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Abstract

Temporal embryo images and parental fertility table indicators are both valuable for preg-
nancy prediction in in vitro fertilization embryo transfer (IVF-ET). However, current
machine learning models cannot make full use of the complementary information between
the two modalities to improve pregnancy prediction performance. In this paper, we pro-
pose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal
information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fu-
sion module that decouples the information from the different modalities into related and
unrelated information, thereby achieving a more delicate fusion. And we fuse temporal
embryo images with a spatial-temporal position encoding, and extract fertility table indi-
cator information with a table transformer. To evaluate the effectiveness of our model, we
use a new dataset including 4046 cases collected from Southern Medical University. The
experiments show that our model outperforms state-of-the-art methods. Meanwhile, the
performance on the eye disease prediction dataset reflects the model’s good generalization.
Our code and dataset are available at https://github.com/Ou-Young-1999/DFNet.

Keywords: decoupling fusion, multi-modal fusion, IVF-ET pregnancy prediction.

1. Introduction

Recent study shows that up to 12-15% of couples are diagnosed as infertility (Hornstein,
2016), and in vitro fertilization embryo transfer (IVF-ET) is one of the most effective
technologies to treat infertility. As shown in Fig. 1, during the IVF-ET process, medical
laboratory technicians obtain multiple oocytes by stimulating mother’s uterus with ovu-
lation and produce multiple zygotes in a laboratory environment (Hanevik and Hessen,
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Figure 1: The committed step of IVF-ET.

2022). After 3-5 days culture, laboratory technicians select the optimal embryos based on
visual evaluation of embryo morphology and transfer it back to mother’s uterus for further
development. Thus, it is a crucial step to select high-quality embryos that would lead to
promising pregnancy results of IVF-ET.

In clinical practice, the pregnancy success rate of IVF-ET is 30-40% only (Gleicher et al.,
2019). One reason is that the optimal embryos may not be survival after the transfer, since
human evaluation of embryo morphology is highly subjective and with low consistency.
Moreover, embryo morphology is not always relevant to embryos’ true development vitality.
Numerous studies have shown that embryos with good morphology didn’t survive while
ones with poor morphology did (del Carmen Nogales et al., 2021). In fact, not only the
embryo morphology affects the pregnancy success rate, but also the fertility indicators of
parents, such as parents’ age, endometrial thickness, sperm quality, and so on.

In the area of computer assisted IVF-ET, existing researches mainly focus on the
morphological grading of embryos. As shown in Fig. 1, we can obtain microscope im-
ages of embryonic development between step 3 and step 4 of IVF-ET. In order to perform
the embryos morphological grading task, (Wu et al., 2021) and (Liu et al., 2023a) apply
convolutional neural networks (CNN) based on static embryo images; (Wang et al., 2024)
and (Lukyanenko et al., 2021) apply transformer and two-stream neural network based on
time-lapse microscopy (TLM) images, respectively. In addition, (Cheng et al., 2024) fuse
multi-focal images to predict grade of blastocyst. The performance of these methods outper-
form laboratory technicians, because embryos grading is completely based on morphological
information and the salient morphological characteristics among different grades are easily
distinguishable for machines. However, morphological grading is indirect and less relevant
to the pregnancy outcome of IVF-ET as discussed in the previous paragraph. Therefore,
more researches tend to predict the pregnancy outcome directly.

