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Abstract

While paraphrasing is a promising approach for data augmentation in classification
tasks, its effect on named entity recognition (NER) is not investigated systemati-
cally due to the difficulty of span-level label preservation. In this paper, we utilize
simple strategies to annotate entity spans in generations and compare established
and novel methods of paraphrasing in NLP such as back translation, specialized
encoder decoder models such as Pegasus, and GPT-3 variants for their effectiveness
in improving downstream performance for NER across different levels of gold
annotations and paraphrasing strength on 5 datasets. We also analyze the quality of
generated paraphrases based on their entity preservation and paraphrasing language
quality. We find that the choice of the paraphraser greatly impacts NER perfor-
mance, with one of the larger GPT-3 variants exceedingly capable at generating
high quality paraphrases, improving performance in most cases, and not hurting
others, while other paraphrasers show more mixed results. We also find inline auto
annotations generated by larger GPT-3 to be strictly better than heuristic based
annotations. We find diminishing benefits of paraphrasing as gold annotations
increase for most datasets. While larger GPT-3 variants perform well by both entity
preservation and human evaluation of language quality, those two metrics do not
necessarily correlate with downstream performance for other paraphrasers.

1 Introduction

Named entity recognition (NER) seeks to extract entity mentions (e.g., Shakespeare, Warwickshire)
from a text (Shakespeare was born and raised in Warwickshire) for predefined categories of interest
(such as people and locations). It is a critical component underpinning many industrial pipelines for a
variety of downstream natural language processing applications such as search, recommendation, and
virtual assistant systems. However, in real-world applications, there is often a scarcity of labeled data
for training advanced deep neural models because span-level NER annotations are costly, and domain
expertise may be needed to annotate data from domains such as finance, biomedical sciences, etc.

Data augmentation is often used as an alternative to address the data scarcity issue in many NLP
tasks (see an NLP data augmentation survey by Feng et al. (2021)). However, data augmentation
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for NER imposes additional challenges because NER requires token/span level label preservation.
Therefore, most existing works on NER data augmentation primarily focus on local replacement for
entity mentions (Dai and Adel, 2020; Zhou et al., 2022; Liu et al., 2022; Zhu et al., 2021) as well as
context words (Dai and Adel, 2020; Li et al., 2020). The replacements can be other mentions with the
same labels (Dai and Adel, 2020), synonyms from an external lexical resource such as wordnet (Dai
and Adel, 2020), or tokens generated by the pretrained language models such as BERT via masked
token task (Zhou et al., 2022; Liu et al., 2022; Zhu et al., 2021). However, to enhance the reliability of
masked token prediction, the language model usually needs to be fine-tuned on the NER training data
and label information is often inserted close to the [MASK]s (Zhou et al., 2022; Zhu et al., 2021),
which requires a decent amount of labeled training data.

This work primarily focuses on the less-studied data augmentation method for NER – paraphrasing –
which has the potential to introduce structural and lexical replacement and does not assume many
labeled examples. Specifically, we compare established, and novel paraphrasing methods and propose
simple ways to preserve span-level labels. Unlike most existing studies that focus on the influence
of the amount of gold data only, we systematically investigate the effect of different levels of
paraphrasing on downstream performance, at different levels of gold annotations across 5 datasets.
We investigate the quality of paraphrases from 6 different systems as augmentation data, as well as
stand alone training data for NER; and also conduct quality analysis of paraphrases generated by
different systems based on the NER preservation and language quality.

We find paraphrasing to be generally effective in low data regimes for most paraphrasers. However,
the choice of paraphrases affects the magnitude, and direction of the change in performance across
all levels of gold data. We find the use of LLMs to generate inline annotations3 while paraphrasing to
be superior to simpler heuristics, and GPT-3 Davinci variant with inline annotations to be a generally
superior choice across datasets. While paraphrases generated by GPT-3 with inline annotations also
score highest on NER preservation and language quality, we do not see broader correlation between
paraphrase quality metrics and downstream performance.

2 Datasets and Paraphrasers

2.1 Datasets

NER datasets are chosen to have coverage across a variety of domains including news, Wikipedia,
Twitter, biomedical research and search; while also having a diverse set of entity types (word phrases,
alphanumeric, datetime, alphabetical etc.).

We choose 5 datasets based on the above principles: Ontonotes5 (Hovy et al., 2006), Tweebank
(Jiang et al., 2022), WNUT 2017 (Derczynski et al., 2017), MIT Restaurant NER dataset (MIT-R)
(Liu et al., 2013), BioCreative V CDR (BC5CDR) (Wei et al., 2016). Pre-formatted versions of all
datasets are sourced from the TNER project (Ushio and Camacho-Collados, 2021) on Huggingface
datasets(Wolf et al., 2020). Datasets such as WNUT also have rare entities by design, allowing us to
probe robustness against entity memorization.

