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Abstract

Accurately simulating physics is crucial across scientific domains, with applications
spanning from robotics to materials science. While traditional mesh-based simula-
tions are precise, they are often computationally expensive and require knowledge
of physical parameters, such as material properties. In contrast, data-driven ap-
proaches like Graph Network Simulators (GNSs) offer faster inference but suffer
from two key limitations: Firstly, they must be retrained from scratch for even
minor variations in physical parameters, and secondly they require labor-intensive
data collection for each new parameter setting. This is inefficient, as simulations
with varying parameters often share a common underlying latent structure. In this
work, we address these challenges by learning this shared structure through meta-
learning, enabling fast adaptation to new physical parameters without retraining.
To this end, we propose a novel architecture that generates a latent representation
by encoding graph trajectories using conditional neural processes (CNPs). To miti-
gate error accumulation over time, we combine CNPs with a novel neural operator
architecture. We validate our approach, Meta Neural Graph Operator (MaNGO), on
several dynamics prediction tasks with varying material properties, demonstrating
superior performance over existing GNS methods. Notably, MaNGO achieves
accuracy on unseen material properties close to that of an oracle model.

1 Introduction

The simulation of complex physical systems is of paramount importance in a wide variety of
engineering disciplines, including structural mechanics [1–3], fluid dynamics [4–6], and electromag-
netism [7–9]. In particular, simulating object deformations under external forces is essential for
applications such as robotics [10–12]. Traditional mesh-based simulations are appealing for such
problems due to the accuracy of the underlying finite element method [13, 14]. However, these
methods are typically slow and require precise knowledge of the simulation parameters, including
material properties of objects.

In contrast, data-driven approaches for simulating complex systems have emerged as a promising
alternative to traditional mesh-based simulators [15–17]. Among them, Graph Network Simulators
(GNSs) have recently become increasingly popular [18–21, 12, 22]. GNSs encode the simulated
system as a graph of interacting entities whose dynamics are predicted using Graph Neural Networks
(GNNs) [23]. These models are often orders of magnitude faster than classical simulators [19] while
being fully differentiable, making them highly effective for downstream tasks such as inverse design
problems [20, 24]. Moreover, these models do not require knowledge of simulation parameters as
they directly learn from the training data. However, they must be retrained from scratch for even
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Figure 1: Our proposed Meta Neural Graph Operator (MaNGO) approach: The context set is
aggregated to form a latent representation of material properties. Given an unseen initial state, the
Graph Network Simulator (GNS) uses this latent representation to generate trials that follow the
material laws of the context set, enabling accurate predictions for new conditions. The example
prediction aligns perfectly with the ground truth data.

minor variations in physical parameters, and require data collection for each new parameter setting
that is often either costly and time-consuming or even impossible.

To overcome this, Sanchez-Gonzalez et al. [25] proposed to use the simulation parameter as condi-
tional information when training the GNS, allowing for generalization to unseen simulation parame-
ters. However, such an approach only works under two assumptions. Firstly, training data must be
labeled with the corresponding simulation parameter, and secondly, the simulation parameter must be
available at test time for the desired simulation. While the first assumption is mild and often satisfied
in simulation settings, the second assumption requires solving the inverse problem of inferring the
underlying physical parameters from observed system behavior [26]. Material estimation or system
identification can be viewed as a specific instance of this problem [27–32]. However, solving such
inverse problems is challenging, as they are typically ill-posed and require explicit knowledge of the
governing partial differential equation (PDE) [30, 27, 28].

To overcome this challenge, we investigate data-driven adaptation of GNS – enabling fast and accurate
simulations for unknown parameters using only a few simulation trials. Our work builds on the
premise that training data from different simulations shares a common ‘latent’ underlying structure.
We aim to learn this structure via meta-learning using Conditional Neural Processes (CNPs). To that
end, we propose a novel framework called Meta Neural Graph Operator (MaNGO) that builds on
Message Passing Networks (MPNs) and neural operator methods to ensure efficient processing of
spatiotemporal data. We validate our approach on several dynamics prediction tasks with varying
material properties, demonstrating superior performance over existing GNS methods. Notably, our
method achieves accuracy on unseen material properties close to that of an oracle model which has
access to the simulation parameters at test time. To summarize, we identify our contribution as
follows: (i) we successfully use meta-learning with Conditional Neural Processes (CNPs) for graph
network simulators allowing for fast and accurate adaptation to unseen physical parameters. (ii) we
identify shortcomings of existing architectures for handling spatiotemporal data and propose a novel
GNS architecture. (iii) we provide a set of new benchmark tasks suited for testing the adaptation
capability of GNS2.

2 Preliminaries

Graph and Message Passing Neural Networks. Graph Neural Networks (GNNs) are a class of
neural networks designed to process graph-structured data by iteratively updating node representations
through localized message passing. Here, a graph is a defined as G = (V, E , {m0

v}v∈V , {m
0
e}e∈E)

with nodes V , edges E , and associated vector-valued node and edge features m0
v and m0

e. A Message
Passing Network (MPN) [25, 19], a GNN architecture well-suited for graph-based simulations,
consists of K message passing steps, which iteratively update the node and edge features based on

2Code: https://github.com/ALRhub/mango Dataset: https://zenodo.org/records/17287535
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the graph topology. Each such step is given as

mk+1
e = fkE (m

k
e ,m

k
v ,m

k
w), with e = (v, w), mk+1

v = fkV(m
k
v ,
⊕

e∈Ev

mk+1
e ), (1)

where Ev ⊂ E are the edges connected to v. Further,
⊕

denotes a permutation-invariant aggregation
operation such as the sum, the max, or the mean. The functions fmV and fmE are learned Multilayer
Perceptrons (MLPs), usually with a residual connection. The network’s final output are the node-wise
learned representations mK

v that encode local information of the initial node and edge features.

