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Abstract

We consider the task of identifying the causal par-
ents of a target variable among a set of candidates
from observational data. Our main assumption is
that the candidate variables are observed in dif-
ferent environments which may, under certain as-
sumptions, be regarded as interventions on the ob-
served system. We assume a linear relationship
between target and candidates, which can be differ-
ent in each environment with the only restriction
that the causal structure is invariant across envi-
ronments. Within our proposed setting we provide
sufficient conditions for identifiability of the causal
parents and introduce a practical method called
L-ICP (Localized Invariant Causal Prediction),
which is based on a hypothesis test for parent iden-
tification using a ratio of minimum and maximum
statistics. We then show in a simplified setting that
the statistical power of L-ICP converges exponen-
tially fast in the sample size, and finally we analyze
the behavior of L-ICP experimentally in more gen-
eral settings.

1 INTRODUCTION

We consider the problem of identifying the causal parents of
a target variable among a set of candidate variables, based
only on observational data. As usual, causal inference and
learning from observational data necessarily relies on as-
sumptions. The main assumption used in this work is that
data is collected in different environmental scenarios. An
emblematic example is that of machine diagnostics, where
we are monitoring several connected components of the
machine. Different environments correspond, for example,
to machines of the same model, but operating in different
locations, different settings of a machine, or data collected
in different points in time. If the system behaves differently

across environments we talk about heterogeneous environ-
ments, and these can then be interpreted as accidental in-
terventions on the system. The invariant causal prediction
(ICP) principle, pioneered by Peters et al. [2016], is a par-
ticular way of using heterogeneous environments for causal
discovery. It is based on the idea that the performance of
any prediction model for the target variable should be invari-
ant under interventions on the covariates, if and only if all
covariates within the model are causal parents of the target.
We extend upon that work by relaxing Peters et al. [2016]
global linearity with a local linearity assumption, meaning
that each environment is equipped with its own linear model.
Relaxing the global model to local models carries a couple
of interesting implications that we address in this paper. In
particular, local models extend the scope of what might be
considered an (accidental) intervention. While heterogene-
ity, as viewed in Peters et al. [2016], is always introduced by
interventions on the covariate distributions, heterogeneous
local models can be seen as informative interventions on the
mechanisms within the system.

Consider, for example, the task of identifying key factors
that influence fluctuations in stock prices and market volatil-
ity; this highlights the relevance of our extension. Within our
framework, we first identify key times when important leg-
islation concerning the stock market was enacted. We then
choose our environments as the time intervals between these
legislative actions. One may assume that a legislation inter-
venes on the distributions of the important factors, but also
on the mechanism between those factors and stock prices/
market volatility. In our setting both types of (accidental)
interventions are allowed and useful for causal discovery.

The paper is organized as follows: Section 2 contextualizes
our contributions, positioning them relative to the related
work. Section 3 formally introduces the setting, assumptions
and our inference goals. In addition, it features further con-
crete examples showcasing the meaningfulness of the mod-
eling assumptions. Section 4 introduces a meta-approach
and characterizes sufficient conditions under which this ap-
proach can identify the causal parents of a target variable.
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Driven by that knowledge Section 5 introduces L-ICP, a
practical approach to detect causal parents based on obser-
vational data. This approach inherits many of the properties
of the idealized meta-procedure, and we show in a simpli-
fied setting that the power of L-ICP converges exponentially
fast, in the sample size, towards one. Section 6 numerically
illustrates the performance of L-ICP, and we conclude the
paper in Section 7 with a discussion and an outlook on future
work.

2 RELATED WORK

The idea of relying on heterogeneous environments for
causal discovery is not new, and was instrumental for the
work in Peters et al. [2016]. This setup was also extended to
sequential data in Pfister et al. [2019], while Heinze-Deml
et al. [2017] investigate non-linear models by using condi-
tional independence tests. Relaxations of the global linearity
assumption towards local models have been also considered:
Christiansen and Peters [2020] and Zhou et al. [2022] as-
sume that the local structural parameters, i.e. the parameters
of the assumed linear relationship between target and its
parents, are related through a common (unobserved) vari-
able. Huang et al. [2019, 2020] consider a temporal setting,
where the local structural parameters change according to
an auto-regressive model. In contrast to these works we
consider a setting where the structural parameters can be
radically different for the various environments.

The following works aggregate the information from dif-
ferent environments, without relying on heterogeneity as-
sumptions, while rather non-Gaussian noise or non-linear
relationship assumptions play a pivotal role: Osman et al.
[2023] propose a method that finds causal structures and de-
tects interventions using a minimum description length score
on the causal factorization, which they define jointly over
the different environments. They assume non-linear relation-
ships, identifiability of the DAG up the Markov equivalence
class and a low noise condition. Chen et al. [2021] assume
a linear structural equation model (SEM), such that at least
in some environments the corresponding DAG is identifi-
able from data. Shimizu [2012] proposes an extension of
LiNGAM [Shimizu et al., 2006] to the multiple environment
case. LiNGAM is a method that can find DAGs under a lin-
earity and non-Gaussianity assumption. Finally, Mooij et al.
[2020] developed the joint causal inference (JCI) frame-
work, where environments (in the paper called contexts)
are directly encoded as part of the structural causal model
(SCM).

3 SETTING

In this work we consider a scenario with two observable
quantities of interest: a target, denoted by Y , and a set of
covariates X := (X1, · · · , XD) for D ∈ N. Our overar-

ching goal is to identify which of the D covariates are the
causal parents of the target Y . We further assume to have
access to E ∈ N different environments and in each envi-
ronment we receive ne observations, so that Y e ∈ Rne

and
Xe ∈ Rne×D are respectively the target and covariate ob-
servations. With Xe

d,i we indicate the entry of Xe in the d-th
row and i-th column, which corresponds to the d-th covari-
ate of observation i. For S ⊆ [D] we write Xe

S ∈ Rne×|S|

to indicate the sub-matrix of Xe with columns given by S.
We assume that for each e ∈ [E] the structural equation of
Y e is given by

Y e := Xeβe + εe, (1)

where εe ∈ Rne

is a zero-mean random perturbation
(specified explicitly below) and βe ∈ RD is the column
vector of structural parameters. In the following βe

d indi-
cates the d-th entry of βe. As we consider the relation-
ship Y e := Xeβe + εe to be a structural causal model
(SCM) in the sense of Pearl [2016], we consider the set
Se,∗ := {d ∈ [D] | βe

d ̸= 0} ⊆ [D] as the true causal
parents of Y e. Correspondingly we define the set of causal
parents of Y as S∗ :=

⋃
e∈[E] S

e,∗. Our inference goal of
finding the causal parents of Y is then equivalent to finding
S∗. It is important to note the vectors βe can be radically
different across environments. The following assumption
formalizes our setting and further specifies the independence
assumptions made:

Assumption 1. Let S∗ ⊆ [D] be defined as above, such
that βe

d = 0 for all d ̸∈ S∗ and e ∈ [E]. There exists a zero
mean distribution F ∗ such that for all e ∈ [E] we have that

Y e = Xeβe + εe with:

εei ∼ F ∗ for all i ∈ [ne] (2)
εei ⊥⊥ εej for all i ̸= j

εei ⊥⊥ Xe
S∗,i for all i ∈ [ne]. (3)

In the above ⊥⊥ indicates statistical independence. We draw
special attention to condition (2), i.e., the assumption that
εei ∼ F ∗ for all e ∈ [E] and i ∈ [ne]. This is arguably the
strongest assumptions in our setting, and might be relaxed
as discussed in Section 7 by allowing the distribution to vary
across environments. It ensures that the noise distribution is
the same in all environments, which is a crucial property we
test for within our methodology. There are many scenarios
where it is nevertheless a very reasonable assumption, e.g.,
in monitoring settings, where it can embody sensing noise -
see example below. We finally highlight that heterogeneity
across environments e ∈ [E] embodies both heterogene-
ity in the distributions of the covariates Xe (as in Peters
et al. [2016]) and the parameters βe. While heterogeneity
plays a central role, we show in Theorem 1 that under mild
conditions parent identification is possible for almost all val-
ues of (βe)e∈[E]. To illustrate the setting we now describe
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two scenarios, that further stress the meaningfulness of the
heterogeneity assumptions.

Finding causal parents of a disease. Assume we want to
find causes for a certain disease with data from different
countries, playing the role of different environments. We
collect data from plausible risk factors for the disease (e.g.,
diet, lifestyle, genetic variations, etc.). Very plausibly risk
factors are heterogeneous across different countries, and
thus provides a scenario in which our setting and the result-
ing methodology are applicable. Next to the heterogeneity
in the risk factors, unobserved factors such as the quality
of the health care may also introduce heterogeneity in the
structural parameters: a negative health outcome, given all
risk factors, is much more likely if the health care is poor.
In that case it becomes necessary to have local models.

Finding causes of a mechanism shift. We are collecting
dynamical data from a machine and observe that a target
variable Y starts to drift, and we want to find the cause
for that. The underlying, unknown, cause is that a certain
component of the machine is degrading over time. This
degradation naturally provides heterogeneous environments,
if we set our environments as different time intervals of the
observations. Note that in this setting (2) is deemed quite
reasonable and might embody sensor measurement noise.

3.1 ADDITIONAL NOTATION

Some further notation we use throughout the paper: A graph
G = ([D], E) is a tuple where indices in [D] represent nodes
and E ⊆ [D]2 represent directed edges between nodes,
with the assumption that (d, d) ̸∈ E for any d ∈ [D]. If
(d1, d2) ∈ E we call d1 a parent of d2 and we call d2 a
child of d1. We call d1 an ancestor of dk and we call dk
a descendant of d1 if there exists a sequence d1, · · · , dk
such that (di, di+1) ∈ E for 1 ≤ i < k. If dk is not a
descendant of d1 we call dk a non-descendant of d1. A node
without any child is called a sink node. Given a node d ∈
[D] we respectively define PA(d), AN(d), DE(d), NDE(d)
as the set of all parents, ancestors, descendants and non-
descendants of d. Furthermore, we use E[·], V[·] and C[·, ·]
respectively as the expectation, variance and covariance
operator. Finally we set (X,Y ) := {(Xe, Y e)}e∈[E].

