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Abstract
This paper presents an interpretable unsuper-001
vised morphological learning model, showing002
comparable performance to supervised models003
in learning complex morphological rules as ev-004
idenced by its application to the problem of005
morphological inflection within the SIGMOR-006
PHON Shared Tasks. The significance of our007
unsupervised approach lies in its alignment008
with how humans naturally acquire rules from009
raw data without supervision. To achieve this,010
we construct a model with multiple codebooks011
of VQ-VAE employing continuous and discrete012
latent variables during word generation. We013
evaluate the model’s performance under high014
and low-resource scenarios, and use probing015
techniques to examine encoded information in016
latent representations. We also evaluate its gen-017
eralization capabilities by testing unseen suf-018
fixation scenarios within the SIGMORPHON-019
UniMorph 2022 Shared Task 0. Our results020
demonstrate our model’s ability to distinguish021
word structures into lemmas and suffixes, with022
each codebook specialized for different mor-023
phological features, contributing to the inter-024
pretability of our model and effectively per-025
forming morphological inflection on both seen026
and unseen morphological features 1.027

1 Introduction028

In this paper, we introduce an interpretable unsuper-029

vised morphological learning model that achieves030

performances comparable to supervised models in031

the acquisition of complex morphological rules.032

We demonstrate its abilities in addressing one of033

the most studied problems in the literature, mor-034

phological inflection in the SIGMORPHON Shared035

Tasks (Cotterell et al., 2016, 2017, 2018; Vylomova036

et al., 2020; Pimentel et al., 2021; Kodner et al.,037

2022; Goldman et al., 2023).038

The unsupervised acquisition of morphological039

rules in humans is a natural process during lan-040

1Our code, data and experimental results will be available
following the review period.

guage learning. This involves the analysis of word 041

structures, recognition of stems and affixes, asso- 042

ciation of consistent meanings, and the integra- 043

tion of these elements into novel combinations, as 044

explained by Clark (2017). These rules govern 045

the appropriate structure of words to convey their 046

intended meanings. For instance, when forming 047

the present participle of the verb "to bike" it be- 048

comes "biking," not "bikeing" necessitating the ex- 049

clusion of the last vowel. Similarly, when evaluat- 050

ing the feasibility of a goal, we consider its "attain- 051

ability" (attain+able+ity), not "attainityable" (at- 052

tain+ity+able); maintaining the correct sequence 053

of suffixes is crucial in this context. Given the 054

inherent ability of humans to learn morphology 055

unsupervisedly, it is essential to develop unsuper- 056

vised neural models that can replicate this process. 057

This analogy suggests that it should be feasible for 058

a model to acquire morphological rules without 059

explicit supervision. 060

In the intersection of computation and morphol- 061

ogy, researchers have developed computational 062

approaches to explore human morphology learn- 063

ing theories and address practical applications like 064

spell checking, correction, automatic speech recog- 065

nition, and statistical machine translation. The 066

two-level morphology model (Koskenniemi, 1983), 067

prevalent in the early stages, highlights the com- 068

plexity of morphology, incorporating phonolog- 069

ical alterations beyond a simple arrangement of 070

morphemes. For example, in Turkish words like 071

bahçemden and garajımdan, both indicating move- 072

ment from a possessed place, the morpheme se- 073

quences differ (+m+den vs. +ım+dan) based on 074

Turkish phonological rules. Two-level morphology 075

dissects this into lexical and phonological levels, 076

resulting in the correct surface forms. Finite-state 077

transducers, exemplified by a Turkish morpholog- 078

ical analyzer (Oflazer, 1993), have been utilized 079

to study morphological processes across languages 080

within the two-level formalism. 081
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Figure 1: Our model: Multiple Codebook VQ-VAE

To evaluate unsupervised models from a mor-082

phological standpoint, it is essential to establish ex-083

pectations for a model proficient in "learning" mor-084

phology. As outlined in (Goldsmith et al., 2017),085

the questions an unsupervised morphology learner086

should address include identifying component mor-087

phemes in words, recognizing alternative forms088

(allomorphs) like -ler and -lar in Turkish, under-089

standing conditions for their usage, explaining alter-090

native forms through phonological generalizations,091

determining permissible combinations of feature092

specifications, and unraveling morphological real-093

ization of each combination.094

In this work, we propose the Multiple Codebook095

Vector Quantized Variational Autoencoder (VQ-096

VAE) (Van Den Oord et al., 2017) as an unsuper-097

vised morphology learner for text. Our approach098

entails establishing a continuous space and utilizing099

multiple codebooks. The model integrates code-100

book entries with the continuous space to generate101

words. We expect the model to discretize various102

morphological features in codebooks, thereby rep-103

resenting a word’s lemma in continuous space. For104

example, one codebook may encode person fea-105

tures (e.g., 1st person singular, 3rd person plural),106

another may represent the tense of the word (e.g.,107

present, future, past), and a separate codebook may108

handle the polarity of the word (positive or nega-109

tive).110

We evaluate our model’s performance in mor-111

phological inflection, addressing the challenges it112

faces in learning crucial abilities such as allomorph113

recognition, phonological generalizations, and the114

realization of diverse morphological feature com-115

binations. Additionally, we examine its generaliza- 116

tion capabilities under both high and low resource 117

data scenarios by testing it on unseen suffixation 118

scenarios within the SIGMORPHON-UniMorph 119

2022 Shared Task 0 (Kodner et al., 2022). To gain 120

insights into the model’s learning, we further em- 121

ploy probing techniques for interpreting encoded 122

information within latent representations. 123

Our primary contributions are: 124

• We introduce a novel and interpretable un- 125

supervised model that achieves comparable 126

performance to supervised models in learning 127

morphological rules. 128

• The model exhibits robust performance in 129

both high and low-resource scenarios for mor- 130

phological inflection tasks. 131

• The model segregates word lemmas into con- 132

tinuous variables and their suffixes into dis- 133

crete variables within codebooks. Addition- 134

ally, across random runs, the model special- 135

izes each codebook with a unique morphologi- 136

cal feature, thereby enhancing its interpretabil- 137

ity. 138

2 Model 139

We extend the idea of Vector Quantised-Variational 140

Autoencoders (VQ-VAE) (Van Den Oord et al., 141

2017) for text. The original VQ-VAE is an encoder- 142

decoder model that aims to model image and 143

speech data using discrete latent variables picked 144

from a codebook having embeddings. The encoder 145

outputs are replaced with the nearest vectors in 146
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l2 distance from the codebook. Then, the code-147

