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Abstract

Recently, fake audio detection (FAD) has
made great progress in response to sophis-
ticated spoofing attacks. However, existing
frameworks still overlook two critical needs:
(1) frequency-aware analysis of artifacts and
(2) benchmark that simulate real-world spoof-
ing attacks based on speech mixtures. To
deal with these gaps, we propose HI-FAD,
a novel high-frequency—aware FAD frame-
work, and SpoofMix, a challenging benchmark
incorporating both real and spoofed speech
within single audio samples. In particular,
HI-FAD employs a discrete wavelet trans-
form (DWT) to extract high-frequency sub-
bands and fuses them with front-end model
representations via cross-attention. Experi-
mental results demonstrate that HI-FAD con-
sistently outperforms conventional methods
on the ASVspoof2019 Logical Access (LA)
and ASVspoof2021 LA. Moreover, the pro-
posed framework achieves state-of-the-art de-
tection on SpoofMix, demonstrating its robust-
ness under realistic mixed-speech conditions.
The source code and SpoofMix benchmark
are available here : https://github.com/blind-
review-user123/HI-FAD.git

1 Introduction

In recent years, there has been increasing interest
in developing fake audio detection (FAD) meth-
ods capable of distinguishing bonafide (i.e., real)
speech from spoofed speech. Prior studies on FAD
have typically improved performance by modify-
ing model architectures or incorporating advanced
front-end encoders. For example, AASIST (weon
Jung et al., 2021) introduces an extended variant of
the graph attention layer, and HM-Conformer (seo
Shin et al., 2024) leverages a Conformer (Gulati
et al., 2020) architecture. More recently, speech
self-supervised learning (SSL) models, such as
Wav2Vec 2.0 (Baevski et al., 2020) and XLS-R
(Babu et al., 2021), are used as front-end encoders

to improve generalization to unseen spoofing at-
tacks.

Despite their effectiveness, there are still two
aspects that have not been sufficiently explored.
First, there is a lack of frequency-aware analysis of
artifacts in synthetic speech. Previous studies on
speech synthesis point out that artifacts exist in the
high-frequency domain between synthesized and
real speech (Kim et al., 2021; Pons et al., 2021;
Caillon and Esling, 2021). Specifically, vocoders
(van den Oord et al., 2016; Kumar et al., 2019;
Kaneko et al., 2022) often produce periodic distor-
tions in higher frequency bands due to the limited
ability of their upsampling layers. While architec-
tural improvements have been extensively studied,
the frequency-aware FAD framework that consid-
ers the characteristics of artifacts remains largely
underexplored.

Second, FAD benchmarks (Wang et al., 2020;
Liu et al., 2023) typically assume that each audio
sample contains only a single speaker. However,
such an assumption is overly simplistic and fails
to reflect the complexity of real-world scenarios,
such as recent voice phishing attacks, where audio
may consist of both genuine and fake voice compo-
nents. This mismatch between current benchmarks
and real-world conditions raises concerns about the
generalizability of FAD models.

To address these limitations, in this paper, we
aim to improve the performance and generalizabil-
ity of FAD by (1) introducing a high-frequency-
aware detection method, namely HI-FAD, and (2)
constructing a new benchmark SpoofMix based
on speech mixtures that better reflect real-world
spoofing attacks. Firstly, HI-FAD guides the FAD
model to focus on high-frequency components in-
dicative of fake audio. In particular, it employs
a discrete wavelet transform (DWT) on the in-
put waveform, decomposing it into low- and high-
frequency subbands. A cross-attention mechanism
is then used to fuse the feature extracted from



the high-frequency subbands with the represen-
tation from speech SSL model. This fusion al-
lows the model to better capture fine-grained dis-
tortions in the high-frequency range. Addition-
ally, we introduce SpoofMix, a challenging bench-
mark based on speech mixtures designed to re-
flect realistic spoof attacks. The dataset is con-
structed by concatenating two randomly selected
samples from the ASVspoof dataset, including both
bonafide—bonafide and bonafide—spoof combina-
tions. This construction not only simulates realistic
overlapping utterances but also contributes to bal-
ancing the dataset by increasing the proportion of
bonafide samples, thereby alleviating the class im-
balance inherent in ASVspoof.

Experimental results show that HI-FAD signif-
icantly improves the performance of FAD base-
lines on the ASVspoof2019 Logical Access (LA)
dataset. In cross-dataset evaluation, where the
model is trained on ASVspoof2019 LA and tested
on ASVspoof2021 LA, the proposed framework
also outperforms existing approaches, demonstrat-
ing strong generalization across datasets. In addi-
tion, on SpoofMix, a newly constructed benchmark,
HI-FAD achieves superior detection performance
compared to existing state-of-the-art baselines, in-
dicating its robustness under realistic and challeng-
ing spoofing scenarios.