Neural Dynamics Prediction. Our goal is to learn the dynamics of a multibody system, i.e., a

trajectory of graphs (G(t))t∈[0,T ] from the initial condition G(0). We follow Brandstetter et al. [33] and
group existing approaches into two categories, neural operators and autoregressive methods. Neural
operator methods treat the mapping from initial conditions to solutions at time t as an input–output
mapping learnable via supervised learning. Formally, a neural operator FNO predicts the graph at

any t ∈ [0, T ] from the initial condition, that is, G(t) = FNO

(
t,G(0)

)
. In contrast, autoregressive

methods, learn to incrementally update the graph starting from G(0):

G(t+∆t) = FAR

(

∆t,G(t)
)

.

Here, FAR is the temporal update and ∆t ∈ R>0.

Meta-Learning and Conditional Neural Processes. To formalize the meta-learning problem using
conditional neural processes (CNPs) [34], we consider a meta-dataset D = D1:L consisting of L,

typically small, task datasets Dl = {xli,y
l
i}
Sl

i=1 of size Sl. Each task consists of inputs xli ∈ R
dx

and corresponding evaluations yli ∈ R
dy of unknown functions fl, that is, yli = fl(x

l
i) + ϵi, where

ϵs denotes (possibly heteroskedastic) noise. Meta-learning hinges on the idea that tasks share
statistical structure, allowing for fast adaptation to a target function f∗ based on a small target dataset

D∗ = {x∗
i ,y

∗
i }
S∗

i=1 of size S∗. To leverage this shared statistical structure, Conditional Neural

Processes (CNPs) use the meta-dataset D to learn how to generate a latent representation r ∈ R
dr

from a given set of (x,y)-pairs. At test time, this latent representation is generated from the target
dataset D∗ enabling generalization to unlabeled inputs x∗ from the target task without requiring
weight adaptation. Formally, to generate the latent representation r for a set S = {xi,yi}

S
i=1 with

arbitrary size S, CNPs use a parameterized encoder with a permutation-invariant aggregation method,

r =
⊕

i∈{1,...,S}

ri with ri = encφ(xi,yi), (2)

with parameters ϕ and permutation-invariant aggregation method
⊕

. The latent representation r is
then used to predict the mean and variance of a Gaussian distribution over y, given a new input x,

pθ(y|x,S) = N
(

y| decµθ (x, r), dec
Σ
θ (x, r)

)

, (3)

using a parameterized decoder with parameters θ. For training, the task datasets are further split into
context sets Dc

l ⊆ Dl to train the CNP on different dataset sizes Scl which are used to minimize the
negative task log-likelihood

Ll(ϕ, θ) = −EDc
l
⊆Dl

[ Sl∑

i=1

log pθ(y
l
i|x

l
i,D

c
l )

]

(4)

which implicitly depends on ϕ through the encoding of Dc
l . Here, the expectation indicates randomly

sampled subsets. Thus, meta-learning aims to maximize the overall task likelihood while conditioning
the model on smaller subsets of the data. The complete loss is obtained as L(ϕ, θ) =

∑

l Ll(ϕ, θ)
and is optimized end-to-end using stochastic gradients with respect to ϕ and θ.

3 Adaptable Graph Network Simulators via Meta-Learning

Having established the foundations, we now explain how meta-learning with Conditional Neural
Processes (CNPs) can be used to make graph network simulators adaptable to novel unseen physical
parameters. To that end, we start by formalizing our setup and introducing the meta-dataset in
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Figure 2: Meta-dataset representation: This figure illustrates the structure of the meta-dataset,
consisting of multiple task datasets. Each dataset includes simulations with shared material properties
but varying starting conditions. Two example simulations, though starting similarly, produce vastly
different results due to their distinct material properties.

Section 3.1. Next, we propose an extension to meta-learning that improves training with additional
information that is not available at test-time in Section 3.2. Lastly, we introduce a CNP architecture
that is tailored to our setup. Specifically, we propose an encoder that generates a latent representation
from spatiotemporal data in Section 3.3. Furthermore, we introduce a novel decoder that addresses
shortcomings of existing methods as outlined in Section 3.4.

3.1 Problem Formalization and Setup

The aim is to learn a graph network simulator (GNS) that predicts a sequence of graphs G1:T :=
{Gt}

