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Abstract

Despite the success of distillation in large lan-
guage models (LLMs), most prior work applies
identical loss functions to both teacher- and
student-generated data. These strategies overlook
the synergy between loss formulations and data
types, leading to a suboptimal performance boost
in student models. To address this, we propose
DISTILLM-2, a contrastive approach that simul-
taneously increases the likelihood of teacher re-
sponses and decreases that of student responses
by harnessing this synergy. Our extensive exper-
iments show that DISTILLM-2 not only builds
high-performing student models across a wide
range of tasks, including instruction-following
and code generation, but also supports diverse
applications, such as preference alignment and
vision-language extensions. These findings high-
light the potential of a contrastive approach to
enhance the efficacy of LLM distillation by effec-
tively aligning teacher and student models across
varied data types.

1. Introduction
Large language models (LLMs) have continuously improved
their text generation abilities by increasing the number of
parameters and the amount of high-quality training data.
However, LLMs typically require extensive computational
resources during inference, which makes them difficult to
be deployed practically. Therefore, compressing them by
reducing the number of parameters while maintaining their
performance becomes important for using these powerful
models effectively.
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As the demand for reducing computational overhead grows,
knowledge distillation (KD; Hinton et al. 2015) has emerged
as a promising technique for compressing LLMs into more
lightweight student models. By transferring knowledge
from a high-capacity teacher model to a smaller student
model, KD can significantly improve the performance of
small language models (sLMs) as demonstrated by Llama
3.2 (Meta, 2024) and Gemma-2 (DeepMind et al., 2024).

Over the years, research on LLM distillation has largely
focused on either by designing new loss or by curating
training data. From a loss perspective, several studies sug-
gest that Kullback-Leibler (KL) divergence, a common loss
for KD, may fail to capture the teacher model’s complex
generative behavior (Wen et al., 2023; Gu et al., 2024). Con-
sequently, alternative loss functions, such as skew KL (SKL;
Ko et al. 2024), have been proposed to better guide the stu-
dent. On the other hand, from data perspective, previous
works emphasize how the training data is curated to enlarge
the effectiveness of KD. For instance, relying solely on of-
fline data (e.g., teacher-generated outputs; TGOs) can be
problematic where student’s outputs at inference time devi-
ate significantly from fixed training samples (Agarwal et al.,
2024). To address this mismatch, some works incorporate
student-generated outputs (SGOs) directly into training (Lin
et al., 2020; Xu et al., 2024b). However, these works often
overlook the synergy between loss formulations and data
types, which might have limited the extent of performance
improvement of student models.

Recently, contrastive approaches such as direct preference
optimization (DPO; Rafailov et al. 2023), have gained pop-
ularity for their efficacy and efficiency in preference align-
ment (Tajwar et al., 2024) or reasoning (Pang et al., 2024),
by explicitly employing different learning strategies to han-
dle two distinct responses. Despite their success, few works
have focused on extending their schema to KD for LLMs.
While Li et al. (2024b) attempted to simply apply DPO by
replacing the reference model to teacher model (see Equa-
tion 4), we observed that their method is prone to reward
hacking, which may limit its broader applicability (see Fig-
ure 1). This motivates us to design a scalable contrastive
approach to boost LLM distillation.
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Contributions. In this paper, we introduce DISTILLM-
2, which features a novel contrastive approach for KD of
LLMs. Our DISTILLM-2 builds a contrastive framework
upon DistiLLM (Ko et al., 2024), which has shown signifi-
cant improvements by using SKL-based loss and balanced
SGOs. Our detailed contributions include:

• Contrastive approach with asymmetric loss dynamics:
We analyze the behavior of forward and reverse KL (and
SKL) during the training process on responses from the
student and teacher models, respectively. This analysis
motivated the development of a contrastive approach for
LLM distillation (CALD; §3.1), which applies distinct
loss functions to different types of training samples. By
doing so, CALD effectively incorporates the synergy be-
tween loss formulations and data perspectives.

• Development of the contrastive approach: Additionally,
we introduce optimized dataset curation strategies (§3.2)
and curriculum-based adaptive loss mechanisms (§3.3).
These enhancements to CALD, which are collectively
coined to as DISTILLM-2, provide solid guidelines for
our contrastive approach for practitioners.

• Advanced performance and versatility: DISTILLM-2
achieves state-of-the-art performance for sLMs across
various text-generation tasks, including instruction-
following, mathematical reasoning, and code generation
(§4). Furthermore, we demonstrate the diverse applica-
tions of our proposed KD approach (§6), such as pref-
erence alignment with better reference models and its
expansion to vision-language models.

2. Backgrounds
2.1. Related Work

KD (Hinton et al., 2015) effectively compresses neural net-
works, enabling smaller student models to match the perfor-
mance of larger teachers. This technique recently has been
adapted to address the scalability challenges of LLMs, en-
hancing their viability in compute-intensive environments.
ImitKD (Lin et al., 2020) demonstrated the use of SGO
as training data for distillation. Building on this, Agarwal
et al. (2024) introduced an on-policy approach with objec-
tives like reverse KL or Jensen-Shannon divergence (JSD).
Wen et al. (2023) explored various f-divergences, including
total variation distance and JSD, in auto-regressive LMs,
while Gu et al. (2024) proposed a policy gradient method
to mitigate high variance in RL-based techniques. Recently,
Xu et al. (2024b) combined static datasets with on-policy
methods using speculative decoding for training data gener-
ation. Among these, DistiLLM (Ko et al., 2024) achieved
state-of-the-art performance and greater efficiency by intro-
ducing SKL and an adaptive off-policy approach. A more
discussion of related works is available in the Appendix A.

2.2. Preliminary: KD in LLMs and DistiLLM

Loss function of KD in LLMs. Given a prompt and re-
sponse pair, denoted as (x,y), KD minimizes divergence
between the distributions of a teacher p(y|x) and a student
qθ(y|x) parameterized by θ. Conventionally, KL, denoted
as DKL, is the most widely used loss in KD due to its sim-
plicity and tractability. The sequence-level distillation using
KL is accurately decomposed into a sum of token-wise
distillation (Ko et al., 2024):

DKL(x,y; p∥qθ) =
T∑

t=1

p(yt|y<t,x) log
p(yt|y<t,x)

qθ(yt|y<t,x)
.

(1)
We can also define reverse KL as DRKL(x,y; p∥qθ) =
DKL(x,y; qθ∥p). Despite its tractability, such KL has lim-
itations of either mode-averaging or mode-collapsing for
forward and reverse version, respectively. To address this
issue, Ko et al. (2024) proposed skew KL (SKL) and skew
RKL (SRKL), defined as follows:

D
(α)
SKL(x,y; p∥qθ) = DKL(x,y; p∥αp+ (1− α)qθ),

D
(α)
SRKL(x,y; p∥qθ) = DKL(x,y; qθ∥(1− α)p+ αqθ).

Despite the simple modification, SKL demonstrated higher
convergence speed and achieved better performance com-
pared to recent baselines, such as MiniLLM (Gu et al.,
2024) and GKD (Agarwal et al., 2024). This effective-
ness has been proven from both empirical and theoretical
perspectives. For brevity, we will denote D

(α)
SKL(x,y; p∥qθ)

and D
(α)
SRKL(x,y; p∥qθ) as D(α)

SKL(x,y) and D
(α)
SRKL(x,y), re-

spectively.

Data curation of KD in LLMs. To address the training
inefficiency and low quality of SGO, which can lead to inac-
curate teacher feedback in on-policy approaches (Lin et al.,
2020; Agarwal et al., 2024), Ko et al. (2024) introduced
an adaptive off-policy approach, which bridges offline and
purely on-policy setups, striking a balance between the ef-
ficiency and efficacy of KD. This balanced strategy reuses
SGO by introducing replay buffer, significantly improving
computational efficiency while preserving the effectiveness
of on-policy distillation. This approach has proven effec-
tive in subsequent works on preference alignment of LLMs
(Rosset et al., 2024) as in more generalized version.