2.2 Paraphrasers and postprocessing

In our experiments, we compare six paraphrasing systems:(1) Back Translation, (2) Pegasus, (3) Ada
(Prompt A), (4) Ada (Prompt B), (5) Davinci (Prompt A) and (6) Davinci (Prompt B). We generate a
maximum of 4 unique paraphrases per seed gold sentence for each paraphraser and postprocess the
paraphrases with simple re-annotation and filtering.

2.2.1 Back-translation; BT

Back translation has been widely used as a data augmentation method (Sugiyama and Yoshinaga,
2019; Corbeil and Ghadivel, 2020; Xie et al., 2020) including in phrase based systems like Bojar and
Tamchyna (2011). For our experiments we use pre-trained English-German and German-English
models available from Huggingface Hub 4 via Tiedemann and Thottingal (2020) and the model

3Inline annotation: [Shakespeare](PERSON) was born and raised in [Warwickshire](LOC)
4https://huggingface.co/models

2



MIT-
R

Onto-
notes

BC5-
CDR

Twee-
bank

Wnut-
17

BT 1 0 2 0 3
Pegasus 1 0 13 3 8

Ada-A 10 0 0 11 0
Ada-B 4 0 0 16 2
DaV-A 3 0 4 5 0
DaV-B 26 35 26 10 27

Table 1: Counts the configurations of G & P
where a paraphraser shows highest improve-
ment over no paraphrasing baseline for a given
G. DaV-B short for DaVinci (B) outperforms
other paraphrasers across most datasets

MIT-
R

Onto-
notes

BC5-
CDR

twee-
bank

Wnut-
17

BT 0.66 0.74 0.76 0.41 0.30
Pegasus 0.68 0.75 0.78 0.33 0.23

Ada-A 0.71 0.73 0.74 0.36 0.23
Ada-B 0.70 0.72 0.74 0.34 0.23
DaV-A 0.67 0.75 0.76 0.39 0.27
DaV-B 0.73 0.80 0.82 0.41 0.32

Table 2: Test micro-F1 when training using
only paraphrases with P=1 for full dataset.
Number in bold is the maximum for a given
dataset. DaV-B short for DaVinci(B) outper-
forms all paraphrasers across datasets

architecture used is BART (Lewis et al., 2019). We use a temperature parameter of 0.8 with greedy
decoding.

2.2.2 PEGASUS Paraphraser

PEGASUS, introduced in Zhang et al. (2020) for the purpose of summarization, is a large (568mn
parameters) pre-trained transformer (Vaswani et al., 2017) based encoder-decoder model, pre-trained
using a custom self-supervised objective. To use it as a paraphraser the model was fine-tuned on a
paraphrasing task. We use an off-the-shelf version of PEGASUS fine-tuned for paraphrasing released
on Huggingface model hub 5

2.2.3 GPT-3 variants

GPT-3 Brown et al. (2020) is an auto-regressive decoder only transformer pre-trained for language
modeling, showing impressive in-context learning, and instruction following ability ((Radford et al.,
2019); (Sanh et al., 2021); (Wei et al., 2021); (Ouyang et al., 2022), (Campos and Shern, 2022)).
We use the OpenAI API 6 to query the Ada (∼350M parameters), and DaVinci (∼175B parameters)
variants of GPT-3. We prompt both GPT-3 variants with two versions of one shot prompts with a
temperature of 0.8, max length of 100, and default values for other parameters (See Appendix 6.1):

• Prompt A – GPT-3 variant is instructed to generate paraphrases without specific instruction
to retain inline annotation for entities

• Prompt B – GPT-3 variant is instructed to generate paraphrases, while also retaining inline
annotation for entities

Post-processing & filtering of paraphrases We re-annotate outputs of all paraphrasers based on
a case insensitive exact match search for the entity values present in seed sentence. In the case of
LLMs generating inline annotations, this logic is used to supplement annotations generated by the
model, relying on the model generated annotations in cases of conflicts. Further filtering is applied to
the paraphrases from all models to remove paraphrases for seed sentences shorter than 15 characters,
remove paraphrases that are a duplicate of the seed sentence or of another paraphrase, and when
generation contains an entity not present in entity space of the dataset. We also retain only the
first generation of multiline generations for paraphrasers generating a numbered list of paraphrases
(common with prompt driven GPT-3 variants Appendix 6.2)

