaps from transparent white blood cells (WBCs) or plasma [32} 33]. A semiquantitative metric,
MEFI [13]], characterizes microcirculation status in OPS or SDF capillary videos. Estimations are
achieved by subjectively classifying each flow as absent (0), intermittent (1), sluggish (2), or smooth
(3). The video-based MFI is calculated as the average score over all labeled FoV quadrants or
vessels. Spatiotemporal(ST) diagrams [[14] were applied to absorption-based blood flow videos as
an automatic evaluation method. The flow can be quantified by the tilted angle of lines in the ST
diagram. Bourquard et al. estimated flow speed and detected WBC from nailfold flows using this
method [34]. However, continuous blood flow estimation is hard due to the scarcity of absorption
gaps in blood. WBCs typically only account for 0.1% to 0.2% of total blood cells [35]. Moreover,
WBC motion is unreliable in representing the net blood flow, due to their unique behaviors, such as
rolling and adhesion along the endothelium for leukocyte recruitment during inflammation [36].

OBM has recently been applied to in vivo microcirculation measurement [12]. In addition to
absorption contrast, OBM introduces phase contrast, resulting in enhanced visualization of the
boundary membranes of both red and white blood cells. Deep learning-based models have been
explored to achieve cytometry and flow estimation on OBM videos. CycleTrack [15], a multi-object
tracker (MOT), showed promising performance detecting and tracking individual cells throughout
the video. One major limitation is that the computational cost increases drastically as the video gets
longer or more cells are presented in the FoV. Therefore, an efficient end-to-end algorithm is needed
for imaging-based in-vivo blood flow estimation.

2.2 Optical Flow Estimation

Two-frame optical flow is traditionally done through the use of optimizing energy functions to
maximize the similarity between two images [37-H41]]. Most current OF research uses deep learning
techniques to predict pixel level movement from one image to the next. FlowNet, one of the pioneering
works in applying convolutional neural networks (CNNs) to OF, introduced an end-to-end trainable
framework that demonstrated the viability of learning-based motion prediction [42]]. Building upon
the use of CNNs, RAFT utilizes a Convolutional Gated Recurrent Unit (ConvGRU), which allows
iterative refinement of the flow output from a multi-scale 4D cross-correlation volume [16]]. Since
RAFT was published, works such as GMA, Flowformer++, MatchFlow, and SEA-RAFT have all built
upon and improved either the training or architecture of the RAFT base [17, 43546]. Our method,
SAM2Flow, harnesses the idea of iterative refinement but does so under explicit segmentation-aware
cues as well as a dual memory mechanism to ensure flow consistency even across a wide range of
time steps.

Video-based optical flow is a method in which multiple frames are used as the input to predict
the optical flow at a time point. PWC-Fusion fuses the past flow estimates to the current frame by
warping them via a small network [47]. This backward-flow fusion of past frames provides additional
longer-term motion cues but yields only modest accuracy gains ( 0.65% improvement over two-frame
PWC-Net). In contrast, TransFlow and VideoFlow explicitly leverage a wider temporal window by
processing a five-frame window centered on the flow prediction [18|48]]. TransFlow employs a purely
transformer-based architecture with a spatio-temporal encoder that attends across patches of all input
frames, capturing long-range correlations, and a decoder that uses the combined feature maps from
multiple frames to predict the flow [48]]. VideoFlow, on the other hand, uses a TRi-frame Optical
Flow (TROF) module that jointly estimates bi-directional flows from a center frame to its previous
and next frames. A Motion Propagation (MOP) module then links these tri-frame units, propagating
motion features so that the effective temporal receptive field grows to cover long sequences. The
benefits of higher performance come at a computational cost, jointly modeling multiple frame incurs
a large memory footprint and computational overhead. Both TransFlow and VideoFlow require access
to future frames and run significantly slower than comparable two-frame models. StreamFlow [[19]
improves computation efficiency by eliminating redundant processing through the non-overlapping
Streamlined In-batch Multi-frame (SIM) pipeline. However, the fixed temporal window remains
limited to only a few frames, restricting its ability to maintain stable long-term estimations.
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Figure 1: Clinical workflow of non-invasive microvascular flow evaluation integrating
SAM2Flow, the end-to-end optical flow estimation model. Prompted by sparse point labels,
SAM2Flow aims for robust flow estimation in detected ROIs, over long in-vivo microvascular
flow sequences with the dual-memory mechanism, including context and motion memories. The flow
estimation output is critical for various physiological measurements.

To address these drawbacks, MemFlow introduces an efficient memory-based design that processes
videos in an online fashion [20]. Instead of stacking multiple frames into the network at once,
MemFlow maintains a learned memory bank of frame-wise motion features and context embeddings,
which is queried (via attention) to provide relevant past motion cues for the current frame. This
design effectively captures long-range temporal information without needing to explicitly feed in a
long frame sequence, dramatically reducing computation per flow frame. While all of these methods
highlight the benefits of multi-frame input optical flow for maintaining consistency across time,
ablation studies in MemFlow found that models do not meaningfully utilize extended histories, with
less historical frame data leading to higher performance[20]]. In the blood flow estimation task, objects
move much faster across frames compared to traditional optical flow tasks, even when captured at
200 FPS. This results in fast-moving, optically ambiguous data that requires memory of previous
flow patterns to maintain consistency. SAM2Flow seeks to solve this problem through a dual memory
mechanism that ensures stable optical flow over long sequences.