book embeddings are fed to the decoder, and the148

data reconstruction is aimed. In our model, we149

employ multiple codebooks, in contrast to the orig-150

inal VQ-VAE that uses only one. Additionally,151

we incorporate continuous variables, following the152

approach of the original VAE. Our expectation is153

that the model will specialize each codebook to154

capture distinct morphological features of a word,155

and as a result, the continuous space will be uti-156

lized to encode the lemma of a word. Specifically,157

we construct a VQ-VAE model with continuous158

and discrete variables with the following blocks:159

bidirectional GRU encoder, low-dimensional con-160

tinuous space, varying number of codebooks for161

discrete space, and a unidirectional GRU decoder,162

as seen in Fig. 1. While the continuous part is regu-163

lated by KL divergence to standard Gaussian prior164

as in regular VAE, the discrete latent variables are165

obtained with quantization through multiple code-166

books. The encoder q with parameters ϕ has the167

last forward hidden state
−→
ht , and the last backward168

hidden state
←−
ht with d dimensional vectors. The169

mean µ and variance σ are learned by applying a170

linear transformation to the last backward hidden171

state
←−
ht . Then, using µ and σ, we estimate the172

continuous latent variable zc. To make the learning173

step differentiable, we use the reparameterization174

trick (Kingma and Welling, 2013) and calculate175

zc = µϕ(x) + σϕ(x) ∗ ϵ where ϵ ∼ N(0, 1).176

For quantization, we define the latent embed-177

ding space of codebooks as e ∈ RN×K×D where178

N is the number of codebooks, K is the number of179

entries in each codebook, D is the dimension of180

each embedding vector e(n) in the codebook. The181 −→
ht vector from the encoder is then linearly trans-182

formed into N vectors with dimension D. For each183

linearly transformed vector from encoder z(n)e (x),184

the nearest embedding from codebook(n) is calcu-185

lated:186

q(z(n)q = k|x) =

{
1 for k = argminj ||z(n)e (x)− e

(n)
j ||2

0 otherwise
(1)187

Then we sum the quantized vectors188

z
(1)
q , z

(2)
q , ...z

(N)
q and obtain zq(x) vector. We189

finally concatenate the quantized vector with the190

continous vector and feed it to the decoder as an191

initial hidden state. At each time step of decoding,192

we concatenate the continous vector zc, quantized193

vector zq, and the target token embedding.194

The total objective for our model becomes:195

L = Ezc∼qϕ(z|x)[log p(x|zc, zq)]

+
N∑

n=1

||sg[z(n)e (x)]− e(n)||22

+
N∑

n=1

β||z(n)e (x)− sg[e(n)]||22

−KL(q(zc|x)||p(zc))}

(2) 196

The initial component of the loss involves the 197

reconstruction loss, where the model conditions 198

on the continuous latent variable zc and discrete 199

latent variable zq to reconstruct the observed data 200

x. The subsequent element pertains to the overall 201

vector quantization loss for each vector z
(n)
e (x). 202

Similar to the original VQ-VAE, the stop gradient 203

operation (denoted as sg) is employed to facilitate 204

the learning of codebook embeddings e(n). This 205

operation ensures that the gradient of the applied 206

term becomes zero during forward computation, 207

converting it into a non-updated constant. In the 208

second term, to minimize the l2 distance between 209

encoder outputs and codebook embeddings, only 210

the codebook embeddings are updated. The third 211

term involves updating only the encoder outputs, 212

weighted by the parameter β to prevent the encoder 213

outputs from growing faster than the codebook em- 214

beddings. Lastly, in the fourth term, we regulate 215

the continuous vector using a standard Gaussian 216

distribution. 217

3 Evaluation 218

In this section, we evaluate the performance of our 219

unsupervised model in morphological inflection 220

(see Section 3.1) and probe the latent variables of 221

the model for morphological features (see Section 222

3.2). We conduct further evaluation of our model in 223

the context of Sigmorphon-UniMorph 2022 Shared 224

Task 0 (Kodner et al., 2022) in Section 3.3. 225

3.1 Morphological Inflection 226

At morphological inflection problem, a model takes 227

a word’s lemma and a morphological feature set as 228

input, and generates the inflected target form of the 229

word. 230

e.g.: 231

vermek + V;DECL;OBLIG;PL;2;NEG;PST 232

-> vermemeliydiniz 233

Morphological inflection, highlighted in (Cot- 234

terell et al., 2016), is crucial for generating and 235
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analyzing words in a language based on inflected236

