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ABSTRACT

Instruction-guided 3D editing is a rapidly emerging field with the potential to
broaden access to 3D content creation. However, existing methods face critical
limitations: optimization-based approaches are prohibitively slow, while feed-
forward approaches relying on multi-view 2D editing often suffer from incon-
sistent geometry and degraded visual quality. To address these issues, we pro-
pose a novel native 3D editing framework that directly manipulates 3D representa-
tions in a single, efficient feed-forward pass. Specifically, we create a large-scale,
multi-modal dataset for instruction-guided 3D editing, covering diverse addition,
deletion, and modification tasks. This dataset is meticulously curated to ensure
that edited objects faithfully adhere to the instructional changes while preserving
the consistency of unedited regions with the source object. Building upon this
dataset, we explore two distinct conditioning strategies for our model: a conven-
tional cross-attention mechanism and a novel 3D token concatenation approach.
Our results demonstrate that token concatenation is more parameter-efficient and
achieves superior performance. Extensive evaluations show that our method out-
performs existing 2D-lifting approaches, setting a new benchmark in generation
quality, 3D consistency, and instruction fidelity.

1 INTRODUCTION

3D creative editing has great potential in numerous fields, including film production, entertainment
industry, and digital gaming. Recent advancements (Erkog et al.l 2025} |Barda et al.| 2025} |Li et al.,
2025a; [Fang et al., [2024), such as text-to-3D editing and image-to-3D editing, have significantly re-
duced the manual effort required by professional 3D artists while making 3D asset editing accessible
to non-professionals. These approaches typically focus on score distillation sampling (SDS) (Poole
et al., [2022) to edit 2D images and lift them into 3D assets. While generating high-quality 3D ob-
jects, these optimization-based approaches are a lengthy and computationally intensive process. To
address this limitation, recent studies (Erkog et al., 2025} [Barda et al.| [2025) reconstruct the edited
3D assets via a feed-forward 3D reconstruction model from single or sparse images. These meth-
ods edit the images using a multi-view diffusion model to keep the consistency of edited images.
However, the paradigm of multi-view editing and then restructuring the 3D model also falls short in
terms of either visual quality or 3D consistency due to its reliance on 2D space for editing.

To address these challenges, we propose a native 3D editing paradigm that directly manipulates
3D objects based on textual instructions. A primary obstacle to this goal is the absence of a large-
scale, high-quality dataset for instruction-guided 3D editing. To overcome this, we introduce a
systematic data construction pipeline to create a comprehensive benchmark, as illustrated in Fig.
[1l Specifically, for the deletion task, we curate part-level 3D assets from the Objaverse dataset
(Deitke et al., [2023) to serve as source objects. By programmatically removing distinct parts from
each asset, we generate the corresponding target objects, forming a large collection of source-target
pairs for deletion edits. To obtain the guiding instructions, we leverage a powerful multimodal
large language model (MLLM), Gemini 2.5 (Comanici et al., 2025), to generate descriptive text
that accurately reflects the transformation from the source to the target object. For addition and
modification tasks, we build upon existing open-source 2D editing datasets (Ye et al., [2025) that
provide paired source/target images, along with corresponding instructions. We employ the image-
to-3D generation model, Hunyuan3D 2.1 (Hunyuan3D et al.| [2025), to lift these 2D image pairs into
high-fidelity 3D source and target objects, while retaining their original instructional texts. However,
we observe that the generated 3D source and target objects often exhibit inconsistencies in geometry
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and appearance due to the inherent limitations of current image-to-3D generation models. To ensure
data quality, we implement a rigorous manual curation process, selectively retaining only those pairs
where the generated source and target objects demonstrate strong geometric and visual consistency.
This two-pronged approach, combining procedural generation with careful curation, allows us to
construct a novel and diverse 3D editing dataset, paving the way for data-driven native 3D editing.