3 SAMZ2Flow

3.1 Definition and Overview

Problem Setup. Forward optical flow is a per-pixel 2D displacement vector field: f;—;11 =
(fv, fv) € REXWX2 ‘mapping the location (u,v) from the current frame I; € RT*WX3 to the
location (u + f*(u,v),v + f¥(u,v)) in the next frame I; ;1.

Mainstream optical flow networks comprise three major modules: a feature encoder,
EN(IL), EF(I;11) € R¥w*Dr  that extracts a pair of low-level textural features to match across
frames; a context encoder, £¢(I;) € R>wxDe that encodes high-level current context to ensure a
meaningful and smooth optical flow field; and a flow update module, A f = U(E°(1;), m+), which
fuses context understanding with encoded motion features and iteratively refines optical flow estima-
tion with an RNN-based model. The image feature pair is used to construct a series of 4D correlation
volumes, G, = &7 (I,) ® AvgPool (€7 (I141))T € R"“*2F*3F  where ® represents the correlation
operator which computes similarities (dot products) between each pixel in the image feature pair. C is
then used to calculate motion features, m; = £™(LookUp(C)) € R"*w*Pm_ The LookUp operator
is some function that returns a motion feature vector for each pixel in I;.

Overview. The overview of SAM2Flow is presented in Fig. [IL We used the SEA-RAFT feature
encoder, a ResNet-based encoder pre-trained on 6 different optical flow datasets, as the feature
encoder backbone £/(-). As the context encoder backbone £¢(-), we integrate the SAM2 ViT image
encoder for its strong semantic feature encoding and generalizability from its large-scale pretraining.
To adapt the SAM2 encoder to the OBM domain with limited GPU resources, we apply the SAM?2
adapter [49], which injects fine-tuning weights into the frozen encoding trunk layers. We choose
ConvNeXt-RNN from SEA-RAFT as our flow updates backbone for its superior efficiency in flow



regression. We will elaborate on our proposed prompt-guided flow estimation in section [3.2and dual
memory module for optical flow estimation in section[3.3] We apply two efficient flow initialization
methods, ROI Registration and Warm Start, to further facilitate flow estimation. Check section
for a detailed description.

3.2 Prompt-guided Flow Estimation

When predicting an optical flow map from a pair of input frames, the feature encoder extracts textural
features to be matched pixel-wise during flow updates, while the context encoder focuses on semantic
information to ensure the final flow outputs are meaningful and smooth within object-wise regions.
Therefore, to achieve accurate flow estimation for specific ROIs, SAM2Flow conditions encoded
context with foreground information.

Prompt-conditioned Context. Inspired by SAM, SAM2Flow takes user input prompts that specify
ROIs that are are more diagnostically relevant, such as different vessels or branches of a complex ves-
sel structure, to condition focused flow estimation from the context encoder, in cases where complex
overlapping vessel structures or irrelevant background motion (e.g., heartbeat, tissue movement) can
mislead outputs.

Our model takes several sets of points and corresponding labels I; € {1,0} (foreground-1 /
background-0) as prompts ps = {(z;, ys; ZZ-)}NP. Each point prompt set representing an ROI is

K2
encoded into a 1D prompt vector with a prompt encoder, £ (p,) € R*P». Whenever there are user
prompt inputs at a certain frame, the encoded context is augmented by the prompts via two-layer
cross-attention:

P(£°(I;))" = Cross-Attention[£¢(I;), EP (pl)] (1)

where P(E¢(I;))! € RMwXDe g the context prompted by the it ROI point set. During flow
estimation, the prompted context would guide the flow update module, ¢/, to focus on the refinement
for the foregrounds and output a flow map for each region:

Af =UP(E(L))',my) @

If there is no user prompt input as in default, the model only predicts one unprompted flow map for
the whole frame.

ROI-guided Correlation Lookup. One of the major computational bottlenecks in the current optical

estimation model is the correlation search. Cj, € R"*"> 2K X5F s the kP layer of downsampled
correlation volume in the pyramid. In RAFT-like architectures, at the beginning of each flow update
iteration, the correlation map Corr € R"*wxK is generated by retrieving the correlation values for
all pixels at all levels of the pyramid, based on the current flow prediction, resulting in a complexity
of O(hwK).

As flows in OBM videos are highly localized, occupying only a small portion of the entire field of
view, SAM2Flow speeds up the 1ookup operation and suppresses the background noise by retrieving
only values for foreground regions. To guide the correlation lookup, SAM2Flow incorporates an ROI
decoder, similar to the mask decoder in SAM?2, that makes a prediction for an ROI R* € Rhxwx1
based on each prompted context. The ROI decoder also outputs a 1D object pointer vector O €
R1* P that is used for context memory in the following section:

R', O = DR(P(E°(LL))Y) 3)

Therefore, ROI-guided correlation lookups have a complexity of O(NrK'), where Np, is the total
pixel number of ROIs.