forms. This task aids in understanding word shapes237

and suffixation patterns, allowing models to gener-238

alize to unseen words by learning inflection rules.239

Particularly challenging in languages like Turkish240

with rich inflectional morphology, the task involves241

learning various morphological processes.242

3.1.1 Experiments243

For this problem, we conduct experiments using 4,244

6, 8, and 12 codebooks, each containing 6, 8, and245

12 entries. To determine the convergence of the246

model, we evaluate model’s copying exact match247

accuracy and model’s sampling quality: This in-248

volves sampling vectors from the continuous space249

and using a fixed entry combination from code-250

books. We expect to observe inflections of differ-251

ent lemmas sharing the same suffix. This approach252

ensures that the model leverages the codebooks253

to generate a word. We provide results for the254

best model with 4 codebooks and 8 entries per255

codebook. Full results of models with different256

codebook-entry configurations can be found in the257

Appendix B.258

train test

# total words 404896 1446
# unique lemma 588 536
# unique feature sets 703 616

Table 1: Dataset statistics

We filter the Turkish Unimorph dataset (Mc-259

Carthy et al., 2020) for verbs. The dataset in-260

cludes triples in the format (lemma, inflected261

form, feature set), such as (çıkarmak, çıkaracağım,262

V;DECL;IND;SG;1;POS;FUT). We augment the263

dataset with verbs from the large training set of264

Turkish in Sigmorphon 2022 Shared Task-0 (Kod-265

ner et al., 2022). In this way we have a dataset with266

404,896 words, featuring 588 unique lemmas and267

703 unique morphological feature sets. For eval-268

uation, we also use the shared task test set which269

contains 1,446 verbs. It’s important to note that270

all lemmas and feature sets are encountered during271

training, although not together in the same triple.272

During training, our unsupervised model relies273

solely on observing the raw surface forms of words274

without explicit morphological feature sets. To ad-275

dress the inflection task using our unsupervised276

model, we initially associate codebook entries with277

the corresponding feature sets. This process in-278

volves the following steps: At test time, we present 279

all target words in the test set to the model and 280

observe its selection of codebook entries for each 281

word while copying them. For example, to map 282

the relevant codebook entries for a feature set 283

like V;DECL;IND;SG;1;POS;FUT, we identify the 284

most frequently selected codebook entries when 285

copying words with this specific feature set. We 286

then use these mapped entries in conjunction with 287

a word’s lemma to inflect it into the target form 288

with that particular feature set. This inflection, us- 289

ing the mapped entries, is referred to as a top-1 290

match. Moreover, we track the second most fre- 291

quently chosen codebook entries, labeling it as a 292

top-2 match. 293

3.1.2 Baselines 294

We use the baseline models provided by the recent 295

SIGMORPHON Shared Tasks, which have been 296

consistently employed in previous iterations of the 297

shared task. 298

Unsupervised We use the non-neural baseline 299

model provided by the shared task as an unsuper- 300

vised baseline model. The model initially aligns 301

input/output training examples using the Leven- 302

shtein distance. The system presupposes that each 303

input-output pair can be segmented into a prefix- 304

ation part (Pr), a stem part (St), and a suffixation 305

part (Su), based on the presence of initial or trailing 306

zeroes in the inputs or outputs. Subsequently, the 307

system extracts a set of prefix-changing rules based 308

on the Pr pairings and a set of suffix-changing rules 309

based on St+Su pairings. During generation, the 310

longest suffix rule that is applicable to a lemma 311

form to be inflected is employed. 312

We also perform unsupervised training on the 313

closely related work by Zhou and Neubig (2017), 314

initially trained using a mix of supervised and semi- 315

supervised approaches. Their semi-supervised 316

method involves reconstructing target and source 317

words using inferred labels and training MLP clas- 318

sifiers for each morphological feature label. They 319

employ a continuous vector for encoding word 320

lemmas, regularized by KL divergence towards 321

a standard Gaussian prior. Morphological feature 322

encoding utilizes MLPs as discriminative classi- 323

fiers, incorporating the Gumbel-Max trick for dif- 324

ferentiating discrete latent variables. An attention 325

mechanism facilitates feature label inference, and 326

the lemma vector, attention vector, and target to- 327

ken are concatenated to the decoder at each time 328

step. KL annealing scheduling and input operation 329
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Lemma Feature set Codebook entries Inflected word

dondurmak V;OBLIG;SG;2;POS;PST;INTR 7;5;6;3 dondurmalı mıydın
ekşimek V;OBLIG;SG;2;POS;PST;INTR 7;5;6;3 ekşimeli miydin
sanmak V;DECL;PL;1;POS;PST;INFR 1;1;0;0 sanmışız
ölçmek V;DECL;PL;1;POS;PST;INFR 1;1;0;0 ölçmüşüz
götürmek V;DECL;PL;1;NEG;FUT;INFR 1;7;5;6 götürmeyecekmişiz
taşmak V;DECL;PL;1;NEG;FUT;INFR 1;7;5;6 taşmayacakmışız

Table 2: Inflection results. The model employs the same codebook combinations for identical feature sets and
can apply different harmony rules, such as -meli miydin / -malı mıydın and -mışız /-müşüz and -meyecekmişiz
/-mayacakmışız.

Model E.M. Acc.

Ours (top-1 match) 0.94
Ours (top-2 match) 0.98
Baseline (Unsupervised) 0.38
Baseline (Supervised) 0.99

Table 3: Performance of models on verbs in morpholog-
ical inflection: Our model demonstrates comparable per-
formance to the supervised baseline, achieving nearly
100% accuracy. E.M. Acc.: Exact match accuracy.