Building on this dataset, we further explore effective architectural designs for instruction-guided
native 3D editing. Our investigation focuses on two distinct strategies for conditioning the model on
the source 3D object. The first strategy employs a classic adapter-based approach (Ye et al., |[2023)),
integrating the source object’s features into the network via cross-attention mechanisms. The sec-
ond involves a more direct and parameter-efficient method: 3D token concatenation. Specifically,
our model learns the editing transformation during training by processing a concatenated sequence
of the source object’s and noised target object’s 3D tokens, guided by the corresponding instruc-
tion. This allows the full-attention network to directly model the relationship between the source,
target, and instruction with minimal additional parameters. Once trained, the model can perform
editing at inference time by taking only the source object and the editing instruction as input to
generate the desired 3D assets within 20 seconds. We are the first to explore token concatenation as
a conditioning method in the 3D domain, and our experimental results demonstrate that this strat-
egy significantly outperforms the cross-attention approach, yielding superior results in terms of both
generation quality and fidelity to the instruction.

In summary, our contributions are as follows.

* We introduce the first large-scale, multi-modal benchmark dataset specifically designed for
instruction-guided native 3D editing. Our comprehensive dataset, encompassing a wide
range of addition, deletion, and modification tasks, is systematically constructed by lever-
aging both part-level 3D assets and by lifting existing 2D edit datasets into the 3D domain.

* We propose a novel and parameter-efficient architectural design for native 3D editing. We
are the first to demonstrate in the 3D domain that conditioning via direct token concate-
nation significantly outperforms traditional cross-attention mechanisms, achieving higher
fidelity to instructions and superior generation quality with minimal additional parameters.

* We present an effective and efficient feed-forward framework for native 3D editing. Our
approach directly manipulates 3D representations, bypassing the quality and consistency
issues of prior multi-view editing pipelines.

2 RELATED WORK

3D Reconstruction and Generation with Large Models. Stable Diffusion (Poole et al.,[2022) pi-
oneered 3D generation work based on Score Distillation Sampling (SDS), and subsequently, numer-
ous outstanding studies (Xu et al., 2023} |Lin et al.,|2023; Melas-Kyriazi et al.,2023) have leveraged
SDS optimization and its variant (Chung et al.| [2023}; [Hertz et al., 2023) for 3D reconstruction and
generation. These methods yielded high-quality 3D generation but were often slow and impractical
due to their reliance on per-case optimization. Meanwhile, the generative results are limited by the
ability of the pre-trained 2D generative models. To mitigate these issues, the Large Reconstruction
Model (LRM) (Hong et al., [2023) proposes a feed-forward model trained on large-scale datasets to
generate a NeRF from single images within 5 seconds rapidly. Subsequently, LGM (Tang et al.,
2024)) trained a Large Multi-view Gaussian Model to reconstruct 3D Gaussians from multiview im-
ages. GRM (Xu et al.l 2024b) introduces a feedforward transformer-based model to generate 3d
assets from sparse-view images. In view of the powerful creative capacity of the diffusion mode
(Rombach et al., 2022) and the robust generalization ability of the feed-forward model (Hong et al.,
2023)), many works first employ the 2D multi-view diffusion model to generate multi-view images
and then reconstruct the 3D assets with an LRM to achieve text-to-3D and image-to-3D generation,
as demonstrated by extensions such as InstantMesh (Xu et al., |2024a)) and Instant3DiT (Li et al.,
2023)). Inspired by these, many 3D editing studies (Erkog et al., 2025} |Chen et al.,|2024a; |Qi et al.,
2024) attempt first to edit multi-view images and then reconstruct the 3D assets.

3D Editing. With the success of 3D generative models (Liu et al., |2023; Hong et al., 2023} [Li
et al., 2024a; Long et al.| [2024; |Chen et al., |2024¢} [Xiang et al., [2025b; [Fang et al., [2025}; [Li et al.}
2025b), 3D creative editing has been widely studied (Prabhu et al., 2023; [Erkoc et al., 2025} [Bar-On
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et al., 2025} [Fang et al.| [2024). Several methods (Haque et al., 2023} |Chen et al.,|[2024b) employ
optimization-based approaches, utilizing NeRF (Mildenhall et al., 2021) or 3D Gaussian splatting
(Kerbl et al.|[2023) as a 3D representation, with SDS (Poole et al.| 2022) serving as the loss function.
For example, Instruct-NeRF2NeRF (Haque et al.| [2023)) iterative edits NeRF through a text-based
image editing model InstructPix2Pix (Brooks et al., [2023)) to edit the training dataset. Vox-E (Sella
et al.,|2023)), Tip-Editor (Zhuang et al.,|2024), DreamEditor (Zhuang et al.,2023)), FocalDreamer (L1
et al.} |2024b) employ SDS to align a 3D representation with a text prompt to achieve local editing.
While powerful, the primary drawback for all these optimization-based approaches is a lengthy
and computationally intensive per-edit process. To accelerate editing, other works propose faster,
feed-forward solutions. PrEditor3D (Erkog et al.l 2025)) employs multi-view image editing through
a user-provided 2D mask. MVEdit (Chen et al., 2024a) denoises multi-view images jointly, then
reconstructs a textured mesh from modified multi-view images. Talior3D (Qi et al., 2024) adopts
editable dual-sided images to reconstruct the 3D mesh. Instant3Dit (Barda et al., 2025) employs a
multiview inpainting diffusion model to modify the 3D mask region, and then reconstructs the 3D
model using the Large Reconstruction Model. However, the paradigm of multi-view editing and then
restructuring the 3D model also falls short in terms of either visual quality or 3D consistency. Instead
of editing 3D assets from multiple views, we train a native 3D edited model with full attention,
aiming to eliminate inconsistencies in overlapping areas that occur when editing individual views.