Summary & Connection to our work. Building on the
insights from DistiLLM (Ko et al., 2024) – where SKL (or
SRKL) and adaptive off-policy have shown efficacy – we
introduce a contrastive approach that further refines these
objectives. On the data curation side, we adopt a batch
approach (Rosset et al., 2024) that collects SGO ahead of
every training epoch in our setup, rather than on-policy
approach, which samples at every training iteration. This
also ensures compatibility with advanced LLM inference
techniques, such as vLLM (Kwon et al., 2023), thereby
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increasing generation efficiency and preserving the core
philosophy of the adaptive off-policy approach. As shown in
our preliminary results in Appendix D.1, this greatly reduces
the computational cost of gathering training samples with
minimal impact on student performance.

3. Method: DISTILLM-2
We introduce DISTILLM-2, a novel approach to LLM dis-
tillation, which lies in its new loss function as presented
in Equation 2. This equips with a contrastive schema si-
multaneously accounting for different types of training re-
sponses (§3.1), along with dedicated data curation (§3.2)
and curriculum-based adaptive loss design (§3.3).
LDISTILLM-2 := (2)
1

2|D|
∑

(x,yt,ys)∼D

[
(1− β)D

(αt)
SKL (x,yt) + βD

(αs)
SRKL(x,ys)

]
,

where D
(αt)
SKL (x,yt) and D

(αs)
SRKL(x,ys) are SKL and SRKL

tailored for teacher- and student-generated responses, re-
spectively; D is the training dataset; β is a coefficient in
[0, 1] to balance SKL and SRKL terms. In the following
subsections, we provide detailed motivations, derivations,
and use of the loss function in Equation 2 to formulate our
DISTILLM-2 training process as stated in Algorithm 1.

3.1. Contrastive Approach

3.1.1. MOTIVATION

Concept. Recently, contrastive approach in preference
alignment, including DPO (Rafailov et al., 2023), which
increases the likelihood of the preferred response (yw) while
decreasing the likelihood of the dis-preferred response (yl),
has demonstrated effective in enhancing LM performance.

− log σ

(
λ log

qθ(yw|x)
qref(yw|x)︸ ︷︷ ︸

increase qθ(yw|x)

− λ log
qθ(yl|x)
qref(yl|x)

)
︸ ︷︷ ︸

decrease qθ(yl|x)

, (3)

where σ is sigmoid function, qref is a reference model, and
λ is hyperparameter for DPO. This improvement stems from
its dual mechanism: not only does it reduce the likelihood of
undesired responses (Tajwar et al., 2024) but it also increases
the likelihood of preferred responses, effectively reinforcing
alignment with the desired behavior.

Similarly, we can apply this concept into KD to increase
the likelihood of qθ(yt|x) as match that of p(yt|x) and
decrease the likelihood of qθ(ys|x) as match that of p(ys|x)
by bringing different types of loss function for each type of
response. This approach allows better alignment of TGOs
and SGOs in the contrastive manner than simply using a
single type of loss function.

Challenges of contrastive approach into KD. While the
concept itself is appealing, there are critical issues in di-

Algorithm 1 Training pipeline of DISTILLM-2

1: Input: training iterations T , initial skew coefficient α0,
teacher p, student qθ0 with parameter θ0, prompt set

2: Output: Student model qθE with trained parameters θE
3: for epoch e = 1, 2, . . . , E do
4: /* Sample batched on-policy responses */
5: Sample responses yt,ys from teacher p(·|x) and

student qθe−1
(·|x) for given prompt x

6: Construct Dt = {(x,yt,ys)} for training dataset
for training epoch e.

7: Initialize θe ← θe−1

8: for iteration τ = 1, 2, . . . , T do
9: Sample mini-batch: B = {(x(i),y

(i)
t ,y

(i)
s )}|B|

i=1

from Dt

10: /* Curriculum-based adaptive update for α */
11: Update αt ← 1− (1−α0) · m

p(ys|x)−qθ(ys|x) and
αs ← 1− (1− α0) · m

p(yt|x)−qθ(yt|x)
12: /* Gradual increasing coefficient for SRKL */
13: Update β ← clip( e

E + τ
T , β0, 1)

14: /* Improved contrastive loss function (§3.3)*/
15: Update θe by minimizing LDISTILLM-2 =

1
2B

∑[
(1− β)D

(αt)
SKL (x,yt) + βD

(αs)
SRKL(x,ys)

]
16: end for
17: end for

rectly applying DPO into KD. We observed that DPKD (Li
et al., 2024b), which simply applies DPO by substituting the
reference model with the teacher model, frequently suffers
from reward hacking, leading to degenerate sentences:

− log σ

(
λ log

qθ(yt|x)
p(yt|x)

− λ log
qθ(ys|x)
p(ys|x)

)
︸ ︷︷ ︸

inherently small p(ys|x) → overly decrease qθ(ys|x)

, (4)

where yt and ys are TGO and SGO, respectively. This is
because DPKD only focuses on maximizing the gap be-
tween qθ(yt|x)

p(yt|x) and qθ(ys|x)
p(ys|x) . As illustrated in Figure 1(b),

we observe that this loss dynamics excessively decreases
the likelihood of qθ(ys|x) (e.g., 91.25 in terms of nega-
tive log-likelihood; NLL), causing the student model to
lose pre-trained information instead of fitting to teacher re-
sponses (e.g., 20.29 in terms of NLL), as it replaces qref
with p where p(ys|x) is inherently small. Addressing this
limitation requires rethinking and redesigning algorithm to
integrate contrastive strategies into LLM distillation.

3.1.2. CONTRASTIVE APPROACH FOR LLM
DISTILLATION

To bring contrastive strategy into KD, we propose a new loss
functionLCALD, using a combination of SKL and SRKL (Ko
et al., 2024). Our design stems from the follows.

Observation on behavior of KL and RKL. Here, we pro-
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Figure 1. (a) The behavior of KL (orange) and RKL (green) is analyzed for long-tailed toy data introduced in Wu et al. (2024). (b) NLL of
student models on teacher (red) and student (blue) responses, using Mistral-7B and Danube2-1.8B as the teacher and student models,
respectively, optimized with diverse loss functions. (c) We propose CALD with SKL and SRKL that achieves faster convergence and
higher ROUGE-L (Lin, 2004), following the experimental setup of Ko et al. (2024). Detailed setup can be found in Appendix D.1.

vide an observation on the behavior of KL and RKL: they
can increase and decrease the likelihood of qθ for TGOs
(KL) and SGOs (RKL), respectively. As shown in Figure 1,
KL increases qθ(·|x) in regions where p(·|x) are high (i.e.,
pulling-up effect). For example, this occurs in the head
of the teacher distribution in Figure 1(a) or for TGOs in
Figure 1(b) – This behavior arises because they aim to fo-
cus on reducing the ratio p(·|x)

qθ(·|x) for the region where p(·|x)
are large to minimize weighted average. Conversely, RKL
attempts to reduce the ratio qθ(·|x)

p(·|x) . Consequently, qθ(·|x)
decreases in region where p(·|x) are small (i.e., pushing-
down effect), such as the tail of teacher distribution in
Figure 1(a) or student responses in Figure 1(b). Detailed
mathematical explanation can be found in Appendix B.1.

Our solution. For implementing CALD, an optimal choice
among various KL-based loss functions would be one that
demonstrates state-of-the-art results while exhibiting similar
behavior to KL and RKL, as observed in Figure 1. To
this end, we utilize skew KL (SKL) and RKL (SRKL),
introduced in DistiLLM (Ko et al., 2024), as the backbone
loss functions. Specifically, we design the loss function for
CALD, using SKL for teacher responses (i.e., yt) where
most of p(yt|x)≫ 0 and using SRKL for student responses,
ys, where the most of p(ys|x) ≃ 0. Formally, our proposed
loss function can be written as follows:

LCALD =
1

2|D|
∑

(x,yt,ys)∼D

D
(α)
SKL(x,yt) +D

(α)
SRKL(x,ys).

(5)
Despite its simplicity, this loss function implies that the
importance of simultaneous consideration of responses
type during objective function design. Note that Ko et al.
(2024) demonstrated that a vanilla interpolation between
γD

(α)
SKL(x, ·) + (1 − γ)D

(α)
SRKL(x, ·) for all γ ∈ [0, 1] over

the same type of responses, (e.g., either yt or ys), does
not improve performance compared to using either SKL or
SRKL alone. However, we find that the new approach of
using different types of responses for different terms sig-
nificantly enhances performance. LCALD achieves faster
convergence and greater effectiveness compared to the ex-

clusive use of SKL or SRKL in DistiLLM (see Figure 1(c)).
Note that while simple KL and RKL also prove effective-
ness for CALD, using SKL and SRKL as backbone achieves
higher efficacy, consistent with Ko et al. (2024).