4 ON THE IDENTIFIABILITY OF
CAUSAL PARENTS

Ultimately, our goal is to identify, based on data, a set
S̃ ⊆ [D] of variables deemed causal parents, that is ideally
identical to S∗. Towards this goal we develop a test-based
methodology ensuring S̃ ⊆ S∗ with high probability. The
methodology works by identifying sets of plausible causal
parents, which are also often called invariant sets (of covari-
ates) in the relevant literature. Roughly speaking, a subset

S ⊆ [D] is plausible if it allows for a data generation model
as described by Assumption 1, when S takes the place of S∗.
The inferred set of causal parents S̃ is then the intersection
of all plausible sets. In the following section we formal-
ize those concepts and show that we can control the false
positive discoveries, so that S̃ ⊆ S∗ with high probability.

4.1 CONTROL OF FALSE POSITIVES

Given a set S ⊆ [D] consider the following null hypothesis:

H̃0,S :


∃ a distribution F and γe ∈ R|S|, s.t.∀e ∈ [E] :

Y e = Xe
Sγ

e + re and ∀i, j ∈ [ne], i ̸= j:
rei ∼ F, rei ⊥⊥ rej , r

e
i ⊥⊥ Xe

S,i .

We note that H̃0,S corresponds to Assumption 1 when S∗

is replaced by S, which in particular implies that under
Assumption 1 H̃0,S∗ is true. However, it is not clear how
to build a practical test based on H̃0,S that is also powerful
against meaningful alternatives. For that reason we move
towards a weaker but more practical formulation. Let

β̃e
S = E[(Xe

S)
tXe

S ]
†E[(Xe

S)
tY e],

where A† denotes the generalized Moore-Penrose inverse of
a matrix A [Penrose, 1955], with the convention that β̃e

∅ = 0.
Formulate the following relaxation of H̃0,S :

H0,S :

{
∃ a distribution F such that for all e ∈ [E]:
Y e = Xe

S β̃
e
S + re and ∀i ∈ [ne] : rei ∼ F .

The following lemma, proven together with all other for-
mal statements in Section A of the supplementary material,
establishes the relation between H0,S and H̃0,S :

Lemma 1. If H̃0,S is true then so is H0,S .

Suppose we have access to a collection of tests correspond-
ing to the above null hypothesis H0,S . Specifically, given the
observations (X,Y ) let ϕS(X,Y ) ∈ {0, 1} be a test func-
tion, such that ϕS(X,Y ) = 1 indicates we reject H0,S . We
know that H̃0,S∗ holds by Assumption 1, and thus Lemma
1 implies H0,S∗ also holds, and we expect that with high
probability ϕS∗(X,Y ) = 0. With this in mind we view all
S for which ϕS(X,Y ) = 0 as a plausible set, and naturally
define the estimator S̃ of S∗ as

S̃ :=
⋂

S:ϕS(X,Y )=0

S. (4)

This definition of the parent estimator S̃ ensures control
over false discoveries:

Proposition 1. Let α ∈ (0, 1). Consider a class of test func-
tions ϕS for all S ⊆ [D] that satisfies P [ϕS∗(X,Y ) = 1 |
H0,S∗ holds] ≤ α. Then we have S̃ ⊆ S∗ with probability
of at least 1− α.
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This result, which is essentially Theorem 1 from Peters
et al. [2016], is a simple consequence of the fact that
P [ϕS∗(X,Y ) = 1 | H0,S∗ holds] ≤ α. Note that for this
result it suffices to guarantee good behavior of the testing
procedure for the true set S∗.

4.2 CONTROL OF FALSE NEGATIVES

Proposition 1 guarantees S̃ ⊆ S∗ with arbitrarily high prob-
ability. In other words, we are guaranteed to not include
non-causal parents with high probability. However, that can
be trivially obtained for the choice S̃ = ∅. Naturally, we
ask under which assumptions one can have a class of tests
that ensure that S̃ = S∗ with high probability as well. The
answer to this question is significantly more intricate, and
depends crucially on how much information is present in the
data. To shed some light on this matter we consider a popu-
lation setting, effectively focusing on scenarios where one
has an arbitrarily large amount of data in each environment.

Specifically, suppose one has access to β̃e
S for any e ∈ [E]

and S ⊆ [D]. Theorem 1 below shows that, within a fairly
general class of structural equation models for the covariates
Xe, the proposed approach can identify S∗, and only in
rather pathological combinations of parameters issues might
arise. The class of structural equation models for which
we can show identifiability is given through the following
assumption:

Assumption 2. To simplify notation, we introduce the index
y := D + 1 and define Xe

y := Y e. We assume that E ≥ 2
and for all e ∈ E it holds that ne > 0. Furthermore for
at least one e ∈ E there exists an acyclic graph G =
([D]∪ y, E) such that for d ∈ [D] the structural equation of
Xe

d has the form

Xe
d := fe

d (X
e
PA(d)) + δed,

where fe
d is a polynomial of finite degree in Xe

y = Y e if
y ∈ PA(d), but otherwise arbitrary. More specifically in
that case fe

d has the form

fe
d (X

e
PA(d)) =

K∑
k=0

(Y e)kgek

(
Xe

PA(d)\y

)
,

where K < ∞ and the functions gek are arbitrary. In the
above δed = (δed,1, · · · , δed,ne) ∼ De

d is a random noise
vector such that

∀ : i ∈ [ne], u ∈ NDE(d) : δed,i ⊥⊥ Xe
u,i (5)

where De
d is a distribution such that ∆e

d,i := V(δed,i) > 0

for all i ∈ [ne]. We define ∆e ∈ (0,∞)D×ne

to be the
matrix with the (d, i)-th entry given by the variance ∆e

d,i.
Finally, we assume that for all e ∈ [E], d ∈ [D] and i ∈ [ne]
the covariate Xe

d,i has finite variance.

Informally speaking the noise terms δed ensure that each
covariate introduces unique information and prevent that
the causal parents Xe

S∗ lie in the column space of any other
subset of variables Xe

S with S∗ ̸⊆ S. The explicit variances
∆e

d,i are needed due to our proof technique, but we highlight
that we do not require ∆e

d,i to be heterogeneous in the en-
vironments. The polynomial dependence on Y e simplifies
our proof, could, however, be replaced by other regularity
assumptions on fe

d . With this in hand we are ready to state
our main identifiability result:

Theorem 1. Let S ⊂ [D] such that S∗ ̸⊆ S and take
any two environments e, v ∈ [E] with e ̸= v, such that
environment e fulfills the data generation mechanism from
Assumption 2 with variances ∆e. Suppose Assumption 1
holds with parameters βe, βv . Then there exists a set M0 ⊂
R|S∗|×|S∗|×(0,∞)D×ne

with Lebesgue measure zero, such
that if

(βv, βe,∆e) ̸∈ M0

it is guaranteed that H0,S is false.

Sketch Proof. We use the polynomial relationships of As-
sumption 2 to show that the variances of the residuals, when
regressing Y e onto the variables from S, are a ratio of poly-
nomials with respect to a distinguished structural parameter
βe
u for u ∈ [D]. The hypothesis H0,S can only be true if the

variances of those residuals are equal in all environments.
As the variances are a ratio of finite polyonimals with re-
spect to βe

u, this equality can only be established for finitely
many choices of βe

u, leading to the null set M0.

Informally the above theorem states that the parent set S∗

can always be identified, with the exception of very specific
(pathological) parameter combinations (βv, βe). An inter-
pretation of this statement is that within our framework it
is possible to identify causal relationships for the vast ma-
jority of (accidental) interventions on the mechanisms. An
interesting consequence is that one can in principle recover
a complete causal graph, and not only the causal parents of
a chosen target. For that we mainly require that the noise
distributions of all covariates are homogeneous, and het-
erogeneity is only introduced through changing structural
parameters. With that, every covariate can take the role of
the target, and all of our assumptions are still fulfilled. In
Section 6.1 we illustrate this by using the proposed method-
ology to recover a causal graph based on data from a non-
linear dynamical system. Viewing small time-intervals as
the environments, the local model can be viewed as a lo-
cal approximation to the system, and the heterogeneity of
this approximation is introduced by the non-linearity of the
system.
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5 PROPOSED APPROACH AND FINITE
SAMPLE RESULTS

Theorem 1 relies on the values β̃e
S , which are not observ-

able, and we thus replace β̃e
S by suitable estimates based

on the observed data. A natural choice is the solution of a
generalized least-squares problem

β̂e
S := ((Xe

S)
TXe

S)
†(Xe

S)
TY e,

where we set β̂e
∅ = 0. Define also the residuals

reS := Y e −Xe
S β̂

e
S .

To make use of our meta-procedure (4) we still need to
define the set of tests ϕS , and to facilitate this we make the
following additional assumption.

Assumption 3. The random noise variables εei are sampled
from a Gaussian distribution with zero mean and unknown
variance σ2

Y . Furthermore, we assume the following inde-
pendencies for all e, v ∈ [E] with e ̸= v

εei ⊥⊥ εvj for all i ∈ [ne], j ∈ [nv]

εei ⊥⊥ εej for all i, j ∈ [ne], i ̸= j.

While this is a strong distributional assumption on the ob-
servation noise, it serves primarily as a driver to propose a
concrete testing methodology. Section 6 examines the ro-
bustness of the methodology to violation of this assumption,
while in Section 7 we discuss possible ways to extend the
methodology towards non-Gaussian noise.

