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ABSTRACT

Exploration is critical for solving real-world decision-making problems such as sci-
entific discovery, where the objective is to generate truly novel designs rather than
mimic existing data distributions. In this work, we address the challenge of leverag-
ing the representational power of generative models for exploration without relying
on explicit uncertainty quantification. We introduce a novel framework that casts
exploration as entropy maximization over the approximate data manifold implicitly
defined by a pre-trained diffusion model. Then, we present a novel principle for
exploration based on density estimation, a problem well-known to be challenging in
practice. To overcome this issue and render this method truly scalable, we leverage
a fundamental connection between the entropy of the density induced by a diffusion
model and its score function. Building on this, we develop an algorithm based on
mirror descent that solves the exploration problem as sequential fine-tuning of a
pre-trained diffusion model. We prove its convergence to the optimal exploratory
diffusion model under realistic assumptions by leveraging recent understanding
of mirror flows. Finally, we empirically evaluate our approach on both synthetic
and high-dimensional text-to-image diffusion, demonstrating promising results.

1 INTRODUCTION

Figure 1: A diffusion model
πpre pre-trained on a set
of points (white) implicitly
learns a set Ωpre (orange)
approximating the true low-
dimensional data manifold
M ⊆ Rm (black) with m ≪
d. The approximate data man-
ifold Ωpre can be significantly
smaller than Rd (yellow).

Recent progress in generative modeling, particularly the emergence
of diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020), has achieved unprecedented success in gener-
ating high-quality samples across diverse domains, including chem-
istry (Hoogeboom et al., 2022), biology (Corso et al., 2022), and
robotics (Chi et al., 2023). Traditionally, generative models have
been employed to capture the underlying data distribution in high-
dimensional spaces, facilitating processes such as molecule gener-
ation or material synthesis (Bilodeau et al., 2022; Zeni et al., 2023).
However, simply approximating the data distribution is insufficient
for real-world discovery, where exploration beyond high (data) den-
sity regions is essential.

Nonetheless, as illustrated in Fig. 1, these models excel at cap-
turing complex data manifolds that are often significantly lower-
dimensional than the ambient space (Stanczuk et al., 2024; Kamkari
et al., 2024; Chen et al., 2023), and can synthesize realistic novel
samples that satisfy intricate constraints (e.g., valid drug molecules
or materials). Yet, when the goal shifts to exploring novel regions
within that manifold, a fundamental question remains:

How can we leverage the representational power of generative models to guide exploration?

Our approach In this work, we tackle this challenge by first introducing the maximum entropy
manifold exploration problem (Section 3). This involves learning a continuous-time reinforcement

∗† Indicates equal contribution. Corresponding author is Riccardo De Santi at <rdesanti@ethz.ch>.
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learning policy (Doya, 2000; Zhao et al., 2024) that governs a new diffusion model to optimally
explore the approximate data manifold implicitly captured by a pre-trained model. To this end,
we present a theoretically grounded algorithmic principle that enables self-guided exploration via
a diffusion model’s own representational power of the density it induces (Section 4). This turns
exploration into density estimation, a task well-known to be challenging in high-dimensional real-
world settings (Song et al., 2020; Kingma et al., 2021; Skreta et al., 2024). To overcome this obstacle
and render the method proposed truly scalable, we leverage a fundamental connection between the
entropy of the density induced by a diffusion model and its score function. Building on this, we
propose a practical algorithm that performs manifold exploration through sequential fine-tuning
of the pre-trained model (Section 6). We provide theoretical convergence guarantees for optimal
exploration in a simplified illustrative setting by interpreting the algorithm proposed as a mirror
descent scheme (Nemirovskij & Yudin, 1983; Lu et al., 2018) (Section 5), and then generalize the
analysis to realistic settings building on recent understanding of mirror flows (Hsieh et al., 2019)
(Section 7). Finally, we provide an experimental evaluation of the proposed method, demonstrating
its practical relevance on both synthetic and high-dimensional image data, where we leverage a
pre-trained text-to-image diffusion model (Section 8).
Our contributions To sum up, in this work we present the following contributions:

• The maximum entropy manifold exploration problem, that captures the goal of exploration over the
approximate data manifold implicitly represented by a pre-trained diffusion model (Section 3)

• A scalable algorithmic principle for manifold exploration that leverages the representational power
of a pre-trained diffusion model (Section 4), and a theoretically grounded algorithm based on
sequential fine-tuning (Section 6).

• Convergence guarantees for the algorithm presented both under simplified and realistic assumptions
leveraging recent understanding of mirror flows (Sections 5 and 7).

• An experimental evaluation of the proposed method showcasing its practical relevance on both an
illustrative task and a high-dimensional text-to-image setting (Section 8).

2 BACKGROUND AND NOTATION

General Notation. We denote with X ⊆ Rd an arbitrary set. Then, we indicate the set of Borel
probability measures on X with P(X ), and the set of functionals over the set of probability measures
P(X ) as F(X ). We write dµ = ρdx to express that the density function of µ ∈ P(X ) with respect to
the Lebesgue measure is ρ. Along this work, all integrals without an explicit measure are interpreted
w.r.t. the Lebesgue measure. Given an integer N , we define [N ] := {1, . . . , N}. Moreover, for two
densities µ, ν ∈ P(X ), we denote with DKL(µ, ν) the forward Kullback–Leibler divergence between
µ and ν. Ultimately, we denote by U [0, a] the uniform density over the bounded set [0, a] with a ∈ R+.

Continuous-time diffusion models. Diffusion models (DMs) are deep generative models that
approximately sample a complex data distribution by learning from observations a dynamical system
to map noise to novel valid data points (Song & Ermon, 2019). First, we introduce a forward stochastic
differential equation (SDE) transforming to noise data points sampled from the data distribution pdata :

dXt = f(Xt, t)dt+ g(t)dBt with X0 ∼ pdata (1)
where Xt ∈ Rd represents a d-dimensional point, (Bt, t ≥ 0) is d-dimensional Brownian motion,
f : R+ × Rd → Rd is a drift coefficient, and g : R+ → R+ is a diffusion coefficient. We denote
with pt the marginal density at time t. Given a time horizon t > 0, one can sample Xt ∼ pt by
running the forward SDE in Eq. (1). We denote the time-reversal process by Xrev

t := XT−t for
0 ≤ t ≤ T , following the backward SDE:

dXrev
t = frev(Xrev

t , T − t)dt+ ηg(T − t)dBt (2)

with frev(Xrev
t , T − t) corresponding to −f(Xrev

t , T − t) + 1+η2

2 g2(T − t)∇x log pT−t(X
rev),

where∇x log pt(x) is the score function, and η ∈ [0, 1]. By following the backward SDE in Eq. (2)
from XT ∼ pT , after T steps one obtains X0 = Xrev

T ∼ p0 = pdata. In practice, pT is replaced by a
data-independent noise distribution p∞ ≈ pT for large T , typically a Gaussian1 (Tang & Zhao, 2024).