3.3 Dual Memory Module

For robust performance over an extended video sequence (e.g., 12,000 frames for 60 seconds of
OBM videos), SAM2Flow incorporates memory from previous time points to enhance current flow
estimation. As optical flow is predicted by combining motion and context features, we propose the
dual-memory mechanism, consisting of both motion and context memories. The motion memory
ensures the long-term estimation smoothness for constantly pulsing flows, which is essential for
downstream physiological analyses, while context memory helps to keep track of the identities of
target vessels.



Memory Encoding. Previous flow predictions are encoded into motion memory and context memory
by two separate memory encoders. We adopt memory encoders from SAM?2 as our backbones. For
motion memory at tg, the memory encoder directly takes the flow map of each ROI as input and fuses
it with the corresponding motion feature map:

o = M7 (frgr e, ) € R @

For context memory, the flow map will be binarized into the flow mask B(f;,) € R *W*1 before
being fed into the context memory encoder, where it is combined with unprompted context by the
context memory encoder:

¢ =EM(B(fy), E°(I1,)) € RMwx P )

Memory Bank. The encoded motion and context memories, along with object pointers, are then
stored in a FIFO queue, named the memory bank. To save space for long-video inference, the memory
bank is limited to store memories up to IV recent frames. When the memory bank is full, the earliest
memories are discarded. When there are memories from n recent frames (0 < n < N) in the memory
bank at a time point, ¢,,, the model retrieves all memories from the memory bank and stacks them

into M;’;N,L, prn € RnxhxwxDa

Motion Memory Attention. The microvascular flow pattern within a specific ROI is usually
temporally smooth and predictable. For example, the blood in a certain vessel tends to flow in the
same direction throughout the whole video. Therefore, SAM2Flow introduces motion memory that
stabilizes flow regression. We utilize a stack of vanilla attention blocks of alternating self- and
cross-attention [50] to condition the current motion feature with motion memories:

Mem(mtp) = Attm(mtp s Mgwn) (6)

Context Memory Attention. For reliable flow estimation over time, the context branch of SAM2Flow
should provide stable semantic information and segmentation of ROIs. Context memory propagates
user-defined ROIs across frames. As a result, SAM2Flow only requires sparse user inputs in the first
few frames of a long video. To achieve this, we condition the current context from context encoder
with the stacked context memory and object pointers, using the same attention operation as eq. (6):

Mem(E°(1;,)) = Att(E°(1y,), tyeons Otyon) @)

When it comes to a frame with user prompt inputs, SAM2Flow prioritizes the user prompts and skips
context memory attention. With the memory-augmented motion and context features, the flow update
module is able to generate temporally smooth flow estimations with the same iterative refinements as
eq. (2) for each ROL: 4 . 4

Aft =UMem(E(,)"), Mem(my)) ®

4 Experiments

4.1 Datasets

Microvascular Dataset. We establish an in-vivo microvascular flow dataset that is larger than most of
the existing public optical flow datasets, including 75 videos, with the paired ground truth flow maps
of 306,800 frames in total. The grayscale videos are collected by imaging the superficial capillaries
in the oral cavity of 15 healthy volunteers using the OBM system [6], at 200FPS with a frame size
of 512 x 512. All participants gave written informed consent, and experiments were conducted
under a Johns Hopkins University Institutional Review Board-approved protocol (IRB00264150).
We split the dataset into training, validation, and testing subsets, containing 45, 15, and 15 videos,
respectively. The flow map ground truths are generated using the spatiotemporal diagram [[14] with
manual refinement.

Public Datasets. We use two public datasets to test the generalization ability of SAM2Flow outside
of the microscopic domain. Sintel [S1]] and Spring [52] are both popular optical flow datasets with
long animation sequences and pixel-accurate flow ground truth. Since this paper proposes a novel
challenge of joint motion ROI detection and optical flow estimation, we apply the SAM2 model to
generate panoptic ROI masks on these two dataset. We utilize the Spring training dataset, consisting



Table 1: Comparative study of optical flow estimation performance on Microvascular test set.

Model Whole Image Foreground Speed
EPE| 1pxt 3pxt Spx? FEPE| S5pxT 10pxT 15pxtT mspf|

RAFT [16] 3.18(2.61) 086 089 091 27.73(24.79) 039 0.2 0.56 51.48
GMA [17] 322(3.66) 087 089 091 2834(26.82) 038 0.54 0.58 43.66
SEA-RAFT[46] 1.28 (1.03) 088 092 0.94 6.60 (5.47) 0.69 0.86 091 21.14

FlowFormer++ [44] 1.72(1.38) 088 091 093 10.89(9.28) 0.60 0.78 0.84  133.95
VideoFlow_BOFMF) [18] 328 (2.51) 0.86 0.87 088 28.16(26.64) 0.15 0.32 0.41 112.67

MemFlow®™F) [20] 1.79(1.40) 0.88 091 093 1247(1023) 058 0.74 0.80  43.98
StreamFlow™P) [19] 143(1.02) 0.88 090 093 10.13(8.36) 049 074  0.84  60.07
SAM2Flow ™F) 1.14(0.92) 0.88 093 096 5.84(4.86) 066 086 093 4878

# (MF) jndicates multi-frames optical flow models; best performance is highlighted, while second best performance is
underlined; EPE & FEPE: Mean(Standard Deviation, SD); mspf: milliseconds per frame.