T
t=1 describing, e.g., mesh deformation over time without knowing some simulation or physical

parameters, which we refer to as ρ ∈ R
dρ . For example, ρ could be stiffness or compression

properties of a deformable object in the simulation. To that end, we use meta-learning to extract
latent representations from similar data to generalize to unseen physical parameters. As outlined in
Section 2, in order to perform meta-learning we require a meta dataset D containing L task datasets
Dl ∈ D that in turn consist of multiple input-output pairs (xli,y

l
i) ∈ Dl. In our setting, each output is

given by

yli = (pl1:T ,v
l
1:T ), (5)

where pl1:T ,v
l
1:T ∈ R

T×N×d denote the positions and velocities of a sequence of N nodes belonging

to (possibly deformable) objects in d-dimensional space. An input xli in our setting is given by

xli = (pl0,v
l
0,p

l,ext
0:T ,v

l,ext
0:T ,h

l), (6)

where pl0,v
l
0 ∈ R

N×d are the initial node positions and velocities. Here p
l,ext
0:T ,v

l,ext
0:T ∈

R
(T+1)×N ext×d are positions and velocities of ‘external’ objects, that is, objects that we do not wish to

simulate, such as a rigid collider that interacts with the object of interest. Lastly, hl ∈ R
(N+N ext)×dh

represents node features that remain constant over time, such as the node’s type (deformable or
collider) or whether a force is applied to the node. Initial condition xl and simulation result yl

together result in a sequence of graphs Gl1:T with N +Next nodes. In our work, we assume a fixed

graph structure: the connectivity and the number of nodes in Glt is constant over time and task datasets
Dl. An illustration of a meta dataset D is shown in Figure 2.

3.2 Incorporating Simulation Parameters into Meta-Training

For training, we could follow the procedure outlined in Section 2 and optimize the loss defined
in Equation (4). However, contrary to the setup discussed in Section 2, we additionally assume
access to the simulation parameters for each training task, i.e., {ρl}Ll=1 but not for target tasks D∗

rendering them useless in the standard meta-learning formulation. Here, we slightly extend the meta
training such that we obtain additional learning signals from ρl. To that end, we use an additional
parameterized neural network fψ : Rdr → R

dρ with parameters ψ that aims to predict ρl from a
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latent representation rl. Using the following definition for the joint likelihood between y and ρ, i.e.,

pθ,ψ(y, ρ|x,S) = N

([
y
ρ

] ∣
∣
∣
∣

[
decµθ (x, r)
fψ(r)

]

,

[

decΣθ (x, r) 0
0 1

])

,

we obtain a novel per-task loss function as

Ll(ϕ, θ, ψ) = −EDc
l
⊆Dl

[ Sl∑

s=1

log pθ,ψ(y
l, ρl|x,Dc

l )

]

,

where the full loss again sums over the task losses, L(ϕ, θ, ψ) =
∑

l Ll(ϕ, θ, ψ). Intuitively, gradients

with respect to the encoder parameters ϕ are informed by ρ via fψ . As another positive side-effect,
we obtain an estimate ρ̂ = fψ(r) which could be used for downstream tasks.

3.3 Spatiotemporal Encoder

In Section 2, we treated the encoder and decoder of the CNP architecture as black boxes that
are responsible for generating a latent representation and a predictive distribution over outputs,
respectively. However, since our data consists of non-standard structures, specifically graphs with
both spatial and temporal components, we introduce the following novel architectures.

Recall that the encoder of a CNP generates a latent representation rl ∈ R
dr from a set of input-output

pairs, typically a context set Dc
l ⊆ Dl. Then, for each (xli,y

l
i) ∈ Dc

l we separately generate a latent

representation, i.e., rli = encφ(x
l
i,y

l
i) which are then aggregated in a permutation-invariant fashion to

obtain rl. As discussed in Section 3.1, each input-output pair in our setting has a spatial and temporal
component. We first aggregate over the temporal dimension and then over the spatial dimension. To
that end, we combine the inputs xli (see Equation (6)) and yli (see Equation (5)) as

zli = (pl0:T ,v
l
0:T ,p

l,ext
0:T ,v

l,ext
0:T ,h

l
0:T ),

where hl is simply copied for each time step. We ensure translation invariance by subtracting the
initial mean position. To remove the temporal component, we apply a 1D convolutional neural

network, i.e., ẑli = CNN
φ
1D(z

l
i). Lastly, to obtain a spatial-independent latent representation, we apply

a deep set encoder [35] on the node level, that is,

rli = encφ(x
l
i,y

l
i) = f

φ
outer

(

1

N +Next

N+Next∑

n=1

f
φ
inner(ẑ

l
i,n)

)

,

where, f
φ
outer and f

φ
inner are neural networks. In this work, we choose deep sets as our spatial

aggregation method, as they have demonstrated good performance in graph-level problems similar to
ours [36]. Finally, to aggregate a whole set of input-output pairs, we follow Equation (2) and use a
permutation invariant aggregation method.

3.4 Meta Neural Graph Operator Decoder

We propose a novel MaNGO decoder architecture that combines elements of MeshGraphNet (MGN)
[19] and the Equivariant Graph Neural Operator (EGNO) [22]. EGNO predicts graph sequences
using equivariant GNN layers and temporal convolutions in Fourier space. While beneficial in some
settings, these equivariance constraints can limit performance when not required. We discuss this
limitation in Appendix B, where we mathematically show that EGNO struggles on certain tasks.
Alternatively, MGN models graph sequences autoregressively using Message Passing Networks
(MPNs), which are highly effective for graph-based simulations [19]. However, autoregressive
prediction is not ideal when paired with the current meta-learning training setup, see Appendix E for
further discussions. To address these limitations, MaNGO retains the strengths of neural operator
methods by replacing the equivariant GNN layers with MPNs and equivariant convolutions with a 1D
CNN (see Figure 3). Formally, we use the MaNGO decoder to realize y = decθ(x, r) (omitting the
task index l for readability). Thus, we define a single MaNGO block as a mapping

(mk
e,1:T ,m

k
v,1:T ) 7→ (mk+1

e,1:T ,m
k+1
v,1:T ),

following the notation in Section 2. The initial edge and note features (m0
e,1:T ,m