dropout are employed to prevent posterior collapse330

during generation. However, in our unsupervised331

setups, the model struggles to distinguish lemmas332

and suffixes as effectively as in supervised cases.333

We are unable to identify any specifications for clas-334

sifiers related to morphological features, prevent-335

ing us from mapping the morphological features336

to classes. Consequently, the model’s capability337

to perform morphological inflection is hindered.338

Additional details can be found in the Appendix D.339

Supervised We employ a baseline from the recent340

years of the shared tasks (Pimentel et al., 2021;341

Kodner et al., 2022; Goldman et al., 2023), which342

inspired many other works on the inflection prob-343

lem such as Yang et al. (2022); Merzhevich et al.344

(2022); Forster and Meister (2020); Canby et al.345

(2020), specifically a character-level transducer pro-346

posed by Wu et al. (2021). This transducer is based347

on transformers, utilizing special position and type348

embeddings for morphological features and word349

characters. In their approach, positional encodings350

for features are set to 0, as the order of features is351

not considered important, and only word characters352

are counted. Additionally, a special type token is353

introduced to indicate whether a token represents a354

feature or a word character.355

3.1.3 Results & Analysis 356

The model achieves a 94% accuracy in top-1 357

matches and a 98% accuracy in top-2 matches 358

for inflection, as shown in Table 3. While the 359

unsupervised baseline exhibits poor performance 360

on the task, the supervised baseline demonstrates 361

nearly perfect performance, and our results indi- 362

cate comparable performance to that model. We 363

also investigate the model’s codebook selection for 364

given words. Our findings reveal that the model 365

selects the same codebook-entry combinations 366

for words that share the same suffix, as shown in 367

Table 4. Moreover, by employing these identical 368

entries, the model learns to apply morphosyntac- 369

tic rules, preserving vowel harmony as illustrated 370

in Table 2. By employing the top-2 match selection 371

instead of the top-1, 56 errors were resolved, with 372

2 errors pertaining to lemma corrections and the re- 373

maining errors involving suffix adjustments. There- 374

fore, the results indicate that the model performs 375

strongly in inflection by effectively mapping the 376

appropriate suffix to the codebook entries. 377

3.2 Probing 378

Probing is a technique used to interpret neural mod- 379

els by identifying encoded information in their 380

representations. The use of classifiers enables us 381

to evaluate if these representations correspond to 382

human classification patterns. For morphological 383

evaluation, a probing procedure can be employed 384

to analyze the morphological features of words. In 385

this section, we evaluate our model’s ability to cap- 386

ture the tense, person, and polarity features of verbs 387

(e.g., okuyacaklar -> 3rd person plural, future tense, 388

positive). 389

3.2.1 Experiments 390

We analyze the representation of morphological 391

features in both continuous vector and discrete 392

codebook vectors. To achieve this, we maintain 393
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Codebook
entries Words

7;5;3;7

fotoğraf çekiyor olmalıydın
süründürüyor olmalıydın
yontuluyor olmalıydın
eğleniyor olmalıydın

2;7;5;6

programlattırmayacakmışım
süründürtmeyecekmişim
kırdırtmayacakmışım
göndermeyecekmişim

4;5;5;6

kanıtlamadıydınız
birleşmediydiniz
eğilmediydiniz
dolmadıydınız

Table 4: Model’s codebook entry selections. It employs
the same entry combinations for words that have the
same suffix. Combination 1: (past perfect cont. tense)
Combination 2: (negative inferential future tense). Com-
bination 3: (negative past tense)

fixed model parameters and introduce a linear layer394

on the model’s continuous latent variables zc, quan-395

tized variables which are separate codebook em-396

beddings, and their sum zq. This linear layer is397

trained to predict the morphological feature. The398

’person’ feature encompasses 6 classes: singular399

and plural for 1st, 2nd, and 3rd persons. The ’tense’400

feature consists of 3 classes: present, past, and401

future. Finally, the ’polarity’ feature comprises 2402

classes: positive and negative. We use the majority403

of classes in the test set as our baseline.404

3.2.2 Results & Analysis405

As indicated in Table 5, the continuous vector zc, in-406

tended to encode the lemma, exhibits performance407

close to the baseline score for each morphological408

tag classification. This was anticipated since it is409

not supposed to contain information related to the410

suffix. Conversely, the quantized vector zq encodes411

a significant portion of suffix-related information412

and effectively clusters the words in its space (re-413

fer to Fig. 2). Notably, there is a clear distinction414

in the person tag for words within codebook-0,415

whereas the other codebooks exhibit performances416

comparable to the baseline. Regarding the tense417

feature, codebook-1 seems to encode that informa-418

tion. However, for polarity, there isn’t a significant419

discrimination, as codebook-2 and codebook-3 dis-420

play similar performances. The results suggest421

that across random runs, the model specializes422

distinct codebooks for different morphological423

features. Full results can be found in Appendix C.424

Person Tense Polarity

zc 0.25 0.48 0.63
zq 0.99 0.98 0.86

cbook-0 0.98 0.50 0.52
cbook-1 0.20 0.88 0.54
cbook-2 0.20 0.54 0.75
cbook-3 0.18 0.49 0.73
baseline 0.18 0.48 0.52

Table 5: Model’s probing results. Codebooks are spe-
cialized for different morphological features, while con-
tinuous part exhibits significantly lower performance.
cbook: codebook.

In summary of Sec. 3.1 and Sec. 3.2, we present 425

a model that encodes lemmas into continuous vec- 426

tors, translating morphological features in the suf- 427

fix into codebook entries. We also show that these 428

codebooks specialize in various morphological fea- 429

tures, such as Person, Tense, and Polarity. Fur- 430

thermore, we demonstrate the model’s capability 431

to inflect a lemma with a suffix mapped in code- 432

book entries, generating a newly inflected word not 433

encountered during training. 434

Figure 2: Visualization of tense probe logits in quan-
tized vector zq. The model clusters words based on
tense suffixation.

3.3 Evaluation on SIGMORPHON-UniMorph 435

2022 Shared Task 0 436

In this section, we show that our model exhibits 437

comparable performance even in low-resource 438

scenarios when compared to supervised models. 439

In the SIGMORPHON 22 Shared Task 0 (Kodner 440

et al., 2022), the primary focus is to evaluate the 441

capacity of models in generalizing to unseen lem- 442

mas and features. The task includes conditions of 443

both large and small datasets, organized based on 444

overlaps in lemmas and features. We focus on sce- 445
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Gold target Ours

büyüyor olacaklar büyümüş olacaklar
kullanıyor olmamalısınız kullanıyor olmamalıyız
delecek olmayacakmışız deler olacakmışız
dedikodu yaparlardı dedikodu yapacaklardı
hareket ediyorsun hareket ediyor olmalısın

Table 6: Model’s errors with unseen feature sets. Al-
though it correctly identifies lemmas, it struggles to
inflect them into the accurate target forms.