Score matching and generation. Since the score function∇x log pt(x) is unknown, it is typically
approximated by a neural network sθ(x, t) learned by minimizing the MSE at points sampled ac-
cording to the forward process, namely J (θ) := Et∼U [0,T ] Ex∼pt

[
ω(t)∥sθ(x, t)−∇x log pt(x)∥22

]
,

1In the following, we will choose p∞ to be a truncated Gaussian for the sake of theoretical analysis.
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where ω : [0, T ]→ R>0 is a weighting function. Crucially, this is equivalent to the denoising score
matching objective (Vincent, 2011) consisting in estimating a minimizer θ∗ of:

E
t∼U [0,T ]

ω(t) E
x0∼p0

E
xt|x0

∥sθ(x, t)−∇xt
log pt(xt|x0)∥22]

where pt(· | x0) is the conditional distribution of xt given an initial sample x0 ∼ p0, which has a
closed-form for typical diffusion dynamics. Once an approximate score function sθ∗ is learned, it
can generate novel points approximately sampled from the data distribution. This is achieved by
sampling an initial noise sample X←0 ∼ p∞ and following the backward SDE in Eq. (2), replacing
the true score ∇x log pt(x) with sθ∗ , leading to the process {X←t }t∈[0,T ]. Next, we introduce a
framework that we will leverage to fine-tune a pre-trained diffusion model.

Continuous-time reinforcement learning. We formulate finite-horizon continuous-time reinforce-
ment learning (RL) as a specific class of stochastic control problems (Wang et al., 2020; Jia & Zhou,
2022; Zhao et al., 2024). Given a state space X and an action space A, we consider the transition dy-
namics governed by the following diffusion process, where we invert the direction of the time variable:

dXt = b(Xt, t, at)dt+ σ(t)dBt with X0 ∼ µ (3)

where µ ∈ P(X ) is an initial state distribution, (Bt, t ≥ 0) is d-dimensional Brownian motion,
b : X × A → Rd is the drift coefficient, σ : [0, T ] → R+ is the diffusion coefficient, and at ∈ A
is a selected action. In the following, we consider a state space X := Rd × [0, T ], and denote by
(Markovian) policy a function π(Xt, t) ∈ P(A) mapping a state (x, t) ∈ X to a density over the
action space A, and denote with pπt the marginal density at time t induced by policy π. In particular,
we will consider deterministic policies so that at = π(Xt, t).

Pre-trained diffusion model as an RL policy. A pre-trained diffusion model with score function
spre can be interpreted as an action process apret := spre(X←t , T − t), where apret is sampled from
a continuous-time RL policy apret ∼ πpre. As a consequence, we can express the backward SDE
induced by the pre-trained score spre as follows:

dX←t = b(X←t , t, apret )dt+ ησ(t)dBt (4)

where we define b(x, t, a) := −f(x, T − t) + 1+η2

2 g2(T − t) · a and σ(t) = g(T − t) (Zhao et al.,
2024). In the following, we denote the pre-trained diffusion model by its (implicit) policy πpre, which
induces a marginal density ppreT := pπ

pre

T approximating the data distribution pdata.

3 PROBLEM SETTING: MAXIMUM ENTROPY MANIFOLD EXPLORATION

We aim to fine-tune a pre-trained diffusion model πpre to obtain a new model π∗, inducing a process:

dXt = b(Xt, t, a
∗
t )dt+ ησ(t)dBt with a∗t ∼ π∗t (5)

that rather than imitating the data distribution pdata aims to induce a marginal state distribution pπ
∗

T
that maximally explores the approximate data manifold Ωpre defined as:

Ωpre = supp(ppreT ) (6)

Formally, we pose the exploration problem as optimization of an entropy functional over the space of
marginal distributions pπT supported over the approximate data manifold. Crucially, Ωpre, which is
typically a complex set, e.g., a molecular space, is defined only implicitly via the pre-trained diffusion
model πpre as expressed in Eq. (6). Formally, we state the exploration problem as follows.

Maximum Entropy Manifold Exploration

argmax
π

H (pπT ) (7)

s.t. pπT ∈ P(Ωpre)

Here,H ∈ F(Ωpre) denotes the differential entropy quantifying exploration, expressed as:

H(µ) = −
∫

dµ log
dµ

dx
, µ ∈ P(Ωpre) (8)

For this objective to be well defined, i.e., the maximum is achieved by some measure µ ∈ P(Ωpre), a
sufficient condition is stated in the following and proved in Apx. C.
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Proposition 1 (Ωpre is compact). Suppose that spre is Lipschitz and the noise distribution p0 is
the truncated Gaussian. Then Ωpre spanned by an ODE sampler (i.e., Eq.(5) with η = 0) is compact.

Notice that these assumptions are standard for analysis of diffusion processes, (e.g., Lee et al., 2022;
Pidstrigach, 2022), and not limiting in practice. Proposition 1 implies that Ωpre is a bounded subset
of Rd, which according to the manifold hypothesis approximates a lower-dimensional data manifold
(Li et al., 2024; Chen et al., 2023; Stanczuk et al., 2024; Kamkari et al., 2024), as illustrated in Fig.
1. Crucially, both the constraint set P(Ωpre) and the marginal density pπT in Problem 7 are never
represented explicitly, but only implicitly as functions of the pre-trained policy πpre and of the new
policy π respectively. In the rest of this work, we show that Problem (7) can be solved by fine-tuning
the initial pre-trained model w.r.t. rewards obtained by sequentially linearizing the entropy functional.
Towards this goal, in the next section, we introduce a scalable algorithmic principle that guides
exploration by leveraging the representational capacity of the pre-trained diffusion model.

4 A PRINCIPLE FOR SCALABLE EXPLORATION

Towards tackling the maximum entropy manifold exploration problem in Eq. (7), we first introduce
a principle for exploration corresponding to a specific (intrinsic) reward function for fine-tuning.
To this end, we define the first variation of a functional over a space of probability measures Hsieh
et al. (2019). A functional F ∈ F(X ), where F : P(X )→ R, has first variation at µ ∈ P(X ) if there
exists a function δF(µ) ∈ F(X ) such that for all µ′ ∈ P(X ) it holds that:

F(µ+ ϵµ′) = F(µ) + ϵ⟨µ′, δF(µ)⟩+ o(ϵ).

where the inner product is interpreted as an expectation. We can now present the following
exploration principle as KL-regularized maximization of the entropy first variation evaluated at ppreT .

