
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TREEPO: ENHANCING POLICY EFFICACY AND
INFERENCE EFFICIENCY WITH TREE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in aligning large language models via reinforcement learning
have achieved remarkable gains in solving complex reasoning problems, but at the
cost of expensive on-policy rollouts and limited exploration of diverse reasoning
paths. In this work, we introduce TreePO, involving a self-guided rollout algorithm
that views sequence generation as a tree-structured searching process. Composed of
dynamic tree sampling policy and fixed-length segment decoding, TreePO leverages
local uncertainty to warrant additional branches. By amortizing computation across
common prefixes and pruning low-value paths early, TreePO essentially reduces
the per-update compute burden while preserving or enhancing exploration diversity.
Key contributions include: (1) a segment-wise sampling algorithm that alleviates
the KV cache burden through contiguous segments and spawns new branches along
with an early-stop mechanism; (2) a tree-based segment-level advantage estimation
that considers both global and local proximal policy optimization. and (3) analysis
on the effectiveness of probability and quality-driven dynamic divergence and
fallback strategy. We empirically validate the performance gain of TreePO on a
set of reasoning benchmarks and the efficiency saving of GPU hours from 22%
up to 43% of the sampling design for the trained models, meanwhile showing up
to 40% reduction at trajectory-level and 35% at token-level sampling compute for
the existing models. While offering a free lunch of inference efficiency, TreePO
reveals a practical path toward scaling RL-based post-training with fewer samples
and less compute. Codes and repo will be released.

0 50 100 150 200 250 300
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
aj

@
Ac

cu
ra

cy
 o

n
AI

M
E

GRPO
GRPO w/ TreePO Sampling
TreePO Estimator & Sampling

0 50 100 150 200 250 300
Training Steps

0.76

0.78

0.80

0.82

0.84

0.86

M
aj

@
16

 A
cc

ur
ac

y
on

 M
AT

H

Inference
All Down

Vanilla

Segment 2

Segment 1

TreePO

Fallback

Figure 1: Demonstration of the Validation Performance Curves along Training based on Qwen2.5-7B
(Left, Mid) and Demonstration of TreePO Sampling (Right). Left, Mid: Compared to the GRPO
setting, although replacing additional treed-based sampling causes a slower convergence, it could
stabilize the training.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful paradigm for enhancing the complex
reasoning abilities of Large Language Models (LLMs) (Jaech et al., 2024; Shao et al., 2024; Yu
et al., 2025). However, the efficacy and scalability of RL face fundamental constraints from two
long-standing challenges: exploration (generating diverse responses) and exploitation (obtaining
guidance from external feedback). In the context of LLMs, these challenges become even more
pronounced, as models must generate sequences spanning thousands of tokens before receiving a
single reward signal—which is typically sparse and delayed (Li et al., 2024; Guo et al., 2025a).
This constraint creates two critical research challenges: (1) How can we enable LLMs to explore

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

potentially correct reasoning paths while maintaining or reducing computational costs? and (2) How
can we accurately attribute sparse outcome rewards to the specific tokens that contributed to correct
answers?

We present key observations that inspire our approach to addressing these challenges: standard RL
approaches typically generate multiple independent trajectories for a single query—a strategy that is
both computationally inefficient and conceptually sub-optimal. From a computational perspective,
this approach creates paths with separate Key-Value (KV) caches, failing to utilize shared KV caching
mechanisms that could significantly accelerate inference. Conceptually, continuing to explore paths
already known to be impossible or incorrect, without early termination, represents a critical limitation
in adaptability. That is, while this sampling strategy may appear simple to implement, its lack of
structural design ultimately limits its effectiveness.

A promising sampling strategy is Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006)
or its variants (Silver et al., 2017; Świechowski et al., 2023), which enables agents to leverage tree
structures to achieve functions like early termination and roll back. Despite its promise, MCTS is
often inefficient for LLM inference, requiring numerous sequential rollouts that are poorly suited
for parallelized engines. Recent efforts have moved toward better utilization of LLM inference
engines, recognizing that optimizing the data generation process itself is a critical frontier (Fan
et al., 2025; Wang et al., 2025b). We believe this is the correct direction and accordingly propose
a heuristic, self-guided, tree-based sampling mechanism designed to fully leverage the Key-Value
(KV) cache mechanism. By structuring the rollout process as a tree, we maximize the reuse of
shared prefixes as demonstrated in the Figure 1 (Right). Our findings show this approach can reduce
40% of trajectory-level inference time for the baselines on average (see §4.1), thereby improving
computational efficiency without sacrificing performance.