Mathematical connection to DPKD and DPO. We now
reveal that our proposed loss function LCALD can be mathe-
matically interpreted as exhibiting similar yet different be-
havior to DPKD (or DPO).

Remark 1. Equation 5 can be re-written as follows:

−Eyt∼p(·|x),
ys∼qθ(·|x)

[
1

λ
·
(
λ log

q̃θ(yt|x)
p(yt|x)

− λ log
qθ(ys|x)
p̃(ys|x)

)]
,

(6)
where q̃θ(·|x) = αp(·|x) + (1 − α)qθ(·|x) and p̃(·|x) =
αqθ(·|x) + (1− α)p(·|x).
This indicates CALD enable to increase q̃θ(yt|x) (and im-
plicitly qθ(yt|x)) and decrease qθ(ys|x), simultaneously.
The detailed derivation can be found in Appendix B.2.

Despite this similarity, there are two critical and non-trivial
differences between CALD and DPKD (or DPO). First,
rather than employing the log-sigmoid function used in
DPKD, Equation 6 adopts a linear formulation that al-
lows token-level decomposition and explicit weighting by
p(yt|x) or qθ(ys|x) (as in Equation 1). Second, by in-
herently linear dependency between q̃θ(·|x) and p(·|x) (or
between p̃(·|x) and qθ(·|x)), this regularizes the overly de-
creasing qθ(ys|x), which resolves the challenges in DPKD.
From this, CALD (i.e., DISTILLM-2) outperforms DPO
and DPKD by a large margin, as shown in Appendix D.1.

3.2. Optimal Data Curation for Contrastive Approach

In the context of datasets for LLM distillation, one common
question might be:

“How can we effectively utilize well given SGO and
high-quality fixed datasets in distillation of LLMs?”

While previous works (Xu et al., 2024b; Li et al., 2024a)
have proposed effective strategies for leveraging these two
complementary dataset types in an SFT manner, we ob-
served that their techniques – such as speculative generation
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Figure 2. Comparison of the winning rates compared to the student before KD (WR) of student models with (a) replacing yt (orange)
or ys (green) with yspec, responses from speculative decoding (Cai et al., 2024), varying the hyperparameter ε. (b) replacing yt with
responses generated using stronger LLMs (e.g., Llama-3, Gemma-2, Phi-3) than the teacher models (i.e., Mistral) for the SKL term. We
also show the negative log-likelihood (NLL) of the student (cyan) and teacher (blue) models on the replaced responses, along with the
corresponding WR (red).

Table 1. Motivation for curriculum approach for α. UF and EI
indicate the winning rates (%) of responses on the UltraFeedback
and Evol-Instruct test sets, compared to the student model before
iteration 1, as judged by GPT-4o-mini.

Epoch. 1 Epoch. 2 Epoch. 3

α UF (%) EI (%) α UF (%) EI (%) α UF (%) EI (%)

Mistral

0.3 71.53 76.23 - - - - - -

0.1 73.46 79.83
0.1 72.18 81.18 - - -

0.01 75.75 84.35 0.1 73.25 82.86
0.01 76.59 84.67

0.01 70.35 76.38 - - - - - -

Qwen2

0.3 69.89 75.86 - - - - - -

0.1 70.01 76.21 0.1 74.30 81.23 0.1 75.32 81.81
0.01 69.95 78.86 - - -

0.01 66.62 74.82 - - - - - -
Entries marked “-” were omitted as they were found sub-optimal in previous epochs.

or the use of high-quality responses (which may outperform
teacher generations) – are less effective in CALD. From our
further discussion, we conclude that utilizing teacher and
student generations for SKL and SRKL, respectively,
may be the optimal strategy for CALD, as it consistently
aligns with the core philosophy of CALD.

Exploring the trade-offs between teacher and student
generations. Previous works (Agarwal et al., 2024) have
discussed that while teacher responses provide useful infor-
mation, they can cause training-inference mismatches. In
contrast, SGOs, though lower in quality, effectively reduce
such mismatches, leading to higher efficacy. To explore
these complementary perspectives, we use speculative de-
coding12 to find the key factors for dataset curation.

1The original work primarily aims to accelerate generation
without sacrificing the quality of generated responses. If we use
yspec instead of yt for SKL, we may mitigate training-inference
mismatch, potentially improving overall performance by aligning
the training data more closely with student distribution.

2Alternatively, yspec for SRKL could improve student perfor-
mance by training on higher-quality samples. However, as dis-
cussed in this section, this approach did not yield the desired
results.

In speculative generation, student drafts K tokens, and
teacher verify them in parallel for 1 ≤ k ≤ K based on3:

qθ(yn+k|y<n+k) > min(ε2, ε · exp(−H(p(·|y<n+k)))),

where H(·) and ε are entropy function and hyperparameter.

When we replace yt with yspec, as ε decreases (i.e., more
acceptance of drafts), the distilled model better aligns with
the student distribution qθ(·|x). However, as shown with
orange bars, its performance is highest with yspec at ε = 1.0
(i.e., identical to yt). This implies that on the SKL side,
mitigating the training-inference mismatch via SGOs does
not always lead to performance improvement. Rather, strong
guidance from the teacher response is highly related to the
distillation performance.

Conversely, on the responses for SRKL, the distilled model
achieves the highest performance with yspec at ε = 0.0
(i.e., identical to ys), as shown with green bars, although
these responses are of the lowest quality. This implies that
using low-quality SGO samples on the SRKL side may be
beneficial for our contrastive approach. The effectiveness
of reduced training-inference mismatch via SGOs can be
attributed to this edge of alignments.

High-quality does not always guarantee success. One ad-
ditional question that arises is whether the success of teacher
responses on the SKL term is due to their higher quality. It
is natural to consider if using higher-quality responses from
powerful LLMs like ChatGPT would improve performance,
similar to black-box KD (Li et al., 2024a). To investigate,
we replaced the responses for SKL term with those gener-
ated from stronger LLMs (e.g., Llama3-8B) instead of the
Mistral-7B teacher’s responses. As shown in Figure 2(b), al-
though these stronger LLMs generate high-quality answers,
the student trained on the teacher’s responses still performs

3Specifically, we applied speculative decoding with typical
decoding (Cai et al., 2024), as it simplifies interpolation compared
to rejection sampling-based methods (Leviathan et al., 2023).
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Table 2. Comparison winning rates (WR) using pairwise comparison (Zheng et al., 2023) on three instruction-following benchmarks. The
baseline is text-davinci-003 in AlpacaEval and gpt-3.5-turbo in Evol-Instruct and UltraFeedback. The judges are GPT-4o
for AlpacaEval and Evol-Instruct, GPT-4o-mini for UltraFeedback. The best and the second best win rates are in bold and underline.

Qwen2-7B-Inst (MT )→ Qwen2-1.5B (MS) Mistral-7B-Inst (MT )→ Danube2-1.8B (MS) Gemma-2-9B-Inst (MT )→ Gemma-2-2B (MS)

Method AlpacaEval Evol-Inst UltraFeed AVG. AlpacaEval Evol-Inst UltraFeed AVG. AlpacaEval Evol-Inst UltraFeed AVG.
WR(%) WR(%) WR(%) WR(%) WR(%) WR(%) WR(%) WR(%) WR(%) WR(%) WR(%) WR(%)

MT 88.41 70.70 69.25 76.12 91.92 73.51 83.59 83.01 95.78 88.76 85.90 90.15

MS 51.06 18.00 21.93 30.33 48.17 12.84 20.06 27.02 42.51 16.74 26.60 28.62

KD 57.49 28.23 37.86 41.19 60.21 18.23 41.56 40.00 61.78 32.45 54.37 49.53
SeqKD 58.02 29.11 38.35 41.83 59.76 18.45 42.11 40.11 62.43 33.21 55.18 50.27
ImitKD 59.37 30.58 39.92 43.29 58.34 17.89 40.87 39.03 63.12 31.89 53.92 49.64
GKD 66.07 44.61 57.74 56.14 69.75 24.54 57.74 50.68 81.43 50.57 77.20 69.73
DistiLLM 66.30 44.61 58.18 56.35 70.16 28.78 58.18 52.37 82.95 51.26 76.68 70.30
Speculative KD 61.52 44.95 56.82 54.43 64.58 38.87 60.04 54.50 78.45 57.11 72.21 69.26

DISTILLM-2 69.88 47.13 59.05 58.69 74.04 32.84 62.46 56.45 85.97 59.53 78.99 74.83

better. This suggests that the high log-probability of re-
sponses from the teacher model may be a more important
factor in data curation than their higher quality.