Regularized Entropy First Variation Maximization

argmax
π

⟨δH (ppreT ) , pπT ⟩ − αDKL(p
π
T , p

pre
T ) (9)

4.1 GENERATIVE EXPLORATION VIA DENSITY ESTIMATION

Crucially, this algorithmic principle does not rely on explicit uncertainty quantification and uses
the generative model’s ability to represent the density ppreT to direct exploration. By introducing
a function f : X → R defined for all x ∈ X as:

f(x) := δH (ppreT ) (x) = − log (ppreT ) (x) (10)

the exploration principle in Eq. (9) computes a policy π∗ inducing pπ
∗

T with high density in regions
where ppreT has low density due to limited pre-training samples. Moreover, the KL regularization in
Eq. (9) implicitly enforces pπ

∗

T to lie on the approximate data manifold Ωpre. Formally, we have that:

Ωπ∗ := supp(pπ
∗

T ) ⊆ supp(ppreT ) = Ωpre ∀α > 0 (11)

4.2 EASY TO OPTIMIZE, BUT HARD TO ESTIMATE DENSITY

Existing fine-tuning methods for diffusion models can only optimize linear functionals of pπT , namely
L(µ) = ⟨f, µ⟩ ∈ F(X ), since they can be represented as classic (reward) functions f : X → R,
defined over the design space X , e.g., space of molecules. Although the entropy functionalH in Eq.
(7) is non-linear w.r.t. pπT , its first variation is a linear functional. As a consequence, by rewriting
it as shown in Eq. (10), it can be optimized using existing fine-tuning methods for classic reward
functions via stochastic optimal control schemes (e.g., Uehara et al., 2024b; Domingo-Enrich et al.,
2024; Zhao et al., 2024), where the fine-tuning objective is:

π∗ ∈ argmax
π

E
x∼π

[
− log (ppreT ) (x)

]
− αDKL(p

π
T , p

pre
T )

We have shown that exploration can be self-guided by a generative model using its representational
power of the density it induces. But unfortunately, estimating ppreT is well-known to be a challenging
task in real-world high-dim. settings (Song et al., 2020; Kingma et al., 2021; Skreta et al., 2024).
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4.3 GENERATIVE EXPLORATION WITHOUT DENSITY ESTIMATION

In the following, we show that in the case of diffusion models, the entropy’s first variation at the
marginal density pπT induced by π, as in Eq. (10) with π = πpre, can be optimized fully bypassing
density estimation. This can be achieved by leveraging the following fundamental connection between
the gradient of the entropy first variation∇xδH (pπT ) and the score sπ(·, T ).

Gradient of entropy first variation = Negative score

∇xδH (pπT ) = −∇x log p
π
T ≃ −sπ(·, T ) (12)

Using Eq. (12), it is possible to solve the maximization problem in Eq. (9) by leveraging a first-
order fine-tuning method such as Adjoint Matching Domingo-Enrich et al. (2024) with ∇xf(x) :=
−spre(x, T ) as reward gradient, where spre is the known (neural) score model approximating the
true score function. This realization overcomes the limitation of density estimation and renders the
method scalable for high-dimensional real-world problems. For the sake of completeness, we report
a detailed pseudocode of its implementation in Appendix F.

4.4 BEYOND MAXIMUM ENTROPY EXPLORATION

As shown in Sec. 8, beyond the goal of maximum (entropy) exploration, the principle in Eq. (9)
can be used to achieve the desired trade-off between exploration and validity by controlling the
regularization coefficient α. Higher α values lead to a fine-tuned model π that conservatively
aligns with the validity encoded in the pre-trained model πpre. In contrast, low α values enable
exploration of low density regions within the approximate data manifold Ωpre. The latter modality
is particularly relevant when a validity checker is available, e.g., synthetic accessibility (SA) scores
for molecules (Ertl & Schuffenhauer, 2009), or formal verifiers for logic circuits (Coudert & Madre,
1990), allowing the discovery of new valid designs that expand the current manifold or dataset,
effectively performing a guided data augmentation process (Zheng et al., 2023). In particular, one
might wonder if there exists a value of α such that the obtained fine-tuned model can provably
solve the maximum entropy exploration problem in Eq. (7). In the following section, we present
a theoretical framework that answers this question positively under idealized assumptions.

5 PROVABLY OPTIMAL EXPLORATION IN ONE STEP

In this section, we show that under the assumptions of exact optimization and estimation of
δH (ppreT ), a single fine-tuning step using Eq. (9) yields an optimally explorative policy π for entropy
maximization over Ωpre. First, recall the notion of Bregman divergence induced by a functional
Q ∈ F(X ) between two densities µ, ν ∈ P(X ), namelyDQ(µ, ν) := Q(µ)−Q(ν)−⟨δQ(ν), µ−ν⟩.
In the following, we view the principle in Eq. (9) as a step of mirror descent (Nemirovskij & Yudin,
1983) and the KL divergence term as the Bregman divergence induced by an entropic mirror map
Q = H, i.e., DKL(µ, ν) = DH(µ, ν). We can now state the following lemma regarding F = H
based on the notions of relative smoothness and strong convexity presented in Definition 1.
Lemma 5.1 (Relative smoothness and strong convexity for F = Q = H). For F = Q = H as in
Eq. (9), we have that F is 1-smooth (i.e., L = 1) and 1-strongly convex (i.e., l = 1) relative to Q.

We can now state the following idealized assumptions as well as the one-step convergence guarantee.
Assumption 5.1 (Exact estimation and solver). Consider the following assumptions: (i) Exact score
estimation: spre(·, T ) = ∇x log p

pre
T , and (ii) The optimization problem in Eq. (9) is solved exactly.

Theorem 5.2 (One-step convergence). Given Assumptions 5.1, fine-tuning a pre-trained model
πpre according to Eq. (9) with α = L = 1, leads to a policy π inducing a marginal distribution
pπT ∈ P(Ωpre) such that:

H(p∗T )−H(pπT ) ≤
L− l
K

DKL(p
∗
T , p

pre
T ) = 0 (13)

where p∗T := pπ
∗

T is the optimal marginal density induced by π∗ ∈ argmaxπ∈ΛH(pπT ) with Λ =
{π : pπT ∈ P(Ωpre)} being the set of policies compatible with the approximate data manifold Ωpre.

Theorem 5.2 suggest promising performance when using Eq. (9) as a fine-tuning objective for
maximum entropy exploration, as under Assumptions 5.1, it yields an optimally explorative policy in
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one step. However, Assumptions 5.1 rarely hold in practice since the score spre(·, T ) is approximately
learned from data, and solving Eq. (9) relies on approximate high-dimensional stochastic control
methods. Thus, optimizing the entropy first variation is actually unlikely to lead to an optimally
explorative diffusion model in one step, as shown experimentally in Sec. 8. To address this, in the
next section we propose an exploration algorithm by building on the principle in Eq. (9).