With all the ingredients in hand, we define the following test
statistic:

TS(X,Y )

:=


mine∈[E] ∥reS∥22
maxe∈[E] ∥reS∥22

if ∃e ∈ [E] : ∥reS∥2 > 0

∞ otherwise
.

Under Assumption 3 we know that σ2
Y ∥reS∗∥22 are all chi-

squared distributed (note we are considering S∗), and the
number of degrees of freedom depends only on the prop-
erties of the Gram matrix. Importantly, the scaling σ2

Y is
the same for all e ∈ [E], which implies that the distribu-
tion of TS∗(X,Y ) is not a function of σ2

Y . Therefore, we
can easily calibrate a test based on TS(X,Y ) using only
observable quantities. This test statistic is motivated by the
problems of sparse testing [Ingster, 1997, Donoho and Jin,
2004, Stoepker et al., 2022], and it targets scenarios where
we expect evidence for rejection of the null hypothesis to be
present in few environments.

To calibrate a test based on this statistic we first define
Ze
S for e ∈ [E] as jointly independent chi-squared random

Input: (X,Y ), α. In order: observations, confidence level
Output: S̃, the estimated causal parents

S̃ = ∅
For all S ⊆ [D] :

If ϕS(X,Y , α) = 0:
If S̃ = ∅:

S̃ = S

Else:
S̃ = S̃

⋂
S

Return S̃

Algorithm 1: Our proposed method L-ICP.

variables, respectively with ne − rank((Xe
S)

TXe
S) degrees

of freedom (zero degrees of freedom correspond to Ze
S = 0).

Given (X,Y ) these variables are also independent of all
the other quantities and we define the test ϕS as

ϕS(X,Y , α) := (6) 1 if P
(
TS(X,Y ) >

mine∈[E] Z
e
S

maxe∈[E] Z
e
S

∣∣∣∣X,Y

)
≤ α

0 otherwise
.

While the distribution of mine∈[E] Z
e
S/maxe∈[E] Z

e
S is not

easy to characterize analytically, we can easily generate
samples from it, so calibration by Monte-Carlo simulation
is extremely simple and convenient. The overall procedure,
called L-ICP, is described in Algorithm 1. Note that this
description may seem computationally prohibitive, due to
the complexity of the for-loop. In Section 7 issue further
remarks on this.

The correct coverage of this procedure is a direct conse-
quence of the guarantees already provided for the meta-
procedure in Section 4.2.

Proposition 2. Consider Assumptions 1 and 3 , and let
α ∈ (0, 1). Then

P(S̃ ̸⊆ S∗) ≤ α,

for S̃ being the output of Algorithm 1.

The probability of including a false positive parent is rela-
tively easy to understand as this does not depend on any-
thing other than Assumptions 1 and 3. Controlling false
negative discoveries, so controlling the probability that
ϕS(X,Y ) = 0 for S ⊆ [D] with S∗ ̸⊆ S, becomes much
more complex. The results in the following section try to
shed some light into this within a simplified setting.
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5.1 FINITE SAMPLE RESULTS

To provide finite sample results on the power of L-ICP we
make strong assumptions on the data generation procedure.

Assumption 4. Let the number of environments E be even,
and let [E1], [E2] denote two index sets for two types of
environments such that [E] = [E1]∪̇[E2] with |[E1]| =
|[E2]| = E

2 . In each individual environment we observe
n > D observations (i.e., ∀e ∈ [E] ne = n). For all
v ∈ [E1] and d ∈ [D] the d− th covariate Xv

d ∈ Rn is an
n-sample from N (µv

d, σ
v
d), a normal distribution with mean

µv
d and standard deviation σv

d . The samples are independent
of each other and independent of the other covariates of the
environment v. Similarly, for all w ∈ [E2] we sample Xw

d

from N (µw
d , σ

w
d ) with the same independence assumptions.

We assume that there exists β1, β2 ∈ RD such that βv = β1

and βw = β2 for all v ∈ [E1], w ∈ [E2].

Remark 1. While in the setting above inverse matrices
(Xw

S
TXw

S )−1 and (Xv
S
TXv

S)
−1 exist for v ∈ [E1] and w ∈

[E2] and any S ⊆ [D] with probability one, we consider for
simplicity only the case that they exist.

While this independence assumption is certainly strong and
unrealistic, this setting is already non-trivial: without further
assumptions, one cannot distinguish cause and effect, see for
instance Example 1 in Mooij et al. [2016]. While in effect
we assume that there are only two types of environments to
simplify the analysis, we note that our algorithm does not
have access to this information.

In our results we want to characterize the probability to
miss a causal parent, which happens if ϕS(X,Y ) = 0 for
any S ⊆ [D] with S∗ ̸⊆ S. To understand the distribution
of ϕS(X,Y ) we need a notion of how much environment
heterogeneity is introduced by the covariates in U := S∗−S,
as this is the driver for L-ICP to identify causal parents. Let
(σY )

2 be the variance of the target noise εe and define

ĨS :=

∑
u∈U (β

1
u)

2(σv
u)

2 + (σY )
2∑

u∈U (β
2
u)

2(σw
u )

2 + (σY )2
. (7)

Then the residual heterogeneity in the environments, when
we model the target Y with covariates from S, is carried in
the quantity IS defined as

IS := min

{
ĨS ,

1

ĨS

}
. (8)

Note that 0 < IS ≤ 1 and small values of IS indicate a
higher environment heterogeneity. Note in particular that
IS = 1 if for all u ∈ U we have (β1

u)
2 = (β2

u)
2 and

(σv
u)

2 = (σw
u )

2. The following result presents bounds on the
false negative probability in terms of the sample size n and
the heterogeneity parameter IS . We already disclaim that
the result treats the effect of the number of environments E

crudely, and due to our proof technique it is actually vacuous
for the case that E → ∞. We instead chose to analyze the
setting E → ∞ in isolation, and a corresponding result is
presented afterwards.

Theorem 2. For S ⊂ [D], with S∗ ̸⊆ S define IS as above
and set k := n − |S|. If Assumptions 1,3, 4 are true and
IS < 1, then for any confidence level α ≥ 0 it holds that

P(ϕS(X,Y ) = 0) ≤
4E

α

((
1

(IS)
1
4

e(1−1/(IS)
1
4 )

) k
2

+

(
(IS)

1
4 e(1−(IS)

1
4 )

) k
2

)
.

This means that the probability to accept S falsely as a
plausible set drops exponentially fast in k, since (ce1−c) < 1
for any c ̸= 1.

The proof of this and the following result is presented in
Section A. We still owe the reader a result elucidating the
case E → ∞:

Theorem 3. Let S ⊆ [D], with S∗ ̸⊆ S, IS as defined
above, and k := n− |S|. To emphasize the dependence of
the data on E we write now (XE ,Y E) = {(Xe, Y e)}e∈E .
If Assumptions 1,3,4 hold then for any α ≥ 0 we have that

lim
E→∞

P(ϕS(XE ,Y E) = 0) ≤ 1

α

2(IS)
k
2

2(IS)
k
2 + 1

.

If we further assume the collection of random variables
{Xe1

d1,i1
, Xe2

d2,i2
} for e1 ∈ [E1], e2 ∈ [E2] and i1, i2 ∈ [n]

to be mutually independent then for any α < (IS)
k
2

(IS)
k
2 +1

it

holds that

1

1− α

(
(IS)

k
2

(IS)
k
2 + 1

− α

)
≤ lim

E→∞
P(ϕS(XE ,Y E) = 0).

Comparing Theorem 2 and 3 we make the observation that
the dependence of the bound on IS and k is very similar,
the biggest difference being that Theorem 2 loses a factor of
1
4 in the exponent of IS compared to Theorem 3. This may,
however, very well be due to the proof technique of Theorem
2, in particular the use of Lemma 2. More importantly, The-
orem 3 shows that the false acceptance probability does not
necessarily converge to 0 for increasing E. This indicates a
potentially complicated relationship between the number of
available environments E and the performance of L-ICP. To
study this relation further, we conduct experiments in the
following section.

6 EXPERIMENTAL RESULTS

The code generating all results from this section is accessi-
ble through https://github.com/AlexanderMey/causal-local-
linear/tree/main/UAI-code.
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We now perform a range of experiments to further
shed light on the performance of L-ICP under model-
misspecification. Furthermore, we contrast L-ICP with
joint LiNGAM [Shimizu, 2012], ICP [Peters et al., 2016]
and PCMCI [Runge et al., 2019]. For the implementa-
tion of the tests ϕS in the following experiments we gen-
erate, unless stated otherwise, B = 1000 samples from
mine∈[E] Z

e
S/maxe∈[E] Z

e
S to compute the p-values for

the tests in L-ICP. We generate data from a linear struc-
tural equation model with varying noise distributions and
|S∗| = 2, D = 6, see Section B in the supplements for
further details. In all experiments we generate data over 300
independent runs, collect the estimated causal parents in
each run, and report how often the method missed a causal
parent (false negative rate) and how often the method re-
turned a non-parent (false positive rate). More precisely, let
S̃r be the estimate of S∗ in run r. The false negative rate is
given by 1

300

∑300
r=1 1

{
S∗ \ S̃r ̸= ∅

}
and the false positive

rate by 1
300

∑300
r=1 1

{
S̃r \ S∗ ̸= ∅

}
. We also report error

bars, which are computed as a 95 percent Clopper-Pearson
confidence interval [Clopper and Pearson, 1934]. Unless
stated otherwise, all tests of L-ICP are done with target level
α = 0.1.