Recent Al-based assessment models achieve promising success in direct pregnancy pred-
ction. (Dehghan et al., 2024) apply traditional machine learning methods with fertility
table indicators obtained before step 5 for pregnancy prediction. In addition, static im-
ages of the fifth day’s embryos and TLM images are also adopted to predict the pregnancy
outcome, respectively (Kim et al., 2024; Berntsen et al., 2022). What’s more, (Liu et al.,
2022)(MMBE) fuse the fifth day’s static embryo image and fertility table indicators to
achieve better pregnancy prediction performance. The major limitation of the existing
image-based methods is that they are only applicable to the fifth day’s embryo transfer.
However, in reality many reproductive centers carry out the third day’s embryo to transfer.
Although the embryo of the third day is less developed than that of the fifth day, the em-
bryo images of the third day can still provide clinically significant information for pregnancy
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Figure 2: The framework of DeFusion. In the process of decoupling training, the features
of different modalities change from entangled to disentangled.

prediction (Neblett et al., 2021). On the other hand, due to some technical constraints in
reality multi-modal fusion method (Liu et al., 2022) can only be used to the last day’s
image.

To address the limitations discussed above, we propose a Decoupling Fusion Network
called DeFusion to effectively integrate temporal images of the first three days and parental
fertility table indicators for IVF-ET pregnancy prediction. The main contributions are
summarized as follows:

e DeFusion is the first to integrate the first three days of embryonic development tem-
poral images and parental fertility table indicators for pregnancy prediction.

e We propose a spatial-temporal position encoding for fusing temporal embryo images.
Moreover, we apply a table transformer to extract tabular information from fertility
indicators.

e We propose a novel decoupling fusion network to fuse multi-modal information more
finely grained by decoupling information from different modalities into modality re-
lated and unrelated feature.

2. Method

In the field of medical multi-modal fusion, the final fusion features are obtained by com-
plementing the unique features and enhancing the common features of different modalities.
However, there is a complex relationship between the features of the same modality and
different modalities, which is not a simple linear relationship. So it is difficult to be cap-
tured by the model. Inspired by the decoupling operation in (Dong et al., 2023) (Li et al.,
2023a), we use the decoupling fusion strategy explicitly decouples the features of different
modalities into unique and common features, which is a shift from entangled features to
disentangled ones, simplifying the relationships between features and better modeling the
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Figure 3: The details of temporal fusion network (image extractor).

complex interactions between modalities. So we propose the decoupling fusion module, a
simple and effective multi-modal fusion module as showed in Fig. 2. The input information
of the model are temporal grayscale embryo images and fertility table indicator. Embryo
images are denoted as im; € RVHXW where i € 1,2, 3 denote different days, and H and
W denote the height and the width of an image, respectively. Table indicators are denoted
as ta € RN, where N denotes the number of indicators.

2.1. Image Extractor

To fuse the first three days embryo images for pregnancy prediction, we design a tem-
poral image fusion network (image extractor). This network consists of three parts as
shown in Fig. 3: a backbone aiming at extracting image features; a spatial-temporal po-
sition encoding (STPE) to obtain spatial information within a single image and temporal
information among different images; and a Transformer (Dosovitskiy et al., 2021) that
combine STPE to fuse temporal image features. Firstly, we use the backbone to extract
embryo image features im! € ROXS*¥ from the first three days, where C is the num-
ber of channels and S is the scaling factor. Then, we reshape the image features into
tokens and add positional information to them. We encode image features as spatial posi-
tion encoding PEL € ROX§ % ¥ through a convolution layer: PE{ = Conv(imf). By using
convolution operation to capture local spatial features, we can obtain spatial position in-
formation within a single image (Chu et al., 2021). Image features are encoded as temporal
position encoding PEit € RE*1x1 through a pooling layer and a series of recurrent layers:
PE! = Pooling(im{), PEZ = Pooling(im}) + PE}, PE} = Pooling(imf) + PE2. By us-
ing recurrent operations to capture temporal dependencies, we can obtain temporal position
information among different images (Hochreiter and Schmidhuber, 1997). To align image
features, the PEL needs to be replicated to get PEl € RC*S*S . The PE! and PE! are
integrated through a position encoding attention:

PE.,, = Softmax(Pooling(PEL.)||Pooling(PE!)), (1)
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where PEL,, € R'SxS *2. The final PE! is as follows:
PE' = PE}[;,0] * PE} + PE}[, 1] « PEj, (2)

. HxW
where PE! € R sxs *C_ After obtaining the STPE, integrating the tokens obtained through
image feature reshaping into the transformer encoder can effectively fuse temporal embryo
images for pregnancy prediction.