6 SCORE-BASED MAXIMUM ENTROPY MANIFOLD EXPLORATION

In the following, we present Score-based Maximum Entropy Manifold Exploration (S-MEME),
see Algorithm 1, which reduces manifold exploration to sequential fine-tuning of the pre-trained
diffusion model πpre by following a mirror descent (MD) scheme (Nemirovskij & Yudin, 1983).
Crucially, each iteration k of S-MEME corresponds to a fine-tuning step according to Equation
(9), where the pre-trained model πpre =: π0 is then replaced by the model at the previous iteration,
namely πk−1. Concretely, this makes it possible to reduce the optimization of the entropy functional,
which is non-linear w.r.t. pπT , to a sequence of optimization problems of linear functionals.

Algorithm 1 Score-based Maximum Entropy Manifold Exploration (S-MEME)

1: input: K : number of iterations, πpre : pre-trained diffusion, {αk}Kk=1 regularization coefficients
2: init: π0 := πpre

3: for k = 1, 2, . . . ,K do
4: Set: ∇xfk = −sk−1 with sk−1 = sπk−1

5: Compute πk via first-order linear fine-tuning:
πk ← LINEARFINETUNINGSOLVER(∇xfk, αk, πk−1)

6: end for
7: output policy π := πK

Algorithm 1 requires as inputs a pre-trained diffusion model πpre, the number of iterations K, and
a schedule of regularization coefficients {αk}Kk=1. At each iteration, S-MEME sets the gradient of
the entropy first variation evaluated at the previous policy πk−1, namely ∇xδH

(
pk−1T

)
, to be the

score sk−1 := sπk−1 associated to the diffusion model πk−1 obtained at the previous iteration (line
3). Then, it computes policy πk by solving the following fine-tuning problem

argmax
π

E
x∼π

[
− log

(
pk−1T

)
(x)

]
− αkKL(p

π
T , p

k−1
T )

via a first-order solver such as Adjoint Matching (Domingo-Enrich et al., 2024), using
∇fk := −sk−1(·, T ) as in Eq. (12) (line 4). Ultimately, it returns a final policy π := πK . We report
a possible implementation of LINEARFINETUNINGSOLVER in Appendix F.

Crucially, S-MEME controls the distributional behavior of the final diffusion model π, which is
essential to optimize the entropy as it is a non-linear functional over P(Ωpre). However, it is still
unclear whether the algorithm provably converges to the optimally explorative diffusion model π∗.
In the next section, we answer affirmatively this question by developing a theoretical analysis under
general assumptions based on recent results for mirror flows (Hsieh et al., 2019).

7 MANIFOLD EXPLORATION GUARANTEES

The purpose of this section is to establish a realistic framework under which Algorithm 1 is guaranteed
to solve the maximum entropy manifold exploration Problem (7).
First, we present the needed assumptions and provide an explanation of why they are realistic. Con-
ceptually, these align with the stochastic approximation framework of Benaı̈m (2006); Mertikopoulos
et al. (2024); Hsieh et al. (2021). Specifically, recall that pkT := pπk

T represents the (stochastic) density
produced by the LINEARFINETUNINGSOLVER oracle at the k-th step of S-MEME, and consider the
following mirror descent iterates, where 1/λk = αk in Algorithm 1:

pk♯ := argmax
p∈P(Ωpre)

⟨dH
(
p
πk−1

T

)
, p⟩ − 1

γk
DKL(p, p

πk−1

T ) (MDk)

As explained in Section 5, the maximum entropy manifold exploration problem (7) can be solved in a
single step using (MDk). However, in realistic settings where only noisy and biased approximations of
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(a) True data support
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Figure 2: Illustrative example with unbalanced pre-trained model πpre. (2a) Support of true data
distribution composed of high-density (yellow) and low-density (green) regions. (2b) Sample from
pre-trained model πpre. (2c) Sample from π4 obtained after 4 steps of S-MEME. (2d) Entropy
estimation of densities {pk}Kk=1. Notice that S-MEME returns a fine-tuned model with significantly
higher entropy than πpre (see 2c and 2d), and higher density in low-density regions for the pre-trained
model (compare (2a) and (2c)), while preserving the data support shown in 2a.

(MDk) are available, it becomes essential to quantify the deviations due to these approximations from
the idealized iterates in (MDk). Additionally, the step sizes γk must be carefully designed to account
for such deviations. This section aims to achieve precisely this goal. To this end, we first require:
Assumption 7.1 (Support Compatibility). We assume that supp(pπk

T ) ⊆ supp(ppre) for all k.

Next, we require a purely technical assumption that is typically satisfied in practice:
Assumption 7.2. The sequence {δH(pπk

T )}k is precompact in the topology induced by the L∞ norm.

Now, denote by Gk the filtration up to step k, and consider the decomposition of the oracle into its
noise and bias parts:

bk := E
[
δH(pπk

T )− δH(pk♯ ) | Gk
]
, Uk := δH(pπk

T )− δH(pk♯ )− bk (14)

Conditioned on Gk, Uk has zero mean, while bk captures the systematic error. We then assume:
Assumption 7.3 (Noise and Bias). The following events happen almost surely:

∥bk∥∞ → 0 (15)∑
k

E
[
γ2k

(
∥bk∥2∞ + ∥Uk∥2∞

)]
<∞ (16)∑

k

γk ∥bk∥∞ <∞ (17)

Two important remarks are worth noting. First, (15) is a necessary condition for convergence —
violating it allows for counterexamples where no algorithm can solve the maximum entropy problem.
Second, (16) and (17) capture the trade-off between the accuracy of LINEARFINETUNINGSOLVER

and step size aggressiveness, γk. Intuitively, a smaller noise and bias allows for the use of larger
step sizes. Concretely, (16) and (17) ensure that finding the optimally explorative policy succeeds
with probability 1. We are now finally ready to state the following result.

Theorem 7.1 (Convergence under general assumptions). Consider the standard Robbins-Monro
step-size rule:

∑
k γk =∞,

∑
k γ

2
k <∞. Then under Assumptions 7.3, the sequence of marginal

densities pkT induced by the iterates πk of Algorithm 1 converges weakly to p∗T almost surely.
Formally, we have that:

pkT ⇀ p∗T a.s. (18)
where p∗T ∈ argmaxpT∈P(Ωpre)H(pT ) is the maximum entropy density compatible with Ωpre.

8 EXPERIMENTAL EVALUATION

In this section, we analyze the ability of S-MEME to induce explorative policies on two tasks: (1)
An illustrative example to visually show exploration and ability to sample from low-density regions
(see Fig. 2), and (2) A text-to-image task aiming to explore the approximate manifold of creative
architecture designs (see Fig. 3). Additional details on experiments are provided in Appendix G.