37 videos, 10,000 paired flow GTs, and then create training, validation, and test splits with 25, 5, and
7 videos, respectively. For Sintel dataset, we split the total of 23 scenes into training, validation, and
test with 14, 3 and 6 videos. The Sintel training and validation combine both Clean and Final videos.
For evaluation, we report the performance on the Clean and Final videos separately. More details
about datasets, video pre-processing, and ground truth generation are described in section [B}

4.2 TImplementation

SAM2Flow Settings. All the models are trained and tested on two NVIDIA RTX A5500 GPUs. The
feature and context encoders downscale inputs 8 times to 64x64. SAM2Flow runs 8 flow update
iterations for training, and 4 for inference. We set the number of correlation pyramid layers K to 4,
and the memory bank limit /V to 7. For SAM2Flow training, we input an 8-frame video at each step
with MoL loss from SEA-RAFT, using the Adam optimizer and global learning rate starting at le-4,
with weight decay and scheduler. We use a multi-stage training strategy detailed in section|C.I]

Comparative Experiments. To demonstrate SAM2Flow’s performance, we conduct the comparative
study with six SOTA baseline models, including Two-frame Models: RAFT[16], GMA[17], SEA-
RAFT[46], FlowFormer++[44]], and Multi-frame Models: VideoFlow[18]], MemFlow[20], and
StreamFlow[[19] on both Microvascular and Spring datasets. For fair comparison, we empirically
choose the pretrained checkpoints and fine-tune the model on the corresponding datasets following
the configurations from the papers. (Details at section[C.2])

Evaluation Metrics. For microvascular videos, we evaluate accuracy with end-point errors (EPE)
and percentages of pixel errors within [1, 3, 5px] for the whole frames. Since the SAM2Flow
focuses on the informative ROIs, we also report foreground EPE (FEPE) and larger pixel error rates
[6, 10, 15px] within foregrounds, due to the rapid blood flow (~ 30px/frame), shown in fig.
For microvascular videos, foregrounds are defined as in-focus vessels with active blood flow. For
Sintel video, we also report FEPEs on both Clean and Final sets. Following previous works on Spring
dataset, we report FEPE, foreground 1px errors, foreground flow outlier rate (F1) that is defined as
> 3pxs and > 5% of GT flow magnitude), the average EPE of flow outliers (F1-epe), as well as
foreground weighted AUC (WAUC). The foreground ROIs in Sintel and Spring videos are defined as
the objects or regions with motions that are distinctive from the background scenes.

5 Results

5.1 Microvascular Flow Prediction Performance

The baseline models and SAM2Flow are evaluated on the Microvascular test split. The quantitative
results are illustrated in table|l} The best single-frame baseline performance comes from SEA-RAFT,
achieving an EPE = 1.28(SD = 1.03) and a foreground EPE = 6.60(5.47), with the fastest inference
speed among all models (21.14ms), thanks to the light-weighted encoders and fewer flow update
iterations. FlowFormer++ also achieves strong performance FEPE = 10.89(9.28) but at a much
higher computational cost (133.95ms) due to its large transformer-based cost-volume encoder.



Table 2: Comparative study of foreground optical flow estimation on Sintel and Spring datasets.

Model Sintel-FEPE Spring-Foreground
Clean]| Final| FEPE| 1px (%)1 Fl1 (%)) Fl-epe| WAUCT

RAFT [16] 5.21(9.30) 5.47(10.12) 2.25(6.97) 74.25 9.87 7.98 (8.98) 74.76
GMA [17] 4.65(7.45) 5.14(8.17)  2.17(6.30) 76.21 9.08 7.67 (1.72) 79.67
SEA-RAFT[46] 3.26 (7.54) 4.08(8.94) 1.45(5.61) 86.32 5.18 8.18 (10.85) 83.85
MemFlow™) [20]  3.77 (5.82) 4.27(7.09) 1.56(7.27) 86.49 7.24 8.82 (12.72) 83.54
StreamFlow™P) [10]  4.06 (5.37) 4.43 (5.66)  1.54 (7.23) 85.16 5.82 7.74 (10.16) 82.51
SAM2FlowM™P) 3.17 (6.89) 3.39(5.97) 1.23(4.21) 87.13 5.29 7.30 (5.29) 84.57

Multi-frame models generally infer more slowly than single-frame approaches as models process
additional temporal information. MemFlow achieves reasonable flow estimation accuracy FEPE =
12.47(10.23) with a fast inference speed (43.985), with only one frame of memory[20]. SAM2Flow
outperforms all other models in whole-image EPE = 1.14(0.92) and FEPE = 5.84(4.86), indicating
its superior flow estimation accuracy. Compared to single-frame models and MemFlow, SAM2Flow
maintains a competitive inference speed (48.78ms) while incorporating long-term dual memories
of 7 frames. Overall, these results highlight the effectiveness of SAM2Flow in balancing high
accuracy with efficient computation, outperforming both single-frame and other multi-frame
models in critical performance metrics.