0
v,1:T ) are extracted

from (x, r) by copying r to every node feature and replicating the initial graph T times. Additionally,
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Figure 3: MaNGO Decoder: Our simulator takes a latent representation and an initial state as
input. The initial state is combined and iteratively processed to generate a trajectory of graphs. By
alternating between a message-passing network for spatial processing and a 1D CNN for temporal
processing, the simulator produces accurate dynamic simulations.

we include time embeddings for every time step t and use relative positions as edge features. Further
details on the feature creation are provided in Appendix C. As a first step of the MaNGO block,
we leverage the MPN for a spatial update, that is, we process the edge and node features according

to Equation (1) for each timestep separately to obtain a new tuple (mk+1
e,1:T , m̃

k+1
v,1:T ). The temporal

update is subsequently performed using a 1D residual convolutional layer, that is,

mk+1
v,1:T = Convθ1D(m̃

k+1
v,1:T ) + m̃k+1

v,1:T .

After K MaNGO blocks the final node features mK
v,1:T are used for predicting the node positions for

every time-step. Specifically, a displacement vector is computed using a parameterized network fθ,
that is, dv,t = fθ(mK

v,t) to obtain node positions pv,t as pv,t = pv,0 + dv,t.

The resulting positions pv,t define the graph sequence y over time. In this work, we do not predict

input-dependent variances, and instead use a fixed decΣθ (x, r) := 1 to stabilize and simplify the
training scheme. If variances are required, for example, for uncertainty estimation, they can be easily
predicted from the decoder as well. By alternating between spatial message passing and temporal
convolution, the MaNGO simulator efficiently models time-series graph data while avoiding the
pitfalls of equivariance over-constraints and autoregressive prediction.

4 Related Work

Learning-based forward simulators. Using deep neural networks to learn physical simulations
has become an emerging research direction in scientific machine learning [19, 37, 38]. Deep
learning-based approaches have demonstrated success in applications such as fluid dynamics [39, 40],
aerodynamics [41, 19], and deformable object simulations [12, 42]. A popular class of learned neural
simulators are Graph Network Simulators (GNSs) [43, 25]. GNSs utilize MPNs, a special type
of GNN [44, 23] that representationally encompasses the function class of many classical solvers [33].
GNSs handle physical data by modeling arbitrary entities and their relations as a graph. Notably,
all previously mentioned GNSs predict system dynamics iteratively from a given state, whereas we
directly estimate entire trajectories, improving rollout stability and prediction speed. Related to our
approach is the Equivariant Graph Neural Operator (EGNO) [22], which also predicts full trajectories
using SE(3) equivariance to model 3D dynamics and capture spatial and temporal correlations. In
this work, we adopt the trajectory prediction framework of EGNOs for our decoder (as shown in
Figure 3) but remove the equivariance constraint. We justify this choice in Appendix B.

Material estimation. Determining physical parameters from observational data is a challenging
and ill-posed problem [26]. Machine learning methods have shown success in inferring material
properties from videos [27–29] and point clouds [30], but they rely on knowledge of the underlying
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Figure 4: Performance comparison of our proposed methods and baselines across four datasets.
We report the mean and 95% confidence interval of the Full Rollout MSE over five random seeds.
The x-axis indicates the number of context samples used by the meta-learning approaches. We
compare (i) meta-learning methods that employ a latent simulation parameter representation, (ii) a
two-stage setup that explicitly predicts simulation parameters, and (iii) a baseline model that ignores
context and performs direct simulation. The MaNGO (Oracle) variant, which has privileged access to
the ground-truth simulation parameters, serves as an upper performance bound. Overall, MaNGO
consistently outperforms both non–meta-learning and alternative meta-learning approaches, and
achieves results close to the oracle.

PDE. Recently, approaches utilizing pre-trained Graph Network Simulators (GNS) to infer material
parameters gained popularity due to their computational efficiency and differentiability [31, 32]. By
back-propagating through the learned simulator, these methods estimate latent material codes directly
from observations. While the approach in Zhao et al. [31] and ours share this goal, only we aggregate
a context set of simulation trials to extract the underlying structure. Furthermore, our method does
not require any backward pass and model weight updates, resulting in a faster adaptation.

Meta-learning and Neural Processes. Learning models that can quickly adapt to small context
datasets at test time is often referred to as Meta-Learning. This emerging paradigm has found wide
applications in fields such as language models [45] and robotics [46, 47], where it is commonly
referred to as In-Context Learning. Meta-Learning is typically categorized into two approaches:
optimization-based methods with few-shot examples and context-aggregation methods in a zero-shot
fashion. A prominent example of the former is Model-Agnostic Meta-Learning (MAML) [48–51],
which employs gradient-based updates to adapt the model to new tasks using few examples. In the
latter, Neural Processes (NPs) [34, 52–57] aggregate latent features from a variable-sized context set
to produce a latent task description that can be used directly during inference.

In this paper, we adopt Conditional Neural Processes (CNPs) [34] as the core mechanism for
aggregating context from different simulation trials to produce a latent description representing the
simulation parameters. A GNS is then trained to condition on this latent descriptor, enabling it
to adapt dynamically to new materials. To the best of our knowledge, this is the first time such a
framework has been proposed, combining meta-learning with graph network simulators to quickly
adapt to unknown material properties given only few context-examples without requiring retraining
or knowledge of the underlying PDE.
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Figure 5: Left: Comparison of different GNS decoders with oracle information. MaNGO outperforms
both MGN and EGNO, with the performance gap being more visible in the Sphere Cloth Coupling
task due to its highly complex underlying dynamics. Additionally, EGNO fails to learn in the Planar
Bending task, a phenomenon further analyzed in Appendix B. Right: Visualization of the 2D latent
space for Deformable Plate (Easy), with points color-coded by Poisson’s ratio. The structured
separation (at Poisson value 0) shows that r effectively captures the underlying material properties.