2.2. Table Extractor

Inspired by TabTransformer (Huang et al., 2020) (table extractor), we extract table infor-
mation of fertility table indicators by transformer (Vaswani et al., 2017). In order to adapt
the table information to the transformer, we specify tabular embedding as a linear layer to
upscale the table features ta to taf € RN*32. Next, we construct a series of transformer
layer with multi-head self-attention (MHSA) to extract table information:

Q = MLP(ta), K = MLP(taf), V = MLP(taf),

_ — _ (3)
taf = MHSA(Q,K, V) + taf, taf = MLP(LN(tal)) + taf,

here, LN means layer-norm and MLP is the linear layer.

2.3. Decoupling Fusion Module

We use an image feature extractor and a table feature extractor to extract temporal image
features and table features. And we denote their outputs as f; and fi, respectively. In order
to fuse information from different modalities at a finer granularity, as shown in Fig. 2,
we propose a decoupling fusion module that decouples the feature of different modalities
into related (common) feature and unrelated (unique) feature. We extract related feature
f¢ and f between modalities through shared Ec(fm;6°), and extract unrelated feature
f* and ' through E(fi;0}') and Ey(f;;60¢). We can decouple the features of different
modalities by using cross reconstruction method (Ji et al., 2021; Liu et al., 2023b). The

cross reconstruction loss is as follows:
M M
Lrocon = 3 I~ DKL 0|+ 3 [I6™ — DO £ 00)| 1. 4)
m=0 m=0

where ||.[|1 is the Ll-norm, M is the dimensionality of the feature, D(ff, f*;0;) and
D(ff, fi*;6:) are decoder. We obtain the final pregnancy prediction result by fusing the
decoupled common and unique features: yy, = Classifier(f;, f;), which is composed of three
layers of MLP. Finally, we apply cross entropy loss to minimize the difference between the
predicted results and the true labels. The classification loss is as follows:

B
1 _ _
Lee =—% ) [¥plogyn + (1 — ¥p)log(1 —yb)], (5)
b=0
where ¥y}, represent true labels, B is the size of a batch. The overall loss function is as
follows:

L= Ece + )\Erecon- (6)

where X is a hyperparameter in the loss function.
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3. Experiments
3.1. Dataset

The first dataset used in the research is from Southern Medical University, with a total of
4046 valid embryo transfer cases. Each case includes both image data and tabular data.
The image data are the first three days’ microscopic images of embryo development. The
tabular data include 22 parental fertility indicators. The label of each example is positive or
negative, representing whether having fetal hearts successfully or not. We conduct a 5-fold
cross validation on the dataset.

The second dataset comes from the Peking University International Competition on
Ocular Disease Intelligent Recognition (ODIR) (ODIR, 2019), and the original task was to
classify eye diseases through image uni-modality. In order to make the dataset applicable
to multiple modalities, we extract a total of 3500 cases of image modality and table modal-
ity information for eye disease prediction. Among them, the image modality consists of a
eye image, and the table modality consists of 8 indicators converted from keywords. We
have already made this dataset accessible to the public as a new multi-modal dataset. We
conduct a 4-fold cross validation on the dataset.

3.2. Evaluation Metric and Experimental Settings

In the experiments, we evaluate the performance with Accuracy, Area Under the ROC
(AUC), and Fl-score. AUC is a comprehensive metric to evaluate prediction accuracy. F1-
score is an index taking into account the precision and recall of the model predictions.