We note that our test set ground truths do not have pixel-level accuracy, as they are derived from ST
diagrams, a spatially and temporally smoothed estimation. As well-trained models achieve lower
errors, quantitative comparisons with the current ground truth may become less indicative of true
performance. Consequently, in section[5.6] we conduct a more in-depth analysis to assess whether
the predicted flow maps accurately reflect the actual flow patterns from the videos.

5.2 Public Benchmark: Sintel

On the Sintel benchmark, SAM2Flow demonstrates superior performance in foreground flow esti-
mation compared to all baselines. As shown in table 2} SAM2Flow achieves the lowest errors on
both Clean (FEPE = 3.17) and Final (FEPE = 3.39) videos. While SEA-RAFT (FEPE = 3.26) and
MemFlow (FEPE = 3.77) show good accuracy in Clean videos that contains simpler scenes with less
texture, their performances deteriorate when adding more textures and illumination effects to the
scene, as in Final videos (SEA-RAFT AFEPE = 0.82 and MemFlow AFEPE = 0.5); on the contrary,
SAM2Flow shows strong robustness (AFEPE = ().22) to these challenges for optical flow estimation
within the motion ROIs.

5.3 Public Benchmark: Spring

The quantitative results on Springs are shown in the second half of table [2| For foreground flow
estimation, SAM2Flow demonstrates the strongest performance FEPE = 1.23(4.21), with a 15%
improvement compared to the best baseline model, SEA-RAFT FEPE = 1.45(5.61). With the context-
guided focus on motion foregrounds, SAM2Flow achieves finer estimation, especially for fast and
complex motions within the ROISs, resulting in low flow outliers: F1 = 5.29%, F1-epe = 7.30. The
visual comparison can be found in the fig.[3] These results, combined with the strong performance
on the Sintel dataset, highlight that SAM2Flow achieves impressive generalizability and the
state-of-the-art ROI-centric optical flow estimation beyond the microscopic domain.

5.4 Ablation Study

The results of the ablation study are shown in table 3] We conduct ablation studies to test the efficacy
of memory modules and ROI-guided lookup operation to flow estimation accuracy and efficiency.

Backbone Encoders. Backbones-Only is a simple combination of pre-trained SAM?2 con-
text encoder and the SEA-RAFT feature encoder backbone with limited fine-tuning on our
dataset. Even though FEPE = 9.75 of this basic setup is among the SOTA performance,
it does not outperform the original SEA-RAFT model (table [I), indicating that this back-
bone configuration has the potential to be further improved by leveraging public datasets.
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Figure 2: Qualitative comparison on the microvascular test video. Left: Five representative
frames, GT flow maps, and predictions from TOP3 models, on a challenging video where two
blood flows cross. Arrows highlight regions where MemFlow and SEA-RAFT mistakenly merge the
two streams, while SAM2Flow maintains distinct ROIs throughout the sequence. Right: Velocity
estimations at two fixed ROIs (dashed boxes) with corresponding frequency spectra over 5000 frames.
SAM2Flow generates the most robust and clinically meaningful velocity estimations from both flows.

Dual Memory Mechanism. We tested  Table 3: Ablation study on Microvascular validation set.
the motion and context modules sep-
arately. M-Mem Only adds a motion Method Foreground Speed
memory module to the backbones, while FEPE| 5pxt 10px} 15px? mspfl

C-Mem Only contains only the context
e Based ol the Fore.  Backbones 975 054 077 083 3276
y . M-Mem Only 7.41 0.63 0.81 0.88 48.98

ground accuracy reSUltS, the context C-Mem Ol’lly 6.32 0.64 0.84 0.91 38.63
memory module better boosts the flow No ROI 512 069 089 094 5525
estimation accuracy (AFEPE = —3.43),

as the context encﬁ der from the SAM SAM2Flow 5.46 0.72 0.87 0.92 48.78
ViT backbone is tailored to work with * M-Mem: Motion memory; C-Mem: Context memory.

the memory mechanism. On the con-

trary, motion features encoded by the CNN-based encoders benefit less from the memory mech-
anism (AFEPE = —2.34). Meanwhile, motion memory yields a heavier computational overhead
(AT = 16.22ms) as its attention is embedded within the iterative flow updates. No ROI consists of
the complete dual memory module and encoder backbones. As the results suggest, the dual memory
module outperforms either of the context/motion-only memories, achieving the best FEPE of all
experiments. Therefore, the final SAM2Flow integrates both context and motion memories to achieve
the most robust flow estimation.

ROI-guided Lookup. No RO! does not include ROI-guided correlation lookup. To achieve higher
efficiency, the final SAM2Flow uses ROI segmentation to guide correlation lookup, avoiding indexing
irrelevant background pixels. It speeds up inference by 12% without significantly affecting accuracy.

5.5 Qualitative Comparison

We visualize and compare SAM2Flow flow estimates with the best-performing single-frame model,
SEA-RAFT, and multi-frame model, MemFlow, on sample frames in fig. |Z[ The sample video is a
challenging case, as two separate flows cross each other. The results suggest that both MemFlow and



SEA-RAFT get confused and merge two flows by mistake. On the other hand, with the help of sparse
prompts in the first few frames, SAM2Flow outputs robust flow estimations as two separate flows.
The visualization suggests that SAM2Flow achieves stronger flow estimation in more complex
flow structures, especially when flows are closely tangled in the FoV.