(1) Illustrative setting. In this experiment, we consider the setting where the density ppreT induced by
a pre-trained model πpre has a high-density region (yellow area in Fig. 2a) and a low-density region
(green area in in Fig. 2a). As illustrated in Fig. 2a, the pre-trained model πpre induces an unbalanced

7
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Figure 3: Generated images from πpre (top) and π3 (bottom) for a fixed set of initial noisy samples
using the prompt ”A creative architecture.”. We observe an increase in complexity and originality
of the S-MEME generated images while preserving semantic faithfulness, likely hinting at higher
probability of sampling from a lower-density region of πpre.

density, where N = 80000 samples are obtained mostly from the high-density area. For quantitative
evaluation, we compute a Monte Carlo estimate ofH(pπT ). Fig. 2 shows that S-MEME can induce
a highly explorative density in terms of entropy (see Fig. 2d) compared with the pre-trained model,
after only K = 4 iterations. One can notice that the density induced by the fine-tuned model (see
Fig. 2c) is significantly more uniform and higher in low-probability regions for the pre-trained model
(see right region of Fig. 2c), while preserving the support of the data distribution.

(2) Text-to-image manifold exploration. We consider the problem of exploring the data manifold of
creative architecture designs given a pre-trained text-to-image diffusion model. For this we utilize the
stable diffusion (SD) 1.5 (Rombach et al., 2021) pre-trained on the LAION-5B dataset (Schuhmann
et al., 2022). Since SD-1.5 uses classifier-free guidance (Ho & Salimans, 2022), we fine-tune the
obtained velocity with guidance scale of w = 8, which is standard for SD-1.5. Similarly, we also
use the same guidance scheme for the fine-tuned model. We fine-tuned the checkpoint with K = 3
iterations of S-MEME on a single Nvidia H100 GPU for the prompt ”A creative architecture.”.

Table 1: FID, CLIP and cross-entropy eval. of ppreT
and pπk

T . For k = 1, 2, 3, S-MEME achieves larger
distance to ppreT while preserving high CLIP score.

ppreT S-MEME 1 S-MEME 2

FID 0.0 10.25 9.83
CLIP 22.27 20.79 20.88
Ĥ(p, ppreT ) -1916.47 564.72 482.81

In Figure 3, we show images generated from
πpre, π1 and π3, resulting from the same ini-
tial noise samples. One can notice an in-
crease in the complexity and originality of
the respective images, likely hinting at higher
probability of the fine-tuned model to sample
from a lower-density region for πpre. More-
over, less conservative architectures are sam-
pled with more steps of S-MEME while pre-
serving semantic faithfulness. We measure
this in Table 1 by computing the Fréchet in-
ception distance (FID) (Heusel et al., 2017), the Gaussian cross-entropy in feature space of Inception-
v3 between pπk

T and ppreT for k = 1, 2, 3, as well as the CLIP score (Hessel et al., 2021). The main rea-
son for these proxy metrics is the intractability of computing log ppreT (x) in high-dimensional spaces,
such as that of images generated by a large diffusion model. One can notice from Table 1 an increase in
FID and cross-entropy between the distributions as k increases, while the fine-tuned model preserves
the CLIP score of the pre-trained model. We provide further results for text-to-image in Appendix H.

9 CONCLUSION

This work tackles the fundamental challenge of leveraging the representational power of generative
models for exploration. We first introduce a formal framework for exploration as entropy
maximization over the approximate data manifold implicitly captured by a pre-trained diffusion
model. Then, we present an algorithmic principle that guides exploration via density estimation,
a challenging task in real-world settings. By exploiting a fundamental connection between entropy
and a diffusion model’s score function, we overcome this problem and ensure scalability of the
proposed principle for exploration. Building on this, we introduce S-MEME, a sequential fine-tuning
algorithm that provably solves the exploration problem, with convergence guarantees grounded in
recent advances in mirror flows. Finally, we validate the proposed method on both a conceptual
benchmark and a high-dimensional text-to-image task, demonstrating its practical relevance.

8



Published as a workshop paper at FPI Workshop (ICLR 2025)

ACKNOWLEDGEMENTS

This publication was made possible by the ETH AI Center doctoral fellowship to Riccardo De Santi,
and postdoctoral fellowship to Marin Vlastelica. The project has received funding from the Swiss
National Science Foundation under NCCR Catalysis grant number 180544 and NCCR Automation
grant agreement 51NF40 180545.

REFERENCES

Pierre-Cyril Aubin-Frankowski, Anna Korba, and Flavien Léger. Mirror descent with relative smooth-
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A RELATED WORK

In the following, we present relevant work in related areas.

Maximum State Entropy Exploration. Maximum state entropy exploration, introduced by Hazan
et al. (2019), addresses the pure-exploration RL problem of maximizing the entropy of the state
distribution induced by a policy over a dynamical system’s state space (e.g., Lee et al., 2019; Mutti
et al., 2021; Guo et al., 2021). The presented manifold exploration problem is closely related,
with pπT representing the state distribution induced by policy π over a subset of the state space.
Nonetheless, in Problem (7) the admissible state distributions P(Ωpre) are represented only implicitly
via a pre-trained generative model πpre, able to capture complex design spaces, e.g., valid molecules.
Moreover, exploration is guided by the diffusion model’s score function via Eq. 12, overcoming the
need of explicit entropy or density estimation, a fundamental challenge in this area (Liu & Abbeel,
2021; Seo et al., 2021; Mutti et al., 2021). Recent studies have tackled maximum entropy exploration
with finite sample budgets (e.g., Mutti et al., 2022b;a; 2023; Prajapat et al., 2023; De Santi et al.,
2024b). We believe several ideas presented in this work can extend to such settings. Ultimately, to
the best of our knowledge, this is the first work providing a rigorous theoretical analysis of maximum
state entropy exploration over continuous state spaces, albeit for a specific sub-case, as well as
leveraging this formulation for fine-tuning of diffusion models.

Continuous-time RL. Continuous-time RL extends stochastic optimal control (Fleming & Rishel,
2012) to handle unknown rewards or dynamics (e.g., Doya, 2000; Wang et al., 2020). Problem (7)
represents the pure exploration case of continuous-time RL, were the goal is to compute a (purely)
exploratory policy π over a subset of the state space Ωpre ⊆ X implicitly defined by a pre-trained
generative model πpre. Moreover, Problem (7) can be further motivated as a continuous-time RL
reward learning setting (e.g., Lindner et al., 2021; Mutny et al., 2023; De Santi et al., 2024a), where
an agent aims to learn an unknown homoscedastic reward function such as toxicity over a molecular
space (Yang et al., 2022). To our knowledge, this is the first work that tackles maximum entropy
exploration in a continuous-time RL setting.

Diffusion models fine-tuning via optimal control. Recent works have framed diffusion models
fine-tuning with respect to a reward function f : X → R as an entropy-regularized stochastic optimal
control problem (e.g., Uehara et al., 2024a; Tang, 2024; Uehara et al., 2024b; Domingo-Enrich
et al., 2024). In this work, we introduce a scalable fine-tuning scheme, based on first-order
solvers for classic rewards (e.g., Domingo-Enrich et al., 2024), that optimizes a broader class
of functionals requiring information about the full density pπT , such as entropy and alternative
exploration measures (De Santi et al., 2024b; Hazan et al., 2019). This paves the way to using
diffusion models for optimization of distributional objectives, rather than simple scalar rewards.
Beyond classic optimization, our framework is particularly relevant for Bayesian optimization, or
bandit, problems (e.g., Uehara et al., 2024b), where the reward function to be optimized over the
manifold is unknown and therefore exploration is essential.