3 METHOD

3.1 PRELIMINARIES

Recified Flow Models. Rectified flow models formulate the generative process as learning a deter-
ministic flow field that transports samples from a simple prior distribution (e.g., Gaussian noise €) to
a complex data distribution (represented by samples (). This is achieved by defining a straight-line
trajectory between noise and data: z(t) = (1 — t)xo + te, where ¢ € [0, 1]. The model then learns
a velocity field vy (x, t) that approximates the true vector field v(x, t) = € — x along this path. The
network vy is optimized using the Conditional Flow Matching (CFM) loss, which minimizes the
discrepancy between the predicted and ground-truth velocity vectors:

ﬁCFM(o) = Et,mg,e [H’Ue((ﬂ,t) - (6 - £C0)||§] . (l)

Structured 3D Diffusion Models. Our work builds upon a pre-trained structured 3D latent diffu-
sion model (Xiang et al., 2025b) that employs a two-stage pipeline to create structured 3D latents.
This approach disentangles the generation of coarse geometry from fine-grained details, enhancing
scalability and efficiency. The generation process consists of two main stages: Sparse Structure
Generation and Local Latent Generation. In the first stage, a transformer model, G g, is trained to
generate a low-resolution feature grid .S, which represents the coarse, sparse structure of the 3D ob-
ject. The model G's aims to generate S using an RFM objective Eq[I] In the second stage, another
transformer model G, generates the detailed local latents z;, conditioned on the sparse structure
i, produced from the first stage. This model is also trained with an RFM objective. Conditional
information, such as text embeddings, is injected into both transformers via standard cross-attention
layers, while time step information is integrated using adaptive layer normalization (AdaLLN). The
final output is a set of structured latents, z = (z;, p;), which combines the detailed local features
with their corresponding positions in the sparse structure. This complete representation can then be
rendered into a high-fidelity 3D mesh, NeRF (Mildenhall et al.L|2021) or 3D-GS (Kerbl et al.,2023)),
via their respective decoders. Our editing framework is designed to adapt and condition this pow-
erful two-stage generative process. For clarity, our framework diagrams primarily illustrate the first
generation stage. Notably, the second stage employs the same token concatenation training strategy.

3.2 DATA CONSTRUCTION PIPELINE FOR 3D EDITING

A primary obstacle to advancing instruction-guided native 3D editing is the absence of a large-scale,
high-quality dataset. To address this gap, we developed a systematic data construction pipeline
to generate a benchmark encompassing three fundamental editing tasks: deletion, addition, and
modification. As illustrated in Fig. [T} our approach combines automated, large-scale procedural
generation with a rigorous manual curation process to ensure the quality of the final dataset.
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Figure 1: The overview of our data construction pipeline. For DELETE Data Construction, we
programmatically remove parts from the Objaverse assets and then use Gemini 2.5 to generate in-
structions from multi-view renderings; it creates a source caption from views of the source object
and identifies the removed part name from views of the target object. For ADD & MODIFY Data
Construction, we lift 2D image pairs to 3D using a generative model, followed by a rigorous manual
curation process to filter for high-quality and consistent pairs.