5 Experiments

We validate MaNGO on four different simulation datasets derived from three distinct simulation
platforms. All tasks are normalized to [0, 1]3. The first dataset is a 2D Deformable Plate (DP)
task [12], which has two variants: DP-easy and DP-hard. In DP-easy, the material property of
interest is Poisson’s ratio [58]. To increase complexity, DP-hard additionally varies Young’s modulus
and the initial velocity across trials within the same task. Next, we introduce a novel Planar Bending
(PB) dataset, which simulates the bending of a 2D sheet subjected to two external forces perpendicular
to the sheet. In this task, Young’s modulus is the property of interest. The final dataset is a new
Sphere Cloth Coupling (SCC) task, inspired by the Physion++ dataset [59], which involves a coupling
system consisting of a sphere and a cloth. In this task, spheres of varying sizes are dropped onto the
cloth. Their density is varied to influence the cloth’s deformation upon contact.

The length of each simulation trial varies across datasets: 52 time steps for DP, 50 for PB, and 100
time steps for SCC to account for the increased complexity of simulating elastic behaviors. Further
details about preprocessing steps and ground-truth simulators can be found in Appendix D.

5.1 Training setup and baselines

In this section, we present all methods evaluated in our experiments. Each model variant, whether
meta-learning or non-meta-learning, has approximately three million trainable parameters, ensuring a
fair comparison across architectures.

Meta-learning. We first describe the setup used for our meta-learning framework. Each task dataset
Dl contains 16 different simulation trials, where each trial shares the same material properties ρ
(e.g. Poisson’s ratio or Young’s modulus) but varies in initial conditions (e.g., collider position and
size, or force position). During training, we randomly select a subset of Sl of a size between 1 to 8
to serve as the context dataset. This context is then used to predict a random trial3 using different
decoder methods. We compare our proposed MaNGO decoder against the EGNO architecture and a
step-based MGN simulator. For testing, we split D∗ into two distinct subsets. The first subset is used
as the context dataset, while the second subset provides the initial conditions for predicting the full
trajectory. We evaluate various context sizes to assess adaptation capability.

Two-Stage Training Setup. Since we assume access to the simulation parameters during training,
we compare the meta-learning methods against a two-stage training scheme. In the first stage, we
train an encoder to predict the simulation parameters given a simulation trial. In the second stage, we
freeze the encoder and train a decoder that uses the predicted simulation parameters from the encoder
as an additional input. Therefore, this baseline predicts an explicit representation rather than a latent
representation of the simulation parameters. We refer to this approach as MaNGO/MGN/EGNO
(Two-Stage).

3We empirically find that predicting a random trial per batch instead of all trials improves performance.
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Vanilla GNS. We compare our method against non-meta-learning baselines, including EGNO, and
MGN, and our proposed MaNGO decoder without context information. To assess the upper bound,
we additionally train an oracle method using the MaNGO decoder which has access to the simulation
parameters during training and test time. We refer to it as MaNGO-Oracle. For these baselines, the
full training set containing all 16 simulation trials is provided. Additionally, for the MGN baseline,
we follow the approach of Pfaff et al. [19], adding noise during training to mitigate error accumulation
and stabilize rollouts at inference. We tune the input noise level for each task to maximize MGN’s
performance. The full experimental protocol, along with computational budget details, is available in
Section F.

5.2 Results

Main evaluation. We compare the mean-squared error (MSE) between the ground truth and the
predicted simulation averaged over all time steps. Overall, Figure 4 shows that meta-learning
approaches consistently outperform non-meta-learning baselines, achieving a relatively low MSE
close to the oracle method, MaNGO-Oracle. The two-stage training scheme is only competitive
in the simplest environment, Deformable Plate (Easy), and across all environments it requires a
larger context size to achieve its best performance. In general, within the meta-learning setting,
performance improves with larger context sizes. Furthermore, we emphasize that strong performance
is achieved with as few as 2 to 3 context samples (even under the high-complexity DP-hard dataset),
highlighting the ability of our meta-learning approach to adapt quickly with minimal context data.
All non-meta-learning baselines perform similarly. Interestingly, EGNO struggled to learn in the
Planar Bending task, a phenomenon we further analyze in Appendix B. Qualitative visualizations of
all methods and tasks are provided in Section G.
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Figure 6: Robustness analysis of MaNGO
on the Deformable Plate task under varying
levels of Gaussian noise and node dropout, a
setup mimicking real-world conditions. The
normalized MSE is reported. Our method re-
mains stable with up to 10% noise (relative to
the width of the mesh) and 10% node dropout.

To directly compare our proposed MaNGO decoder
with existing architectures, we evaluate it in the or-
acle setting, where material properties are known.
As shown in Figure 5 on the left side, MaNGO is
outperforming other baselines, confirming the effec-
tiveness of our approach. We suspect that for MGN,
auto-regressive prediction suffers from accumulated
errors,

an issue particularly evident in the Sphere Cloth Cou-
pling dataset, where highly nonlinear contact dynam-
ics [60, 59] lead to MSE an order of magnitude higher
than MaNGO. As for EGNO, while equivariance re-
duces the amount of required training data, it can
also be overly restrictive, as real-world physics is
not strictly E(3)-equivariant [61, 62]. Various factors,
such as friction and gravity, can break this symmetry,
leading to suboptimal generalization.