Discussion on the observations. These findings align with
the motivation of CALD in §3.1: the “pulling-up” effect
of SKL is maximized at the head of p(·|x) (i.e., yt), while
the “pushing-down” effect of SRKL is maximized at the
tail of p(·|x) (i.e., ys). First, while speculative generations
are effective with vanilla KL in Speculative KD (Xu et al.,
2024b), they are less effective with our contrastive loss
because (1) speculative generations are an interpolation
of yt and ys, which may weaken both the “pulling-up”
and “pushing-down” effect – core mechanisms underlying
CALD; and (2) the contrastive loss already exploits both
complementary response types simultaneously, reducing
the need for interpolation compared to single-loss settings.
The second observation also supports our claim that pure
teacher generation may be optimal for SKL where they
completely align with p(·|y), rather than relying on higher-
quality responses, from the perspective of maximizing the
“pulling-up” effect at the head of p(·|x).

3.3. Curriculum-based Adaptive Learning

We introduce two modifications, inspired by our empiri-
cal observations, to implement difficulty-based adaptive
learning and facilitate the conversion from Equation 6 to
Equation 2: a curriculum approach for α and a gradual
increasing of coefficient for SRKL.

Curriculum Approach for α. One limitation of SKL (Ko
et al., 2024) is that we need to manually determine α, which
interpolates between the teacher and student distributions.
A larger α improves optimization stability and accelerates
convergence, but it limits the acquisition of informative
knowledge by inherently small gap between p(·) and αp(·)+
(1 − α)qθ(·). Conversely, a smaller α allows for greater
knowledge acquisition but reduces optimization stability and
slows convergence (Ko et al., 2024). While previous work

suggests that α values in a moderate range (e.g., 0.1–0.3)
are generally robust, we observed that the optimal values
can still vary across different setups due to the variation
of teacher-student pairs and the dynamic requirements of
different training epochs (see Table 1).

Regarding the dynamic of different training epoch, we ob-
serve that the optimal values for α for the second or third
epoch are either equal to or smaller than than those in the
first epoch (Table 1). Building on this observation, we
propose a curriculum-based approach for updating α. For
“easy” samples, where p(·) and qθ(·) are sufficiently similar,
we select a small α. On the other hand, for “hard” samples,
where the difference between p(·) and qθ(·) is large, we
choose a larger α.

To implement this, we introduce an updating rule for α ∈
[0, 1] based on the following approximation:

log
p(y|x)

q̃
(α)
θ (y|x)

≃ (1− α) · (p(y|x)− qθ(y|x)) , (7)

where q̃
(α)
θ (y|x) = αp(y|x) + (1− α)qθ(y|x). Note that

this approximation originates from the Mercator series ex-
pansion (Zwillinger, 2002): log(1 + x) =

∑∞
n=1(−1)n+1 ·(

xn

n

)
. This series allows the first-order approximation

log p(x) ≃ p(x)− 1. The detailed derivation can be found
in Appendix. Using this formula, we can compute a suit-
able α in closed-form for each sample, allocating proper α
by making (1− α) · (p(·)− qθ(·)) consistent across entire
training. The detailed implementation for this updating rule
can be found in Algorithm 1.

(Linearly) Gradual increasing of coefficient for SRKL.
Based on the behavior of TGOs with SKL and SGOs with
SRKL in Equation 5, the first term enables the acquisition
of advanced information by matching high-probability on
TGOs, while the second term suppresses undesirable behav-
ior by preventing the matching of similarly low probabilities
in SGOs. However, achieving qθ(·|x) = p(·|x) for all yt

and ys is challenging with limited dataset sizes due to inher-
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Table 3. Comparison results on the GSM8k and MATH benchmarks.
The best pass@1 score is highlighted in bold.

Qwen2-Math-7B-Inst (MT ) Qwen2.5-Math-7B-Inst (MT )
→ Qwen2-Math-1.5B (MS) → Qwen2.5-Math-1.5B (MS)

Method GSM8K MATH AVG. GSM8K MATH AVG.
Pass@1 Pass@1 Pass@1 Pass@1 Pass@1 Pass@1

MT 83.93 41.28 62.61 89.31 44.82 67.07

MS 74.53 25.56 50.05 77.33 27.14 52.24

GKD 75.44 34.16 54.80 80.21 40.54 60.38
DistiLLM 75.59 34.54 55.07 81.05 41.14 61.10

DISTILLM-2 76.27 35.58 55.93 81.20 42.94 62.07

Table 4. Comparison results on the HumanEval (HEval) and MBPP
benchmarks. The best pass@1 score is highlighted in bold.

DS-Coder-6.9B-Inst (MT ) Qwen2.5-Coder-7B-Inst (MT )
→ DS-Coder-1.3B (MS) → Qwen2.5-Coder-1.5B (MS)

Method HEval MBPP AVG. HEval MBPP AVG.
Pass@1 Pass@1 Pass@1 Pass@1 Pass@1 Pass@1

MT 85.37 82.54 83.96 75.61 74.60 75.61

MS 50.61 72.22 61.42 30.73 60.84 45.79

GKD 54.88 74.34 64.61 40.85 61.90 51.38
DistiLLM 53.65 74.34 64.00 39.63 62.17 50.90

DISTILLM-2 59.92 75.66 67.79 42.24 62.70 52.47

Table 5. Component analysis of DISTILLM-2 including (1) ap-
plying a contrastive loss, (2) increasing β, and (3) introducing
curriculum-based updates to α. When all components are applied
to DistiLLM (v1), it becomes identical to DISTILLM-2.

(1) (2) (3) Qwen2 (↑) Danube2 (↑) Gemma2 (↑) AVG. (↑)
DistiLLM (v1) 44.61 28.78 51.26 41.55

✓ 45.41 30.73 54.70 43.61
✓ ✓ 45.87 31.88 56.65 44.80
✓ ✓ 46.33 31.65 57.68 45.22

DISTILLM-2 ✓ ✓ ✓ 47.24 32.80 59.53 46.50

ent capacity gap between the teacher and student models,
which arises from factors such as the number of parame-
ters. Nevertheless, we observe that gradually increasing
the SRKL coefficient β in Equation 2, following the lin-
ear schedule shown in Algorithm 1, significantly improves
student performance (see Table 5). This improvement is
achieved by compromising the imitation of the teacher’s be-
havior, which is relatively hard to achieve, while focusing on
directly obtaining feedback from SGOs, thereby effectively
reducing the training–inference mismatch.

4. Experiments
4.1. General Instruction-Following

Setup. We first construct the training datasets, by ran-
domly sampling 50k prompts from UltraChat200k (Ding
et al., 2023) and use the corresponding teacher and stu-
dent to generate the responses. After training, we evalu-
ate DISTILLM-2 for general purpose instruction-following
task on AlpacaEval (Li et al., 2023), Evol-Instruct (Xu et al.,
2024a), and UltraFeedback (Cui et al., 2024). For evaluation,
we adopt LLM-as-a-Judge (Zheng et al., 2023) with GPT-4o
or GPT-4o-mini as judge models. For experiments, we use
Qwen2-7B (Hui et al., 2024), Mistral-7B (Jiang et al., 2023),
Gemma-2-9B (DeepMind et al., 2024) instruction models
as teachers and Qwen2-1.5B, Danube2-1.8B (Singer et al.,
2024), and Gemma-2-2B as students, respectively.

Results. We report experimental results in Table 2. This
comparison between DISTILLM-2 and other baselines
shows that our proposed method performs best in the most
of evaluation setups, except for Danube2-1.8B in Evol-

13K 25K 50K
Dataset Size

48

50

52

54

56

58

Pe
rfo

rm
an

ce
 (%

)

Evol-Inst (WR)

13K 25K 50K
Dataset Size

30

31

32

33

34

35

MATH (Pass@1)

DV1
GKD
DV2

20K 40K 80K
Dataset Size

50

52

54

56

HumanEval (Pass@1)

Figure 3. Comparison of performance for different sizes of training
datasets across a wide range of tasks.

