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Abstract

We use pseudo-random number generators (PRNGs) as a controlled benchmark
to probe Transformers’ ability to uncover hidden recurrence. Focusing on Per-
muted Congruential Generators (PCGs), which combine linear recurrences and
bit-wise shift, XOR, rotation and truncation operations. We show that Trans-
formers can successfully perform in-context prediction on unseen sequences from
diverse PCG variants, in tasks that are beyond published classical attacks. Sur-
prisingly, we find even when the output is truncated to a single bit, it can be
reliably predicted by the model. We analyze embedding layers and uncover a novel
clustering phenomenon: the model spontaneously groups the integer inputs into
bitwise rotationally-invariant clusters, revealing how the model processes the input
sequences.

1 Introduction

Recent works have investigated how Transformers learn modular arithmetic tasks, uncovering phenom-
ena such as grokking, structured internal representations, and interpretable attention patterns (Power
et al.| [2022]],|Gromov|[2023]], Zhong et al.|[2023]], Nanda et al.|[2023]], Doshi et al.| [2024]], (Charton
and Kempe|[2024]]). We consider the task of next-element prediction in recurrence-based pseudo-
random number sequences, with a focus on Permuted Congruential Generators (PCGs). These
generators are of practical importance, as they serve as the default PRNG in NumPy. PCG generates
outputs based on the recurrence:

s; = (as;—1 + ¢) mod m, z; = f(si), (D

where s; is the hidden linear congruential state at step ¢, and z; is the output. The parameters a, ¢, and
m denote the multiplier, increment, and modulus, respectively, and are fixed for a given generator. The
function f consists of a series of shifts, XORs, rotations and truncations to improve statistical quality
and increase prediction difficulty. Transformers can learn linear congruential generators (LCGs) (Tao
et al.|[2025]]), but PCGs are far tougher: they pass BigCrush at only 49-bit state (m=2%%) or less,
whereas LCGs require 88 bits (m=2%%) (O’Neill| [2014], L’Ecuyer and Simard| [2007]).

2 Experimental Settings

Here we describe the generator variants, the datasets for training and evaluation, and the model
architecture and training setups.
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Figure 1: Depiction of PCG protocols at m = 26 with 8-bit output. Left: XSLRR-16/8. (a) State s;.
The top 3 bits are control bits. (b) s; is right-shifted by 8 bits. (c) The shifted state is XORed with
s;. (d) The lower 8 bits are retained and rotated right by the value of the control bits to produce the
output. Middle: XSHRR-16/8. (e) State s;, with the top 3 bits as control; the lowest few bits are
unused. (f) s; is right-shifted by 5 bits. (g) The shifted state is XORed with s;. (h) The upper 8 bits
immediately following the control bits are retained and rotated right by the control bits to produce the
output. Right: XSHRS-16/8. (i) State s;, with the top 2 bits as control bits. (j) s; is right-shifted
by 3 bits. (k) The shifted state is XORed with s;. (1) Starting from after the control bits, the output
window is right-shifted by the control bits, producing the output.

2.1 PCG Variants

PCGs come in different varieties, depending on the precise set of shifts, XORs, rotations and
truncations, encapsulated in the function f in Eq. When a and ¢ are chosen according to the
Hull-Dobell theorem (Hull and Dobell [[1962]), the state sequence s; in Eq. E] achieves the maximal
period m. For power-of-two moduli, however, the bits of s; exhibit position-dependent periodicities:
the k-th least significant bit cycles with period 2%, far shorter than the full state period m (Knuth!
[1997]]). This makes the low-order bits especially weak, revealing structural patterns in the generator.
PCG permutations mitigate this weakness by redistributing high-period structure across all bit
positions using operations like XOR, shifts, and rotations. We consider the following variants:

* TLCG (Truncated LCG): Outputs only the high bits of the state. Part of the information of
the internal state is hidden by the truncation.

* XSLRR (XORShift Low with Random Rotation): The state is right-shifted by half the bit
length of m and XORed with the original state, improving the quality of the lower half bits.
This lower half is retained and rotated by an amount determined by the control bits.

* XSHRR (XORShift High with Random Rotation): Applies a right-shift smaller than XSLRR,
then XORs with the original state. The higher bits are retained and rotated by an amount
determined by control bits.

* XSHRS (XORShift High with Random Shift): Applies a smaller right-shift than XSLRR
and XSHRR, followed by an XOR with the original state. The output window begins
immediately after the control bits and is shifted right by an offset determined by those bits.