Latent visualization. To understand how the learned
latent representation correlates with simulation pa-
rameters ρ, we visualize the 2D latent space with
dim(r) = 2 for the Deformable Plate task, color-
coded by Poisson’s ratio. Figure 5 (right) shows a
strong correlation between r and Poisson’s ratio, with
two linear trends emerging: one from 0 to 0.49 and the other from −0.9 to 0. This separation reflects
the underlying material behavior — plates with a positive Poisson’s ratio expand on contact, while
those with a negative Poisson’s ratio contract. The learned representation captures this distinction,
indicating that the model encodes meaningful physical properties.

Robustness under sparse and noisy observations. Inspired by the setup in [31], we evaluate
the robustness of MaNGO on the Deformable Plate task by introducing Gaussian noise into the
observational context data and reducing the number of observed nodes at test time. To this end,
we also introduce a small noise level of 0.05 for the context split during training to enhance the
robustness of the encoder. We report the normalized MSE in the range [0, 1], where the minimum is
set by MaNGO-Oracle and the maximum by the non-meta-learning MaNGO approach (as shown in
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Figure 4). As shown in Figure 6, the lower-left region of the matrix—corresponding to a 10% noise
level and 10% node dropout—demonstrates near-optimal performance. Even with 50% of nodes
unobserved, the performance drop remains around 15%, highlighting the model’s ability to handle
sparse and noisy observations. These results confirm that our encoder is robust under such conditions,
reflecting real-world scenarios.

Runtime Efficiency and Memory Consumption A key advantage of MaNGO is its ability to predict
entire trajectories in a single forward pass, enabling efficient batched inference over time. This design
leads to substantial improvements in inference speed compared to traditional autoregressive next-step
simulators. On the Sphere-Cloth Coupling benchmark, the CNP encoder requires approximately 6
ms to compute the latent representation, and the MaNGO decoder simulates the full trajectory in only
13 ms. In contrast, the MGN next-step simulator takes about 500 ms, as it predicts one step at a time,
making MaNGO over an order of magnitude faster than the already efficient autoregressive neural
simulator.

However, the batched inference and training scheme comes with increased memory requirements.
GPU memory consumption scales approximately linearly with the number of predicted time steps,
since the model retains intermediate activations across the temporal dimension. In our experiments,
we observe that

Memory(MaNGO) ≈ Memory(MGN) × Number of predicted steps.

6 Conclusion

In this work, we explored data-driven adaptation of graph network simulators (GNS) via meta-
learning. Specifically, we investigated the setting where simulation parameters are unknown at test
time which would require retraining or labor-intensive data collection for existing methods. In a
series of experiments, we demonstrated the potential of meta-learning for GNS, where our approach
achieves accuracy on unseen material properties comparable to that of an oracle model. We view
this work as a first stepping-stone towards the next generation of data-driven simulators, that are fast,
differentiable, and capable of adapting to a wide variety of simulation settings. A discussion of the
broader impact of this work is provided in Section A.

Limitations and Future Work One limitation of our current approach is its focus on a single
data modality at test time. In practical scenarios, however, test-time data may come in diverse
formats, such as point clouds captured by cameras. Our method does not yet support such modalities,
which constrains its applicability in real-world settings. Addressing this limitation would require the
development of new architectures capable of handling heterogeneous data.

A further limitation is that MaNGO assumes a fixed graph topology and requires substantial GPU
memory when predicting full trajectories in a single forward pass. These constraints limit its
scalability and applicability to systems with dynamic connectivity. A promising direction for future
work is to adopt a hybrid decoding strategy that predicts shorter temporal segments while dynamically
updating the graph structure after each segment. Such an approach could reduce memory demands
and enable the modeling of systems with evolving topologies, bridging the gap between efficiency
and flexibility.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The claims in the abstract and introduction are fully supported by our method
section, as well as in the qualitative and quantitative results in the experiments section. The
appendix provides more detailed results where required.
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2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: Section 6 discusses current limitations of the approach, including the scope of
the paper and assumptions made.
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model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Answer: [Yes]

Justification: We proof that EGNN [63] is restricted to lower-dimensional predictions for
certain underlying data manifolds in Appendix B
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• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail our method in Sections3 3.1, and provide additional information
in the appendix where required. We detail our experimental setup and datasets used in the
experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide documented and run-able code in the supplement, and will release
data upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a high-level overview in Section 5, and detail hyperparameters,
train/test splits and further information in Appendices D, E, F.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report bootstrapped confidence intervals over five random seeds for all
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report compute resources in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics. We made sure that our research
complies to the Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a discussion on broader impact in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not use pretrained language models, image generators or similar high-
risk models in our approach, and do not scrape datasets. We still discuss potential cases for
miss-use of our learned simulator in Appendix A.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We adapt the DeformablePlate dataset of Linkerhägner et al. [12], which we
cite at the corresponding part of the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: At time of submission, we do not release new assets. We will open-source all
used datasets, including documentation, after submission.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Braoder Impact Statement

Our proposed Graph Network Simulator, with its ability to adapt to new material properties through a
small context set, offers significant advancements across fields that rely on computational modeling
and simulation. By reducing the need for extensive simulation data and recalibration, it can lower
computational costs while maintaining high accuracy. This adaptability could benefit industries
ranging from materials science to robotics, enabling more efficient design and testing of novel
materials.