5https://huggingface.co/tuner007/pegasus paraphrase
6https://beta.openai.com/
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0.11
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0.25 0.5 1 2 4

Ada-A

Ada-B
Davinci-A
Davinci-B
Pegasus

BackTranslation

Legend

Paraphrase ratio

Figure 1: Matrix of scores of how F1 changed relative to the no paraphrasing (P=0) baseline after the
addition of synthetic data across datasets for different G & P ratios. Improvement/worsening in any
dataset at a given G/P ratio gets a score of +1/-1 respectively, and aggregation is then done across
datasets. Higher numbers represent better performance across datasets. Score ∈ [−5, 5]

3 Experiments

3.1 Using paraphrases as augmentation data

Experimental setup In real world scenarios, we get annotated gold data incrementally. In our
experiments, we simulate this by sampling gold data at various levels (1% to 100%) by building
upon previous samples. For example, while generating gold sample for G=0.01 (first sample), we
sample 1% of the total dataset, stratified by entities. However, when sampling for G=0.02, we retain
the sample from the first step, and sample an additional 1% of the remaining dataset. This process
is repeated until G=1. As a result, going from G=0.25 to G=0.5 does not actually double the gold
dataset used in training. At each sampling step, we also sample an equivalent percentage of gold
samples with no entities. Early experiments suggested increased benefit of paraphrasing at lower
dataset size, so we explore more G ratios in this space. Additionally we only go upto G=0.25 for the
really large Ontonotes dataset for speed.

For each gold to paraphrase ratio combination, we first sample gold data by the method described
above. Then we randomly sample paraphrases for the gold IDs sampled until and including the
current sample. This dataset is used to fine-tune a distilbert-base-cased base model for named entity
recognition using the 1-step training described by (Okimura et al., 2022) using standard classification
loss over hidden states of individual tokens. The models are trained to convergence with early
stopping with a patience of 5.

We generate the overall, and entity specific micro F1 for each G/P combination along with standard
deviation across three runs.

Results As Table 1 and Figure 1 suggest, choice of paraphraser strongly dictates the augmentation
performance. GPT-3 Davinci (Prompt B) consistently outperforms, or matches other paraphrasers
and is a safe default choice for paraphrasing across domains. Across the Davinci variants, inline
annotations with Prompt B strictly outperform those introduced using heuristics. Davinci Prompt B
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Figure 2: Micro F1 for Davinci (Prompt B) on datasets across gold and paraphrase ratios

also achieves or matches best performance at G=1 (0.25 for Ontonotes) and P=4 across all datasets.
Ada variants show the most inconsistent results, with Backtranslation and Pegasus outperforming
them as well as Davinci (Prompt A) in many cases. Full results are available in Appendix 6.4.

Increasing gold ratios While we run similar experiments on all paraphraser-dataset pairs, we share
the results from DaVinci (Prompt B) on all datasets in Figure 2 because of its consistent improvements
in NER performance. (Full results Appendix 6.4). We see consistent benefits of paraphrasing at lower
gold ratios, and diminishing returns in relative performance bump as we go to higher values. Other
paraphrasers show similar trends at low G ratios with some exceptions (Ada variants in BC5CDR,
and Backtranslation on MIT-R) (See Figure 1, Appendix 6.4), although we see a lot more mixed
results at medium to high G ratios.

Increasing paraphrase ratios For DaVinci (Prompt B), as we increase paraphrasing, an initial
bump in performance is seen followed by flattening performance, with a minor drop in performance
in some cases (Figure 2). Other paraphrasers show more mixed results (Appendix: 6.4)

Finally, paraphrasing with DaVinci (Prompt B) also leads to improvements in performance for the
WNUT17 dataset (Figure 2, Appendix 6.4) across all G ratios, showing signs of robustness against
entity memorization, although deeper analysis on memorization is left for future work.

3.2 Using paraphrases as training data

Experimental setup We further evaluate quality of paraphrases directly by using only synthetic
data to train NER models. These experiments are done only for P=1 for paraphrases generated for all
training data (G=1).

Results As seen in Table 2, we find GPT-3 DaVinci Prompt B paraphrases performing best
across all datasets. The trends among paraphrasers track augmentation performance in Figure 1 and
Appendix 6.4.
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Figure 3: Paraphrase Evaluation

3.3 Paraphrase generation quality Analysis

Besides assessing usefulness for NER with actual training, we investigate paraphrase generation
quality directly from two perspectives – entity preservation and paraphrase quality to see to what
extent these metrics correlate with NER performance.

As entities are central to NER, we hypothesize entity preservation to be important for performance.
We count the number of gold entities that appear in paraphrases with correct annotations via a case
insensitive string match (entity recall). This calculation sets a lower bound of the entity preservation
accuracy.