We implement our method with PyTorch on a Nvidia GeForce RTX 2080ti graphics
processing unit (GPU). In addition, since the image class tokens and the table class tokens
need to share an encoder, we align them with a linear layer. The learning rate of the image
extractor is le-6, while the learning rate of the table extractor model is 1le-4. The learning
rate of the DeFusion model is le-5. The above models all use the Adam (Kingma and Ba,
2014) optimizer. As in Section 3, H =224, W =224, N =22, and \ = 1.

3.3. Baseline Methods

We compare our method with baseline methods as shown in Table 1, our model achieves
superior performance in all the evaluation metrics. Firstly, for table modality, we compare a
SVM (Dehghan et al., 2024) and a Adaboost (Dehghan et al., 2024) as uni-modal models
based on parental tabular fertility indicators. We also compare TabNet (Arik and Pfis-
ter, 2021), which is a neural network model specifically designed for tabular classification
tasks. The TabTransformer method we use has the best performance. Secondly, for image
modality, by comparing temporal image fusion models based on Add, LSTM (Hochreiter
and Schmidhuber, 1997), and Transformer with different positional encodings (sin-cos and
learnable) (Vaswani et al., 2017), our STPE achieve optimal performance in the transformer-
based temporal image fusion strategy. Thirdly, for image and table modalities, we compare
the recent multi-modal baseline methods have been introduced in Appendix A and B. Our
method, as a new category fusion approach, achieves optimal results.
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Table 1: Comparative and ablation experiment results for pregnancy prediction.

Modality Method AUC F1 Accuracy
MLP 0.684(0.006) | 0.649(0.012) | 0.641(0.013)
SVM 0.690(0.006) | 0.643(0.011) | 0.634(0.011)
Table Adaboost 0.708(0.009) | 0.631(0.016) | 0.640(0.015)
TabNet 0.702(0.014) | 0.643(0.009) | 0.634(0.010)
Ours(TabTransformer) | 0.713(0.012) | 0.661(0.011) | 0.653(0.006)
ResNet+ Add 0.554(0.008) | 0.584(0.012) | 0.592(0.014)
ResNet+LSTM 0.572(0.014) 0.591(0.018) 0.600(0.026)
ResNet+Learnable 0.589(0.012) 0.597(0.013) 0.598(0.020)
ResNet+SinCos 0.602(0.011) 0.607(0.014) 0.612(0.021)
Inage Ours(ResNet+STPE) | 0.617(0.012) | 0.621(0.022) | 0.631(0.016)
w/o SPE 0.614(0.013) | 0.611(0.013) | 0.627(0.015)
w/o TPE 0.596(0.011) | 0.607(0.008) | 0.613(0.007)
w/o PEAttention 0.600(0.009) 0.605(0.007) 0.613(0.020)
w/o STPE 0.584(0.016) | 0.603(0.015) | 0.619(0.021)
with ViT 0.604(0.009) | 0.609(0.013) | 0.613(0.016)
MMBE 0.723(0.004) | 0.682(0.021) | 0.681(0.011)
MOAB 0.719(0.003) 0.681(0.009) 0.674(0.011)
SFusion 0.718(0.005) | 0.667(0.013) | 0.658(0.013)
ConGraph 0.718(0.011) | 0.649(0.009) | 0.640(0.009)
Tmage and Table |y ;0\ p 0.723(0.011) | 0.655(0.014) | 0.646(0.012)
Ours(DeFusion) 0.746(0.003) | 0.689(0.017) | 0.691(0.010)
w/o Decoupling Module | 0.715(0.007) | 0.689(0.013) | 0.681(0.014)
with TabNet 0.735(0.010) | 0.681(0.011) | 0.683(0.013)

3.4. Ablation Study

We conduct ablation experiments to evaluate the contribution of each module in our model
in Table 1. We first ablate the Spatial-Temporal Position Encoding (STPE) including
Spatial Position Encoding (SPE), Temporal Position Encoding (TPE) Position Encoding
Attention (PEAttention) titled as w/o SPE, w/o TPE, w/o PEAttention and w/o
STPE, respectively. In addition, by comparing the performance of ResNet (He et al.,
2016) and ViT (with ViT) (Dosovitskiy et al., 2021), we choose ResNet as the backbone of
the image. Similarly, we evaluate the contribution of the Decoupling Module through w/o
Decoupling Module. In addition, by comparing TabNet (Arik and Pfister, 2021) (with
TabNet) and TabTransformer, we choose TabTransformer as the table extractor.