However, this flexibility in simulating a wide range of material properties could also be misused in
contexts where precise material behavior is critical, such as in the development of advanced weaponry
or other high-risk technologies. While the primary intent is to advance scientific and engineering
applications, ethical considerations must be taken into account to prevent unintended harmful uses.

B Limitations of the Equivariant Graph Neural Network

In this section, we analyze the limitations of the Equivariant Graph Neural Network (EGNN) [63],
which serves as the GNN backbone of the Equivariant Graph Neural Operator (EGNO) baseline
[22]. During our experiments, we observed that EGNO fails to predict any deformation in the Planar
Bending task.

In this task, all neural operators receive an initial input configuration p0, representing a completely
flat plane as the positions of the mesh. Consequently, all points in this initial graph lie within a plane
E embedded in three-dimensional space. In this appendix, we demonstrate that the spatial output of
any trained EGNN will also remain confined to a plane. This implies that an EGNN cannot solve the
Planar Bending task, as the required deformed state does not lie within a single plane.

We establish this result by first proving that an EGNN maps all points in the specific plane

Z=0 = {(x, y, z) ∈ R
3 | z = 0}

back onto the same plane Z=0. To see this, consider any node v ∈ G with an initial position
p0
v = (x, y, 0) ∈ Z=0. Applying a single layer of EGNN to update the node positions, we obtain

p1
v = p0

v + C
∑

w∈N (v)

(p0
v − p0

w)φx(mvw).

Examining the z-coordinate, we note that the message term φx(mvw) is scaled by (p0
v − p0

w). Since
all p0

v lie in Z=0, their z-coordinates are zero, meaning (p0
v−p0

w) has no z-component. Consequently,
the updated z-coordinate in p1

v remains zero, ensuring that p1
v ∈ Z=0. By induction, this property

holds for all subsequent layers, proving that EGNN maps Z=0 onto itself.

Next, we extend this result to any arbitrary plane E in three-dimensional space. Since E is a plane,
there exists a transformation T ∈ SE(3) such that

T (E) = Z=0.

By the equivariance property of EGNN, there exists another transformation S ∈ SE(3) satisfying

EGNN(T (G)
︸ ︷︷ ︸

⊂Z=0

) = S(EGNN(G)).

From our previous result, the left-hand side remains confined to Z=0. Thus, applying S−1 yields

EGNN(G) ⊂ S−1
Z=0,

which is another plane in three-dimensional space. This establishes the key result: an EGNN always
maps planar inputs to planar outputs, rendering it incapable of solving the Planar Bending task.

A similar argument extends to the full EGNO architecture since its equivariant temporal convolution
layer in Fourier space is also equivariant and it preserves the property of mapping Z=0 onto itself.
Thus, EGNO, like EGNN, is inherently unable to capture the required deformations in the Planar
Bending task.
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C Feature creation for the MaNGO decoder

This appendix provides a detailed explanation of the input processing for the MaNGO simulator.
First, similar to the Spatiotemporal encoder, we create a sequence of graphs Gt over time. However,
unlike the encoder, we repeat the initial positions and velocities of all deformable nodes across
time, as the future positions—our target variable—are unknown and need to be estimated. In Gt, we
define the node features for a node v as the tensor [r,hv,vt,TE(t)] consisting of the latent system
identification r, the node features hv , the velocity vt and a time embedding of the time step t. Note
that the position is not part of the node features. Instead, following [19], we compute for each edge e
the relative position prel

e,t to ensure translation invariance. The complete edge features are given as

[ee,p
rel
e,t,TE(t)] consisting of the (time-independent) edge features, the relative position and a time

step embedding.

D Datasets and Preprocessing information

In this section, we provide detailed information about the datasets used in our experiments. Table 1
summarizes the key characteristics of each dataset, including the dataset splits, simulation length,
and the number of nodes used for prediction.

For brevity, we use the following abbreviations throughout the paper:

• PB: Planar Bending.

• DP: Deformable Plate, with two variants: DP-easy and DP-hard.

• SCC: Sphere Cloth Coupling.

Table 2 further details the training setup for each dataset, specifying the material properties considered
and the variations in initial conditions. These variations influence the dynamics of each task, ensuring
diverse training scenarios that test the generalization capabilities of our method.

Table 1: Dataset descriptions

Name Train/Val/Test Splits Number of Steps Number of Nodes for Prediction

PB 460/50/50 50 225
DP-easy 600/100/100 52 81
DP-hard 600/100/100 52 81
SCC 600/100/100 100 400 (cloth) + 98 (sphere)

Table 2: Training setup for each dataset

Name Material Properties Initial Condition Variations

PB Young’s modulus Two forces: (x, y) position, {−1, 1} direction, constant magnitude
DP-easy Poisson’s ratio Collider’s x position, size, constant initial velocity
DP-hard Young’s modulus, Poisson’s ratio Collider’s x position, size, varied initial velocity
SCC Sphere’s density Sphere’s size, same initial position

Planar Bending. We uniformly select Young’s modulus from 10 to 500, from a very deformable to
an almost stiff sheet. The boundary nodes of the sheet are kept in place.