The permutations are illustrated in Figure|l| Bits are labeled from most significant (left, bit 16) to
least significant (right, bit 1). Top row shows the internal state s;, where the k-th bit in s; has period
2% The lower three rows show the function f. Bits are split into high and low, with the low bits
enhanced by the higher bits during the permutation; cross-hatched overlaps mark areas enhanced by
XOR. The final rotation and shift in the permutation are controlled by the top bits of the state. This
ensures that all bits in the output inherit the full period of the highest bit. A full description of the
initial-shift calculation and pseudo-code for each generator is given in Appendix [A] In practice, PCGs
typically adopt a power-of-two modulus m = 25 $*¢ enguring that the control bits achieve maximal
period. We denote generators as generator type-state size/output size; for example, XSLRR-16/8
refers to an XSLRR generator with a 16-bit state and an 8-bit output.

2.2 Datasets

We consider two settings:

* Separate: Training and test sets each contain sequences from the output of a single generator
type, with no mixing between types.

* Combined: Training and test sets contain sequences from all four generator types.
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Figure 2: (a) Test accuracy at the 512th token during training on combined datasets of diverse
PRNG variants. (b) Accuracy during training on XSLRR-16/8 dataset. “512th” refers to the model’s
prediction accuracy at the 512-th token. “Avg” denotes accuracy averaged across all token positions.
(c) Final test accuracy by position index for combined training. (d) Final test accuracy when trained
separately on each generator type, where all variants achieve near 100% accuracy with only 128
in-context elements.

In both cases, test sequences are generated from a, ¢ values not seen during training. The combined
setting is more challenging, as the model must simultaneously learn and distinguish multiple genera-
tion rules, effectively forming a multi-task problem across PRNG variants. The separate setting, by
contrast, isolates each variant, simplifying analysis. For scaling studies on dataset size, model size,
and modulus, we focus on the XSLRR variant. Both settings go beyond the assumptions of classical
analytical attacks on PCGs, which typically assume knowledge of a, m, and permutation [Bouillaguet
et al.| 2020], and exploit the recurrence directly. For a given modulus m, we select a and ¢ according
to the Hull-Dobell Theorem to ensure maximal period.

2.3 Model and Training Setup

We train Transformers to autoregressively predict the next number in sequences generated by PRNGs.
Given an input xg, x1, ..., 21 of length L, the model outputs predictions &1, Zs, ..., 2. We use
a GPT-style decoder-only Transformer (Radford et al.|[2019]) with Rotary Positional Embeddings
(RoPE) (Su et al|[2023]]). Models use nayers = 4 layers, npeads = 8 attention heads, and an embedding
dimension of diedel = 1024. Training details are provided in Appendix [B]

3 Transformers can in-context learn PCGs

We find that Transformers achieve reliable in-context prediction across diverse PCG variants. As
shown in Figure 2[a,c), a single model trained on the combined dataset reaches over 90% test
accuracy after having seen 512 in-context elements of a test sequence, across all PCG variants. For
all generators we fix the generator state to 16 bits and the output to 8 bits. For XSLRR and XSHRR
we evaluate both 2- and 3-control-bit (cb) configurations, while for XSHRS the maximum feasible
number of control bits is 2. Transformers can simultaneously learn multiple recurrence rules, whereas
classical cracking algorithms are tailored to a single generator. When trained on separate generator
datasets (Figure[2]b,d), models converge faster and achieve near-perfect accuracy after having seen
128 in-context elements of the test sequence. For both settings, test sets are generated from unseen a
and c values, demonstrating generalization to unseen parameters. This is beyond current classical
attacks, which require prior knowledge of both m and a.

Accuracy—position curves (Figure [2k,d) exhibit step-like improvements at powers of two. This is also
observed in LCGs [Tao et al.| 2025], where models exploit bit periodicity and show sudden accuracy
gains once low-order bits complete their cycle in context. The persistence of this phenomenon in
PCGs shows that, despite added permutations, significant residual bit-wise patterns appear at certain
positions in the sequence that the model can exploit, although we have not studied their precise nature
here. As shown in Appendix D} the model’s attention patterns reflect this periodic structure.