2 Related Work

Deepfake audio refers to artificially generated or
transformed speech that mimics a specific speaker’s
voice with high precision using deep learning-
based synthesis techniques. Deep fake audio can
be categorized into TTS, VC, fake emotion, scene
fake, partially fake, etc. depending on how it is
manipulated. In particular, as Al technologies like
TTS and VC continue to advance, synthetic voices
are becoming more and more natural, and it is dif-
ficult to detect them with simple spectrum analy-
sis Consequently, various techniques for detecting
deep fake audio have been studied, and existing
detection models can be broadly categorized into
machine learning-based methods and deep learning-
based methods. Machine learning techniques in-
clude the Gaussian mixture model (GMM) (Vi-
roli and McLachlan, 2017) and the support vector
machine (SVM) (Hearst et al., 1998), while deep
learning-based models include the graph attention
network (GAT) (Velickovié et al., 2018), RawNet2
(weon Jung et al., 2020a), and transformer-based

Rawformer (Xu et al., 2022). Recent research
has focused on using deep learning to capture the
unique characteristics of synthetic speech and de-
velop more accurate and reliable detection meth-
ods.

3 Proposed Method

3.1 HI-FAD

3.1.1 Subband Decomposition via DWT

The overall architecture of HI-FAD is illustrated
in Fig. 1 (a). To focus more on high-frequency
components where contain artifacts, we decompose
the input waveform x using the DWT, as defined in
Equation 1. DWT decomposes the input waveform
into multiple frequency subbands while partially
preserving temporal resolution. This enables the
model to track high-frequency components over
time. Based on this information, model can analyze
the characteristics of artifacts that appear within
specific temporal segments.

{ZcA3, D3, Tep2, Tep1 } = DWT(x). (1)

Among the subbands, z.p3,z.p2 and x.p; con-
tain a certain level of high-frequency information
and are used as auxiliary signals to guide attention
toward artifact regions in the original waveform .
To extract their embedding, we apply individual
feature extractors to each subband. As a result, we
obtain high-frequency embeddings for each sub-
band, which are then concatenated into a single
tensor to form a frequency-wise feature matrix H
as follows:

heps = fCD3('rCD3)7
hepo = ch2($0D2)7 (2)

thl = chl (l'ch))

th3
hepa
hepi

H = € R3xd 3)

3.1.2 Frequency Feature Attention

To allow the model to learn the relative importance
across frequency bands, we introduce a frequency
attention module. This module applies a linear
transformation to each subband embedding, fol-
lowed by an averaging operation and softmax nor-
malization to compute attention weights as follows:

S=HW +b. @)
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Figure 1: The overall pipeline of our framework, HI-FAD, which incorporates high-frequency-aware cross-attention.

S € R3*! denote the importance scores assigned
to each subband, and let « = [acp3, Acp2, QD]
represent the corresponding attention weights.

S
;= __exp(S) fori € {c¢D3,cD2,cD1}.

Z?:l exp(S;)
&)

Based on the computed attention weights, we
generate a weighted feature representation Hemph
by emphasizing features from more important sub-
bands while suppressing those from less relevant
ones. This is computed by element-wise multi-
plication between the attention weights o and the
frequency-wise feature matrix H , which is com-
puted as:

Hemph =a0MH. (6)

Then, we integrate H,,,,, with the speech SSL
model representation using a cross-attention mech-
anism. By leveraging cross-attention, this fusion
enables the model to detect artifacts in the high-
frequency range. The output of the cross-attention
mechanism is subsequently added to speech SSL
model representation through a residual connection.
Due to residual connection, the model preserves
both high-frequency information and the initial au-
dio features. The residual output is used as input to
the classifier of base model.

3.2 SpoofMix Benchmark

We propose SpoofMix benchmark by linearly con-
catenating two randomly selected samples from
the ASVspoof dataset. SpoofMix id defigned to

adress complex spoofing attacks that occur in real-
world scenarious. The constructed samples in-
clude both bonafide-bonafide and bonafide-spoof
combinations, enabling the simulation of realistic
overlapping utterances. The mixed sample is la-
beled bonafide if and only if both utterances are
bonafide. If even one of the two mixed utterances
is a spoof, the mixed sample is labeled as spoof.
This helps the model by exposing it to more diverse
and challenging spoofing environments. Moreover,
the ASVspoof dataset contains a lower number of
bonafide samples than spoof samples, resulting in
a class imbalance. SpoofMix increases the pro-
portion of bonafide samples during the data con-
struction process, thereby enabling balanced 1:1
sampling between bonafide and spoofed utterances.
This benchmark extends beyond data augmentation
by reflecting realistic spoofing scenarios. It offers a
challenging setting for both training and evaluating
the model’s robustness and generalization ability.