Effects of Non-Normal Noise. To calibrate L-ICP we
make the normal noise Assumption 3 and we first inves-
tigate the impact on the performance of L-ICP when this
is violated. As our test is based on minimal and maximal
statistics, we expect that a misspecification of the tail distri-
bution has the biggest impact on the performance. We thus
generated data with three different noise models: normal
noise, for a baseline comparison, uniform noise and Student-
t distributed noise, where the standard deviation of the noise
is kept at 1.1.1 This results in approximately 11.5 degrees of
freedom for the Student-t distribution. In Figure 1 we show
that under uniform noise, L-ICP is more conservative and
under the Student-t noise it is less conservative, where the
false positive rate exceeds at times the target threshold of 0.1.
The results for the false negative rates are similar and shown
in Figure 2. We highlight that the performance gap of the
false positive rate and the false negative rate under Student-t
noise has the same reason: if the correct set S∗ is not ac-
cepted as a plausible set, we cannot guarantee that S̃ ⊆ S∗,
but if S∗ is not a plausible set, it also becomes more likely
that S∗ ̸⊆ S̃. While this can be addressed by adjusting α, as
also confirmed with an additional experiment in Section B.1,
it is not clear what the correct adjustment is, and for that we
need to investigate ways to calibrate the method without the
normality assumption as further discussed in Section 7.

1Note that the standard deviation for standard Student-t distri-
bution is always larger than 1, approaching that value in the limit
of the number of degrees of freedom.
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Figure 1: The behavior of the false positive rate of L-ICP
under a misspecified noise model.

8 12 16 20 24 28 32
Sample Size per Environment

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
al

se
N

eg
at

iv
e

R
at

e

Normal

Uniform

Student-t

Figure 2: The behavior of the false negative rate of L-ICP
under a misspecified noise model.

Comparison with ICP. As our method is an extension of
ICP, we now highlight the main differences and showcase
some consequences of those in three simple experiments.
The main difference of ICP is that it additionally assumes
that βv = βw for all v, w ∈ [E]. This restriction of course
allows for a better parameter estimation, as we may pool
data, and also for different hypothesis tests. In particular they
additionally test (Method II in their paper) if the mean of
the residuals is identical in all environments. In our current
formulation this is not meaningful, as our residuals have a
vanishing mean in each environment. Furthermore, while
we test for differences in the minimum and maximum, ICP
loops over all environments e and tests if the mean and
variance of e is the same as the means and variances in the
other environments. They then correct for this multiple test
with a Bonferroni correction.

Considering the conceptual and practical differences in ICP
and L-ICP we propose three experiments to test the practical
implications. The first two experiments satisfy ICPs addi-
tional restriction that βv = βw for all v, w ∈ [E]. In the first
experiment 99 of a total 100 environments follow the same
data generation procedure, so the heterogeneity is sparse
in the environments. In the second setting the variance of
the covariates is randomly sampled for 100 environment, so
the heterogeneity is dense in the environments. In the last
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False Positive
Rate

False Negative
Rate

Data/Method ICP L-ICP ICP L-ICP
Dense 0.003 0.077 0.337 0.243
Sparse 0.007 0.107 0.503 0.703
ICP Violated 0.007 0.07 0.967 0.033

Table 1: A comparison of L-ICP and ICP in settings where
the heterogeneity is dense/sparse in the environments and
when the structural parameters βe are changing across envi-
ronments, and thus violating one of ICPs assumptions.

setting the additional restriction of ICP is violated. While
the complete description of the data generation can be found
in Section B, the results are shown in Table 1. We notice
that ICP is more conservative, leading to a false positive
rate which is quite below the set threshold of 0.1. This nat-
urally results in a loss of power of ICP. In the dense case
L-ICP achieves a lower false negative rate, even though the
assumptions of ICP are entirely met. Curiously, in the sparse
setting ICP achieves a lower false negative rate, despite the
fact that our test targets sparse heterogeneity. This seems to
be related to the specific test ICP relies on, together with
pooling data from all environments to estimate the parame-
ters β. Finally, as expected, ICP fails to produce meaningful
results if the assumption that βv = βw for all v, w ∈ [E] is
violated.

Comparison with LiNGAM. We now highlight the
strength and pitfalls of L-ICP, while we compare its per-
formance to a version of LiNGAM that can receive input
from different environments [Shimizu, 2012]. LiNGAM is
a method also developed for causal discovery, but relies
on a rather different set of assumptions: LiNGAM does
not assume heterogeneity of the environments, but instead
requires non-Gaussian noise variables for parent identifi-
cation. On the other hand, L-ICP relies on environmental
heterogeneity. We contrast the two methods by showcas-
ing their performance on a spectrum of settings spanning
both assumptions. In particular we generate data once with
uniform noise, matching LiNGAMs assumptions, and once
with Gaussian noise, matching L-ICPs assumptions. We
introduce heterogeneity into the data by dividing E = 30
environments into two groups that have inter-group het-
erogeneity but intra-group homogeneity, as this allows for
a controlled way of inducing heterogeneity. The parame-
ter IS from Theorem 2 provides a natural way to quantify
the heterogeneity in the various scenarios and we define
h := max

S:S∗ ̸⊆S
IS as the heterogeneity parameter.2 Given the

exponential relationship of the Theorem, we report in Fig-
ures 3 and 4 the performance of both methods along the
parametrization − ln(h) ∈ [0,∞), so that larger values indi-

2Note that while the parameter h is still meaningful, the other
data generation assumptions made by Theorem 2 do not hold.
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Figure 3: A comparison of joint LiNGAM and L-ICP under
uniform noise.
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Figure 4: A comparison of joint LiNGAM and L-ICP under
Gaussian noise.

cate stronger heterogeneity and − ln(h) = 0 indicates that
no heterogeneity was present. As expected, without environ-
ment heterogeneity L-ICP fails to identify causal parents,
while adding a moderate amount of heterogeneity eventu-
ally leads to near-optimal performance. LiNGAM is largely
unaffected by changes of the heterogeneity, while its overall
performance, even in the well-specified case of the uniform
noise, is quite low: note that an algorithm that in each run
alternates between reporting the empty set and all covariates
would achieve a false positive and false negative rate of 1

2 ,
as we only count if a false positive/negative was present. In
Section B.1 of the Appendix we perform the same type of
experiment with a scaled Student-t distribution. The results
of that experiment show that for a low degree of freedom of
3, and thus a strong Gaussanity violation, L-ICP shows bad
performance and also increased heterogeneity does not help
in recovering a good performance. For a moderate degree
of freedom of 10 stronger heterogeneity does help again.

6.1 NETWORK DETECTION IN DYNAMICAL
SYSTEMS

Finally, we want to describe, and showcase, that one may
use L-ICP for network detection in dynamical systems. Fol-
lowing the remarks after Theorem 1, finding a full causal
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Figure 5: The reported causal graphs.
Top: L-ICP, Bottom: PCMCI
Solid blue: Correctly found. Dashed red: Not found (false
negative discovery). Dotted yellow: Falsely reported (false
positive discovery.)

graph is possible in our proposed setting if no covariate is di-
rectly affected by the environment index, but only indirectly
through changing structural parameters. In this section we
simulate data from a non-linear dynamical system, which
approximately follows this setting when we consider our lo-
cal models as locally linear approximations of the system. In
this experiment we want to reveal if the non-linearity of the
system can introduce sufficient heterogeneity across time so
that L-ICP can subsequently discover causal relations. More
precisely, our data consists of a discrete-time and noisy
version of a five-dimensional Lorenz system described by
Shen [2014] together with an independently sampled ran-
dom walk. The precise equations of the system can be found
in Section B.2 in the supplementary material.

Given that we have dynamical data, we chose our environ-
ments to be time intervals of length n. More precisely, for
a given starting time t0 ∈ N we define the observations in
environment et0 by (Xet0 , Y et0 ) := {(Xt, Y t)}t0≤t≤t0+n.
The target variable Y t is now the observation of any chosen
covariate, but at the next time-step. For example, if we want
to find the causal parents of X1, we define Y t := Xt+1

1 .

Experimental details. First, over 500 independent runs
we generated 8500 samples of the dynamical system. Given
the data of one run, we split the time series into intervals
of length n and then run L-ICP with B = 500 and α = 0.1
using those intervals as environments. For that, we need
to decide the interval length n, which we did with the fol-
lowing rationale: If n is chosen very small, the algorithm
tends to return the empty set because most subsets S ⊆ [D]
are plausible causal parents. If n is too large, the method
tends also to return the empty set, as in that case no subset
of covariates provides a set of plausible causal parents due
to a strong violation of the linearity assumption. We thus
first tested for which sample sizes n the method tends to
not return the empty set for any covariate in an individual
run. Leaving the first 500 samples as a warm-up phase for
the system, and splitting the remaining data into E = 300
intervals of length n, the method tended to return a non-
empty output for n ∈ [15, 35]. This motivated our choice
to set n = 25. Over the 500 runs we then count for each
target how often each covariate was reported as a causal
parent. While the full counts are found in Section B.2, we
now report a causal graph with the following reasoning:
given that we run L-ICP with α = 0.1 we consider all co-
variates that were reported in significantly over 10% of the
runs as causal parents as true causal parents. The signif-
icance is tested with a binomial test at significance level
0.05, with the null that a covariate is found in 10% of the
runs, and the alternative that the reported rate is greater than
10%. We compare this approach with PCMCI [Runge et al.,
2019], a causal discovery method targeting time-series data.
PCMCI first uses conditional independence tests on lagged
variables to find a graph skeleton, and then orients the edges
along their temporal direction. For a fair comparison we use
PCMCI with a partial correlation test, matching our linear-
ity assumption, and in each run we perform PCMCI with a
target confidence level of 0.1 on 30 evenly spaced intervals
of length 25. While in each run we have access to a total of
300 intervals, we only perform PCMCI on 30 of those for
computational reasons. We then count how often each arrow
was in total reported. Reporting the final results with the
same reasoning as for L-ICP resulted in a fully connected
graph, so we instead picked a threshold that is tuned based
on the ground truth graph.