4 What Limits Prediction Performance?

4.1 Effect of Truncations

To quantify the difficulty introduced by truncation, we study truncated LCGs where the low bits of
the internal state are hidden and only the top k bits are retained as output. For m = 216, this yields
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Figure 3: Left: Prediction accuracy at the 64th, 128th, and 256th sequence positions as a function of
bits kept (k) in truncated LCGs with m = 26, Accuracy improves with larger k and longer context,
remaining far above the random baseline 1/2* even under severe truncation. Middle: For XSLRR,
accuracy improves stepwise as more context is observed, with reliable predictions emerging once the
context length reaches exactly 0.5,/m elements. Right: Context length required to exceed 90% test
accuracy scales as 1/m with modulus m.

a 2'6=%_to-1 mapping from states to outputs, so smaller k increases ambiguity. To examine this
effect, we train separate models for each k (Figure 3] left). Despite the severe information loss, the
models are surprisingly robust to truncation. Even with £ = 1, the model attains 95% accuracy at
the 256th element, far above the random-guessing baseline of 1/2*. At earlier positions (e.g., the
64th element), performance is lower under heavy truncation but improves quickly as & increases.
These results indicate that Transformers can extract patterns even from heavily truncated outputs,
with longer contexts compensating for reduced information.

4.2 Effect of Generator Modulus:

Practical PCGs, such as the XSLRR-128/64 generator used as NumPy’s default generator, operate
at a scale far beyond the 16-bit state settings. To bridge this gap, we analyze how the modulus m
affects prediction performance. We evaluate moduli ranging from m = 2'4 to m = 222 and observe
a clear scaling law: the number of sequence elements required to reach at least 90% test accuracy
grows as %\/ﬁ This relationship is shown in Figure [3| (middle, right) and indicates that context
length becomes the primary bottleneck as the modulus increases. Compared to LCGs, where the
requirement grows as m%-2® (Tao et al.|[2025]), PCGs demand substantially longer contexts, reflecting
the information obscuration introduced by truncation and permutations. At large moduli, we use
pretrained initialization combined with curriculum training.

S Geometric and Algorithmic Structure in Model Representations

5.1 Token Embeddings

To understand how Transformers model PCG patterns, we analyze the token embedding layer of a
model trained on XSLRR-16/8. We apply principal component analysis (PCA) to the embedding
matrix and visualize the first two components in Figure[d] Representing tokens in binary form reveals
that the learned embeddings encode a rotation-invariant structure, reflecting the symmetries of the
generator. To formalize the structure, we use zero-run notation Z(ay,as, . .., ay), where each a;
denotes the length of a contiguous run of 0s between 1s. The zero-run patterns and representative
binary tokens for each cluster are shown in Figure d[Right), with the complete listing provided in
Table[T] We find that the first principal component (PC1) perfectly correlates the total number of zero
bits Ny in a token, while the second (PC2) perfectly correlates with the number of zero runs. Vertical
bands in FigureE]correspond to constant Ny (e.g., clusters 6, 12, 16, and 18 all have Ny = 4), while
horizontal groupings reflect constant run counts (e.g., clusters 10-14 all contain two zero runs). This
reveals that the model captures algorithmic structure in the token space: it organizes embeddings
according to rotation-invariant features such as zero count and zero-run decomposition, implicitly
mirroring the generator’s permutation behavior.
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Figure 5: Cosine similarity of representations across different PRNG variants for a 4-layer Trans-
former trained on the combined dataset. Numbers in parentheses indicate the number of control bits.
Left: At the 64th token position, third-layer MLP outputs already separate truncated LCGs from
PCG variants, though PCG types remain highly overlapping. Middle: At the 128th token position,
the same MLP outputs cleanly separate all PCG variants. Variants with the same permutation type
but different control-bit counts are more similar to each other than to other types. Right: Generator
separation across the network for selected token positions (64th, 128th, 256th, 512th) defined as
1 — mean off-diagonal cosine similarity. Higher values indicate stronger generator separation.

5.2 Generator Separation

When trained on combined datasets, the model develops a permutation-agnostic grouping of to-
kens(Figure[6). This raises the question of how the model is able to predict different PRNG variants
at test time. Despite receiving no explicit supervision about generator identity, the model’s internal
representations spontaneously distinguish PRNG variants. In a 4-layer model, this structure emerges
most clearly in the MLP output of the third Transformer block: by the 64th token position, the
model already distinguishes truncated LCGs from PCG variants, and by the 128th token, it cleanly
differentiates between all PCG variants (see Figure 5] left and middle). To quantify this effect across
layers, we plot the average off-diagonal cosine dissimilarity between generators at each position
(Figure [5right). Separation is weakest in the embeddings and first layer, rising sharply through the
middle MLP and attention layers, suggesting that model first forms a shared representation of the
underlying recurrence and then, in deeper layers, refines generator-specific distinctions.
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A.1 Hull-Dobell Theorem.

For an LCG
s; =as;—1 +c¢ (mod m), 2)
the sequence {s;} has full period m if and only if the following three conditions hold:

1. c and m are relatively prime,
2. a — 11is divisible by all prime factors of m,

3. if m is divisible by 4, then a — 1 is also divisible by 4.