narios with lemma overlap in the task, where test446

pair lemmas are included in the training data, but447

their feature sets are novel.448

3.4 Experiments449

We filter the original large dataset, reducing it from450

7,000 to 5,273 instances by selecting only verbs.451

In the test set, we have 1,446 instances with 731452

featuring both overlap and 715 showing lemma453

overlap, implying the presence of words with novel454

feature sets. Our model is trained using 6 code-455

books, each containing 8 entries.456

3.5 Models457

All models, except Flexica (Sherbakov and Vylo-458

mova, 2022), use transformers in a supervised fash-459

ion. CLUZH (Wehrli et al., 2022) is a character-460

level neural transducer handling edit actions like461

insertion, deletion, substitution, and copy. UBC462

(Yang et al., 2022) improves Wu et al. (2021)463

with reverse positional embeddings for better suffix464

handling. TüM-M (Merzhevich et al., 2022) also465

adapts Wu et al. (2021) for predicting a distribu-466

tion over states of FST. OSU (Elsner and Court,467

2022) uses a transformer with an analogical ex-468

emplar model for inflection, effective when target469

cell examples are available. Flexica employs re-470

fined alignment patterns, learning transformation471

patterns through maximal continuous matches be-472

tween lemmas and inflected forms. Extraction in-473

volves finding the longest common substring, recur-474

sively extending until no more common characters475

are found, and then enriching patterns with con-476

crete characters from training samples.477

3.6 Results & Analysis478

As indicated in Table 7, our model surpasses three479

systems in both top-1 and top-2 matches. In top-2480

matches, our model achieves a 88% accuracy with481

171 mistakes out of 1,446 test instances. Despite482

having no unseen lemma between our training and483

System E.M. Acc.

UBC 0.98
CLUZH 0.92
OSU 0.48
Flexica 0.38
TüM-M 0.22
Ours (top1-match) 0.81
Ours (top2-match) 0.88

Table 7: Performance of submitted systems for verbs
in the large training condition in the SIGMORPHON-
UniMorph 2022 Shared Task-0. E.M. Acc.: Exact
match accuracy.

test set, almost half of the test set comprises words 484

with novel feature sets. We observe that our model 485

accurately captures 91% of cases for seen feature 486

sets, while for unseen feature sets, the model cor- 487

rectly generates 85% of the words. 488

Error analysis We analyze our model’s errors in 489

top-2 matches for seen and unseen features. We ob- 490

serve that %63 of ours models errors cause because 491

of the unseen feature sets. Out of errors, the mod- 492

els generated novel words that were not encoun- 493

tered during training. As seen in Table 6, in most 494

of the cases, our model fails to form the correct 495

inflected target word due to incorrect suffixation. 496

However, we observe that the model still preserves 497

harmony rules, such as the -meli/-malı obligation 498

suffix, where models CLUZH and OSU struggle. 499

For instance, with the lemma ending with the vowel 500

a, such as açılmak, it should be açılmalıyım, not 501

açılmeliyim. Similarly, with the lemma asmak and 502

the related 3rd person plural, it should be asma- 503

malısınız, not asmamelisiniz. In these examples, 504

our model is able to preserve vowel harmony where 505

CLUZH and OSU fail. 506

4 Importance of Directionality 507

In this section, we investigate the impact of our di- 508

rectional choice, where we assign the last backward 509

hidden state
←−
ht to the continuous vector, aimed at 510

encoding the lemma, and the last forward hidden 511

state
−→
ht to the codebooks, intended to encode mor- 512

phological features in the suffix. Given the struc- 513

ture of agglutinative languages, where the lemma 514

starts on the left and suffixation occurs on the right, 515

we anticipate this approach to be effective, intro- 516

ducing a form of inductive bias. To understand its 517

effect, we concatenate the last forward and back- 518
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ward hidden states [
−→
ht ;
←−
ht], and input the result-519