In the top of Figure 5 we report the causal graph computed
with L-ICP and we can affirm that non-linear relationships
in a dynamical system can introduce sufficient heterogeneity
across time. We find all but one connection, while we re-
ported three incorrect edges. By Proposition 2 we know that
this has to be due to model misspecification, highlighting
an important limitation of the linearity assumption. In com-
parison PCMCI (bottom of Figure 5) also found all but one
connection, but only reported one incorrect edge. Given that
we clairvoyantly thresholded the results of PCMCI and, in
contrast to L-ICP, PCMCI can not deal with instantaneous
relationships, one may consider L-ICP competitive.
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7 DISCUSSION

In this paper we presented an extension of the work from
Peters et al. [2016] to a setting where models are estimated
locally in every environment, with many interesting con-
sequences. We now discuss limitations, how they can be
addressed, and possible extensions of our work.

Scalability of the method. The computational cost of
our current proposal scales exponentially with respect to
the dimension D. To overcome this bottleneck, one could,
instead of looping over all possible subsets of [D], greed-
ily add or remove covariates as plausible causal parents.
While the greedy removal was already applied to ICP by
Salas-Porras et al. [2022], it is clear that such methodol-
ogy can generally not enjoy the same guarantees as the full
method, but an extensive comparison against the full method
is an interesting open task. Alternatively, one can reduce
the dimensionality [D], for example by clustering highly
correlated variables. Instead of looping over all subsets from
[D], one may then loop over all clusters, and the method
reports clusters in which a parent is present. Finally, we
envision a procedure where the test-criterion given by ϕS

is encoded as an objective function that one may optimize
over the set of covariates, in the spirit of procedures such as
the LASSO. Similar ideas have been applied in the machine
learning literature, see for example Arjovsky et al. [2019].

Extension to non-Gaussian noise. To calibrate our hy-
pothesis test, we assume that the noise is normally dis-
tributed. While this provides a starting point to analyze
a specific methodology within our proposed framework (L-
ICP), we observe in Figures 8a and 8b that a violation of
this assumption can lead to a strong performance loss. The
normality assumption, however, is not an integral part of
the methodology, and Algorithm 1 can be run by replacing
our hypothesis test ϕS(X,Y , α) with a different one that
relies on other assumptions. We could instead calibrate the
test by permutation as done by Stoepker et al. [2022], e.g.,
by permuting the residuals over all environments and con-
trasting the test statistic in the permuted and unpermuted
data. Alternatively, one may use Levene’s test for equal vari-
ances [Brown and Forsythe, 1974], which has robustness
against non-normality and was used in a similar context by
Heinze-Deml et al. [2017]. Finally note that the distribution
of the sum of squared residuals ∥reS∗∥22 will be approxi-
mately normal when ne is large, as a consequence of the
central limit theorem, which one might be able to capitalize
on with modifications to our test statistic.

The role of locality. The main novelty of our proposed
setting is that we model each environment separately with a
local model without any additional structural assumptions
between the local models. This relaxes the global linearity
assumption and, in some sense, allows us to model non-

linear systems as seen in Section 6.1. But more importantly,
in some scenarios the data generation in different environ-
ments can truly follow different functional relationships,
and a local model becomes necessary. Thinking about dif-
ferent car types as different environments, it is reasonable
to assume that the causal relations are the same, but the
structural equations are not.

Limitations of linearity. In the experiments of Section
6.1 we approximated a non-linear dynamical systems with
intervals of linear models. To ensure approximate linearity
we had to set the length of the intervals, which corresponds
to the sample size n of the environments within our setting,
at a relatively small number of n = 25. In that experiment
this sample size was too small to recover all causal parents,
while some false discoveries are likely due the violation of
the linearity assumption. While both problems highlight the
need for non-linear versions of the proposed methodology,
the general concept of (L-)ICP does not hinge on linearity,
as also pointed out in Peters et al. [2016].

Changing distribution of the target noise. Arguably one
of the strongest assumptions in our setting is that the target
noise εe follows the same distribution in every environment.
While this ensures that the environment cannot have any
influence on εe, this assumption can be relaxed. We may,
for example, parameterize the distribution of εe along a
parameter θ and then assume that θ and the environment
indices are independently sampled from a distribution. With
that assumption, the environment index is independent of
θ and thus should not have any effect on the distribution of
εe. Establishing that a set S ⊆ [D] is plausible then can, for
example, be established by testing the independence of the
environment index and θ.

Picking good environments. In applications we may of-
ten face the choice of how to define the different environ-
ments in which our data is partitioned. In the experiment
of Section 6.1, for example, we have access to a stream of
dynamical data and need to split this stream in a meaningful
way. While in this experiment we simply picked environ-
ments that are evenly spaced in time, one can think about
more sophisticated ways of picking environments and iden-
tifying good environments should be a focus of future re-
search. This is not only important for our own methodology,
but any method that views an environment as an accidental
interventions.
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A PROOFS

A.1 PROOF OF LEMMA 1

Lemma 1 If H̃0,S is true, then so is H0,S .

Proof. If H̃0,S is true then, using the independence of the residual noise re and covariates, we know that γe as well as β̃e
S

are solutions of the least squares problem

min
β

E

[
ne∑
i=1

(Xe
S,iβ − Y e

i )
2

]
.

This means that Xe
S,iβ̃ = Xe

S,iγ
e almost surely, which implies the lemma.

A.2 PROOF OF PROPOSITION 2

Proof. If for all e ∈ [E] the matrix (Xe
S∗)TXe

S∗ is not invertible we are done, as in that case S̃ = ∅. If this
matrix is invertible, then we know by Assumptions 1 and 3 that reS∗ ∼ σ2

Y χ
2(ne − rank((Xe

S∗)TXe
S∗)). With that

TS∗ = mine∈[E] ∥reS∗∥22/maxe∈[E] ∥reS∗∥22 and mine∈[E] Z
e
S/maxe∈[E] Z

e
S follow the same distribution by definition

of Ze
S , which implies that

P

(
P(TS∗(X,Y ) >

mine∈[E] Z
e
S

maxe∈[E] Z
e
S

| X,Y ) ≤ α

)
≤ α.

By definition of ϕS∗ this means that P(ϕS∗ = 1) ≤ α, which by definition of S̃ finally implies that P(S̃ ̸⊆ S) ≤ α.

A.3 PROOF OF THEOREM 1

Proof. The general proof strategy is the following: From the two distinct environments e, v ∈ [E] we pick a sample i ∈ [ne]
and j ∈ [nv]. If the hypothesis H0,S would be true we may conclude that the population residuals rei and rvj have the
same distribution, and therefore the same variance. We then show, however, that there exists a u ∈ S∗ and u1 ∈ [D] such
that V[rei ] is a proper rational function (so the ratio of two polynomials) of finite degree with respect to βe

u for almost all
choices of ∆e

u1,i
. Fixing all entries of (βe, βv,∆e) except βe

u and ∆e
u1,i

at arbitrary values, we conclude that the equation
V[rei ] = V[rvj ] can be solved for at most finitely many values of βe

u and ∆e
u1,i

. This means that M0, the solution space of the
equation V[rei ] = V[rvj ] with respect to (βe, βv,∆e), has Lebesgue measure zero. This finally implies that the hypothesis
H0,S is false for all parameter choices outside of M0.
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To start the proof, we note that V[rei ] is always a rational function of polynomials of finite degree with respect to the entries
of βe. On the one hand this follows from Assumption 2, ensuring that every covariate d with y ∈ AN(d) is a polynomial in
Y e and thus a polynomial in βe. On the other hand we know from Constales [1998] that the Moore-Penrose inverse has a
closed form solution consisting only of elementary operations. The rest of the proof is concerned with showing that there is
at least one u ∈ S∗ such that V[rei ] is a proper polynomial with respect to βe

u, meaning that the leading term in βe
u does not

vanish. To simplify notation, we define

P (S, S∗) := E[(Xe
S)

tXe
S)]

†E[(Xe
S)

tXe
S∗ ] ∈ R|S|×|S∗|

and
P (εe) := E[(Xe

S)
tXe

S)]
†E[(Xe

S)
tεe] ∈ R|S|

and note that β̃e
S = P (S, S∗)βe

S∗ + P (εe). We split the proof into two cases.

The first case assumes that no variable in S is a descendant of Y . In that case we pick any u ∈ S∗ \ S and split the variance
of the residual as follows:

V[rei ]

= V[Xe
S∗,iβ

e
S∗ + εei −Xe

S,iβ̃
e
S ] = V[(Xe

S∗,i −Xe
S,iP (S, S∗))βe

S∗ + εei −Xe
S,iP (εe)]

= V

[
(Xe

u,i −Xe
S,iP (S, S∗)·,u)β

e
u

+
∑

d∈S∗\{u}

(Xe
d,i −Xe

S,iP (S, S∗)·,d)β
e
d + εei −Xe

S,iP (εe)

]
= (βe

u)
2V[(Xe

u,i −Xe
S,iP (S, S∗)·,u)] (9)

+V

 ∑
d∈S∗\{u}

(Xe
d,i −Xe

S,iP (S, S∗)·,d)β
e
d + εei −Xe

S,iP (εe)

 (10)

+ 2βe
uC

(Xe
u,i −Xe

S,iP (S, S∗)·,u) ,
∑

d∈S∗\{u}

(Xe
d,i −Xe

S,iP (S, S∗)·,d)β
e
d + εei −Xe

S,iP (εe)

 . (11)

We now argue that the variance in line (9) does not vanish (Claim 1 further below), and that the covariance in line (11) is
only linear in βe

u (Claim 2 further below). With that, and noting that the variance term in line (10) is always positive, we
know that there are constants a > 0 and b ∈ R (which depend on the distributions of the covariates) such that

V[rei ] ≥ (βe
u)

2a+ βe
ub. (12)

With that V[rei ] is a proper polynomial in βe
u, as V[rei ] → ∞ for βe

u → ∞.