3.5. Generalization

Although the proposed DeFusion model is designed for pregnancy prediction, the principles
behind it are universal and can be transferred to other multi-modal medical image analysis
tasks. We extend DeFusion for multi-modal eye disease prediction on the ODIR dataset.
The final prediction results are shown in the Table 2. Although our model doesn’t achieve
the highest accuracy, it performs best in the AUC metric, indicating that our model performs
better in terms of overall performance.
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Figure 4: (a) Decoupled features of the test dataset visualized in a t-SNE space. (b) PCC
matrix of the decoupled features.

Table 2: Comparative and ablation experiment results in ODIR dataset.

Method AUC F1 Accuracy

MMBE 0.836(0.007) 0.765(0.009) 0.766(0.007)
MOAB 0.827(0.004) 0.756(0.005) 0.751(0.004)
SFusion 0.791(0.030) 0.755(0.013) 0.755(0.010)
ConGraph 0.836(0.009) 0.756(0.008) 0.751(0.008)
HMCAT 0.835(0.006) 0.773(0.017) 0.772(0.010)

Ours(DeFusion) | 0.842(0.004) | 0.772(0.009) | 0.770(0.009)
w/o0 Decoupling 0.825(0.003) | 0.763(0.014) | 0.759(0.014)

3.6. Visualization

As Fig. 4 shows, we output t-SNE (van der Maaten and Hinton, 2008) results and aver-
age Pearson correlation coefficient (PCC) matrix (Sverko et al., 2022) of ff(img_related),
fe(tab_related), f*(img_unrelated) and f*(tab_unrelated) from the decoupling test set. The
PCC is between 0 and 1, with a larger value indicating greater relevance. The overlap be-
tween the points of £ and £ after t-SNE dimensionality reduction and the high PCC value
between f° and f{ indicate that the model successfully capture relevant and overlapping
information between the two modalities. On the contrary, f* and f{' are well separated,
indicating it capture the information that is independent and complementary between the
two modalities. These prove the effectiveness of the decoupling module.

4. Conclusion

This paper proposes a Decoupling Fusion Network called DeFusion to integrate the multi-
modal information of temporal embryo images and parental fertility table indicators for
IVF-ET pregnancy prediction. The superior performance suggest that our model can pro-
vide valuable assistance for the selection of embryos for transplantation. And the effec-
tiveness of the decoupling fusion module has been demonstrated through visualization and
generalization experiments. In the future, we will optimize the decoupling module and
expand it to more datasets.
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Appendix A. Related Work

Fusion of heterogeneous information from multi-modal data can effectively enhance model
performance, which is a key project in the medical field of multi-modal learning (Cui et al.,
2023). Decision-level fusion and feature-level fusion are two main strategies for multi-modal
fusion. The decision-level fusion employs averaged, weighted voting or majority voting
(Holste et al., 2021) to integrate the outputs of uni-modal models, so as to make the final
multi-modal output.