4 Experiments

4.1 Dataset and Evaluation Metrics

We trained our models on the ASVspoof2019 Log-
ical Access (LA) dataset and evaluated their in-
domain performance on ASVspoof2019 LA as well
as cross-dataset generalization on ASVspoof2021
LA. XLSR+AASIST (Tak et al., 2022) was em-
ployed as the backbone for the proposed HI-FAD,
and We adopted the configurations and hyperpa-
rameters from the original paper (Tak et al., 2022).
Performance was measured using equal error rate
(EER) and the minimum tandem detection cost



19LA 21LA
Methods

EER (%) mint-DCF  EER(%)  mint-DCF

RawNet2 (weon Jung et al., 2020b) 4.66 0.1294 9.50 0.4257
AASIST (weon Jung et al., 2021) 2.11 0.0692 8.39 0.4108
XLSR + Conformer (Rosello et al., 2023) 4131 0.7493 1.21 0.2173
XLSR + Conformer + TCM (Truong et al., 2024) 59.40 0.9999 111 0.2161
XLSR + AASIST (Tak et al., 2022) 0.27 0.0089 0.95 0.2090

HI-FAD (proposed) 0.20 0.0066 0.90 0.2098

Table 1: Comparison of EER (%) and min t-DCF perfor-
mance of ASVspoof2019 LA and ASVspoof2021 LA
dataset.

function (min t-DCF). To assess robustness under
more realistic and diverse spoofing scenarios, we
also trained and tested on the SpoofMix bench-
mark.

4.2 Experimental Results

ASVSpoof. Table 1 reports our EER results on
ASVspoof2019 LA and ASVspoof2021 LA. HI-
FAD achieves the lowest error rates in most cases,
thereby establishing state-of-the-art performance.
Notably, when compared to the XLLSR + AASIST
baseline, HI-FAD relatively reduced the EER by
25.1 % on ASVspoof2019 LA and by 5.3 % on
ASVspoof2021 LA. This indicates that DWT-based
high-frequency artifact extraction substantially en-
hances performance over the backbone model.

SpoofMix. Unlike the original ASVspoof
datasets, our SpoofMix benchmark incorporates
realistic spoofing scenarios with speech mixtures.
Specifically, it includes two spoofing conditions:
(1) both utterances are spoofed and (2) only one
utterance is spoofed. Framed as a differential
detection task rather than conventional classifi-
cation, SpoofMix presents a more challenging
environment for conventional FAD approaches. We
trained on the SpoofMix training set and evaluated
on its test set. As presented in Table 2, HI-FAD
achieved the lowest EER of 2.53 %, demonstrating
its robustness under these mixed-speech spoofing
conditions. Compared to other approaches, our
DWT-based subband decomposition combined
with cross-attention fusion allows HI-FAD to
maintain high accuracy in mixed-speech scenarios,
underscoring the importance of high-frequency
artifact analysis under realistic spoofing conditions.

4.3 Analysis: Decomposition Level of DWT

As the DWT decomposition level increases, the
input waveform is split into a greater number of
subbands, allowing finer-grained frequency anal-

Model EER(%)
AASIST 5.13
XLSR + AASIST 2.83
HI-FAD (proposed) 2.53

Table 2: Comparison of EER(%) of SpoofMix dataset.

DWT level EER(%) t-DCF
Level 2 0.92 0.2100
Level 3 0.90 0.2098
Level 4 1.03 0.2139

Table 3: Performance comparison of XLSR + AASIST
under different wavelet decomposition levels.

ysis. To quantify this effect, we evaluated levels
2 through 4 on the XLSR + AASIST backbone.
As shown in Table 3, level 3 yielded the lowest
EER and min t-DCF, indicating that an appropri-
ately chosen decomposition depth is critical for
maximizing FAD performance.

5 Conclusion

We proposed a novel FAD framework, HI-FAD, by
combining DWT with cross-attention to emphasize
high-frequency components of fake audio. This
framework enabled the model to concentrate more
on the high-frequency artifacts, thereby achieving
more sensitive FAD. Additionally, we introduced
SpoofMix a challenging benchmark that reflects
realistic spoofing scenarios. Experimental results
showed that our proposed method improved per-
formance on SpoofMix as well, showing that it
was effective and generalizable to more difficult
conditions.

6 Limitations

Despite its strong gains, the cross-attention fusion
module that integrates high-frequency subbands
into the backbone representations adds additional
parameters and increases overall model complex-
ity. However, given the substantial performance
improvements it enables, this overhead is a reason-
able trade-off. Moreover, our evaluation has been
limited to English datasets; assessing HI-FAD in
multilingual and cross-lingual scenarios remains
an important direction for future work.
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