Claim 1. The variance in line (9) does not vanish. Proof: Let S̄ ⊂ S be the set of all indices d ∈ S with P (S, S∗)d,u ̸= 0.
All indices outside S̄ ∪ {u} are irrelevant as the corresponding covariate vanishes within the variance term (9). Now let u0

be a sink node in S̄ ∪ {u}, which implies by Assumption 2 that ∆e
u0,i

is independent of all other covariates with index in
S̄ ∪ {u}. First, let u0 ∈ S̄, then we may split the variance from line (9) as

V[(Xe
u,i −Xe

S,iP (S, S∗)·,u)]

= V[Xe
u,i −Xe

S,iP (S, S∗)·,u + δeu0,iP (S, S∗)u0,u] +V[δeu0,i]P (S, S∗)2u0,u.

This splitting is allowed as by design δeu0,i
is independent of all covariates Xe

d,i within the variance with d ̸= u0, and the
dependence on Xe

u0,i
is canceled by the term +δeu0,i

P (S, S∗)u0,u. From the definition above we know that P (S, S∗)u0,u ̸= 0
and by Assumption 2 we have V[δeu0,i

] > 0, which implies Claim 1. The case that u0 = u follows analogously by splitting
δeu,i out of the variance.
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Claim 2. The covariance in line (11) is only linear in βe
u. Proof: This is a direct consequence from the fact that no

covariate is a descendant of Y e, which also implies that no covariate has a dependence on βe
u. The covariance does then not

depend on βe
u, and we only have a linear dependency in line (11) from the leading coefficient.

The second case assumes there exists at least one d ∈ S with d ∈ DE(y), where by acyclicity of G we know that d ̸∈ S∗.
Let u ∈ S∗ \ S and we fix all entries of (βe, βv), except βe

u. We now show that there is an index u1 ∈ [D] such that for
almost all values of ∆e

u1,i
the variance term V[rei ] is different for βe

u = 0 and βe
u → ∞. This implies that V[rei ] is for

almost all values of ∆e
u1,i

a ratio of proper polynomial in βe
u and the argumentation follows as in the first case. To make this

argumentation formal we use the following two claims:

Claim 3. For βe
u = 0 and any u0 ∈ DE(y) the term V[rei ] is finite for ∆e

u0,i
→ ∞. Proof: We just have to note that u0 ̸∈ S∗,

which implies that V[Y e
i ] remains finite for ∆e

u0,i
→ ∞. The claim follows by noting that V[rei ] ≤ V[Y e

i ] +E[Y e
i ]

2.

Claim 4. For all u0 ∈ DE(y) set ∆e
u0,i

= q, then for q → ∞ the term V[rei ] diverges for βe
u → ∞. Proof: We may

assume that there exists at least one u0 ∈ DE(y) such that β̃e
u0

̸= 0 for q → ∞, otherwise we are back to the first case as
we then may remove all descendants of y from our set S. In this first case we have shown Claim 4 already after Inequality
(12). Without loss of generality let u0 ∈ DE(y) be a sink node, which implies that δu0

is independent of all other variables
by (5). Then we may split V[rei ] as

V[rei ] = V[Y −Xe
S β̃

e
S + δeu0,iβ̃

e
u0

− δeu0,iβ̃
e
u0
]

= V[Y −Xe
S β̃

e
S + δeu0,iβ̃

e
u0
] +V[δeu0,i](β̃

e
u0
)2.

Since by assumption β̃e
u0

̸= 0 we observe that V[rei ] → ∞ for V[δeu0,i
] = ∆e

u0,i
→ ∞.

The above Claim 3 and Claim 4 together imply that V[rei ] obtain different values for βe
u = 0 and βe

u → ∞ in the regime
that ∆e

u0,i
→ ∞ for all u0 ∈ DE(y). This implies that in this regime the term V[rei ] is a proper rational function in βe

u. It
could, however, still happen that for specific choices of ∆e

·,i ∈ (0,∞)D the rational function dependence on βe
u cancels

within V[rei ]. More precisely, let c be the leading coefficient of the polynomial term in βe
u, then it is still possible that c = 0

for specific choices of ∆e
·,i as c generally depends on those terms. However, let u1 ∈ [D] be any index such that c depends

on ∆e
u1,i

. Fixing all entries in ∆e
·,i except ∆e

u1,i
we know that c = 0 for at most finitely many choices of ∆e

u1,i
since V[rei ]

is also a rational function in ∆e
u1,i

.

We thus have shown that there exists a u ∈ S∗ \ S such that V[rei ] is a proper rational function in βe
u for almost all values of

∆e
·,i. With that we know that for almost all values of ∆e

·,i the equation V[rei ] = V[rvi ] can be solved for at most finitely many
choices of βe

u. With that, the solution space M0 of the equation V[rei ] = V[rvi ] with respect to the parameters (βe, βv,∆e)
has a Lebesgue measure of zero. As the equality of V[rei ] and V[rvi ] is a necessary condition for H0,S to be true, we know
that H0,S is false for all parameter values outside of M0.

A.4 PROOF OF THEOREM 2

We first collect some lemmas that are needed for the main proof.

Lemma 2. For any two random variables X,Y and c > 0 it holds that

P(X < Y ) ≤ 2(P(X < c) +P(Y > c)).

Proof. First we define the three events

A = {(X < c ∧ Y < c) ∧ (X < Y )}
B = {(X > c ∧ Y > c) ∧ (X < Y ))}
C = {X < c ∧ Y > c}.
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With that we may conclude that

P(X < Y ) = P(A ∨B ∨ C) = P(A) +P(B) +P(C)

≤ P(X < c) +P(B) +P(C)

≤ P(X < c) +P(Y > c) +P(X < c ∧ Y > c)

= P(X < c) +P(Y > c) +P(X < c) +P(Y > c)−P(X < c ∨ Y > c)

≤ 2(P(X < c) +P(Y > c)).

Lemma 3 (Adapted from Dasgupta and Gupta [2003], Lemma 2.2). Let Z ∼ χ2(k) and FZ be the cumulative distribution
function of Z. Then then following two inequalities hold:

1− FZ(kz) ≤ (z)
k
2 e

k
2 (1−z) for z > 1 (13)

FZ(kz) ≤ (z)
k
2 e

k
2 (1−z) for 0 < z < 1 . (14)

Proof. We begin with the second inequality. For 1 ≤ i ≤ k let Xi ∼ N (0, 1) be k independent standard normal random
variables. Then Z :=

∑k
i=1 X

2
i ∼ χ2(k). We use a Chernoff bounding technique as follows and for t > 0 we derive

FZ(kz) = P(kz −
k∑

i=1

X2
i ≥ 0) = P(etkz−t

∑k
i=1 X2

i ≥ 1)

≤ etkzE
[
e−t

∑k
i=1 X2

i

]
= etkzE

[
e−tX2

i

]k
.

Using the known equality E
[
e−tX2

i

]
= (1 + 2t)−

1
2 for − 1

2 < t < ∞ we may set t = 1
2
1−z
z since z < 1 to obtain

etkzE
[
e−tX2

i

]k
= etkz(1 + 2t)−

k
2 = e

k
2 (1−z)z

k
2 .

The first inequality of the lemma follows similarly.

Lemma 4. Let S ⊂ [D] with S∗ ̸⊆ S and set U := S \ S∗. Then, under Assumptions 1, 3 and 4 we have the
following properties of the SSR when regressing Y onto XS in environments v ∈ [E1] and w ∈ [E2]. Defining
ρv :=

∑
u∈U (β

1
u)

2(σv
u)

2 + (σY )
2 and ρw :=

∑
u∈U (β

2
u)

2(σw
u )

2 + (σY )
2 it holds that 1

ρv ∥rvS∥2 ∼ χ2(n − |S|) and
1
ρw ∥rwS ∥2 ∼ χ2(n− |S|). Here rvS and rwS are the residuals defined in Algorithm 1.

Proof. Regressing the target Y only on the covariates in S we obtain in environment v ∈ [E1] the linear model

Y v = β1
SX

v
S + rvS ,

where rvS = β1
UX

v
U + εe. Because of the normality and independence assumptions, we find that rvS follows a normal

distribution with variance ρv =
∑

u∈U (β
1
u)

2(σv
u)

2 + (σY )
2. Furthermore rvS can be assumed to be of zero mean, due to our

inclusion of a column of constant ones in Xv
S . This implies that P v := 1

ρv ∥rvS∥2 ∼ χ2(k) and we can define the equivalent
expression for w ∈ [E2] by setting Qw := 1

ρw ∥rwS ∥2 ∼ χ2(k).

Proof of Theorem 2.

Proof. To identify when our method accepts S as a set of potential causal parents, we need to control the probability
P(ϕS = 0). For convenience, we introduce Zmin := mine∈[E] Z

e
S and Zmax := maxe∈[E] Z

e
S . The probability of a false

negative can be bounded by Markov’s Inequality as

P(ϕS(X,Y ) = 0) = P

(
P

(
T (X,Y ) >

Zmin

Zmax

∣∣∣∣X,Y

)
≥ α

)
(15)

≤ 1

α
P

(
T (X,Y ) >

Zmin

Zmax

)
. (16)
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We continue with analyzing the quantity P(T (X,Y ) > Zmin/Zmax) and in particular try to understand the distribution
of T (X,Y ) under Assumption 4. By Lemma 4 we know that P v := 1

ρv ∥rvS∥2 ∼ χ2(n − |S|) and Qw := 1
ρw ∥rwS ∥2 ∼

χ2(n− |S|) for ρv :=
∑

u∈U (β
1
u)

2(σv
u)

2 + (σY )
2 and ρw :=

∑
u∈U (β

2
u)

2(σw
u )

2 + (σY )
2. This allows us to write:

T (X,Y ) =
minv∈[E1],w∈[E2](min(ρvP v, ρwQw))

maxv∈[E1],w∈[E2](max(ρvP v, ρwQw))
.