Although decision-level fusion is simple to implement, it cannot capture the interac-
tions between hidden features from different modalities. The feature-level fusion fuses
the heterogeneous multi-modal data by projecting extracted features into a compact and
information-rich multi-modal hidden representation space. Feature-level fusion mainly in-
cludes simple-operation based, tensor-based, transformer-based and graph-based methods.
The simple-operation method performs concatenation, element addition and element mul-
tiplication operations. (Zhou et al., 2021) use two branch encoders to extract image and
non-image information, and fuse the extracted information on key point through simple op-
eration for COVID-19 patient severity prediction. The tensor-based method performs outer
product between multi-modal feature vectors to form higher-order co-occurrence matrices,
which provide more informative information than these features alone. (Zolotarev et al.,
2024)(MOAB) use a deep orthogonal fusion model to predict the atrial fibrillation from
different multi-modal data. The attention mechanism in the transformer-based method
has the ability to aggregate features in different feature spaces, making it very suitable for
multi-modal alignment and fusion. (Liu et al., 2023c)(SFusion) apply transformer to fuse
different modalities of brain imaging for tumor segmentation; (Li et al., 2023b)(HMCAT)
use a model based on the cross attention transformer that integrates pathological and ra-
diological images for cancer prediction. Graph-based modeling and inference can provide
a deeper understanding of disease information by discovering complex relationships be-
tween hidden disease tissue regions. (Ding et al., 2024)(ConGraph) transform images and
non-images into graph nodes based on fully connected graph attention network, and fuse
information among nodes to predict Pakinson’s disease.

Appendix B. Baseline Methods

B.1. Baseline methods with image modality

ReNet+Add applys ResNet to extract image information F; € R%2 from the first three
days of embryonic development, where ¢ € 1,2,3. Then, F;, Fo and Fj are fused through
an addition operator. Finally, we use a classifier consisting of three non-linear layers for
pregnancy prediction. ReNet+LSTM replaces the addition operator with LSTM on the
basis of ReNet+Add. No Position, Learnable and Sin-Cos are the results of replacing
our proposed spatial-temporal position encoding with different position encoding.

B.2. Baseline methods with both image modality and table modality

As shown in Fig. A.1, we compare different multi-modal fusion methods. To ensure fairness
in comparison, all methods use the same backbone. In addition, according to the structural
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characteristics of different models, TransformerFusion (SFusion (Liu et al., 2023c), HM-
CAT (Li et al., 2023b)) and GraphFusion (ConGraph (Ding et al., 2024)) use all image
and table tokens, while AddFusion (MMBE (Liu et al., 2022)), TensorFusion (MOAB
(Zolotarev et al., 2024)), and our DecouplingFusion (DeFusion) only use image class token
and table class token.

As shown in Fig. A.1 (a) and (b), AddFusion and TensorFusion directly fuse the class
tokens of the two modalities using an addition operation and an outer product operation,
respectively. As shown in Fig. A.1 (¢) and (d), TransformerFusion and GraphFusion
use the Graph Attention Network (Velickovic et al., 2017) and the Transformer (Dosovitskiy
et al., 2021) as the fusion network to fuse all tokens of the two modalities, respectively. Our
method is an innovative multi-modal fusion category.

1 1 g
o I =  Output ® = I = Output = g = I = Output
2
(a) AddFusion (b) TensorFusion (c) TransformerFusion

Reconstruction Loss

Image feature

[ 1
> Tabular feature @D Addition
[y = Output .
. Fusion feature © Concatenation
:> Related feature & Outer product
L Reconstruction Loss J

(d) GraphFusion (e) Our (DecouplingFusion)

Q
= 2] = I = Output

Unrelated feature

Figure A.1: Comparison of different multi-modal fusion frameworks.
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Appendix C. Dataset Samples

In the Fig.A.2 and Table A.1, we present some examples of image modality and table
modality used for pregnancy prediction, respectively. When processing image data, we use
the following data enhancement during training and testing: resize to 256 pixels and then
center cropping to 224 pixels. Finally, normalization with a mean of 0.566 and a variance of
0.063 is used, and the mean and variance were obtained by statistics of the whole data set.
When processing tabular data, we use the average of features to replace missing features.
Then we input the features into the neural network after min-max normalization.