5.6 Physiological Applications

We analyzed velocity estimation from the Top3 models throughout 5000 frames (25s) on the sample
test video. Two velocity-over-time plots are generated by averaging the flow estimation within
the fixed subregions within two vessels. We also plot the frequency spectra to verify the extracted
pulsatile patterns. SAM2Flow yields the strongest heart rate signals (50.4 BPM) from both flows.
With temporal memory, SAM2Flow is less susceptible to noise. Taking a closer look at the waveforms,
the pattern within each cardiac cycle from SAM2Flow is closest to a meaningful clinical waveform
from other means of measurement [7, 53], including a central peak (peak systolic velocity), a subpeak,
and a central trough (end-diastolic velocity). More clinically relevant biomarkers, such as peak ratio
and resistive index [S3]], could be characterized based on SAM2Flow velocity estimation. Across
long videos, SAM2Flow achieves more robust and accurate velocity estimation.

5.7 Limitations

Due to the focus on foreground estimation and ROI-guided correlation lookup, SAM2Flow relies on
robust ROI detection from the context branch. Therefore, the flow estimation would deteriorate due
to failed or incomplete ROI detection in some complex scenes. However, our model design mitigates
the effect on flow estimation from different types of ROI errors:

Over segmentation. When ROI is overly segmented, some background pixels are also indexed in
correlation lookup. However, this wouldn’t directly degrade flow estimations, as the trained motion
encoder and RNN further delineate the motion boundary through iterative flow updates. Full-frame
flow regression could be considered as an extreme case of over-segmentation.

Transient frames drop or incomplete ROI. Motion memory module provides redundancy against
occasional failures by maintaining consistency with prior memories (section [3.3). This feature
stabilizes predictions when one frame has incomplete or no ROI detection. This is demonstrated by
the ablation study of the motion memory module, where FEPE improves from 6.32 to 5.46 (table 3).
SAM?2Flow incorporates an additional trick like warm start (section E]), to further stabilize the flow
estimation in cases of occasional ROI instability.

Missed/incomplete ROI over an extended period. Failed ROI detection over more consecutive
frames would result in failed optical flow estimation, since the model fails to identify any target.
However, as an interactive pipeline, SAM2Flow offers the flexibility to add/correct user prompts for
these challenging frames during inference. We recommend using multiple positive points spaced over
the ROI for larger targets to mitigate prompt ambiguity.

6 Conclusion

In this paper, we first identified a new challenge of ROI-centric optical flow estimation over long
sequences. Therefore, we introduce SAM2Flow, an interactive optical flow estimation model for in
vivo microvascular flow from OBM videos. Our technique enables user-specified ROIs through sparse
point prompts for ROI-specific flow estimation. To ensure that flows remain temporally consistent,
even in fast and optically ambiguous data, we propose a novel dual memory attention mechanism,
comprising both motion and context memory. We demonstrate the effectiveness of SAM2Flow by
testing against 6 other baseline models on both microvascular videos. The proposed model achieves
the best EPE and foreground EPE among all baselines on the test set. Additional experiment on the
public Spring dataset indicates the promising generalizability of SAM2Flow beyond microscopic
videos. For future work, we aim to further boost model speed and flow estimation accuracy by
exploring more compact encoder backbones, such as SAM2-B+ and SAM2-S, and on diverse datasets.
Moreover, we would adapt SAM2Flow to microvascular flow with various conditions, such as sickle
cell and sepsis patient data. In summary, SAM2Flow introduces innovative techniques to address
the unique challenge of region-specific optical flow. This approach empowers physicians to extract
microcirculation biomarkers from OBM video data non-invasively.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The SAM2Flow proposed in this paper is mainly designed to bridge the
gap between deep learning-based optical flow estimation and clinical in-vivo blood flow
measurement. And the public benchmark experiments showed that the model has the
generalizability to tackle a novel challenge, joint motion ROI detection and focused optical
flow estimation, in other domains. All the above points are summarized in the abstract and
introduction sections, and further demonstrated in the experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations, including the model dependence on robust ROI detection and
the speed, are discussed in the Results[5.7]and the Conclusion [¢]section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The model design is detailed in the SAM2Flow section [3] section. The
dataset and experiment details, including data processing and training configurations and
hyperparameters, are elaborated in the Experiments section[d] as well as the section [C]

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

16



In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code and dataset will be published on Github with the paper after the
anonymous review.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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Answer: [Yes]
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Answer:

Justification: The current manuscript does not include the details of human experiment and
compensation due to the anonymous policy. The details of the human experiments, along
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* The answer NA means that the paper does not involve crowdsourcing nor research with
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tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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Declaration of LLM usage
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non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
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Technical Appendices and Supplementary Material