With the help of Lemma 2 we may then for any c > 0 bound

P

(
T (X,Y ) >

Zmin

Zmax

)
≤ P

 min
w∈[E2]

ρwQw

max
v∈[E1]

ρvP v
>

Zmin

Zmax


≤ 2P

 min
w∈[E2]

ρwQw

max
v∈[E1]

ρvP v
> c

+ 2P

(
c >

Zmin

Zmax

)
. (17)

With the above inequality we are allowed to continue with the expression in line (17) and we start with the first term
P( min

w∈[E2]
ρwQw/ max

v∈[E1]
ρvP v > c). By setting c =

√
ρw

ρv < 1 we have that c ρv

ρw = 1
c , which allows us to write

P

 min
w∈[E2]

Qw

max
v∈[E1]

P v
> c

ρv

ρw

 = P

 max
v∈[E1]

P v

min
w∈[E2]

Qw
< c

 ,

which is now the quantity we study further. We further want to simplify this term by splitting it with the help of the two
events

E1 :=


max
v∈[E1]

P v

min
w∈[E2]

Qw
< c


E2 :=

{
max
v∈[E1]

P v > k
√
c ∧ min

w∈[E2]
Qw < k

1√
c

}
.

Noting that P(E1, E2) = 0 we can bound

P

 min
w∈[E2]

Qw

max
v∈[E1]

P v
> c

ρv

ρw

 = P

 max
v∈[E1]

P v

min
w∈[E2]

Qw
< c

 = P(E1)

≤ P(E1, E2) +P({E2}c) (18)

≤ P

(
max
v∈[E1]

P v < k
√
c

)
+P

(
min

w∈[E2]
Qw > k

1√
c

)
. (19)

With the reminder that c < 1 and that for any v ∈ [E1] and w ∈ [E2] the terms P v and Qw follow a Chi-square distribution
with k degrees of freedom we can use Lemma 3 to conclude that for any v0 ∈ [E1]

P

(
max
v∈[E1]

P v < k
√
c

)
≤ P(P v0 < k

√
c) ≤ (

√
c)

k
2 e

k
2 (1−

√
c). (20)

And similarly, we derive

P

(
min

w∈[E2]
Qw > k

1√
c

)
≤
(

1√
c

) k
2

e
k
2

(
1− 1√

c

)
. (21)

With this we can control the first term of our intermediate target defined in (17) as plugging Inequalities (20) and (21) into
(19) provides the result

P

 max
v∈[E1]

P v

min
w∈[E2]

Qw
< c

 ≤ (
√
c)

k
2 e

k
2 (1−

√
c) +

(
1√
c

) k
2

e
k
2

(
1− 1√

c

)
. (22)
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The other term in our target (17) is given by P(Zmin/Zmax < c). To bound this term, we can use almost the exact same
reasoning as for the first term, the only difference being the dependence on E as for this term we use a union bound in the
inequalities that correspond to (20) and (21) for the previous term. In the end we obtain that

P

(
Zmin

Zmax
< c

)
≤ E

(
(
√
c)

k
2 e

k
2 (1−

√
c) +

(
1√
c

) k
2

e
k
2

(
1− 1√

c

))
. (23)

Plugging the result from (22) and (23) back into (17) we obtain

P

(
T (X,Y ) >

Zmin

Zmax

)
≤ 4E

(
(
√
c)

k
2 e

k
2 (1−

√
c) +

(
1√
c

) k
2

e
k
2

(
1− 1√

c

))
.

Finally, plugging this back into Inequality (16) and noting that c =
√

ρw

ρv , we obtain the statement of the theorem.

A.5 PROOF OF THEOREM 3

First, we state two useful lemmas needed for the proof. We do not claim originality on those statements as those type of
derivations may be found in literature on extremal events such as Embrechts et al. [2013]. As we could, however, not find
the precise statements needed, we prove them now.

Lemma 5. Let q ∈ N and for e ∈ [E] let Ce
1

i.i.d∼ χ2(k) and for e ∈ [qE] let Ce
2

i.i.d∼ χ2(k). For the random variables
QE = max

e∈[E]
Ce

1 and WE = max
e∈[qE]

Ce
2 it then holds that

lim
E→∞

P

(
WE

QE
= 1

)
= 1.

Proof. We prove the lemma by showing that for any c > 1 we have lim
E→∞

P(WE/QE > c) = 0 and for any c < 1 that

lim
E→∞

P(WE/QE < c) = 0. The statement of the lemma then follows from a union bound over the events {WE/QE ̸∈
[1− 1

m , 1 + 1
m}m∈N. Hashorva et al. [2012] show that there exists a series bE such that for E → ∞ we have bE → ∞ and

(WE − bE) converges to a distribution with support on R. With that in hand we start by showing the case for c > 1. First,
choose δ > 0 such that c > 1+δ

1−δ . With this we have that

P

(
WE

QE
> c

)
≤ P

(
WE

QE
>

bE(1 + δ)

bE(1− δ)

)
≤ P(WE > bE(1 + δ)) +P(QE < bE(1− δ)).

We observe that for E → ∞ the probability P(WE > bE(1 + δ)) = P((WE − bE) > bEδ) converges to 0 since
(W − bE) converges to a distribution with support on R and bE → ∞. Analogue to this one may show that lim

E→∞
P(QE <

bE(1− δ)) = 0. The case for c < 1 works analogue to c > 1.

Lemma 6. For e ∈ [E] let W e i.i.d∼ χ2(k). Then

lim
E→∞

P

(
E

2
k min

e∈[E]
W e > w

)
= e−w

k
2 c0 ,

where c0 ∈ R is a term constant in w. This also implies that the density function fE(w) of the random variable
lim

E→∞
E

2
k min

e∈[E]
W e is given by

f(w) =
k

2
w

k
2−1c0e

−w
k
2 c0 .
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Proof. The cumulative distribution function F (w) of any W e is given by F (w) = c̃0γ
(
k
2 ,

w
2

)
, where c̃0 := 1

Γ( k
2 )

is a term
constant in w, Here Γ is the gamma function and γ is the lower incomplete gamma function defined for s > 0, x > 0 as

γ(s, x) =

∫ x

0

ts−1e−tdt.

Using the power series definition of the exponential term we can derive that

γ

(
k

2
,
w

2

)
=
(w
2

) k
2
∑
m≥0

(−w

2

)m
1

m!(k2 +m)
=

2

k

(w
2

) k
2

+O
(
w

k
2+1
)
.

Next, using the relation F (w) = c̃0γ
(
k
2 ,

w
2

)
and the equation above we conclude that for c0 := 2

k c̃0 it holds that

lim
E→∞

P

(
E

2
k min

e∈[E]
W e > w

)
= lim

E→∞

(
1− F

(
w

E
2
k

))E

= lim
E→∞

(
1− 1

E
c0w

k
2 −O

(
E−(1+ 2

k )
))E

= e−c0w
k
2 .

The last equality uses the limit definition of the exponential function.

Proof of Theorem 3

Proof. To identify when our method accepts S as a set of potential causal parents, we have to understand the probability
P(TS > mine∈[E] Z

e
S/maxe∈[E] Z

e
S), which is the key quantity for the hypothesis test ϕS , defined in Equation (6), that our

Algorithm 1 uses. For notational convenience we set Zmin := min
e∈[E]

Ze and Zmax := max
e∈[E]

Ze. For this proof we assume

without loss of generality that ρv > ρw. We are investigating the behavior of P(T (XE ,Y E) > Zmin/Zmax) for E → ∞, the
statements of the theorem will then follow by Markov’s Inequality. By Lemma 4 we know that P v := 1

ρv ∥rvS∥2 ∼ χ2(n−|S|)
and Qw := 1

ρw ∥rwS ∥2 ∼ χ2(n− |S|) for ρv :=
∑

u∈U (β
1
u)

2(σv
u)

2 + (σY )
2 and ρw :=

∑
u∈U (β

2
u)

2(σw
u )

2 + (σY )
2. This

allows us to rewrite T (XE ,Y E) as:

T (XE ,Y E) =
minv∈[E1],w∈[E2](min(ρvP v, ρwQw))

maxv∈[E1],w∈[E2](max(ρvP v, ρwQw))
.

To proof the first statement of the theorem we note that

P

(
T (XE ,Y E) >

Zmin

Zmax

)
≤ P

(
minw∈[E2] ρ

wQw

maxv∈[E1] ρ
vP v

>
Zmin

Zmax

)
= P

(
ρw

ρv
minw∈[E2] Q

w

Zmin
>

maxv∈[E1] P
v

Zmax

)
.

By Lemma 5 it holds that

lim
E→∞

P

(
ρw

ρv
minw∈[E2] Q

w

Zmin
>

maxv∈[E1] P
v

Zmax

)
= lim

E→∞
P

(
ρw

ρv
minw∈[E2] Q

w

Zmin
> 1

)
. (24)

For brevity we write c := ρv

ρw = 1
IS

and Q := minw∈[E2] Q
w. Defining fE(x) as the density function of E

2
kZmin and using

19



the result of Lemma 6 we continue with:

lim
E→∞

P

(
Q

Zmin
> c

)
= lim

E→∞
P

(
E

2
kQ

E
2
kZmin

> c

)

= lim
E→∞

∫ ∞

0

fE(x)P
(
|[E2]|

2
kQ > 2−

2
k cx
)
dx (25)

=

∫ ∞

0

k

2
x

k
2−1c0e

−x
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Here we use from (25) to (26) Lebesgue’s dominated convergence theorem, which allows us to move the limit into the
integral, and the limiting results from Lemma 6. To summarize, we have shown that

P

(
T (XE ,Y E) >

Zmin

Zmax

)
≤ 2(IS)

k
2

2(IS)
k
2 + 1

.