Instruct. It outperforms the second best methods by +2.34%,
+1.95%, and +4.53% on average for Qwen2-1.5B, Danube2-
1.8B, and Gemma2-2B, respectively. As these evalua-
tion benchmarks cover a wide range of domains relevant
to real-world applications, these results demonstrate that
DISTILLM-2 can be widely used to build strong sLMs.

4.2. Mathematical Reasoning

Setup. We conduct experiments on two standard mathemati-
cal reasoning benchmarks: GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). For teacher and student
pairs, we select the Qwen2-Math-7B-Inst and Qwen2.5-
Math-7B-Inst as teacher models and Qwen2-Math-1.5B and
Qwen2.5-Math-1.5B as student models, respectively. The
student models are trained using 50k randomly selected
samples from the MetaMathQA (Yu et al., 2024a) dataset.
Specifically, the student models are fine-tuned in a super-
vised manner on the entire MetaMathQA for a single epoch.

Results. Table 3 summarizes the effectiveness of
DISTILLM-2 compared to recent competitive baselines,
including GKD and DistiLLM. In both the Qwen2 and
Qwen2.5 experimental setups, DISTILLM-2 achieves
higher performance than other baselines on the GSM8K
and MATH evaluations. Interestingly, the Qwen2.5 student
with DISTILLM-2 demonstrates competitive average per-
formance and even outperforms the Qwen2 teacher on the
MATH evaluation, which is a challenging milestone.

4.3. Code Generation

Setup. We utilize prompts from WizardCoder (Luo
et al., 2024) dataset which is developed using the Evol-
Instruct method (Xu et al., 2024a) code instruction datasets.
We apply Qwen2.5-Coder-7B-Inst (Hui et al., 2024) and
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Table 6. Comparison of preference optimization results (WR %)
using different reference models from various KD methods.

Qwen2-1.5B-SFT (MS) Gemma-2-2B-SFT (MS)

Method Evol Ultra AVG. Evol Ultra AVG.

MS 26.92 33.25 30.09 41.34 50.85 46.10
GKD 47.84 65.48 56.66 59.13 82.83 70.98
DistiLLM 48.32 65.18 56.75 57.21 79.95 68.58

DISTILLM-2 52.88 67.78 60.33 68.99 83.58 76.29

Table 7. Evaluation on OK-VQA and TextVQA, two popular bench-
mark for visual question answering. We utilized VQA accuracy
(Antol et al., 2015). The best results are highlighted in bold.

VQA Acc. (%) MT MS GKD DistiLLM DISTILLM-2

OK-VQA 54.70 36.87 41.83 39.38 44.72
TextVQA 42.91 28.34 33.84 31.10 34.98

AVG. 48.81 32.61 37.84 35.24 39.85

DeepSeek-Coder-6.7B-Inst as teacher models and Qwen2.5-
Coder-1.5B and DeepSeek-Coder-1.3B as student models,
respectively. Similarly, we train the student models for 2
epochs. We evaluate performance on two standard coding
benchmarks: HumanEval (Chen et al., 2021) and MBPP
(Austin et al., 2021).

Results. The results are presented in Table 4. Across both
HumanEval and MBPP, DISTILLM-2 consistently outper-
forms the baseline methods, GKD and DistiLLM. Notably,
GKD achieves higher scores than DistiLLM, its effective-
ness remains lower than that of DISTILLM-2. This outcome
highlights DISTILLM-2 ’s ability to integrate a special-
ized alignment strategy – effectively incorporating SKL (or
SRKL) with harmonized response type.

5. Additional Ablation Study
Here, we provide additional ablation experiments on
DISTILLM-2. Our ablation studies are conducted with
Qwen2 (or Qwen2.5) from its diversified model sizes. We
use GPT-4o-mini as a judge model for all ablation studies
due to its cost-efficiency.

Component Analysis. Here, we conducted a component
analysis of DISTILLM-2 ’s technical components, which in-
cluded (1) applying a contrastive approach (§3.1 & §3.2), (2)
increasing the β parameter, and (3) introducing curriculum-
based updates to α (§3.3). Table 5 shows a component-
wise analysis demonstrating how progressively incorporat-
ing these improvements into DistiLLM brings its perfor-
mance in line with that of DISTILLM-2. As each compo-
nent is added, we observe incremental performance gains,
indicating that all of the examined components enhance
DISTILLM-2 ’s overall effectiveness.

Training Size. We investigated how varying the training
data size affects the performance of DISTILLM-2. In Fig-
ure 3, we show its performance across various tasks—such
as instruction-following, math reasoning, and code gener-
ation—and compare it against baselines including GKD
and DistiLLM. We observe that our proposed method con-
sistently outperforms these baselines, demonstrating the
highest effectiveness among all considered LLM distillation
methods.

Capacity Gap. It is well known that a substantial capac-

Table 8. Performance of the Qwen1.5 series with a 0.5B student
model and varying teacher. The last column (∆) shows the im-
provement over Ko et al. (2024). The performance metric is the
winning rate compared to the original student models on Evol-
Instruct.

Size MT GKD DistiLLM DISTILLM-2 ∆

1.8B (↑) 81.07 64.18 65.23 66.31 +1.08
7B (↑) 92.71 71.15 72.11 74.86 +2.75
14B (↑) 95.16 72.59 72.11 76.78 +4.67

ity gap between large teacher models and compact student
models makes KD more challenging, a phenomenon re-
ferred to as the capacity gap (Mirzadeh et al., 2020). We
experimented with diverse size of Qwen-1.5-Chat with 1.8B,
7B, and 14B parameters as teacher and SFT of Qwen1.5-
0.5B student to seize the behavior of DISTILLM-2 across
the different size of teacher models. As shown in Table 8,
DISTILLM-2 demonstrates monotonic improvement and
consistently outperforms other baselines as the teacher size
increases. This result highlights DISTILLM-2’s effective-
ness in addressing capacity gap issues, whereas the previous
version (Ko et al., 2024) struggled with capacity gaps, par-
ticularly with the 7B and 14B teacher models.

6. Broader Impacts
Furthermore, we present a range of diverse applications
for DISTILLM-2, demonstrating its broad versatility and
highlighting its potential for future use. We also provide
additional applications of DISTILLM-2 in Appendix 6.3
(i.e., recovering quantized model) and 6.4 (i.e., achieving
higher inference speed in speculative decoding).

6.1. Additional Results for DISTILLM-2 + DPO

In preference alignment (Ouyang et al., 2022; Rafailov et al.,
2023), training usually involves two steps: (1) SFT and (2)
preference fine-tuning using either PPO or DPO. While
most previous works have concentrated on the second step,
we highlight that the first step is also important. In our
study, we replace the standard SFT method with KD of
LLMs and evaluate its effectiveness by comparing how the
policy LLMs perform after the second step, which uses DPO.
Specifically, we use the reference model for each setup as
trained student in Table 2. The results in Table 6 show that
replacing SFT with distillation in the first phase leads to
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Table 9. Performance of Phi-3.5-mini-instruct at different levels of
precision. The best results are highlighted in bold.

Size AlpacaEval Evol-Inst UltraFeed AVG.

MT (BFloat16) 91.80 82.80 80.54 85.05

MS (INT4) 84.32 74.89 77.60 78.94
GKD (INT4) 88.57 80.04 79.80 82.80
DistiLLM (INT4) 89.13 81.77 79.15 83.35
DISTILLM-2 (INT4) 89.17 81.96 79.58 83.57

Table 10. Comparison of the inference speedup of speculative
decoding using different draft models obtained from various KD
methods for the target models Phi3-medium and Phi3.5-mini.

Phi- SFT GKD DistiLLM DISTILLM-2

3-medium Spd. (↑) ×1.32 ×1.64 ×1.71 ×1.97
Acpt. (↑) 0.412 0.464 0.469 0.487

3.5-mini Spd. (↑) ×1.24 ×1.58 ×1.65 ×1.84
Acpt. (↑) 0.397 0.443 0.452 0.522

higher overall alignment performance in preference fine-
tuning. Notably, our DISTILLM-2 achieved a substantially
higher WR, more than doubling the WR in Qwen2-1.5B,
and showed a similar improvement in Gemma2-2B. These
indicate that DISTILLM-2 can build effective reference
models for the subsequent preference alignment phase.