A Flow Initialization

ROI Registration. For in vivo microscopic videos, subject movement and camera jitter are inevitable.
Large movements pose a significant challenge to optical flow estimation. Therefore, during inference
time, we introduce an ROI registration step to initialize the flow map with a global offset value.
In OBM videos, the background movements are mostly 2D translation, occasionally with slight
rotation. To keep ROI registration most efficient, we ignore the rotation and apply the fastest strategy
by calculating the center displacement of masks from the ROI decoder. This simple strategy helps
remove large background movements without extensive computational overhead. The related ablation
study is included at section[D.2]

Warm Start. As mentioned in section 3.3} the flow patterns within the video are temporally smooth.
In addition to the motion memory, we use the flow map prediction from the last frame to initialize the
current flow estimation, which has been proven to facilitate flow regression convergence in previous
OF models [16]. For diagram simplicity, this step is not shown in fig. [I]

B Dataset

B.1 Data Collection

The dataset consists of 75 videos from 15 healthy volunteers. The 20x OBM system is applied to
superficial capillaries inside the oral cavity. Videos were recorded at 200 FPS to ensure less motion
blur of fast-flowing blood cells. Each raw video is recorded for at least 90 seconds. Videos are
manually reviewed and the most in-focus and stable segments are selected for further processing.

B.2 Dataset Preparation

Video Processing. To generate an optical flow map ground truth, OBM videos first go through a
series of preprocessing steps in ImagelJ. 1) Background corrections: a temporally averaged frame
over the video is calculated first, then a Gaussian blur with a kernel size of 100. The original frames
are flattened by dividing by the background estimation. Finally, frames are normalized to [0, 255].
2) Video stabilization: We use template matching to align slices in the stack with the normalized
correlation coefficient.

Flow Estimation. 1) Flow mask: with the stabilized video frames, the flow mask is calculated from
the standard deviation over time. The mask is then binarized into flow masks using Otsu thresholding.
When there is more than one flow, multiple binary masks are generated. Output masks are further
refined by human efforts. 2) Centerline detection: With the refined flow masks, the centerline of
each flow is generated by flow mask skeletonization. Small branches and ends are removed so that
only the main branches are used for flow estimation. 3) ST diagram: Based on the centerline, the
intensity profile along the centerline over time is plotted across the whole frame. Parallel lines around
centerlines are also used to generate ST diagrams. 4) Flow velocity estimation: from ST diagrams,
the angle to tilted lines is calculated by Hough line transform using a sliding time window of 235
frames.

Optical Flow Map Generations. 1) Temporal smoothing: to remove the local noises from the ST
diagram, the estimated velocity over time is smoothed by a Butterworth low-pass filter; 2) Velocity
profile: velocity profiles are generated along the centerline from the above estimation. We also
generate velocity profiles from nearby lines within the flow that are parallel to the centerline. 3)
Velocity interpolation: after getting the velocity profile along multiple lines within the flow, the
velocity map is generated for each frame by cubic interpolation. 4) Flow direction: The general
direction of the flow (upward/downward) is manually decided by scrolling through the video. The
local direction is determined by the tangent angle of the centerline curve. 5) Optical flow map: The
final optical flow ground truth is generated by multiplying the velocity map with the direction map.

The final dataset is made up of 75 long videos paired with 306,800 ground truth flow maps, which is
significantly longer and larger than most of the existing public datasets, as shown in table
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B.3 Public Benchmark: Sintel and Spring

To evaluate SAM2Flow’s ability to generalize

1peyon'd the micrpscopic domain, we benghmgrk Table 4: Dataset Size Comparison

it against baseline models on the public Sin- _ .

tel [51] and Spring [52] datasets. As the pro- Dataset Videos Flowmaps Avg video lqngth

. : # # (flowmaps/video)

posed task focuses on ROI optical flow estima- Sintel[51] 73 1041 5

tion, standard whole-frame leaderboard metrics Spring[32] 37 10,000 270

are not informative enough about the model’s KITTI 2015[>4] 400 1,600 4
formance. Therefore, we apply custom splits ~ yineChaisiasl A = 22,872 NIA

perto : ’ pply Pl Microvascular 75 306,800 4,001

on the Sintel training set and Spring training set
and introduce additional ROI ground truths. The
Sintel frames are resized to 436 x 960 x 3, and the Spring frames are downsampled by 2x to
540 x 960 x 3. The ROI masks are generated via panoptic segmentation with the pretrained SAM2-L
model, prompted by 16 x 16 grid points over the whole frame. For evaluation, we only retain the
segmented objects or regions with motions that are clearly distinct from the background/camera
movement.

C Additional Implementation Details

C.1 SAMZ2Flow Multi-stage Training

Stage 1: Finetune backbones on whole frame for domain adaptation. For backbones, we select the
SEA-RAFT checkpoint pretrained on a mix of five optical flow datasets, including TartanAir[56],
Sintel[51]], FlyingChairs[55], KITTI[54] and HD1K[57]. We select the pretrained SAM2-L[22]
checkpoint as the context backbone. Since the backbone SAM2 and SEA-RAFT have no prior
information of the OBM domain, we train the two backbones separately on their original tasks for
domain adaptation. The SEA-RAFT backbone is initially trained with whole-frame flow ground truth
for 50,000 steps, with a 1e — 4 learning rate. And the SAM?2 adapter is trained with the frozen SAM?2
backbone on segmentation masks of flows across videos for 50,000 steps, with a 1e — 4 learning rate.