DELETE Data Construction. For the deletion task, our goal is to create source-target pairs and
the corresponding instructions. We leveraged the Objaverse (Deitke et al.| |2023) dataset, filtering
for 3D assets with well-defined, hierarchical part structures. The generation process is as follows:
Firstly, for each selected 3D asset, which serves as the source object, we programmatically identify
and remove a single, distinct part to create a corresponding target object. This automated procedure
enables us to efficiently generate a vast collection of (source, target) pairs for the deletion task, as
illustrated in Fig. To obtain a precise textual instruction for each pair, we employ a powerful
Multimodal Large Language Model (MLLM), Gemini 2.5. To enable the MLLM to identify the
deleted part, we first render the source object from five canonical viewpoints (front, back, left, right,
and top), with the part designated for deletion highlighted in a distinct color (e.g., purple). These
five views are then fed into Gemini 2.5. Through carefully designed prompts, we instruct the model
to recognize and name the highlighted component (e.g., ’the hat”). Additionally, we leveraged
the MLLM to generate textual descriptions of the source object following the same methodology.
Finally, the final instruction is formulated as a template: “delete the [part name], source 3d caption”.
This process yields a complete data triplet: (source object, target object, instruction), forming a
multi-modal, high-quality, and high-fidelity dataset for the deletion task.

ADD & MODIFY Data Construction. To generate data for addition and modification tasks, we
build upon existing 2D editing datasets (Ye et al) [2025). Our pipeline lifts these 2D data pairs
into the 3D domain and selects high-quality, high-consistency 3D pairs through rigorous manual
curation, as shown in Fig. E} Specifically, we utilize the 3D-Alpaca dataset(Ye et al., 2025)), which
contains pairs of (source image, target image) and corresponding edit instructions generated by GPT-
40. We employ a state-of-the-art image-to-3D generation model, Hunyuan3D 2.1 (Hunyuan3D et al.,
2025)) to lift each 2D image pair into a 3D (source object, target object) pair. However, a significant
challenge in the 2D-to-3D lifting process is maintaining geometric and visual consistency between
the generated source and target objects. The inherent limitations of current image-to-3D models
can introduce artifacts or unintended alterations. To ensure the quality of the dataset, we imple-
ment a strict manual curation protocol. Each generated triplet is evaluated against three essential
criteria. Instruction Fidelity: the generated target object must accurately reflect the edit described
in the instruction. Consistency of Unedited Regions: the geometry and appearance of the regions
unmodified by the instruction must remain consistent between the source and target objects. Object
Quality: both the source and target objects must be of high quality, free from significant artifacts,
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Figure 2: Overview of our proposed framework for native 3D editing. The pipeline manipulates 3D
objects based on textual instructions, utilizing token concatenation as a parameter-efficient alterna-
tive to cross-attention, achieving superior editing performance without additional complexity.

broken meshes, or distorted textures. Only triplets that simultaneously satisfy all three criteria are
retained. Any pair failing to meet these standards is discarded. This meticulous, human-in-the-loop
filtering process is critical for constructing a reliable and high-fidelity dataset for the complex tasks
of 3D object addition and modification.

3.3 NATIVE 3D EDITING MODEL ARCHITECTURE.

Our goal is to develop a feed-forward framework for native 3D editing that takes a source 3D object,
O, and a textual instruction, I, as input, and synthesizes an edited target object, Oy, in a single,
efficient pass. To achieve this, we propose harness the generative capabillity of a pre-trained text-
to-3D diffusion model by imposing dual conditions i.e., the source 3D object and the instruction
through a meticulously designed framework. The first stage is depicted in Fig.[2] Specifically, both
the source object Os and target object Oy are first encoded into latent representations, zs and zg,
using a pre-trained 3D VAE. Concurrently, for instruction, features are extracted from the instruc-
tion I using a pre-trained CLIP text encoder. These text features are then plugged into our Full-DiT
model by feeding them into the cross-attention layers to guide the editing process.
Cross-Attention strategy. Our first attempt is to integrate the source latent and text feature condi-
tions using a decoupled cross-attention, as illustrated in Fig. [2] (right). This strategy treats the textual
guidance and the geometric reference as two sources of information, injecting them into the model
through separate, parallel attention layers. Let the noisy latents of the target object at timestep ¢ be
denoted by z;. These latents serve as the query (@) in the attention mechanism. The text instruction
is encoded into an embedding c¢e.t, and the source 3D object is represented by its token sequence
zs. First, the output of the cross-attention layer for the text instruction is computed as:

. K|,

z; = Attention(Q, Ktext, Viewt) = Softmax (Q\[f;“’t> Viest, )
where Q = 2:Wy, Kiext = Ctext Wk, and Viezt = Cteat W, are the query, key, and value
matrices, respectively. Concurrently, we introduce a new, parallel cross-attention layer dedicated to
the source 3D object. This layer uses the same query @ but attends to the source object’s tokens z:

n” . QKT
z; = Attention(Q, K5, V5) = Softmax < = ) Vs, 3)
Vd
where K; = z,W/ and V; = z;W/. The weight matrices W}, and W, are specific to this
conditioning path. Finally, the information from both conditioning modalities is fused by simply
adding their respective attention outputs. This combined representation is then integrated back into
the main pathway of the transformer block:

zpeY =z + 2. 4)

This decoupled design enables the model to independently process high-level semantic guidance
from the text and detailed, low-level geometric information from the source object.
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Figure 3: Effectiveness of our method on deletion, addition and modification tasks. Our method
facilitates precise and instruction-guided editing while maintaining the visual fidelity and structural
coherence of the source object compared with other baselines.

Token-cat strategy. To enable a more direct and parameter-efficient integration of the source object,
we propose a novel 3D token concatenation strategy. This approach, illustrated in Fig. [2| (middle),
reframes the editing task as a conditional sequence-to-sequence problem, allowing the model to
learn the intricate relationship between the source and target objects directly through its powerful
self-attention mechanism, rather than through a separate cross-attention module.

At each training step, the source latent z5 and the target noise latent z; are converted into sequences
of feature vectors, hg and hy respectively. This involves patchifying the latent representations and
passing them through an input projection layer, followed by the addition of positional embeddings:

hs = Proj(Patchify(zs)) + Epos, o)
hy = Proj(Patchify(z;)) + Epos, (6)

where z¢ and z; are the latent representations of the source and noisy target objects. We then form
a single, unified sequence, hcomp, by concatenating the source and target feature vectors along the
sequence dimension:

hcomb = Concat(he, hg). @)

This combined sequence is the primary input to our stack of Transformer blocks. Within each block,
the self-attention mechanism operates on this combined sequence, allowing every token to attend
to every other token. This is the crucial step where the model can directly compare and relate
the features of the noisy target with the clean, stable features of the source object. The textual
instruction, Ceeqt, 18 still injected via a cross-attention layer within each block to guide the semantic
transformation. The operation within each block can be summarized as:

hecom — FullDit(Rcom s Ctexts t)- (8)

After passing through all IN transformer blocks, the output sequence is split to isolate the processed
target structures. After passing through all N transformer blocks, the output sequence is processed
to produce a sparse latent representation of the target object. This concludes the first stage of our
generation process, as illustrated in Fig. 2] (left).

4 EXPERIMENTS

In this section, we first present the experimental settings, followed by a comprehensive quantitative
and qualitative comparison against state-of-the-art methodologies. We then present an ablation study
evaluating the impact of various conditioning strategies and data refinement methods.
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Figure 4: Experimental results on the delete, add, and modify tasks demonstrate the effectiveness
of our method. The *Source Object’ and instructions show inputs, and *Ours’ displays outputs. The
method excels in diverse modifications, proving its precision and versatility.

4.1 EXPERIMENTAL SETTINGS

Datasets. For training the deletion task, we select part-level 3D assets from the Objaverse dataset
(Deitke et al}[2023)) as source objects. By removing semantically meaningful components, we derive
the corresponding target objects. We utilize Gemini 2.5 to generate accurate and descriptive text that
captures the transformation between the source and the target. This process yields a curated dataset
comprising 64,158 samples for the first stage and 44,890 samples for the second stage. To train the
addition and modification tasks, we utilize open-source 2D editing datasets that
contain aligned image pairs and edit instructions, where GPT-40 generates the target images and
edit instructions. Hunyuan3D 2.1 (Hunyuan3D et al., [2025)) lifts these into 3D, followed by manual
curation to retain only pairs with high geometric and visual fidelity. The resulting dataset contains
47,474 samples for the first stage and 47,315 for the second stage.