6.2. Expansion to Vision-Language Models

We also applied DISTILLM-2 on the distillation setup of
vision-language models (VLMs) to boast the versatility of
proposed method that can be applied in a wide range of
modalities. We select LLaVA-1.5-7B (Liu et al., 2024) and
TinyLLaVA-1.4B (Zhou et al., 2024a) as a teacher and a
student model, respectively. For training dataset, we utilize
the prompt from RLAIF-V-Dataset (Yu et al., 2024b) which
contains 83K prompts, and evaluate the trained models on
two popular benchmark, OK-VQA (Marino et al., 2019) and
TextVQA (Singh et al., 2019). Table 7 shows that the superi-
ority of DISTILLM-2 over other distillation methods holds
true not only in LLM setups but also with VLMs. Although
other baselines also demonstrated effectiveness compared
to original student models (i.e.,MS), DISTILLM-2 out-
performed GKD and DistiLLM by +2.01% and +4.61% on
average, respectively.

6.3. Restoring the Performance of Quantized LLMs

Using parameter-efficient fine-tuning methods, such as
LoRA, can help recover the performance of quantized LLMs
after post-training quantization (Frantar et al., 2023), intro-
ducing only a negligible number of additional parameters.
Here, we demonstrate the effectiveness of DISTILLM-2 in
restoring the performance of 4-bit quantized LLMs using
LoRA by replacing regular SFT with KD baselines. Figure 9
shows that all KD methods can significantly improve the
performance of quantized models while adding only a few
trainable parameters. Additionally, DISTILLM-2 achieves
the best average performance among KD baselines. Distilla-
tion can also be straightforwardly applied to pairs of original
and compressed models, such as pruned or quantized ver-
sions, enabling efficient deployment on mobile devices.

6.4. Inference Speedup of Speculative Decoding

DistillSpec (Zhou et al., 2024b) demonstrate that KD can
improve speculative decoding by better aligning the drafter

and verifier models. Building on their work, we evaluate
the inference speedup of speculative decoding using Phi3.5-
mini and Phi3-medium (Abdin et al., 2024) as verifiers and
Llama-68m (Miao et al., 2024) as the drafter trained with
various KD. Table 10 summarizes that the inference speedup
of drafter with DISTILLM-2 surpasses other drafter mod-
els, including trained with SFT and DistiLLM for both
Phi3.5-mini and Phi3-medium verifiers. These results indi-
cate that the DISTILLM-2 enables higher token-level align-
ment of distribution compared to other LLM distillation
baselines, including Zhou et al. (2024b).

7. Conclusion
In this work, we introduce DISTILLM-2, a novel distilla-
tion framework for large language models that combines
contrastive loss, curated data, and curriculum-based learn-
ing. By differentiating teacher and student outputs, our
method overcomes key limitations of traditional distillation
and achieves stronger alignment and generalization. Exten-
sive experiments across instruction following, mathematical
reasoning, and code generation show that DISTILLM-2 de-
livers state-of-the-art performance with improved sample ef-
ficiency, reducing reliance on expensive preference-labeled
data. Leveraging high-quality explanations and contrastive
objectives further enhances reasoning ability and robustness
in both language and vision-language models. We believe
DISTILLM-2 lays the groundwork for future advances in ef-
ficient model alignment and multi-modal learning, enabling
more accessible and capable AI systems.
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Impact Statement
This paper presents work whose goal is to advance the field
of machine learning, specifically efficiency and efficacy of
LLMs-based system. We also have shown four possible
applications (but not limited to) as follows:

• High-performed reference model for RLHF (§6.1) :
Our DISTILLM-2 can replace vanilla SFT ahead of PPO
with a reward model or DPO (or IPO, SimPO;Meng et al.
2024) with chosen and rejected response pairs. While our
experiments in Table 6 are conducted on DPO, we believe
that this approach can be expanded to various types of
preference alignment methods, which can significantly
contribute to building safe AI.

• Extension to multi-modal LLMs (§6.2) : While our
DISTILLM-2 is primarily evaluated on LLMs, we also
demonstrate its potential adaptability to VLMs in Table 7.
Since many multimodal large language models (MLLMs;
Dai et al. 2023; Tang et al. 2024) are built on LLMs, we
believe that DISTILLM-2 can be effectively applied to a
wide range of MLLMs.

• Recovering the compressed LLMs (§6.3) : While
network pruning (Ko et al., 2023b) and quantization
(Shao et al., 2024) have significantly improved the effi-
ciency of LLMs, they often come at the cost of inher-
ent performance degradation compared to the uncom-
pressed original models. Our experiments demonstrate
that DISTILLM-2 can substantially enhance the perfor-
mance of quantized LLMs, making them highly compet-
itive with their original counterparts. We believe that
DISTILLM-2 can further improve the effectiveness of
compressed models, such as quantized LLMs, while also
being applicable to other compression techniques.

• Enhancing Inference speed of LLMs (§6.4) : We also
show that DISTILLM-2 can significantly enhance the effi-
cacy of speculative decoding (Chen et al., 2023; Leviathan
et al., 2023) by improving the alignment between draft
and target models. We believe that DISTILLM-2 can be
beneficial for systems that utilize diverse models within a
single framework to improve both efficiency and efficacy.

While we have already demonstrated the applicability of
our work across various domains, we believe that it can be
utilized in an even broader range of fields. For example, the
reasoning ability showcased by DeepSeek-R1 (Guo et al.,
2025) could be integrated with our methodology to yield
more impactful results for sLMs. We encourage future
research to explore and discuss the broader implications of
this work across diverse domains.
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A. Additional Related Works
KD in LLMs. Recently, several works have pioneered the KD for LLMs (Gu et al., 2024; Agarwal et al., 2024; Ko et al.,
2024). Unlike small BERT-based models, which have focused on intermediate layer distillation (Wang et al., 2020; Ko et al.,
2023a), most works on LLMs have focused on logit-based distillation due to their large number of parameters. Gu et al.
(2024) proposed a policy gradient-based method addressing the high variance issues in RL-based methods. Agarwal et al.
(2024) propose on-policy approach of SGO with diverse objectives like RKLD and JSD. Based on these pioneer, numerous
works (Xu et al., 2024b; Zhang et al., 2024; Li et al., 2025) continuously studied to improve the performance of KD in
LLMs. Li et al. (2025) filter out long-tail noise by utilizing top-k teacher and student logits and leverage internal logit
ranking information by constructing logit differences. Zhang et al. (2024) introduced the dual-space knowledge distillation
(DSKD) framework, which unifies the output spaces of the two models for KD. Similar to our work, Wu et al. (2025)
provided adaptive KL to balance their early-stage behaviors of KL and RKL, however, they do not consider about the data
perspective of LLM distillation.

Contrastive approach. Actor-critic RLHF frameworks (Christiano et al., 2017; Stiennon et al., 2020; Bai et al., 2022;
Ouyang et al., 2022) seeks to align language models to human preferences, but is often unstable during training and
memory-intensive (requiring the policy model and reward model to be on device simultaneously). To mitigate this, several
algorithms (Rafailov et al., 2023; Azar et al., 2024; Ko et al., 2025), such as direct preference optimization (DPO; Rafailov
et al. 2023) and sequence likelihood calibration (SLiC-HF; Zhao et al. 2023), learn the contrastive preference in the offline
setting using a closed-form loss function without the need for an critic/reward model. (Azar et al., 2024) argued that without
regularization, a policy can easily overfit to deterministic preferences and introduced identity preference optimization (IPO)
to directly optimize offline preference probabilities with regularization.

B. Derivation for Mathematical Analysis
B.1. Mathematical Explanation on Behavior of KL and RKL

Here, we provide mathematical explanation for (S)KL and (S)RKL showed in Figure 1(a) and (b). Formally, the f -divergence
of two distributions is defined as

Df (p
1, p2) = Ey∼p1

[
f

(
p1(y|x)
p2(y|x)

)]
:= Ep1

[
f

(
dp1

dp2

)]
,

where dp1 and dp2 are the probability densities of probability p1 and p2. The KL is a f -divergence generated by f(t) = t log t
and RKL is a f -divergence by f(t) = − log t. From Ko et al. (2024), the α-skew KL divergence is a f -divergence generated
by f (α)(t) = t log

(
t

αt+1−α

)
and α-skl RKL is is a f -divergence generated by f (α)(t) = − log ((1− α)t+ α). Based on

these property, we provide detailed explanation for the empirical observation.