ing vector into both the continuous vector and the520

codebooks. We conduct experiments with 4, 6,521

and 8 codebooks, each having 6, 8, and 12 entries,522

while maintaining other model dimensions. The523

experiments are rerun with three different random524

initializations, revealing three types of observed525

problems: (1) Suffix information is not entirely en-526

coded in the discrete part, but partially encoded in527

the continuous part with lemma. (2) Lemma infor-528

mation is not entirely encoded in the continuous529

part but is partially embedded in the discrete part530

with suffixes, leading to a significant increase in531

codebook entry usage. This suggests that the model532

does not effectively cluster words based on suffix-533

ation, instead encoding most of the word informa-534

tion into the codebook. (3) Lemma information is535

entirely encoded in the discrete part, while suffix536

information is entirely encoded in the continuous537

part. We give futher evidences for these problems538

in Appendix E).539

In every setup, the absence of separation be-540

tween lemma and suffix into continuous and dis-541

crete parts also interferes with the mapping of mor-542

phological tags in codebook entries. Consequently,543

morphological inflection cannot be performed well.544

While the first two problems are partially evident in545

several runs of the model with an inductive bias, we546

were still able to achieve good convergence with547

the majority of configurations, which is challenging548

to replicate without using the directionality. Con-549

sequently, we argue that the directionality helps550

the model in distinguishing between lemma in551

the continuous and suffix in the discrete parts.552

Nevertheless, further experiments without direc-553

tionality may provide better insights.554

5 Related Work555

The unsupervised study of morpheme boundaries556

dates back years. Harris (1955)’s pioneering557

work introduces a heuristic based on letter suc-558

cessor/predecessor tokens, counting the different559

letters after a morpheme candidate x. Subse-560

quent works enhance this approach by analyz-561

ing the frequency distribution of successor tokens562

and calculating entropy to measure predictabil-563

ity.The Morfessor family, including Morfessor564

Baseline (Creutz and Lagus, 2002), Morfessor565

FlatCat (Grönroos et al., 2014), and Morfessor566

EM+Prune (Grönroos et al., 2020), utilizes genera-567

tive models for language morpheme learning. Mor-568

fessor Baseline optimizes parameters through MAP 569

estimation, adhering to the Maximum Length De- 570

scription (MDL) principle. Morfessor EM+Prune 571

starts with a seed lexicon of the most frequent 572

subwords and prunes during training. Addition- 573

ally, Adaptor Grammar (Johnson et al., 2006) and 574

MorphAGram (Eskander et al., 2020) contribute 575

to unsupervised morphological segmentation, in- 576

corporating adaptors like the Pitman-Yor Process 577

(Pitman and Yor, 1997). Previous work in mor- 578

phological inflection includes supervised learning 579

techniques. Durrett and DeNero (2013) employs 580

alignment and learns edit operations, while Kann 581

and Schütze (2016) proposes a neural approach 582

using an encoder-decoder architecture with soft at- 583

tention (Bahdanau et al., 2015) and stacked GRUs 584

(Cho et al., 2014). Anastasopoulos and Neubig 585

(2019) proposes data augmentation by generating 586

hallucinated data in lemma-feature tag-target pairs. 587

They replace shared substrings longer than three 588

characters with random characters, resulting in hal- 589

lucinated lemma-tag triples. Some probing stud- 590

ies on RNNs include Shi et al. (2016); Conneau 591

et al. (2018). Criticisms regarding probe reliabil- 592

ity and classification limitations have prompted 593

the consideration of simpler probes, emphasizing 594

information-theoretic measures over accuracy (He- 595

witt and Liang, 2019; Voita and Titov, 2020; Pi- 596

mentel et al., 2020). The studies also explore causal 597

relations and latent ontologies, providing insights 598

into feature usage and representations (Vanmassen- 599

hove et al., 2017; Elazar et al., 2021; Giulianelli 600

et al., 2018; Lasri et al., 2022). 601

6 Conclusion & Future Work 602

This work presents a novel and interpretable unsu- 603

pervised model that achieves performance compa- 604

rable to supervised models in learning morphologi- 605

cal rules. The model exhibits robust performance 606

on morphological inflection tasks, particularly in 607

low-resource scenarios, producing results compa- 608

rable to those of supervised models. Notably, the 609

model separates the lemma of words into contin- 610

uous variables and their suffix into discrete vari- 611

ables within codebooks. Across multiple runs, the 612

model consistently specializes each codebook with 613

distinct morphological features, contributing to en- 614

hanced interpretability. Future work may involve 615

exploring different morphological tasks, such as un- 616

supervised paradigm completion and unsupervised 617

paradigm clustering. 618

8



Limitations619

Our proposed model strategically incorporates the620

bidirectionality of the encoder as a bias in its archi-621

tecture. This bias is leveraged to effectively capture622

word lemmas on the left and suffixation on the right.623

Our tailored approach significantly enhances the624

model’s performance in Turkish, an agglutinative625

language characterized by heavy suffixation. In626

agglutinative languages, lemmas typically appear627

on the left, while suffixation occurs on the right.628

Therefore, we anticipate our model to demonstrate629

robust performance in favor of agglutinative lan-630

guages, such as Finnish, Hungarian, and others.631

However, further experimentation may be needed632

to adjust directionality for languages with varying633

morphological typologies.634

Ethics Statement635

We foresee no ethical concerns related to the meth-636

ods outlined in this paper.637
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A Hyperparameter details 907

For our main model used in Section 3.1 and Section 908

3.2, the configuration includes a bidirectional GRU 909

encoder with a hidden size of 256, an unidirectional 910

GRU decoder with a hidden size of 1024, a contin- 911

uous vector of 100 dimensions, 4 codebooks with 912

8 entries per each codebook, 128 dimensions in 913

each codebook entry, 128 dimensions in encoder- 914

decoder input token embeddings, decoder input 915

dropout set to 0.2, a batch size of 64, Adam opti- 916

mizer with β values of (0.5, 0.99), a learning rate 917

of 0.0005, KL weight of 1.0 with an annealing 918

strategy starting from epoch 5, and a total of 50 919

epochs. 920

For our main model used in Section 3.3, the con- 921

figuration comprises a bidirectional GRU encoder 922

with a hidden size of 256, an unidirectional GRU 923

decoder with a hidden size of 256, a continuous vec- 924

tor of 100 dimensions, 6 codebooks with 8 entries 925

per each codebook, 128 dimensions in each code- 926

book entry, 128 dimensions in encoder-decoder 927

input token embeddings, decoder input dropout set 928

to 0.1, a batch size of 16, Adam optimizer with β 929

values of (0.5, 0.99), a learning rate of 0.0005, KL 930

weight of 0.05 with an annealing strategy starting 931

from epoch 10, and a total of 500 epochs. 932
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B Different codebook-entry configurations933

Test acc. 0.93
Inflection acc. (Top-1) 0.30
Inflection acc. (Top-2) 0.40
Train # used entries 1122
Test # used entries 577

Table 8: 4x6 Training results. KL=1.0.

Person Tense Polarity
zc 0.27 0.54 0.95
zq 0.96 0.86 0.59

cbook-0 0.31 0.72 0.54
cbook-1 0.18 0.48 0.56
cbook-2 0.72 0.52 0.53
cbook-3 0.26 0.53 0.56
baseline 0.18 0.48 0.52

Table 9: 4x6 Probing accuracy results.

Test acc. 0.87
Inflection acc. (Top-1) 0.48
Inflection acc. (Top-2) 0.74
Train # used entries 11891
Test # used entries 1259

Table 10: 4x12 Training results. KL=1.0.

Person Tense Polarity
zc 0.28 0.48 0.71
zq 0.96 0.96 0.98

cbook-0 0.75 0.49 0.53
cbook-1 0.30 0.62 0.86
cbook-2 0.20 0.59 0.53
cbook-3 0.19 0.67 0.69
baseline 0.18 0.48 0.52

Table 11: 4x12 Probing accuracy results.