Sample diversity in diffusion models generation. The lack of sample diversity in diffusion model
generation is a key challenge tackled by various works (e.g., Corso et al., 2023; Um et al., 2023; Kirch-
hof et al., 2024; Sadat et al., 2024; Um & Ye, 2025). These methods complement ours by enabling di-
verse sampling from the fine-tuned explorative model obtained via S-MEME. While prior works focus
on generating diverse samples from a fixed diffusion model, ours provides a framework for manifold
exploration as policy optimization via reinforcement learning. This enables scalable and provable max-
imization of typical exploration measures in RL, such as state entropy (Hazan et al., 2019). Among
related works, Miao et al. (2024) shares the closest intent, but lacks a formal setting with exploration
guarantees, and the diffusion model’s exploration process relies on computing an external metric for
exploration, rather than being self-guided via its own score function as S-MEME achieves via Eq. (12).

Optimization over probability measures via mirror flows. Recently, there has been a growing
interest in analyzing optimization problems over spaces of probability measures. Existing works have
explored applications including GANs Hsieh et al. (2019), optimal transport Aubin-Frankowski et al.
(2022); Léger (2021); Karimi et al. (2024), and kernelized methods Dvurechensky & Zhu (2024).
However, to the best of our knowledge, the case of the entropy-based objective in Problem 7, along
with its associated relative smoothness analysis framework, has not been previously addressed. More-
over, prior approaches do not leverage a key aspect of our framework: the admissible space of proba-
bility measures, P(Ωpre), is represented only implicitly via a pre-trained generative model, which can
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approximate complex data manifolds learned from data, such as molecular spaces. This idea of opti-
mization with implicit constraints captured by generative models is novel and absent in earlier work.
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B DEFINITIONS

Definition 1 (Relative smoothness and relative strong convexity (Lu et al., 2018)). LetF : P(X )→ R
a convex functional. We say that F is L-smooth relative toQ ∈ F(X ) over P(X ) if ∃ L scalar s.t. for
all µ, ν ∈ P(X ):

F(ν) ≤ F(µ) + ⟨δF(µ), ν − µ⟩+ LDQ(ν, µ) (19)
and we say that F is l-strongly convex relative to Q ∈ F(X ) over P(X ) if ∃ l ≥ 0 scalar s.t. for all
µ, ν ∈ P(X ):

F(ν) ≥ F(µ) + ⟨δF(µ), ν − µ⟩+ lDQ(ν, µ) (20)
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C PROOF FOR PROPOSITION 1

Recall the probability flow ODE in (Song et al., 2020, eq. (13)), which is what we use to generate ppreT
(this is also a common practice in the literature). We know that the generative ODE corresponding to
the backward SDE Equation (4) is written as (suppose η = 1 for simplicity)

dX←t = −f(X←t , T − t) + 1

2
g2(T − t)spre(X←t , T − t)︸ ︷︷ ︸

:=v(X←t ,t)

dt.

Here f is defined in the forward process Equation (1). Clearly the velocity field v(x, t) is Lipschitz
w.r.t. x due to the assumption that spre is Lipschitz and the fact that f is linear w.r.t. x. Consequently,
the flow map induced by the above ODE is Lipschitz. As a result, since X0 is sampled from a
truncated Gaussian distribution which has a compact support, Ωpre = supp(ppreT ) is also compact
for any finite T .
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D PROOF FOR SECTION 5

Theorem 5.2 (One-step convergence). Given Assumptions 5.1, fine-tuning a pre-trained model
πpre according to Eq. (9) with α = L = 1, leads to a policy π inducing a marginal distribution
pπT ∈ P(Ωpre) such that:

H(p∗T )−H(pπT ) ≤
L− l
K

DKL(p
∗
T , p

pre
T ) = 0 (13)

where p∗T := pπ
∗

T is the optimal marginal density induced by π∗ ∈ argmaxπ∈ΛH(pπT ) with Λ =
{π : pπT ∈ P(Ωpre)} being the set of policies compatible with the approximate data manifold Ωpre.

Proof. Towards proving this result, we interpret Eq. (9) as the first iteration of Algorithm 1. Hence, to
prove the statement, it is sufficient to show that Algorithm 1 after one iteration computes π1 inducing
density pπ1

T such thatH(p∗T ) = H(pπT ). We prove this result by leveraging the properties of relative
smoothness and relative strong convexity introduced in Sec. 5.

The analysis is bases on a classic analysis for mirror descent via relative properties (Lu et al., 2018)
First, we show the following, where for the sake of using a simple notation, we denote pπk

T by µk,
and consider an arbitrary density µ ∈ P(Ωpre).

H(µk) ≤ H(µk−1) + ⟨δH(µk−1), µk − µk−1⟩+ LDQ(µk, µk−1) (21)
≤ H(µk−1) + ⟨δH(µk−1), µ− µk−1⟩+ LDQ(µ, µk−1)− LDQ(µ, µk) (22)

where in the first inequality we have used the L-smoothness ofH relative to Q = H as in Definition
1, while in the last inequality we have used the three-point property of the Bregman divergence (Lu
et al., 2018, Lemma 3.1) with ϕ(µ) = 1

L ⟨δH(µk−1), µ− µk−1⟩, z = µk−1, and z+ = µk. Then, we
can derive:

H(µk) ≤ H(µ) + (L− µ)DQ(µ, µk−1)− LDQ(µ, µk) (23)
by using the l-strong convexity of H relative to Q = H as in Definition 1. By induction, using
monotonicity of the iterates and non-negativity of the Bregman divergence as in (Lu et al., 2018), one
obtains:

K∑
k=1

(
L

L− l

)k

(H(µk)−H(µ)) ≤ LDQ(µ, µ0)− L
(

L

L− l

)
DQ(µ, µk) ≤ LDQ(µ, µ0) (24)

Defining:
1

Ck
=

K∑
k=1

(
L

L− l

)k

(25)

and rearrenging the terms leads to:

H(µk)−H(µ) ≤ CkLDQ(µ, µ0) =
µDQ(µ, µ0)(
1 + l

L−l

)l
− 1

(26)

Given Eq. 26, the convergence in the statement can be derived using Lemma 5.1, and the fact that(
1 + l

L−l

)k
≥ 1 + kµ

L−µ . Ultimately, pπT ∈ P(Ωpre)∀α > 0 is trivially due to the fact that Ωpre is
the support of the right element of the Kullback–Leibler divergence in Eq. 9.
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E PROOF FOR SECTION 7

E.1 PROOF OF THEOREM 7.1

We restate the theorem for reader’s convenience:
Theorem 7.1 (Convergence under general assumptions). Consider the standard Robbins-Monro
step-size rule:

∑
k γk =∞,

∑
k γ

2
k <∞. Then under Assumptions 7.3, the sequence of marginal

densities pkT induced by the iterates πk of Algorithm 1 converges weakly to p∗T almost surely. Formally,
we have that:

pkT ⇀ p∗T a.s. (18)
where p∗T ∈ argmaxpT∈P(Ωpre)H(pT ) is the maximum entropy density compatible with Ωpre.