A.2 Period of Low-Order Bits in LCGs
Consider the LCG

Ti1 = (azy + ¢) mod m, 3)

with m = 2K, ¢ coprime to m, and a — 1 divisible by 4, so that {x;} has full period m by the
Hull-Dobell theorem. Let

Zp ) = o mod oF )
denote the lowest & bits of ;. Then
Ziv1k = (azep + ) mod 2%, 5)

s0 {21 } itself is an LCG with modulus 2*. Since c is coprime to 2¥ and a — 1 is divisible by 4, this

reduced generator achieves full period 2¥. Thus, the k-th lowest bit of an LCG with power-of-two
modulus cycles with period exactly 2*, much shorter than the full state period m.

A.3 PRNG Variants.

We consider three widely used PCG permutations, each defined for a 2n-bit state with ¢b control bits
and an n-bit output. The internal state evolves as:

s =as;_1+c (modm), m=2" 6)
* XSLRR (Xorshift Low, Random Rotation). First apply a right shift of n bits and XOR

with the original state, folding the high and low halves together. The low n bits of the result
are then retained and rotated right by the control value to produce the output. Formally:

control bits value: v = s; > (2n — cb), @)
state XOR shifted state: s, = s; @ (s; > n), 8
n-bit output: x; = rot, (s, mod 2"), 9

where s; > n denotes right shift s; by n bits and rot,, denotes an n-bit right rotation by v.

* XSH-RR (Xorshift High, Random Rotation). First apply a right shift by | (n + cb)/2]
bits and XOR the result with the original state. The n bits immediately following the control
bits are then retained and rotated right by the control value to produce the output. Formally:

control bits value: v = s; > (2n — cb), (10)
state XOR shifted state: s, = s; @ (s; > |(n + ¢b)/2]), (11)
n-bit output: z; = rot, ((s; > (n — ¢b)) mod 2") (12)

+ XSH-RS (Xorshift High, Random Shift). First apply a right shift by (n — cb — 2 + 1)
bits and XOR the result with the original state. The n-bit output window begins immediately
after the control bits, but its starting position is shifted further right by the control value v,
selecting a different n-bit segment of the state. Formally:

control bits value: v = s; > (2n — cb), (13)
state XOR shifted state: s, = s; © (s; > (n — b — 2% + 1)), (14)
n-bit output: x; = (s} > (n + v)) mod 2". (15)



We also consider truncated LCGs, where the output is formed by retaining only the top & bits of the
internal state s;, hiding the lower-order bits. This preserves the recurrence structure and full period of
the LCG while exposing only partial information about the state. Formally:

x; = 5, > (2n — k) mod 2*, (16)

B Training Details

Combined Dataset (Figure [Za,c). For each generator type, we select n,=n.=1024 training
multipliers a and increments ¢ using the Hull-Dobell theorem. One sequence per (a, c) pair is
generated with its initial state xy sampled randomly using NumPy’s RNG. All sequences from all
generator types are merged into a single dataset and reshuffled at the start of each epoch to randomize
the sampling order.

We train a Transformer with depth njayers = 4, Ttheads = 8 attention heads, and dpoge1=1024 for 100k
steps with batch size 512 (about 8 epochs). The learning rate is 0.0001 with weight decay 1.0, using
5000 warm up steps (linear) followed by cosine decay. Training is performed on two NVIDIA A100
GPUs and takes roughly 8 hours.

Separate Datasets (Figure[2b,d). We follow the same procedure for selecting a and ¢ but train a
separate model on each generator type individually. Each model is trained for 50k steps with batch
size 512 (roughly 4 hours on two A100 GPUs). We perform a grid search over learning rate and
weight decay for each generator to ensure fair comparison across configurations.

Truncated LCG (Figureleft). We evaluate truncated LCGs with m = 2'6, varying the number
of retained bits k£ from 1 to 16, which determines the effective output range. Each integer is tokenized
into two base-256 digits, except for special cases where a smaller base performed better: for k=7 we
use base-128 with one digit, and for k=9 we use base-64 because training with base-256 consistently
yielded worse performance. This tokenization dramatically reduces the vocabulary size (e.g., k=16
would otherwise require 65,536 symbols) and empirically improves convergence. Because each
number is split into two tokens, the context length doubles, and a prediction is counted correct only
when both digits are predicted correctly. For each configuration, we train for 50k steps with batch
size 512, taking roughly four hours on two NVIDIA H100 GPUs for two-digit experiments and about
two hours for one-digit experiments.