To address the second question of credit assignment, our tree-based sampling structure naturally
facilitates a more granular advantage estimation. This allows us to propose a new advantage function
that is distinct from recent related works like TreeRL (Hou et al., 2025) and SPO (Guo et al., 2025b).
While these methods also leverage tree or segment-based structures, their advantage calculations
are primarily MCTS-like, focusing on the value difference between a parent and its child node to
assign credit. Our approach, in contrast, models entire sub-trees as coherent sub-groups, enabling a
more robust relative advantage calculation based on the collective outcomes of all descendants. More
critically, our design is proven to be feasible for training directly from a base model, aligning with the
”RL-zero” paradigm where reasoning capabilities are elicited without prior supervised fine-tuning
(SFT). This stands in contrast to these related methods, which are demonstrated on models that have
already undergone SFT.

In this paper, we introduce Tree-based Policy Optimization (TreePO), a framework that integrates
these solutions into a unified RL pipeline. TreePO replaces inefficient independent rollouts with a
computationally efficient and algorithmically flexible tree search. This structure not only improves
sampling efficiency but also enables principled credit assignment and controllable exploration. We
introduce novel heuristic sampling strategies, including dynamic divergence and probability-based
fallback, which strategically allocate the generation budget to explore more diverse and promising
reasoning paths. This transforms the rollout phase into a transparent and controllable search process,
providing a powerful tool for analyzing the training dynamics of RL models. In summary, our
contributions are:

• We introduce TreePO, a novel RL training scheme that replaces standard i.i.d. sequential
sampling with a heuristic tree-based rollout mechanism. By implementing heuristic-driven
exploration strategies, including dynamic divergence and probability-based fallback, this
mechanism enhances the model’s ability to explore the reasoning space effectively while
significantly improving computational efficiency by leveraging KV-caching.

• We propose a new tree-based advantage estimation function that enables more precise credit
assignment and is uniquely suited for training LLMs from a base model, without requiring
an initial instruction tuning stage.

• We demonstrate through extensive experiments that TreePO provides a superior trade-off
between computational cost and model performance, establishing a more efficient and
scalable frontier for training large reasoning models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 TREEPO: A TREE-BASED TRAINING SCHEME FOR POLICY OPTIMIZATION

Consider the geometric
sequence ,
What is the eighth term of the
sequence? Express your
answer as a common fraction.​

Question

Answer

need to determine
the common ratio , which is given by...

We
first of the sequence...

We

We and then use the formula for the n-
th term of a geometric sequence

. Find the common ratio...and then use the formula for the n-
th term of a geometric sequence

......

need to determine
the common ratio

need to determine
the common ratio

Figure 2: Multiple sampled trajectories from the same prompt, with shared reasoning segments high-
lighted in matching colors. Despite stochastic generation, key problem-solving steps are consistently
reproduced.

2.1 CASE STUDY: THE ALIGNED MODEL PRODUCES SHARED PREFIX

We begin with an empirical observation on the structure of reasoning trajectories. Given a fixed
prompt, we perform 16 independent stochastic rollouts using a temperature of 0.8 to encourage diverse
generation while preserving coherence. Upon close inspection, we find that despite the variation
in final solutions, the generated trajectories share extensive overlapping segments, particularly in
the early and intermediate stages of reasoning. As illustrated in Figure 2, components such as
problem interpretation, variable assignment, and initial logical deductions appear nearly identical
across multiple rollouts. These recurring segments are highlighted with consistent colors, visually
demonstrating the emergence of stable reasoning prefixes.

This phenomenon indicates that, even under stochastic sampling, the model consistently follows
a common path for the initial stages of reasoning before diverging at later decision points. Such
redundancy across trajectories suggests a fundamental inefficiency in standard on-policy reinforce-
ment learning: each rollout independently recomputes the same prefix tokens, leading to duplicated
computation and KV cache storage. Since reasoning paths naturally form a tree-like structure where
common prefixes branch into diverse continuations, it is both feasible and highly beneficial to model
sequence generation as a tree-structured search process. By explicitly representing shared prefixes
only once and amortizing computation over them, using TreePO avoids redundant forward passes.
Furthermore, the natural branching points provide ideal locations for uncertainty-driven exploration,
enabling efficient and targeted expansion of reasoning paths.