Deformable Plate. The original task was introduced in [12], generated using Simulation Open
Framework Architecture (SOFA) [64]. We extended to meta-learning setting by sampling Poisson’s
ratios between −0.9 to 0.49, under different trapezoidal meshes. We further increase the difficulty
of this dataset by also randomizing the Young’s modulus within a range from 500 to 10000 using
Log-Uniform distribution.

Sphere Cloth Coupling. Each trajectory in this dataset is generated by selecting a sphere radius from
the range [0.2, 0.8]. The material property of interest is the sphere’s density, which varies between
[2.0, 100.0]. The cloth is initialized in a stable state, remaining consistent across all tasks and trials.
This dataset is created using NVIDIA Isaac Sim [65], which leverages PhysX 5.0 [66] to simulate
position-based dynamics (PBD) particle interactions.
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Table 3: Left: Training setup for each dataset. Right: Noise-scale per task for Auto-regressive
methods

Parameter Value

Node feature dimension 128
Latent representation dimension 128
Decoder hidden dimension 128
Message passing blocks 15
GNN Aggregation function Mean
GNN Activation function Leaky ReLU

Learning rate (Auto-regressive methods) 5.0× 10−4

Learning rate 1.0× 10−4

Optimizer AdamW [67]
Min Context Size (Training) 1
Max Context Size (Training) 8
MaNGO-CNN Decoder Kernel size 7
CNN-Deepset Encoder Kernel size 3
Latent representation aggregation Maximum

Task Value

PB 5.0× 10−4

DP-easy 7.0× 10−4

DP-hard 7.0× 10−4

SCC 1.0× 10−3

For meta-learning setup, we assume a set Si containing 16 different simulation trials, where each
trial shares the same material properties (e.g., density, Poisson’s ratio, Young’s modulus) but varies in
initial conditions (e.g., sphere size, force positions, and magnitudes).

E MGN Decoder for Conditional Neural Processes

In step-based prediction tasks, batches are typically shuffled to include different simulations and time
steps. However, when using a Conditional Neural Process (CNP), only data from the same task can
be used for each batch, which can impact performance. During hyper parameter optimization, we
tested a modified version of the MGN where we reduced batch shuffling to mimic the CNP approach.
This modification resulted in poorer performance compared to the standard MGN. This difference in
performance may partially explain why Meta-MGN underperforms relative to MaNGO.

F Experimental Protocol

In order to promote reproducibility, we provide details of our experimental methodology. Table 2
presents the hyperparameters used in our experiments. For a comprehensive description of the
creation of all datasets, please refer to Appendix D.

The training took place on an NVIDIA A100 GPU, with each method given the same computation
budget of 48 hours. Consequently, the number of epochs varied, as the batching differed significantly
between the meta-learning methods and the step-based MeshGraphNet (MGN). In total, generating
the results presented in this paper required approximately 8,500 GPU hours.

We conducted a multi-staged grid-based hyperparameter search for the learning rate, input noise, and
other hyperparameters as residual connections and layer norms. We did not use the test data for this,
but tuned all hyperparameters on a separate validation split. This split was also used to determine
the best epoch checkpoint to mitigate any overfitting effects. Hyperparameter tuning required an
additional computational budget of approximately 6,000 GPU hours.

For MGN, we included velocity features of the current step.

G Visualizations

In this section, we present qualitative results for all tasks and methods discussed in the main paper.
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t = 1 t = 6 t = 11 t = 16 t = 21 t = 31 t = 41 t = 51

Figure 7: Simulation over time of an exemplary test trajectory from the DP-easy task. The figure
compares predictions from MaNGO, MGN, and EGNO. The last row, MaNGO-Oracle, is separated
by a horizontal line and represents predictions using oracle information. The context set size is
set to 4. All visualizations show the colored predicted mesh, with a wireframe representing the
ground-truth simulation. MaNGO accurately predicts the correct material properties, leading to a
highly accurate simulation.

t = 1 t = 6 t = 11 t = 16 t = 21 t = 31 t = 41 t = 51

Figure 8: Simulation over time of an exemplary test trajectory from the DP-hard task. The figure
compares predictions from MaNGO, MGN, and EGNO. The last row, MaNGO-Oracle, is separated
by a horizontal line and represents predictions using oracle information. The context set size is
set to 4. All visualizations show the colored predicted mesh, with a wireframe representing the
ground-truth simulation. MaNGO accurately predicts the correct material properties, leading to a
highly accurate simulation.
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t = 1 t = 6 t = 11 t = 16 t = 21 t = 31 t = 41 t = 50

Figure 9: Simulation over time of an exemplary test trajectory from the PB-easy task. The figure
compares predictions from MaNGO, MGN, and EGNO. The last row, MaNGO-Oracle, is separated
by a horizontal line and represents predictions using oracle information. The context set size is
set to 4. All visualizations show the colored predicted mesh, with a wireframe representing the
ground-truth simulation. MaNGO accurately predicts the correct material properties, leading to a
highly accurate simulation.

t = 1 t = 11 t = 21 t = 31 t = 41 t = 61 t = 81 t = 100

Figure 10: Simulation over time of an exemplary test trajectory from the Sphere Cloth Coupling task.
The figure compares predictions from MaNGO, MGN, and EGNO. The last row, MaNGO-Oracle, is
separated by a horizontal line and represents predictions using oracle information. The context set
size is set to 4. All visualizations show the colored predicted mesh, with a wireframe representing
the ground-truth simulation. MaNGO accurately predicts the correct material properties, leading to a
highly accurate simulation.
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