Pulling-up effect of (S)KL: By taking f(t) = t log t, we have limt→∞ f(t) = +∞. Because p(·|x) ∈ (0, 1) and
qθ(·|x) ∈ (0, 1), qθ(·|x) cannot be too small when p(·|x) is significantly greater than 0. As a result, qθ(·|x) is encouraged
to “pull up” its values where p(·|x) is large. Similarly, for SKL, by taking f(t) = t log

(
t

αt+1−α

)
, we also have

limt→∞ f(t) = +∞. Thus, SKL also benefits from the same “pulling-up” property of the KL-like term.

Pushing-down effect of (S)RKL: By taking f(t) = − log t, we have limt→0+ f(t) = +∞, which means qθ(·|x) should
be small when p(·|x) is small. As a result, qθ(·|x) is encouraged to “push down” its values where p(·|x) is near to zero.
Similarly, for SRKL, by taking f(t) = − log ((1− α)t+ α), we also have limt→0+ f(t) = +∞. Thus, SRKL also benefits
from the same “pushing-down” property of RKL-like term.

While Wu et al. (2025) provided a similar observation, their explanation only holds for a unimodal Gaussian distribution,
whereas ours applies to a more general problem setup. Additionally, our explanation provides mathematical intuition for
both S(R)KL and (R)KL.
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B.2. Derivation for Remark 1

Based on the definitions of SKL and SRKL, we have

D
(α)
SKL(x,yt) +D

(α)
SKL(x,yt) = p(yt|x) log

p(yt|x)
q̃θ(yt|x)

+ qθ(ys|x) log
qθ(ys|x)
p̃θ(ys|x)

, (8)

= Ep(yt|x)

[
log

p(yt|x)
q̃θ(yt|x)

]
+ Eqθ(ys|x)

[
log

qθ(ys|x)
p̃θ(ys|x)

]
. (9)

Furthermore, as yt and ys are independent, the following holds by the linearity of expectation:

Ep(yt|x)

[
log

p(yt|x)
q̃θ(yt|x)

]
+ Eqθ(ys|x)

[
log

qθ(ys|x)
p̃θ(ys|x)

]
= Eyt∼p(yt|x),ys∼qθ(ys|x)

[
log

p(yt|x)
q̃θ(yt|x)

+ log
qθ(ys|x)
p̃θ(ys|x)

]
(10)

= Eyt∼p(yt|x),ys∼qθ(ys|x)

[
log

p(yt|x)
q̃θ(yt|x)

− log
p̃θ(ys|x)
qθ(ys|x)

]
. (11)

From this, we can verify that our Equation 5 can be interpreted as Equation 6, which behaves similarly to the contrastive
approach defined in DPO (Rafailov et al., 2023).

B.3. First-order Approximation for Mercator Series

From the Mercator series expansion, following hold:

log(1 + x) =

∞∑
n=1

(−1)n+1 · x
n

n
= x− x2

2
+

x3

3
− · · · , (12)

where the series converges to the natural logarithm whenever −1 < x ≤ 1.

By substituting p(y|x)− 1 into x, we can write as follows,

log p(y|x) = (p(y|x)− 1)− (p(y|x)− 1)
2

2
+

(p(y|x)− 1)
3

3
− · · · . (13)

Since the softmax outputs of LLMs, p(y|x), satisfy 0 < p(y|x) ≤ 1 by the definition of probability, it follows that
−1 < p(y|x) − 1 ≤ 0. This holds because the softmax function outputs strictly positive values due to the exponential
transformation of real-valued inputs.

Hence, from the first-order Mercator series expansion approximation, we have

log
p(y|x)

αp(y|x) + (1− α)qθ(y|x)
= log p(y|x)− log (αp(y|x) + (1− α)qθ(y|x)) (14)

= [(p(y|x)− 1)− (αp(y|x) + (1− α)qθ(y|x)− 1)]− · · · (15)
≃ (1− α)p(y|x) + (1− α)qθ(y|x) = (1− α) · (p(y|x)− qθ(y|x)) , (16)

which holds for 0 ≤ α ≤ 1. By choosing first-order approximation, we can express the S(R)KL as a closed-form
function of α, p(y|x), and qθ(y|x) which enables to compute proper α for each sample easily. Instead, as we compromise
approximation error for either p(y|x)≪ 1 or qθ(y|x)≪ 1, we apply mini-batch wise allocation and clipping for improving
the stability of implementation of curriculum-based approach. For clipping, we utilize upper and lower bound as 0.1 and
0.01.

C. Detailed Experimental Setup
We elaborate the detailed experimental setup regarding the datasets used (§C.1), training details (§C.2), and evaluation
details (§C.3). For all experiments, we implement DISTILLM-2 using the trl framework, as well as for other baselines,
including GKD (Agarwal et al., 2024) and SKD (Xu et al., 2024b).
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C.1. Dataset Description

We apply DISTILLM-2 on instruction-following, math reasoning, and code generation datasets. We provide detailed
descriptions of the datasets used.

• UltraChat200k (instruction-following; Tunstall et al. 2023 4): This is a heavily filtered version of UltraChat (Ding et al.,
2023), originally used to train Zephyr-7B-β (Tunstall et al., 2023). It is obtained from the original version, which consists
of 1.4M dialogues generated by ChatGPT and spans a wide range of topics, by removing the dialogues that contain
grammatical errors or where the assistant replies with phrases like “I do not have emotions” or “I don’t have opinions.”

• AlpacaEval (instruction-following; Dubois et al. 2024 5): This dataset is slight modifications (or simplification) of the
AlpacaFarm evaluation set. Dubois et al. (2024) first merged the instruction and input fields into a single instruction field.
This affects 1/4 of the examples in the AlpacaFarm evaluation set, all of which are from the Self-Instruct (Wang et al.,
2023). This dataset contains 805 challenging questions.

• Evol-Instruct Evaluation (instruction-following; Xu et al. 2024a 6): Evol-Instruct (Xu et al., 2024a) contains 218
questions, spanning multiple topics generated using the Evol-Instruct procedure.

• UltraFeedback (instruction-following; Cui et al. 2024; Tunstall et al. 2023 7 8): This is a large-scale, fine-grained, and
diverse preference dataset used for training powerful reward models and critic models. Cui et al. (2024) collected about
64k prompts from diverse resources, including UltraChat, ShareGPT, and Evol-Instruction (Xu et al., 2024a). They used
these prompts to query multiple LLMs, generating four different responses for each prompt. The responses were annotated
using GPT-4 to collect high-quality preferences based on instruction-following, truthfulness, honesty, and helpfulness.

• MetaMathQA (mathematical reasoning; Yu et al. 2024a 9): MetaMathQA is a dataset introduced in Yu et al. (2024a)
to improve mathematical reasoning in large language models. It is created through question bootstrapping, where
mathematical problems are rewritten from multiple perspectives, including forward reasoning, backward reasoning, and
rephrasing.

• GSM8K (mathematical reasoning; Cobbe et al. 2021 10): GSM8K (Grade School Math 8K) is a dataset comprising 8.5K
high-quality, linguistically diverse grade school math word problems. It is designed to facilitate question answering on
fundamental mathematical problems that involve multi-step reasoning.

• MATH (mathematical reasoning; Hendrycks et al. 2021 11): This dataset code generates mathematical question-and-
answer pairs covering various question types at approximately school-level difficulty. It is designed to evaluate learning
models’ mathematical comprehension and algebraic reasoning abilities.

• WizardCoder (code generation; Luo et al. 2024 12): WizardCoder dataset is constructed using the Evol-Instruct method,
which refines and expands existing code instruction datasets. The process starts with Code Alpaca, a 20K-sample
instruction-following dataset, and iteratively applies instruction evolution techniques to generate progressively more
complex training data. These modifications include adding constraints, increasing reasoning steps, providing misleading
code, and enforcing time-space complexity requirements. The final dataset consists of approximately 78K evolved samples,
which are used to fine-tune the StarCoder model, significantly improving its performance on code generation benchmarks.

• HumanEval (code generation; Chen et al. 2021 13): The HumanEval dataset, released by OpenAI, consists of 164
programming problems, each containing a function signature, docstring, body, and multiple unit tests. These problems
were manually crafted to ensure they were not part of the training data for code generation models.