Test acc. 0.94
Inflection acc. (Top-1) 0.54
Inflection acc. (Top-2) 0.83
Train # used entries 12089
Test # used entries 1270

Table 12: 6x6 Training results. KL=1.0.

Person Tense Polarity
zc 0.26 0.51 0.64
zq 0.98 0.95 0.83

cbook-0 0.50 0.50 0.55
cbook-1 0.20 0.61 0.54
cbook-2 0.20 0.69 0.78
cbook-3 0.19 0.57 0.57
cbook-4 0.65 0.57 0.55
cbook-5 0.19 0.57 0.53
baseline 0.18 0.48 0.52

Table 13: 6x6 Probing accuracy results.

Test acc. 0.99
Inflection acc. (Top-1) 0.72
Inflection acc. (Top-2) 0.92
Train # used entries 23104
Test # used entries 1291

Table 14: 6x8 Training results. KL=0.5.

Person Tense Polarity
zc 0.25 0.51 0.64
zq 0.99 0.95 0.87

cbook-0 0.85 0.51 0.52
cbook-1 0.18 0.48 0.56
cbook-2 0.20 0.90 0.53
cbook-3 0.33 0.54 0.63
cbook-4 0.18 0.50 0.65
cbook-5 0.19 0.50 0.85
baseline 0.18 0.48 0.52

Table 15: 6x8 Probing accuracy results.

Table 16: Summary of training and probing results. We present the best performances of various configurations with
KL values of 0.2, 0.5, and 1.0. Since models employing 12-codebooks exhibit poor performance in both inflection
and probing tasks; we exclude them from our analysis.
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Test acc. 0.99
Inflection acc. (Top-1) 0.82
Inflection acc. (Top-2) 0.95
Train # used entries 31197
Test # used entries 1327

Table 17: 6x12 Training results. KL=0.5.

Person Tense Polarity
zc 0.30 0.51 0.74
zq 0.99 0.95 0.91

cbook-0 0.20 0.78 0.68
cbook-1 0.20 0.55 0.67
cbook-2 0.19 0.68 0.74
cbook-3 0.18 0.49 0.59
cbook-4 0.67 0.62 0.54
cbook-5 0.68 0.52 0.66
baseline 0.18 0.48 0.52

Table 18: 6x12 Probing accuracy results.

Test acc. 0.99
Inflection acc. (Top-1) 0.87
Inflection acc. (Top-2) 0.96
Train # used entries 27073
Test # used entries 1312

Table 19: 8x6 Training results. KL=0.5.

Person Tense Polarity
zc 0.26 0.49 0.65
zq 0.98 0.86 0.95

cbook-0 0.19 0.48 0.53
cbook-1 0.84 0.49 0.54
cbook-2 0.68 0.49 0.53
cbook-3 0.18 0.49 0.57
cbook-4 0.20 0.60 0.59
cbook-5 0.18 0.50 0.71
cbook-6 0.19 0.65 0.89
cbook-7 0.27 0.62 0.54
baseline 0.18 0.48 0.52

Table 20: 8x6 Probing accuracy results.

Test acc. 0.99
Inflection acc. (Top-1) 0.84
Inflection acc. (Top-2) 0.95
Train # used entries 29251
Test # used entries 1277

Table 21: 8x8 Training results. KL=0.5.

Person Tense Polarity
zc 0.28 0.53 0.71
zq 0.99 0.99 0.99

cbook-0 0.20 0.66 0.54
cbook-1 0.36 0.50 0.60
cbook-2 0.19 0.58 0.67
cbook-3 0.19 0.68 0.82
cbook-4 0.19 0.49 0.57
cbook-5 0.64 0.49 0.53
cbook-6 0.90 0.66 0.53
cbook-7 0.20 0.58 0.96
baseline 0.18 0.48 0.52

Table 22: 8x8 Probing accuracy results.

Table 23: Summary of training and probing results. We present the best performances of various configurations with
KL values of 0.2, 0.5, and 1.0. Since models employing 12-codebooks exhibit poor performance in both inflection
and probing tasks; we exclude them from our analysis.
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C 5 Different random runs with 4x8 codebooks934

Test acc. 0.98
Inflection acc. (Top-1) 0.73
Inflection acc. (Top-2) 0.82
Train # used entries 2656
Test # used entries 811

Table 24: RUN 1: Training results.

Person Tense Polarity
zc 0.25 0.50 0.75
zq 0.99 0.90 0.65

cbook-0 0.20 0.53 0.55
cbook-1 0.49 0.50 0.54
cbook-2 0.21 0.81 0.63
cbook-3 0.58 0.49 0.56
baseline 0.18 0.48 0.52

Table 25: RUN 1 Probing accuracy results.

Test acc. 0.95
Inflection acc. (Top-1) 0.39
Inflection acc. (Top-2) 0.59
Train # used entries 3085
Test # used entries 933

Table 26: RUN 2: Training results.

Person Tense Polarity
zc 0.29 0.50 0.69
zq 0.98 0.88 0.81

cbook-0 0.19 0.64 0.51
cbook-1 0.90 0.55 0.52
cbook-2 0.18 0.49 0.54
cbook-3 0.20 0.62 0.74
baseline 0.18 0.48 0.52

Table 27: RUN 2 Probing accuracy results.

Test acc. 0.98
Inflection acc. (Top-1) 0.94
Inflection acc. (Top-2) 0.98
Train # used entries 2621
Test # used entries 779

Table 28: RUN3: Training results.

Person Tense Polarity
zc 0.25 0.48 0.63
zq 0.99 0.98 0.86

cbook-0 0.98 0.51 0.52
cbook-1 0.20 0.88 0.53
cbook-2 0.20 0.55 0.74
cbook-3 0.18 0.50 0.72
baseline 0.18 0.48 0.52

Table 29: RUN 3 Probing accuracy results.