Day 1

Day 2

Day 3

Day 1

Day 2

Day 3

Figure A.2: Ten examples of temporal embryo images. Each column represents an example,
containing images of the first, second, and third day of embryonic development.
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Table A.1: Ten examples of parental fertility indicators. BMI represents Body Mass In-
dex, AFC represents Antral Follicle Counting, HCG represents Human Chori-
onic Gonadotropin, E2 represents Estradiol, FSH represents Follicle-Stimulating
Hormone, BT represents Before Semen Treatment, AT represents After Semen
Treatment and - represents the missing value.

Number 1 2 3 4 5 6 7 8 9 10
Female age 39 25 44 34 31 36 33 29 28 29
Man age 46 24 45 36 35 38 38 32 35 31
Female BMI 22.8 187 221 21.5 185 239 234 18 25  20.4
AFC 10 - - 8 18 9 12 16 10 8
Number of obtained oocytes 5 22 3 10 17 14 5 11 7 7
Number of mature oocytes 4 14 3 10 15 10 5 8 7 7
Available embryos 3 2 3 7 7 3 4 3 5 7
High-quality embryos 2 1 1 7 5 1 2 2 4 4
HCG Day E2 1037 2271 1782 1483 3118 3693 731.9 1891 1309 3767
HCG intimal thickness 7.5 155 8 9.3 9.4 11.7 9.8 15 175 12.5
FSH 8 - - 781 7.22 4.07 4.61 6.53 7.3 -
Infertility years 2 - - 9 - 7 10 1 3 4
Volume BT 1.4 4.1 4 2.6 2 1.5 1.5 1 2.5 0.3
Concentration BT 6 2 25 20  0.01 3 4 10 18 40
Non forward movement BT 5 10 5 15 0.5 5 3 10 10 5
Inactivity BT 90 80 85 60 0.5 90 95 85 80 75
Forward movement BT 5 10 10 25 0.5 5 2 5 10 10
Volume AT 0.1 0.1 0.6 0.2 0.2 0.15 0.2 0.15 0.3 0.3
Concentration AT 1 2 3 8 0.01 1 1 1 1 3
Non forward movement AT 20 10 5 5 0.5 10 20 20 20 10
Inactivity AT 30 25 5 5 0.5 10 10 40 10 5
Forward movement AT 50 65 90 90 0.5 80 70 30 60 85
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Appendix D. Supplementary Experiments

D.1. Table Modality Experiments
As shown in Fig.A.3, it is a detail of the table extractor (TabTransformer).

TabTransformer Transformer Encoder
A
(Lx D )
MLP Head
MLP
Transformer Encoder N?fm
MNe
X

Multi-Head
Attention

| 1
zi [M@@MJ

22 Linear Projection
3 1T T 1 T 1
> | 39 || 41 || 21.2|[14.34 7.13

713

Indicator Features

Figure A.3: The details of TabTransformer (table extractor).

D.2. Image Modality Experiments

Table A.2 shows the performance with image modality only. We use images of embryo
development on the first, second, and third day for pregnancy prediction. And the backbone
is ResNet. The results indicate that as the embryo continues to develop, it provides greater
assistance in predicting pregnancy.

Table A.2: Comparative experiment results for pregnancy prediction with image modality.

Modality | Method AUC F1 Accuracy
ResNet(First Day) 0.476(0.004) 0.515(0.009) 0.502(0.009)

Tmage ResNet(Second Day) 0.565(0.007) 0.572(0.013) 0.560(0.013)
ResNet(Third Day) 0.593(0.007) 0.598(0.012) 0.595(0.010)
Ours(ResNet+STPE)(Three Days) | 0.617(0.012) | 0.621(0.022) | 0.631(0.016)