The first statement of the theorem then follows by using this bound, together with the Markov’s Inequality applied to

P(ϕS(XE ,Y E) = 0) = P

(
P

(
T (XE ,Y E) >

Zmin

Zmax

∣∣∣∣XE ,Y E

)
≥ α

)
.

To proof the second statement of the theorem we first note that

P

(
T (XE ,Y E) >

Zmin

Zmax

)
≥ P

(
minv∈[E1],w∈[E2](ρ

w min(P v, Qw))

maxv∈[E1],w∈[E2](ρ
v max(P v, Qw))

>
Zmin

Zmax

)
,

making use of the assumption that ρv > ρw. The normality and independence Assumption 3 together with the additional
mutual independence assumption of the collection {P v, Qw}v∈[E1],w∈[E2] allows us again to apply Lemma 5 and similar
derivations to the ones following Equation (24) then lead to the conclusion that

lim
E→∞

P

(
minv∈[E1],w∈[E2](ρ

w min(P v, Qw))

maxv∈[E1],w∈[E2](ρ
v max(P v, Qw))

>
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)
=

(IS)
k
2

(IS)
k
2 + 1

.

In summary this means that

P

(
T (XE ,Y E) >

Zmin

Zmax

)
≥ (IS)

k
2

(IS)
k
2 + 1

.

The second statement of the theorem follows if we combine the bound above together with a transformation of the bound
given by the following Markov’s Inequality:
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(
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)
≥ α

)
= P

(
1−P

(
T (XE ,Y E) >

Zmin
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)
≤ 1
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(
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[
P

(
T (XE ,Y E) >
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∣∣∣∣XE ,Y E

)])
.
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B DATA GENERATION AND ADDITIONAL RESULTS

In this section we describe the precise data generation mechanisms used in our experiments from Section 6. Unless otherwise
stated we fixed E = 30, D = 6 and |S∗| = 2. The data is generated from a linear structural equation model with different
noise distributions, given by Equations (27)-(33) further below. Here D(σ) is a distribution with standard deviation σ and
zero mean. The specific choices of σ for the individual experiments are specified in the following subsections. The graphical
representation of the SEM is shown in Figure 7.

X1 = D(σ1) (27)
X2 = X1 +D(σ2) (28)
X3 = 0.3X1 +D(σ3) (29)
X4 = 0.2X3 +D(σ3) (30)
Y = β2X2 + β3X3 +D(σY ) (31)
X5 = 0.1X2 + 0.3Y +D(σ5) (32)
X6 = 0.5Y +D(σ6) (33)

Effects of Non-Normal Noise. The data for a single run within the noise misspecification experiment is generated in the
following way. For each environment e ∈ [E] we sample a vector of standard deviations (σe

1, · · · , σe
6), such that each entry

is independently sampled from the uniform distribution on [1, 5]. The support entries of βe, which are given by S∗ = {2, 3},
are sampled in the same way. The data is then created with the additional relations defined through Equation (27)-(33). The
noise distributions D(σ1), · · · ,D(σ6) for the covariates are Gaussian with standard deviations as described above, while
the target noise distribution D(σY ) is either a uniform, Student-t or Gaussian distribution (as indicated in the figures) with
σY = 1.1.

Comparison with ICP As L-ICP and ICP are similar in many regards, we chose for three simple experiments that
highlights the differences. We set N (m, s) to be the standard normal distribution with mean m and standard deviation
s. In all three experiments we independently sample in E = 100 environments n = 7 observations Xe

1,i ∼ N (0, σ),
Xe

2,i ∼ N (0, σ) and Y e
i = βeXe

1,i + εei with εei ∼ N (0, 1).

In the dense setting we set βe = 1 and sample in each environment σ from a uniform distribution on [1, 5].

In the sparse setting we set βe = 1, as well as s = 1 for 99 out of the 100 environments. In the last environment we set
s = 3.

In the ICP violation setting we follow the dense setting, but additionally sample βe independently from a uniform distribution
on [1, 5].

Comparison with LiNGAM. The data for a single run within the comparison to LiNGAM experiment is generated in the
following way. For each environment e ∈ [E] = [30] with e ≤ 15 we set (σe

1, · · · , σe
6) = (2, · · · , 2) and the support entries

of βe, which are given by S∗ = {2, 3}, are set to (1, 1). For e > 15 we set (σe
1, · · · , σe

6) = (c, · · · , c) and βe
2 = βe

3 = c
for c ∈ {1, 1.2, 1.4, 1.5, 1.7, 1.8} in the uniform noise case, c ∈ {1, 1.2, 1.4, 1.5, 1.6} for the Gaussian noise case and
c ∈ {1, 2, 5, 8} for the scaled Student-t noise. To obtain the heterogeneity parameter h we first apply Equation 8 to obtain

I{2} = I{3} (the relevant quantities to avoid false negatives) and then set h = (I{2})
1
4 e1−(I{2})

1
4 as also explained in

Section 5.1. In this experiment we chose to not randomly sample the heterogeneity for a better control over it. The data is
then created with the additional relations defined through Equation (27)-(33). The noise distributions D(σ1), · · · ,D(σ6)
and also D(σY ) are all uniform distributions for the uniform noise experiment, Gaussian distributions for the Gaussian noise
experiment and scaled Student-t distributions for the last experiment. In all cases we set σY = 1. Note that the experiment
with the scaled Student-t distribution is found in Section B.1.

B.1 ADDITIONAL EXPERIMENTS

Adjusting the calibration under noise misspecification. In Figures 1 and 2 of Section 6 we observed that under Student-t
distributed noise, both the false negative and the false positive rate is adversely affected, in particular for larger sample sizes.
In the following we show that this is not an inherent problem of our test statistic, but just due to the wrong calibration that
assumes normal noise. If we adjust the target calibration α we can indeed recover a good performance as shown in Figure 6.
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Figure 6: Under Student-t distributed noise, L-ICP achieves not the target calibration and this affects, in particular for larger
samples, the performance. A near-optimal performance can be recovered if we adjust α.

𝑋1 𝑋2 𝑋3

𝑌

𝑋5 𝑋6

𝑋4

Figure 7: The structure of the linear structural equation model (SEM) we use in some experiments, ignoring the noise
variables. The corresponding structural equations are given in (27)-(33).

How such an adjustment may be done in practice is unclear, and for that reason an important extension of L-ICP will be to
find ways to calibrate the method without the normality assumption.

Comparison with LiNGAM under Student-t noise. To further study the effect of noise misspecification on L-ICPs
performance we perform an additional comparison with LiNGAM when the noise comes from a scaled Student-t distribution.
The results are shown in Figures 8a and 8b. We notice that if we set the degree of freedom to 3, so under a strong noise
misspecification, L-ICP cannot recover good performance, also with strong heterogeneity of the environments. For 10
degrees of freedom, resulting in a weaker noise misspecification, L-ICP is again able to recover a good performance when
there is sufficient heterogeneity in the environments.
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(a) The results when the scaled Student-t distribution has 3 degrees
of freedom. While LiNGAM does make use of the strong non-
normality, L-ICP can under the strong misspecifcation not recover
a good performance, even when a lot of heterogeneity is present.
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(b) The results when the scaled Student-t distribution has 10 de-
grees of freedom. As the noise misspecification is less strong,
L-ICP can recover again good performance with the presence of
heterogeneity.

B.2 FULL RESULTS OF THE NETWORK DETECTION

The dynamical system is formally defined by the following set of equations, where the superscript t indicates a time index.

Xt+1
1 = 0.9Xt

1 + 0.1Xt
2 + εt1 (34)

Xt+1
2 = 0.28Xt

1 − 0.01Xt
1X

t
3 + 0.99Xt

2 + εt2 (35)

Xt+1
3 = 0.01Xt

1(X
t
2 −Xt

4) + 0.9733Xt
3 + εt3 (36)

Xt+1
4 = 0.01Xt

1(X
t
3 − 2Xt

5) + 0.9366Xt
4 + εt4 (37)

Xt+1
5 = 0.02Xt

1X
t
4 + 0.96Xt

5 + εt5 (38)

Xt+1
6 = Xt

6 + εt6 (39)

Here Xt
1, · · · , Xt

5 defines the Lorenz system, while Xt
6 is the random walk. Furthermore εti for 1 ≤ i ≤ 6 are random noise

variables sampled independently from each other and past values from a standard normal distribution.

Here we report the full counts of the experiments of Section 6.1, additionally also when we use n = 20 samples for L-ICP.
More precisely, let S̃r,j be the set of causal parents that L-ICP with given sample size n reported in run r for target covariate

j, then we define Mn
i,j :=

∑500
r=1 1

{
i ∈ S̃r,j

}
. The results of the experiments from Section 6.1 are then given by the

following two matrices

M20 =


494 43 54 109 82 4
23 489 108 90 81 8
7 130 442 120 53 3
6 13 371 362 405 8
9 19 44 361 405 6
3 17 24 42 41 490

 ,M25 =


498 68 87 110 96 2
56 470 193 93 72 5
3 238 337 108 58 3
3 28 320 189 189 6
3 27 97 227 227 3
3 17 43 44 38 496

 .

As PCMCI does not naturally group the environments, we run PCMCI over 30 individual intervals of length n = 25 in each
of the 500 runs. The complete counts for PCMCI are:

N25 =


10778 1906 2209 1996 2033 1868
2422 12439 2035 1835 1830 1870
1766 2095 12816 2239 1852 1809
1875 1816 2201 12874 3273 1838
1909 1848 2000 3030 12980 1960
1857 1832 1851 1898 1879 9968


Based on the ground truth graph we picked a threshold of 1994 and report the edge from i to j if N25

i,j > 1994.
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