Proof. To enhance the readability of our proof, we begin by outlining the key steps.

Proof Outline. The main idea is to analyze the convergence of the iterates {pkT }k∈N generated by
Algorithm 1 by relating them to a corresponding continuous-time dynamical system. Specifically, we
define the initial dual variable as

h0 = δH(ppre) = − log ppre,

and consider the following system:{
ḣt = δH(pt)
pt = δ(−H)⋆(ht)

≡

{
ḣt = − log pt

pt =
eht∫
Ω
eht
.

(MF)

Here, (−H)⋆(h) := log
∫
Ω
eh is the Fenchel dual of the entropy function Hsieh et al. (2019);

Hiriart-Urruty & Lemaréchal (2004).

To bridge the gap between discrete and continuous-time analysis, we construct a continuous-time
interpolation of the discrete iterates {hk}k∈N. Let (hk := δH(pkT ))k∈N be the sequence of the
corresponding dual variables. We introduce the notion of an “effective time” τk, defined as:

τk :=

k∑
n=1

γn,

which represents the cumulative time elapsed up to the k-th iteration of the discrete-time process hk
using step-size γk. Using τk, we define the continuous-time interpolation h(t) of hk as follows:

h(t) := hk +
t− τk

τk+1 − τk
(hk+1 − hk). (Int)

Intuitively, the convergence of our algorithm follows if the following two conditions hold:

Informal Assumption 1 (Closeness of discrete and continuous times). The interpolated process (Int)
asymptotically approaches the continuous-time dynamics in (MF) as k →∞.

Informal Assumption 2 (Convergence of continuous-time dynamics). The trajectory of (MF)
converges to the optimal solution of the maximum entropy problem (7).

To formalize the above intuition, we leverage the stochastic approximation framework of Benaı̈m
(2006); Mertikopoulos et al. (2024); Karimi et al. (2024), outlined as follows.

First, to precisely state 1, we introduce a measure of “closeness” between continuous orbits. Let Z
denote the space of integrable functions on Ω (viewed as the dual space of probability measures; see
Halmos (2013)), and define the flow Θ: R+ ×Z → Z associated with (MF). That is, for an initial
condition h0 = h ∈ Z , the function Θ describes the orbit of (MF) at time t ∈ R+.

We then define the notion of “asymptotic closeness” as follows:

Definition 2. We say that h(t) is an asymptotic pseudotrajectory (APT) of (MF) if, for all T > 0,
we have:

lim
t→∞

sup
0≤s≤T

∥h(t+ s)−Θs(h(t))∥∞ = 0. (27)
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This comparison criterion, introduced by Benaı̈m & Hirsch (1996), plays a central role in our analysis.
Intuitively, it states that h(t) eventually tracks the flow of (MF) with arbitrary accuracy over arbitrarily
long time windows. Consequently, if (Int) is an APT of (MF), we can reasonably expect its behavior—
and thus that of {hk}k∈N— to closely follow (MF).

The precise connection is established by Benaı̈m & Hirsch (1996) through the concept of internally
chain-transitive (ICT) sets:

Definition 3 (Benaı̈m & Hirsch, 1996; Benaı̈m, 2006). Let S be a nonempty compact subset of Z .
Then:

1. S is invariant if Θt(S) = S for all t ∈ R.

2. S is attracting if it is invariant and there exists a compact neighborhood K of S such that
limt→∞ dist(Θt(h),S) = 0 uniformly for all h ∈ K.

3. S is an internally chain-transitive (ICT) set if it is invariant and Θ|S admits no proper
attractors within S.

The significance of ICT sets lies in (Benaı̈m, 2006, Theorem 5.7):

Theorem E.1 (APTs converge to ICT sets). Let h(t) be a precompact asymptotic pseudotrajectory
generated by {hk}k∈N for the flow associated with the continuous-time system (MF). Then, almost
surely, hk → S, where S is an ICT set of (MF).

By Theorem E.1, establishing Theorem 7.1 reduces to proving the following two statements:

1. The iterates {hk}k∈N of Algorithm 1 generate a precompact APT of (MF).

2. The unique ICT set of (MF) is the solution to the optimization problem (7).

These results provide the rigorous counterpart to 1 and 2. The proof below proceeds by formally
establishing each of these points.

The ICT set of (MF) is the solution to (7). By the definition (MF), we can easily see that:

ṗt = ptḣt −
eht∫
Ω
eht
·
∫
Ω
ḣt · eht∫
Ω
eht

(28)

= pt

(
ḣt − Ept

ḣt

)
. (29)

We then compute:

− d

dt
H(pt) = −⟨δH(pt), ṗt⟩ (30)

= ⟨log pt, pt
(
ḣt − Ept

ḣt

)
⟩ by (29) (31)

=

∫
Ω

pt log ptḣt −
∫
Ω

pt log pt ·
∫
Ω

ptḣt (32)

= −
∫
Ω

pt(log pt)
2 −

(∫
Ω

pt log pt

)2

by (MF) (33)

= −
(
EXt∼pt(log pt(Xt))

2 − (EXt∼pt log pt(Xt))
2
)

(34)

≤ 0 (35)

by Jensen’s inequality. Also, note that the inequality is strict if ht is not constant, i.e., if pt is not
uniform on Ω.

In short, we established in (35) thatH(·) serves as a Lyapunov function for the continuous-time system
(MF). SinceH(·) is strictly concave, the only ICT set is the singleton {p∗T }, where p∗T represents the
uniform (and hence entropy-maximizing) measure on Ω (Benaı̈m, 2006, Proposition. 6.4).
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Algorithm 1 generates an APT. Let (pkT )k∈N be the sequence of measures on Ω generated by
Algorithm 1 with the oracle LINEARFINETUNINGSOLVER, and recall that its dual variables are given
by (hk := δH(pπk

T ))k∈N. Also, recall the corresponding continuous-time interpolation (Int).