C Token Embeddings

C.1 XSLRR token clusters

Table [T] presents the detailed token clusters for XSLRR-16/8, listing each cluster’s canonical binary
pattern, its rotationally equivalent variants, and the corresponding tokens assigned to each group.

C.2 Combined token

Figure[6|shows the token embeddings of a model trained on combined datasets, projected onto the first
two principal components. Unlike models trained on XSLRR, this model develops a more general,
permutation-agnostic grouping of tokens. The embeddings form two broad bands corresponding
to even and odd tokens. Along PC2, tokens are roughly ordered from top to bottom by increasing
numbers of 1-bits.

D Attention Pattern

To analyze how attention spans evolve across the network, Figure[7|shows the distribution of token
distances for the top-8 most-attended keys per query, averaged over all positions and heads in each
layer (Distances of ¢ — k = 0 are excluded because self-attention peaks there and would dominate the
scale). In the first layer, attention is dominated by long-range periodic connections, with strong peaks



Cluster Pattern Rotational Equivalent | Tokens
1 Z7() all bits are 1 11111111 255
2 Z(*) all bits are 0 00000000 0
3 Z(1) only 1 bitis 0 01111111 127, 191, 223, 239, 247, 251, 253, 254
1 Z(2) 2 consecutive 0 00111111 63, 126, 159, 207, 231, 243, 249, 252
5 Z3) 00011111 31, 62, 124, 143, 199, 227, 241, 248
6 V0) 00001111 15, 30, 60, 120, 135, 195, 225, 240
7 Z(5) 00000111 7,14, 28, 56, 112, 131, 193, 224
3 7(6) 00000011 3,6, 12, 24, 48,96, 129, 192
9 7(7) 00000001 1,2,4,8, 16, 32, 64, 128
01011111 95, 125, 175, 190, 215, 235, 245, 250
10 7(1,1) 2 separated 0 01101111 11T, 123, 183, 189, 219, 222, 237, 246
01110111 119, 187, 221, 238
00101111 47,94, 121, 151, 188, 203, 229, 242
. 00110111 55, 110, 115, 155, 185, 205, 220, 230
11 Z(2,1) 2 consecutive 0 and 1 separated 0 00111011 59,703 118,157 179. 206 217. 236
00111101 61,79, 122, 158, 167, 211, 233, 244
00010111 23,46, 92, 113, 139, 184, 197, 226
00011011 27, 54,99, 108, 141, 177, 198, 216
12 7(3,1) or Z(2,2) 00011101 29,58, 71, 116, 142, 163, 209, 232
00100111 39,57, 78, 114, 147, 156, 201, 228
00110011 51, 102, 153, 204
00001011 11, 22, 44, 88, 97, 133, 176, 194
00001101 13, 26, 52, 67, 104, 134, 161, 208
13 24 1orZ(3.2) 00010011 10,38, 49,76, 98, 137, 152, 196
00011001 25, 35, 50, 70, 100, 140, 145, 200
00000101 5, 10, 20, 40, 65, 80, 130, 160
14 7(5,1) or Z(4,2) or Z(3,3) 00001001 9,18, 33, 36, 66, 72, 132, 144
00010001 17,34, 68, 136
s ZULD 01010111 87,93, 117, 171, 174, 186, 213, 234
o 01011011 91, 107, 109, 173, 181, 182, 214, 218
00101011 43, 86, 89, 101, 149, 172, 178, 202
16 Z2,1,1) 00101101 45,75, 90, 105, 150, 165, 180, 210
00110101 53,77, 83, 106, 154, 166, 169, 212
00010101 21,42, 69, 81, 84, 138, 162, 168
17 231, orZ(2.2.1) 00100101 37.41,73. 74, 82, 146, 143, 163
18 Z(LLLT) 01010101 85, 170
Table 1: XSLRR-16/8 Model Token Clusters with Rotation-Based Structures

Token Embedding Clusters (PC1 vs PC2)

(K=12, Silhouette Score=

0.7311)

0.31

0.14 5

0.01 Z

PC2 (0.039)

-0.11

—0.21

-0.3

Odd 1

.
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Figure 6: When trained on combined datasets, the model develops a more general grouping of tokens.
The visualization shows token embeddings projected onto the first two principal components.

at powers of two (64, 128, 256), revealing that the model has discovered the underlying bit-periodicity
of the generators. By the later layers, attention shifts toward shorter token distances, indicating that
prediction increasingly relies on local context once the global recurrence has been inferred.
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Figure 7: Token-distance distribution of the top-8 attended keys at each Transformer layer for a model
trained on the combined dataset.
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