Implementation Details. Our implementation is built upon the TRELLIS architecture (Xiang
2025a)), serving as the backbone for both training stages. In both stages, the encoded tokens
of the source object are concatenated with the input noise tensor, where the token sequence length
matches the noise input’s spatial dimension. To facilitate convergence, we initialize the model with
pretrained weights from TRELLIS, which were originally trained on several 3D datasets comprising
Objaverse (XL) (Deitke et al.} [2023), ABO (Collins et al.} 2022)), 3DFUTURE 2021)), and
HSSD (Khanna et al.| 2024). We employ the AdamW optimizer with a fixed learning rate of le-4
across both training phases. In the first stage, the model is trained for 150k steps using a batch size
of 12, distributed across 16 NVIDIA A800 GPUs (80GB). In the second stage, training proceeds for
an additional 80k steps with a batch size of 8, across 18 A800 GPUs.

Metrics. Similar to previous methods (Li et al. [2025a; [Barda et all, 2023)), we use FID (Heusel
2017) on rendered multi-view images to measure the overall visual similarity between the

edited results and the original object, and use the CLIP score (Radford et al.| [202T) to measure the
similarity between the edited results and the edit text. FVD (Unterthiner et al., [2018)) is used to
evaluate the temporal continuity and consistency across multi-view images.

Baselines. We compare the proposed method with recent 3D editing methods, including In-

stant3DiT (Li et al.| [2023), Tailor3D 2024), TRELLIS (Xiang et al.,[2025a),Hunyuan3D
2.1 (Hunyuan3D et al,, [2025) and VoxHammer (Li et al.| [2025a). Instant3DiT and VoxHammer
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require additional 3D mask annotations, whereas Tailor3D, TRELLIS, and Hunyuan3D 2.1 depend
on pre-trained 2D editing models. In contrast, our end-to-end editing framework offers a more
streamlined and user-friendly alternative, eliminating the need for such auxiliary inputs.

4.2 QUALITATIVE RESULTS

To evaluate the efficacy of our method in 3D editing, we present a comparative analysis against
recent state-of-the-art approaches. with a focus on delete, add, and modify operations, as visually
demonstrated in Fig. [3] (a) and Fig. [3] (b) respectively. For the delete operation, we randomly se-
lect an object part for removal that was never referenced during training. For the modify operation,
we apply a transformation to a randomly chosen part using an instruction that was not encountered
during training, thereby testing the model’s compositional generalization under unseen conditions.
As shown in Fig. |3| Instant3DiT and Tailor3D suffer from visual inconsistencies and artifacts be-
cause they reconstruct 3D geometry by fusing edited multi-view 2D projections, which inherently
introduces view misalignment. TRELLIS exhibits suboptimal editing performance due to the lack
of feature-space alignment between the source object appearance and the target textual instruction.
While Voxhammer largely maintains visual consistency with the source object, it struggles to exe-
cute precise edits according to the given instruction, a limitation inherent to its training-free strategy.

In contrast, our method excels in three aspects. First, it achieves strong instruction-following capa-
bility. Second, it preserves the original appearance of unedited regions with high visual consistency.
Third, it generalizes robustly across diverse object categories and unseen instructions. These advan-
tages arise from our 3D token concatenation strategy and large-scale training on native 3D editing
data. More results are shown in Fig. 4]

Table 1: Quantitative comparison results.

Method | FID, FVD| CLIP}
Tailor3D (Qi et al.|[2024) 296.8 30905 0217
Instant3DIT (Lietal.[2023) | 2555 1209.8  0.225

Voxhammer (Li et al.,2025a) 169.6  594.2 0.230
TRELLIS (Xiang et al./[2025a) | 126.2  365.5 0.238
Ours 91.9 286.5 0.249

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method against Tailor3D (Qi1 et al., |2024)), Instant3DiT (L1 et al.l 2023), TREL-
LIS (Xiang et al., 2025a), and VoxHammer (L1 et al., |2025a)) in terms of average accuracy across
delete, add, and modify editing tasks. The FID Heusel et al.| (2017) and FVD [Unterthiner et al.
(2018)) measure the distributional discrepancy between rendered images and videos before and after
editing, respectively. Lower values indicate better preservation of visual appearance. The CLIP
Score Radford et al.| (2021) quantifies the alignment between the edited content and the given tex-
tual instruction, with higher scores reflecting more accurate instruction following. As shown in
Tab[I] our approach achieves the best performance on all three metrics. This demonstrates both
strong instruction-following capability and high visual consistency in preserving the appearance of
unedited regions. These advantages are attributed to our 3D token concatenation strategy and large-
scale training on native 3D editing data, which together enable direct, text-guided manipulation of
3D representations in 3D space.