2.2 TREE-BASED ROLLOUT ALGORITHM

Preliminaries. For a given query qi ∈ Q, we formalize the problem of complex reasoning with chain
of thought (Wei et al., 2022) as the search algorithm to acquire a group of corresponding answers,
oi,j ∈ O, under a certain constraint of the computing budget. Specifically, we define the exact input of
model as a prompt p, to distinguish the query itself as the input might contain additional context. In
the TreePO sampling setting, we align terminology of RLVR and tree search to define:

i. the query q as the root node at depth 0;
ii. the number of complete trajectories as the tree width, w;

iii. the maximum decoding steps of a trajectory as the depth, d;
iv. the maximum decoding tokens of each time as the length of the segment, l; and
v. branching budget b for each segment node.

Under the context of RL training of large language models, the computing budget for sampling the
trajectories of a given set of queries could be defined by the trajectory group size of each query (also
noted as the tree width w), if the maximum trajectory length d × l is fixed.

Segment-level Tree Sampling. As shown in Figure 1 (Upper Right), the vanilla sampling design
requires the model to conduct token-level decoding and stem multiple complete trajectories from the
same query independently. We re-organize such a sampling progress into a hybrid of segment-level
tree searching and token-level decoding as in Figure 1 (Lower Right): for each trajectory, the model
generates a segment s in max length l step by step, until it hits the maximum response length or
meets the any self-designed criteria of early stopping. We maintain a queue of prompts P to manage
the sampling progress, and assign the queries as the initial prompt set. For an input query set q, the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

token-level decoding stops when the model generates [EOS] token or reaches the preset maximum
segment token l; and the overall segment-level tree sampling progress ends when the prompt queue
becomes empty (P = ∅). Specifically, given a P in each step of decoding, the inference engine would
produce a set of output segments in the exact number of |P |. And each generated segment will be
either appended to existing contexts to form a new input prompt in the queue, or stop generation as
a leaf node if it contains flawed sub-string patterns or answer boxed. We introduce the branching of
each search paths by forking the corresponding prompts b times before segment inference, where the
value of b is dynamically calculated and assigned by design (see the details in the following literature).
To fulfill the requirement of acquiring w trajectories for each q when the searching paths stop early
before the tree reaches w, we introduce the feedback mechanism and stem new branches from the
stopped paths to achieve better efficiency. The pseudo code of the proposed sampling algorithm are
described in Algo. 1, Appendix B.

Branching and Fallback. After reformulating the sampling progress into a tree-based search, a
subtle balance between the rollout efficiency and model exploration space could be achieved by a
well defined branching and fallback protocol. In TreePO, we define a vanilla N-ary tree as a baseline
searching strategy, i.e., the branching budget for a the root node q (query) at depth d is Nd until
it reaches the maximum width w. To avoid the inference loading skew caused by the scarce long
responses and the over-bias on the short paths, we coordinate two balancing tree searching strategies
with the inference engine:

• Branching Budget Transfer: As early stopped short search paths could derive a small
request batch to the inference engine and thus cause low utilization, we assign the maximum
branching budget Nd at depth d to all existing active paths evenly (or determined by heuristic
information).

• Depth-First Search Fallback: To avoid sampling progress overly conducts fallback on
the early stopped short paths and lose the capability of long complex reasoning, TreePO
launches the fallback mechanism only when there is no active path for q and the tree does
not have enough trajectories wq < w.

Heuristic Sampling. With the designed segment-level tree sampling protocol, we can now accord-
ingly introduce a more fine-grained and flexible control over the sampling progress with heuristic
information. Without waiting for external signals, the TreePO sampling could exploit more in the
desired search space by leveraging heuristic control on early stopping, branching, and fallback
strategies. We first introduce a simple early stopping trick for the flawed searching path by detecting
the pattern with repetitive substrings within the new generated segment, which could reduce redun-
dant computing, and forcedly prune the branches within the mumbling distribution that are usually
generated by the less aligned base models. While conducting fallback, only those stopped paths
containing formatted answer1 or ending with [EOS] can be selected as the candidate to randomly
fallback in segment level. Other than the average branching budget assignment and random fallback
strategy, there are more possible customized heuristic metrics could be applied when maintaining
efficiency of TreePO, as long as no additional bubble of the pipeline is introduced. In the later §??,
we take advantage of the log probabilities to steer the sampling progress without additional cost, as
they are calculated during token-level decoding and returned from the inference engines by default.