Assumption 7.1 ensures that each dual variable hk is a well-defined function on Ω, while Assump-
tion 7.2 guarantees the precompactness of h(·). Furthermore, under Assumption 7.3, standard
arguments (see, e.g., Proposition 4.1 of Benaı̈m (2006) or Karimi et al. (2024)) establish that h(·)
generates an APT of the continuous-time flow defined by (MF). Finally, Theorem E.1 ensures that
{hk}k∈N converges almost surely to an ICT set of (MF), which we have already shown to contain
only {p∗T }.
Therefore, applying the theory of Hsieh et al. (2021); Karimi et al. (2024), we conclude that, almost
surely,

lim
k→∞

hk = lim
k→∞

δH(pkT ) = lim
k→∞

− log pkT = δH(p∗T ) in L∞. (36)

Since Ω is compact, (36) implies that, for any smooth test function ψ on Ω, ⟨pkT , ψ⟩ → ⟨p∗T , ψ⟩,
which completes the proof.
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F DETAILED EXAMPLE OF ALGORITHM IMPLEMENTATION

F.1 PSEUDOCODE FOR IMPLEMENTATION OF EQ. (9)

For the sake of completeness, in the following we present the pseudocode for a possible imple-
mentation of a LINEARFINETUNINGSOLVER via a first-order optimization method, used to solve (9),
as well as within S-MEME. In particular, we present the same implementation we use in Sec. 8,
based on Adjoint Matching (Domingo-Enrich et al., 2024), which captures the linear fine-tuning
via a stochastic optimal control problem and solves it via regression.

In the following, we adopt the notation from the Adjoint Matching paper (Domingo-Enrich et al.,
2024, Apx E.4). We denote the pre-trained noise predictor by ϵpre, the fine-tuned one as ϵfinetuned,
and with ᾱ the cumulative noise schedule, as used by Ho et al. (2020). The complete algorithm is
presented in Algorithm 2. First, notice that given a noise predictor ϵ (as Defined in Sec. 2) and a
cumulative noise schedule ᾱ, one can define the score s as follows (Song & Ermon, 2019):

s(x, t) := − ϵ(x, t)√
1− ᾱt

(37)

Algorithm 2 LINEARFINETUNINGSOLVER (Implementation based on Adjoint Matching (Domingo-
Enrich et al., 2024))

1: input: N : number of iterations, ϵpre : pre-trained noise predictor, α regularization coefficient,
m : trajectories batch size,∇f : reward function gradient

2: init: ϵfinetuned := ϵpre with parameter θ
3: for n = 0, 2, . . . , N − 1 do
4: Sample m trajectories {Xt}Tt=1 according to DDPM (Song et al., 2020), e.g., sample ϵt ∼
N (0, I), X0 ∼ N (0, I)

Xt+1 =

√
ᾱt+1

ᾱt

(
Xt −

1− ᾱt

ᾱt+1√
1− ᾱt

ϵfinetuned(Xt, k)

)
+

√
1− ᾱt+1

1− ᾱt

(
1− ᾱt

ᾱt+1

)
ϵt

Use reward gradient:
ãT = ∇f(XT )

For each trajectory, solve the lean adjoint ODE, see (Domingo-Enrich et al., 2024, Eq. 38-39),
from t = T to 0:

āk = āt+1 + ā⊤t+1∇Xt

(√
ᾱt+1

ᾱk

(
Xt −

1− ᾱt

ᾱt+1√
1− ᾱt

ϵpre(Xt, k)
)
− Xt

)
Where Xt and ãt are computed without gradients, i.e., Xt = stopgrad(Xt), ãt =
stopgrad(ãt). For each trajectory compute the Adjoint Matching objective (Domingo-Enrich
et al., 2024, Eq. 37):

L(θ) =
T−1∑
t=0

∥∥∥∥
√

ᾱt+1

ᾱt

(
1− ᾱt+1

)(1− ᾱt

ᾱt+1

)(
ϵfinetuned(Xt, k) − ϵpre(Xt, k)

)
−
√

1− ᾱt+1

1− ᾱt

(
1− ᾱt

ᾱt+1

)
āt

∥∥∥∥2
Compute the gradient∇θL(θ) and update θ.

5: end for
6: output fine-tuned noise predictor ϵfinetuned
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G EXPERIMENT DETAILS

In this section we provide further details on the experiments.

Illustrative setting. For this experiment we ran S-MEME for 6000 gradient steps in total, for
K = 1, 2, 3, 4. Notably, k=1 amounts to having a fixed reward for fine-tuning, − log ppreT (x). Each
round of S-MEME performs 6000/K for the particular experiment. In this way we observe the effect
of having more rounds of the mirror descent scheme, with same number of gradient updates. Wince
we utilize Adjoint Matching (Domingo-Enrich et al., 2024) for the linear solver in Algorithm 1, we
perform an iteration of Algorithm 2 by first sampling 20 trajectories via DDPM of length 400 that are
used for solving the lean adjoint ODE with the reward −λ∇ log pT (x) and λ = 0.1. Subsequently
we perform 2 stochastic gradient steps by the Adam optimizer with batch size 2048, initialized with
learning rate 4× 10−4. For the density plots in Figure 2 we sampled 80000 points with 100 DDPM
steps. To obtain Figure 2d, we computed a Monte-Carlo estimate ofH(pπk

T ) with an approximation
of log pπk

T (x) resulting from the instantaneous change of variables and divergence flow equation,

log p(x) = log p0(x) +

∫ T

0

∇ · f(xt, t)dt, (38)

where f is the velocity of the probability-flow ODE for the variance-preserving forward process of
the diffusion.

Text-to-image architecture design. For obtaining Figure 3, similarly as in the illustrative example
we used Algorithm 2 as the linear solver. At each iteration of Algorithm 2 we sample 4 trajectories of
length 60 by DDPM, conditioned on the prompt on top of which we perform 10 Adam steps with
initial learning rate 3× 10−7 and batch size 8. Each iteration of Algorithm 1 entails 20 iterations of
Algorithm 2. We ran Algorithm 1 for K = 3. For this experiment, we used λ = 0.1.

Text-to-image evaluation. Evaluating the entropy of pπk

T is computationally prohibitive for the case
of the high-dimensional latent of SD-1.5. Consequently, we opted for proxy metrics to quantify how
much does the distribution change with increase of πk, the FID score for distributional distance and
CLIP score for semantic alignment. In addition, we computed the cross-entropy in Table 1 between
the Gaussians in the Inception-v3 feature space, where the Gaussians were fitted the same way as
in computing the FID score. The FID score, cross-entropy and CLIP score have been computed on
3000 samples from respective conditional distributions.

H ADDITIONAL TEXT-TO-IMAGE RESULTS

In the following, we present additional experimental results obtained via the same text-to-image
pre-trained diffusion model introduced in Sec. 8, and with experimental details as presented within
Sec. G.
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Figure 4: Generated images from πpre with prompt ”A creative impressionist painting.”

Figure 5: Generated images obtained via fine-tuning of πpre via S-MEME with prompt ”A creative
impressionist painting.”
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Figure 6: Generated images from πpre with prompt ”Creative furniture.”

Figure 7: Generated images obtained via fine-tuning of πpre via S-MEME with prompt ”Creative
furniture.”
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Figure 8: Generated images from πpre with prompt ”An innovative car design.”

Figure 9: Generated images obtained via fine-tuning of πpre via S-MEME with prompt ”An
innovative car design.”
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