Good paraphrases are also expected to introduce form variety while preserving the meaning faithfully,
potentially helping downstream performance. We asked three human annotators to annotate para-
phrases generated by the six systems for 50 training examples sampled for each dataset. Specifically,
human annotators were instructed to ignore the entity accuracy and to score paraphrases from 1-5
based on the paraphrasing quality. Our guidelines are similar to (Niu et al., 2020) (Appendix 6.5)

3.3.1 Results

According to Figure 3(a), among all the paraphrase systems Davinci (Prompt B) has the highest entity
recall rate, followed by Davinci (Prompt A) and backtranslation. While, Ada and Pegasus are more
likely to lose gold entities. This suggests a large-sized GPT-3 model with an appropriate prompt can
generate examples with high-quality inline entity annotations but a small-sized GPT-3 consistently
underperforms even a simple Back-translation system. Figure 3(b) shows Davinci systems always
have the best human evaluation scores across datasets followed by Pegasus and Back-translation,
while Ada systems are consistently the worst.

In summary, we find that paraphrases generated by the Davinci (Prompt B) system often preserve
entities and are of a good paraphrasing quality whereas Ada systems consistently underperform other
systems in both metrics across datasets. These results are partially consistent with the downstream
evaluations in that the augmentation data generated by Davinci (Prompt B) have reliably better
downstream performance compared to other systems. However, broader trends in paraphrasing
quality do not track with downstream NER performance.

4 Future work

While our work proposes a paraphrasing pipeline that performs consistently better than established
paraphrasing pipelines in NER, we expect further benefits to come from more exhaustive tuning
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of prompts used to generate paraphrases. Another potential direction to improve downstream
performance is to explore better (than random) sampling strategy for paraphrases (based on entity
density, entity recall, or other metrics).

5 Conclusion

We study the effect of six paraphrasing systems on downstream NER performance across 5 datasets.
We find that the choice of paraphraser system (model + prompt) strongly affects NER performance.
GPT-3 Davinci (Prompt B) performs the best at both NER performance and paraphrasing quality
metrics but other paraphrasers show mixed results, suggesting that GPT-3 Davinci (Prompt B) is a
strong default choice. We further find that generating inline annotations using GPT-3 Davinci works
superior to strictly heuristic based annotations. While we find paraphrasing to be more effective
at lower amount of training data, it helps at higher levels depending on dataset, and paraphraser.
We observe dataset dependent optimal paraphrase ratios for Davinci (Prompt B), with diminishing
results as paraphrasing is increased; whereas other paraphrasers show mixed results. Paraphrases
from Davinci (Prompt B) have the best quality, and downstream performance, but we do not find
general correlation between paraphrase quality, and downstream performance.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation
for consistency training. Advances in Neural Information Processing Systems, 33:6256–6268,
2020.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In International Conference on Machine Learning,
pages 11328–11339. PMLR, 2020.

Ran Zhou, Xin Li, Ruidan He, Lidong Bing, Erik Cambria, Luo Si, and Chunyan Miao. MELM: Data
augmentation with masked entity language modeling for low-resource NER. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2251–2262, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.160. URL https://aclanthology.org/2022.acl-long.160.

Wenjing Zhu, Liu Jian, Xu Jinan, Chen Yufeng, and Zhang Yujie. Improving low-resource
named entity recognition via label-aware data augmentation and curriculum denoising. In Pro-
ceedings of the 20th Chinese National Conference on Computational Linguistics, pages 1131–
1142, Huhhot, China, August 2021. Chinese Information Processing Society of China. URL
https://aclanthology.org/2021.ccl-1.101.

10

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2022.acl-long.160
https://aclanthology.org/2021.ccl-1.101


6 Appendix

6.1 Prompt design

The following prompts are used in the experiments:

Figure 4: GPT-3 is instructed to generate paraphrases similar to an example without any specific
instruction to retain inline annotations

Figure 5: GPT-3 is instructed to generate paraphrases similar to an example, asking it to retain inline
annotations

6.2 Multiline generation

LLM paraphrasers can be triggered to generate multi-line outputs. This behavior is more common in
Ada variants over DaVinci, showing the DaVinci is better at following prompt instructions.

Figure 6: GPT-3 variants sometimes generate multiple numbered paraphrases. We choose to retain
only the first paraphrase in these cases
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6.3 Detailed results across different gold data sizes for all datasets

6.3.1 BC5CDR

12



6.3.2 Ontonotes

13
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6.4 Heatmap of micro-f1 scores across all datasets & paraphrasers
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6.5 Human evaluation guidelines
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