Stage 2: Module fusion. The trained SEA-RAFT and SAM2 encoder weights from stage 1 are
imported into the SAM2Flow model. We disable the memory module at this stage and train the
SAM?2Flow on image pairs. We randomly generate 3-6 positive and negative point prompts based on
the mask ground truths. The training is supervised on the masked optical flow ground truths. We used
a smaller learning rate for the SAM2Flow weights at 5e — 5, except for the frozen SAM2 encoder.

Stage 3: Training with memory. As the last stage of training, we enable context and motion memory
modules and input an 8-frame sequence for flow prediction. The point prompts are randomly
generated for the first 1-3 frames, with 3-6 points for each frame. During training, we start the general
learning rate at 1e — 4, freeze the weights of the SAM2 encoder, and use a learning rate scaling factor
of 0.2 for the pre-trained SEA-RAFT feature encoder.

C.2 Comparative Experiments

We elect to use weights from the most comprehensive pre-training checkpoints from each optical flow
model. 1) Two-frame baseline models: We take pretrained weights on the mix of five datasets (same
as section [C.T)) for SEA-RAFT, Sintel weights for RAFT, GMA, and FlowFormer++. The pretrained
models are fine-tuned according to the training plans suggested by their respective open-source
implementations [[16, 17} 44} 146]. Models were trained on a workstation containing 2 NVIDIA RTX
A5500 GPUs. Default configurations were used for each model. 2) Multi-frame baseline models:
Two multi-frame baseline models are tested, VideoFlow and MemFlow [18, 20] pretrained Sintel.
VideoFlow was trained using the provided three-frame training methodology due to the GPU memory.
The default configuration was used for finetuning on our dataset, with the image size adjusted to fit
our dataset. We ensure that there are enough steps so that all the models converge on the validation
metrics during training on the Microvascular dataset and the Spring dataset.
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D Additional Results

D.1 Public Benchmarking Results

The visual comparison on a representative video segment from the Spring test split is shown in fig. 3]
The qualitative error maps verify the quantitative gain. The context-guided foreground detection
enables SAM2Flow to focus on tracking complex ROI motion with sharp flow edges. In contrast,
MemFlow and SEA-RAFT exhibit poor performance and boundary leakage in the highlighted regions.

GT
Optical Flow
>

MemFlow
Error map

SEA-RAFT
Error map

SAM2Flow
Error map

Opx —————————————————— 15px

Figure 3: Qualitative comparison on the Spring public benchmark. Top: five consecutive
animation frames from test video. Second row: foreground GT optical flow fields. Rows 3 — 5:
Absolute foreground endpoint-error heatmaps (0 — 15 px, blue — red) overlay on the frames, for
MemFlow, SEA-RAFT, and the proposed SAM2Flow. All the models perform well in estimating
the optical flow of the object on the right side of the frame with little motion. Yellow arrows and
dashed boxes highlight regions where the baselines yield higher errors on fast, complex ROI motions.
Meanwhile, SAM2Flow produces robust and accurate flow estimation while preserving motion
boundaries across the sequence.

D.2 Ablation Study

100

Table 5: Ablation study for flow initialization. s

Method Dataset | FEPE| 5px{ 10pxt 15pxt -

NoFI  unstable | 2050 037  0.52 0.66 1
FI unstable | 12.32 054  0.65 0.78 55
No FI stable 5.84 0.66  0.86 0.93

0 2 13 10

a 6
Num of Memory

Figure 4: FEPE vs. number of memories.

Flow initialization for unstable videos. We proposed ROI registration as flow initialization (FI)
at inference time, table 5] shows the ablation study results on unstable videos without retraining the
model. ROI registration as flow initialization effectively improves the estimation accuracy on the
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unstable videos, with a 40% improvement in FEPE without any additional model adaptation on the
background movements.

Number of Memory vs. FEPE. We test the effect of numbers of memory frames on the foreground
EPE. The results are shown in fig.[d We only test for the combined context and motion memory, from
0 to 10 frames. As the plot shown, FEPE first decreases and then converges around 7. SAM2Flow
memory module performance exhibits marginal gains by enlarging memory banks beyond 7 frames,
with linear compute memory growth. Therefore, we choose 7 frames as memory bank limit for the
final SAM2Flow configuration.

25



	Introduction
	Related Works
	In Vivo Blood Flow Estimation
	Optical Flow Estimation

	SAM2Flow
	Definition and Overview
	Prompt-guided Flow Estimation
	Dual Memory Module

	Experiments
	Datasets
	Implementation

	Results
	Microvascular Flow Prediction Performance
	Public Benchmark: Sintel
	Public Benchmark: Spring
	Ablation Study
	Qualitative Comparison
	Physiological Applications
	Limitations

	Conclusion
	Flow Initialization
	Dataset
	Data Collection
	Dataset Preparation
	Public Benchmark: Sintel and Spring

	Additional Implementation Details
	SAM2Flow Multi-stage Training
	Comparative Experiments

	Additional Results
	Public Benchmarking Results
	Ablation Study