D.3. Computational Complexity

As shown in the Table A.3, we compare the computational complexity of multi-modal
fusion methods. Although our model is not optimal in terms of computational complexity,
compared to other methods, our approach still achieves competitive results in terms of
computational complexity while achieving optimal accuracy.
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Table A.3: Comparison of computational complexity of different multi-modal fusion meth-
ods. GFLOPs, the smaller the index, the better. Training time (in seconds) of
a single epoch on 2080Ti GPU with 12G memory, the smaller the index, the
better. Frames per second (FPS) on the i7-6850K@3.60GHz CPU, the larger
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the better.
Method MMBE | MOAB | SFusion | ConGraph | HMCAT | Ours(DeDusion)
GFLOPs({) 12.66 13.30 13.66 14.01 16.19 12.67
Training Time(]) | 50 91 65 68 79 64
Inference FPS(T) | 5.05 2.69 3.34 3.54 2.79 3.51

D.4. Uni-modal Experiment on The ODIR

As shown in the Table A.4, we compare the uni-modal method on the ODIR dataset for

eye disease prediction.

Table A.4: Uni-modal comparison on the ODIR dataset for eye disease prediction.

Modality | Method | AUC F1 Accuracy

Image ResNet | 0.714(0.016) | 0.677(0.015) | 0.674(0.015)
ViT 0.736(0.006) | 0.685(0.013) | 0.680(0.014)
SVM 0.802(0.003) | 0.722(0.001) | 0.714(0.007)

Table TabNet | 0.793(0.024) | 0.708(0.023) | 0.701(0.015)
MLP 0.793(0.001) | 0.731(0.007) | 0.727(0.003)

D.5. Generalization of Other Dataset

We collect a dataset of 218 cases from Guangzhou Women and Children’s Medical Center
as an additional test set to test our DeFusion model, with 56 pregnant cases and 162

non-pregnant cases in this dataset. As shown in the Table A.5, our model has certain

generalization ability without fine tuning.

Table A.5: Generalization experiments of the model on other hospital datasets.

Modality

Method

AUC

F1

Accuracy

Image-+Table

Ours(DeFusion)

0.616

0.660

0.642

18




DECOUPLING FUSION NETWORK

Appendix E. Interpretability

In order to analyze the reasons for the success of the model, we conduct interpretability
analysis on the model, mainly manifest in two aspects. Firstly, as shown in Fig. A.4, we use
SHAP (Lundberg and Lee, 2017) to output the importance ranking of clinical indicators in
our model, which focuses more on features such as female age, high-quality embryos and
so on. Among them, A.4(a) ranks the importance of table features. A.4(b) is a beeswarm,
which depicts the SHAP values of each sample under different features.
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Figure A.4: SHAP interpretability of clinical tabular indicators.
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Secondly, we use the Grad-Cam (Selvaraju et al., 2017) to visualize the class activation
maps of the first three days of embryonic development images in Fig. A.5. We can see
the areas that our model focuses on are the edges of embryonic cells. These interpretable
results are consistent with the experience of obstetricians and gynecologists.

Figure A.5: Grad-Cam visualization of embryonic images, with each row representing a
three-day image.
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Appendix F. Limitation

Although our study is superior to other methods, there are limitations to our method and
data set. For our method, our premise is that there is correlation between the multi-modal
data. If there is no correlation between the multi-modal data, our method may not work
well. In addition, when decoupling unique features and common features, we only use a
simple cross-reconstruction loss constraint, which is very weak. Although the decoupling
visualization by t-SNE and Pearson correlation coefficient proves the effectiveness of the de-
coupling method, adding stronger loss function constraints to the decoupling process may
make the decoupling process smoother. Finally, because we add the decoupling module to
the multi-modal fusion process, our computational complexity is higher than the simple
ADD fusion, which is not conducive to our deployment of the model to the end-to-end
device.

For our dataset, we only collected 4046 cases of data, which is not enough for deep
learning. And, there are some missing values in our clinical indicator data, which is unfa-
vorable to the prediction of results. In addition, our image data is three images taken every
other day using a normal microscope, and many studies now use time-lapse microscopes,
which can acquire images at the hour or even minute level, so our image data lacks a lot of
temporal information compared to other studies.
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