4.4 MORE ANALYSIS AND ABLATION STUDIES

Ablation on Conditioning Strategies. In Section [3.3] we present two dual-conditioning strategies
to activate a pre-trained text-to-3D diffusion model. The Cross-Attention strategy fuses text and
source latent features via decoupled attention, while the Token-cat strategy concatenates source
and target noise latents with positional encoding. To compare the efficacy of these two strategies,
we conducted the ablation study using an identical backbone architecture under both conditioning
schemes. The Cross-Attention strategy, which injects the source object’s features via separate cross



Under review as a conference paper at ICLR 2026

Source Object  delete the barrel delete the buttstock  delete the trigger Source Object Ours Only trellis data Only Hunyuan3D 2.1

N e . 3
v
__* '_m > oo E Insert flowers

Source Object  delete the left ears delete the headband  delete the ear cup =

b oo M —

SIYEAYATrE IRl

Spiral-shaped table legs

Cro

T

Cr

(a) (b)

Figure 5: Ablation studies on conditioning and data refinement strategies. (a) A qualitative com-
parison of conditioning strategies. Our token-concatenation approach successfully performs precise
edits while preserving object consistency, whereas the cross-attention method results in corrupted
geometry. (b) An ablation on data sources for modification tasks. Our final model, trained on a
curated dataset lifted by Hunyuan3D 2.1 (“Ours”), achieves higher fidelity than models trained on
uncurated data from either TRELLIS or Hunyuan3D 2.1 alone.

attention layers, struggles to maintain consistency with the source object. As shown in the Fig. [3]
(a), this approach often produces results with distorted geometry and inconsistent color, failing to
execute the edit faithfully. For instance, when instructed to “delete the barrel,” the model generates a
completely different and corrupted rifle shape rather than performing a precise removal. In contrast,
the Token-Concatenation strategy yields far superior results.

Ablation on Data Refinement Strategies. In Section 3.2} we introduce the data construction
pipeline designed for native 3D editing. To construct a higher-quality training dataset, we conducted
a comparative evaluation of different data generation tools used in our data construction pipeline.
Specifically, for the addition and modification tasks, we employed both TRELLIS (Xiang et al.,
2025al) and Hunyuan3D 2.1 to convert pairs of 2D images before and after editing into corresponding
3D objects. We then performed manual curation to ensure visual consistency between the original
and edited versions. The filtered datasets produced by each tool were subsequently employed to
train the model’s addition and modification capabilities. As shown in Fig. [5] (b), models trained
on the dataset synthesized by Hunyuan3D 2.1 and refined through manual curation exhibit superior
performance in the 3d editing task. This improvement is attributable to the fact that Hunyuan3D 2.1
is a large-scale 3D generative model pretrained on extensive datasets, which enables it to preserve
appearance consistency during 3D reconstruction better.

5 CONCLUSIONS

In this paper, we propose a novel native 3D editing framework that directly manipulates 3D rep-
resentations in a feed-forward pass. Specifically, we create a large-scale, multi-modal dataset for
instruction-guided 3D editing, covering diverse addition, deletion, and modification tasks. This
dataset is meticulously curated to ensure that edited objects faithfully adhere to the instructional
changes while preserving the consistency of unedited regions with the source object. Building upon
this dataset, we propose a 3D token concatenation mechanism that enables parameter-efficient learn-
ing while achieving state-of-the-art performance. Comprehensive evaluations demonstrate that our
approach surpasses existing multi-view editing methods, establishing new benchmarks in generation
quality, 3D geometric consistency, and fidelity to user instructions.
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A APPENDIX

A.1 STATEMENT

The Use of LLMs. We acknowledge the use of large language models (LLMs) for two primary
purposes in this work. First, an LLM was utilized to generate the textual instructions for the editing
tasks in our dataset. Second, we used an LLM to assist in refining the language of this paper,
including improving grammar, phrasing, and overall clarity to ensure the content is accurate and
professional.
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