Test acc. 0.95
Inflection acc. (Top-1) 0.74
Inflection acc. (Top-2) 0.93
Train # used entries 2624
Test # used entries 921

Table 30: RUN 4: Training results.

Person Tense Polarity
zc 0.27 0.54 0.68
zq 0.92 0.88 0.83

cbook-0 0.21 0.72 0.79
cbook-1 0.30 0.50 0.50
cbook-2 0.45 0.54 0.56
cbook-3 0.50 0.48 0.62
baseline 0.18 0.48 0.52

Table 31: RUN 4 Probing accuracy results.

Test acc. 0.98
Inflection acc. (Top-1) 0.96
Inflection acc. (Top-2) 0.97
Train # used entries 2478
Test # used entries 736

Table 32: RUN 5: Training results.

Person Tense Polarity
zc 0.25 0.49 0.67
zq 0.95 0.96 0.90

cbook-0 0.59 0.49 0.54
cbook-1 0.33 0.52 0.78
cbook-2 0.35 0.64 0.56
cbook-3 0.18 0.58 0.70
baseline 0.18 0.48 0.52

Table 33: RUN 5 Probing accuracy results.
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D Related Model: MSVAE 935

We experiment with 4,6 and 8 MLP classifiers, each designed with 8 classes for every morphological 936

feature. Additionally, we adjust the KL ratio to 1.0 to encourage the model to use discrete vectors from the 937

classifiers. We observe that the model uses a small subset of classes for the test set, (which originally had 938

616 unique feature sets) suggesting that it exclusively relies on the continuous vector and does not make 939

use of the discrete vectors from the classifiers. Consequently, the model fails to differentiate the lemma 940

via the continuous part and the suffix-related morphological features via the classifiers. This results in 941

inconsistencies in sampling as seen in Table 36, generating different suffixations even when the same 942

morphological classes are given as input for the word. 943

Setting Copy acc. # Used Classes

4x8 0.94 53
6x8 0.96 54
8x8 0.96 60

Table 34: Training results of MSVAE with various number of classifiers.

Predicted
classes Words

2;6;6;6

bıkıyor olacaktım
iyileşiyor olmayacaklar mıymış
gizlenmez misiniz
açılmalı mıydınız

5;4;1;1

kaynaştırılıyor olmalı mıyım
hava atacak olacak mıymışsın
güzelleştiriyor olacakmışsınız
öğretiyor olmayacaklar mıydı

7;6;1;1

gülünçleşir olmayacakmışsın
buharlaşıyor olacak mısınız
fındık kıracak olacaklarmış
ilerletiyor olmayacaklar mı

Table 35: Model’s classifications with 4x8 MLPs. The model fails to use combinations specific to the same suffix.

sample 1 otostop çekermişsin
sample 2 darılmalı mıydık
sample 3 üzmemişlermiş
sample 4 sünüyor olmaz mıydı
sample 5 havlu atıyor muydunuz

Table 36: Sampled words with 4x8 MLPs. Continous vectors are sampled from a Gaussian distribution, and a
specific class combination is selected from the classifiers. We do not observe consistent patterns in suffix usage.
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E Importance of Direction944

Problem (1): Suffix information is not entirely encoded in the discrete part, but partially encoded in the945

continuous part with lemma. An example of this case occurs with a model with 4 codebooks and 8 entries.946

The model only achieves a 12% accuracy in top-1 match and 18% accuracy in top-2 match for inflection.947

This is confirmed by sampled words as in Table 37 and probing experiments as seen in Table 38.948

sample 1 bulamadı mı
sample 2 dalamadı mı
sample 3 coşmadım mı
sample 4 kopmadım
sample 5 boyamadım

Table 37: Sampled words with 4x8 codebooks. Continuous vectors are sampled from a Gaussian distribution, and a
specific entry combination is selected from the codebooks. The model exhibits a slight inconsistency with respect to
suffix.

Person Tense Polarity
zc 0.67 0.70 0.88
zq 0.97 0.63 0.72

cbook-0 0.55 0.64 0.53
cbook-1 0.20 0.50 0.70
cbook-2 0.19 0.59 0.67
cbook-3 0.36 0.49 0.54
baseline 0.18 0.48 0.52

Table 38: Probing results for the model with 4-codebooks x 8-entries with no inductive bias. Suffix-related
information is encoded into a continuous vector, which is expected to solely represent the lemma.

Problem (3): Lemma information is entirely encoded in the discrete part, while suffix information is949

entirely encoded in the continuous part. An example of this case occurs with a model with 6 codebooks950

and 6 entries. The model achieves a 3% accuracy in top-1 match and 9% accuracy in top-2 match for951

inflection. This is confirmed by sampled words as in Table 39 and probing experiments as seen in Table952

40.953

sample 1 canlandırılmış mıymış
sample 2 canlandırtılmış mıydık
sample 3 canlandırtılmışız
sample 4 canlandırılmıştım
sample 5 canlandırılmış olmamalıyız

Table 39: Sampled words with 6x6 codebooks. Continuous vectors are sampled from a Gaussian distribution, and a
specific entry combination is selected from the codebooks. The model uses the same lemma but alters the suffixation,
which is expected to be the opposite.

Person Tense Polarity
zc 0.99 0.83 0.97
zq 0.30 0.63 0.50

cbook-0 0.30 0.49 0.54
cbook-1 0.20 0.48 0.56
cbook-2 0.20 0.48 0.65
cbook-3 0.20 0.49 0.53
cbook-4 0.19 0.61 0.60
cbook-5 0.20 0.48 0.54
baseline 0.18 0.48 0.52

Table 40: Probing results for the model with 6-codebooks x 6-entries with no inductive bias. Suffix-related
information is encoded into a continuous vector, which is expected to solely represent the lemma.
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