• MBPP (code generation; Austin et al. 2021 14): The benchmark includes approximately 1,000 crowd-sourced Python
programming problems, designed for entry-level programmers and covering programming fundamentals, standard library

4https://huggingface.co/datasets/HuggingFaceH4/ultrachat 200k
5https://huggingface.co/datasets/tatsu-lab/alpaca eval
6https://github.com/nlpxucan/WizardLM/blob/main/WizardLM/data/WizardLM testset.jsonl
7https://huggingface.co/datasets/openbmb/UltraFeedback
8https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback binarized
9https://huggingface.co/datasets/meta-math/MetaMathQA

10https://huggingface.co/datasets/openai/gsm8k
11https://huggingface.co/datasets/deepmind/math dataset
12https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
13https://huggingface.co/datasets/openai/openai humaneval
14https://huggingface.co/datasets/google-research-datasets/mbpp
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functions, and more. Each problem features a task description, a code solution, and three automated test cases. As noted
in the paper, a portion of the dataset has been manually verified.

• RLAIF-V-Dataset (visual question answering; Yu et al. 2024b 15): RLAIF-V-Dataset is a comprehensive multimodal
feedback dataset featuring 83,132 preference pairs with high-quality annotations. The instructions are sourced from a
diverse selection of datasets, including MSCOCO, ShareGPT-4V, MovieNet, Google Landmark v2, VQA v2, OKVQA,
and TextVQA. Additionally, authors incorporate image description prompts from RLHF-V, utilizing them as long-form
image-captioning instructions.

• OK-VQA (visual question answering; Marino et al. 2019 16): OK-VQA is a large-scale visual question answering
(VQA) dataset with over 14,000 questions that require external knowledge to answer. Unlike traditional VQA datasets, it
challenges models to retrieve and integrate external information rather than relying solely on image content. As a diverse
and challenging dataset, OK-VQA surpasses previous knowledge-based VQA benchmarks in scale, making it a crucial
resource for advancing AI reasoning capabilities.

• TextVQA (visual question answering; Singh et al. 2019 17): TextVQA is a dataset designed to benchmark visual reasoning
based on text in images. To answer TextVQA questions, models must read and interpret text within images, integrating
this textual information into their reasoning process. Unlike traditional VQA tasks, TextVQA requires models to handle
both visual and textual modalities, making it a unique challenge in multi-modal learning.

C.2. Training Details

Here, we describe the hyperparameters and implementation details for training with DISTILLM-2. Our hyperparameters
are shown in Table 11. For all experiments, we utilize LoRA (low-rank adaptation; Hu et al. 2022), which one of the most
popular parameter-efficient fine-tuning techniques, for training efficiency. For all models, we use the maximum batch size
that fits on 4 NVIDIA A100 80GB GPUs, while matching the effective batch size with 128 by considering the batch size
and gradient accumulation. For all experiments in §4, we first train the student models on training datasets with ground-truth
responses using SFT, and then conduct KD for LLMs. Instead, we also provide the results for the student models initialized
from instruction models with Gemma-2-2B-it (DeepMind et al., 2024) in Appendix D.2. Unlike the previous version (Ko
et al., 2024), we do not use language modeling loss on pre-training corpus for all experiments.

Table 11. Hyperparameter values used in DISTILLM-2 experiments in §4.
Hyperparameter Instruction-following Mathematical Reasoning Code generation

Fine-tuning method LoRA (r = 16)
Target module for LoRA all linear layers for self-attention and MLP layers in Transformer network
Learning rate 5.0× 10−5

Effective Batch Size 128
# Epochs 3 epochs 2 epochs 2 epochs
Initial α0 0.1, we do not use curriculum-based update in 1st epoch.
Clipping value β0 0.5

C.3. Evaluation

Instruction-following. For evaluating the trained LLMs, we applied a single NVIDIA A100 80GB GPU for sampling
the responses from each model using a temperature of 0.8, top-p value of 0.95, a max-length limit of 512. For LLM-as-a-
Judge (Zheng et al., 2023) evaluation, we use a pairwise comparison prompt which depicted in Figure 4 with setting the
temperature of 0.7. For AlpacaEval, we conducted pairwise comparisons against responses from text-davinci-003,
which have been officially released. For Evol-Instruct and UltraFeedback, we compared generated responses to those from
gpt-3.5-turbo, which were produced internally. To avoid position bias, we average the results by switching the order
of the compared responses.

Mathematical Reasoning & Code generation. For evaluating the trained student models, we applied a single NVIDIA
A100 80GB GPU for sampling the responses from the each model using greedy sampling, a max-length limit of 1024.
Specifically, for code generation, our evaluation is conducted on EvalPlus framework (Liu et al., 2023).

15https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset
16https://huggingface.co/datasets/HuggingFaceM4/OK-VQA
17https://huggingface.co/datasets/facebook/textvqa
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[System]

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question
displayed below. You should choose the assistant that follows the user’s instructions and answers the user’s question better.
Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail
of their responses. Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any
position biases and ensure that the order in which the responses were presented does not influence your decision. Do
not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as
objective as possible. After providing your explanation, output your final verdict by strictly following this format: ”[[A]]”
if assistant A is better, ”[[B]]” if assistant B is better, and ”[[C]]” for a tie.

[User Question]
{question}

[The Start of Assistant A’s Answer]
{answer a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer b}
[The End of Assistant B’s Answer]

Figure 4. The pairwise comparison prompt introduced in LLM-as-a-Judge (Zheng et al., 2023).

D. Additional Experimental Results
D.1. Comparison on On-policy Setup

Table 12. Application of “batched” on-policy setup compared to fully
on-policy and off-policy setup. We evaluate the student models in
databricks-dolly-15k test set with ROUGE-L following Ko et al.
(2024).

Size MiniLLM GKD DPO DPKD DistiLLM DISTILLM-2

on-policy 23.84 23.75 - 6.85 26.12 26.37
batched on-policy (ours) 23.75 23.21 23.42 6.43 26.11 26.20
off-policy 23.41 22.89 22.78 6.43 26.12 26.13

Setup. We also compare our methods with on-policy
manner algorithms, in the code-base of DistiLLM. We
compare the recent on-policy distillation baselines, in-
cluding ImitKD (Lin et al., 2020), MiniLLM (Gu et al.,
2024), GKD. We also provide the results for the adaptive
on-policy setup for DistiLLM and DISTILLM-2. Also,
we conducted experiments with DPKD and DPO. We
follow the experimental setup of Ko et al. (2024), which
trained GPT-2 (Radford et al., 2019) on databricks-dolly-15k (Conover et al., 2023). All hyper-parameter setups are from
(Ko et al., 2024). Note that we apply same experimental setup for the result in Figure 1(c).

Results. Table 12 show that our “batched” on-policy setup, which shares the same takeaway as the adaptive off-policy
approach in Ko et al. (2024), does not suffer from severe performance degradation despite its significant efficiency. Also, we
observe that DPKD (Li et al., 2024b) performs much worse than its reported values, as it is prone to reward hacking, as we
reported in §3.1. Hence, we decide not to include DPKD in our main baselines in §4. While we provide results for DPO,
except in the on-policy setup, its performance is worse than DISTILLM-2 but better than DPKD.

D.2. LLM distillation with Inst models

Table 13. Comparison of the teacher model (MT ) and student models
with different KD methods. Note that DISTILLM-2 achieve higher
performance than teacher in UltraFeedback evaluation.

MT MS GKD DistiLLM DISTILLM-2

Evol-Inst 88.76 76.80 79.57 80.28 85.10
UltraFeedback 85.90 79.52 81.94 85.56 88.26

While the results in Table 2 focus on the base model as
the student model, we also provide results using the inst
model as the student model, specifically Gemma-2-2B-
it (DeepMind et al., 2024) with Gemma-2-9B-SimPO
(Meng et al., 2024) as the teacher model. We use the
same experimental setup as the base model, except that
we train the inst model for only a single epoch of 200
training iterations.

Overall, the student models in Table 13 achieve higher performance compared to the base models (+SFT) in Table 2. Notably,
our DISTILLM-2 achieves even higher performance in the UltraFeedback evaluation compared to other student models,
demonstrating that LLM distillation remains effective for recent state-of-the-art models. We belive that these results stem
from the fast convergence of the contrastive approach in our DISTILLM-2, even with very limited training iterations.
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