2.3 TREE-BASED ADVANTAGE ESTIMATION FOR POLICY OPTIMIZATION

We take the GRPO (Shao et al., 2024) optimizing objective and adopt the improved modifications
proposed in DAPO (Yu et al., 2025) as our starting point, which further highlights clip-higher gradient,
dynamic sampling, and token-level loss:

J (θ) = E
(q,a)∼D,{oi}Gi=1∼πθold

(·|q)[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1 − εlow, 1 + εhigh

)
Âi,t

)]
,

s.t. 0 <
∣∣∣{oi | is equivalent(a, oi)}

∣∣∣ < G.

(1)

where
ri,t(θ) =

πθ(oi,t | q, oi,<t)

πθold
(oi,t | q, oi,<t)

, Âi,t =
Ri − mean({Ri}G

i=1)

std({Ri}G
i=1)

. (2)

1In the context of math reasoning, we set this condition as including a legal answer surrounded by boxed{}.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

+1.25

Demo Tree Sub-groups for

+1 +1 -1

-1

Sub-group Adv.

-1

-1 +1

+0.66

+1.125

-1

Figure 3: Demonstration of the TreePO Advantage Estimation. Assuming that the tree-based sampling
has derived 8 trajectories (leaf) given a query q, we take node c2,2 as an example to calculate the
sub-group advantages. The tree-based sub-groups could be further defined by its predecessors c2, c,
and q. Thus the final advantages can be calculated as the averagely aggregated sub-group advantages.

Although the delicate modifications in DAPO (Yu et al., 2025) largely improve the stability of the
vanilla GRPO, the parallel-generated responses could still look “homogeneous” in the sequence-level
to the policy model under certain circumstances (e.g., inference with low temperature or train with
an over-confident model). Benefiting from the tree structure in the proposed rollout algorithm, the
searching paths could be sourced during advantage calculation. Given arbitrary trajectory oi, it can be
divided into multiple segments Sj by its inference step j:

oi = s1 ⊕ s2 ⊕ · · · ⊕ sj−1 ⊕ sj ,

{j ∈ J | j ≤ depthmax}
(3)

Such a prior allow us to reveal the nuanced segment-level difference among the trajectories, and
introduce more accurate intra-response variations for the advantages to alleviate the obscurity brought
by similar responses. Leveraging the shared prefixes, the advantage estimation function for the
trajectory could be further calibrated by the subgroups derived from the shared predecessor nodes
for the leaf nodes. Let the root node q be the sharing parent as the largest group G, we could denote
a sub-group Gj as the set of trajectories sharing the same predecessor node at inference depth j,
satisfying:

G|J| ⊆ G|J−1| ⊆ · · · ⊆ G2 ⊆ G1 ⊆ G,

{j ∈ J | j < depthmax}
(4)

Given the formulated sub-groups, we keep using the average reward within sub-groups as the
advantage baselines and conduct mean pooling on the relative advantages as the aggregated estimation.
Furthermore, we incorporate the global variance normalization strategy as in REINFORCE++ (Hu
et al., 2025) to improve the robustness of the estimation function, as the probability-based branching
could bring potential turbulent rollout rewards across queries, and conduct dynamic rejection sampling
to remove the queries with all correct or all wrong responses as in DAPO (Yu et al., 2025). Hence the
final TreePO advantage estimation function could be depicted as:

Âi,t =

∑J
j=1 Âi,t,j

|J| · std({Âi,t,j}G)
,

Âi,t,j = Ri − mean({Ri,j}Gj),

s.t. std({Ri}G
) ̸= 0

(5)

3 EXPERIMENT

3.1 SETTINGS

Train and Eval. The main experiments start from the Qwen2.5-7B base model (Qwen
et al., 2025). To compare sampling methods on well-aligned LLMs, we also use
Qwen2.5-7B-Instruct and Qwen2.5-Math-7B-Instruct. Training data are sourced
from the MATH dataset Hendrycks et al. (2021) and the DeepScaler (Luo et al., 2025) collection.
For evaluation, we use AIME 2024 (MAA, 2024), AMC 2023 (MAA, 2023), MATH500 (Hendrycks
et al., 2021), MINERVA (Lewkowycz et al., 2022), and Olympiad Bench (He et al., 2024), with
majority voting accuracy over 1000 samples as the main metric. The training was conducted on 64
GPUs, with a learning rate of 1e − 6 and a batch size of 512 (more details in Appendix C).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Tree Setting. With a fixed response length, we search three sets of depth d and segment token budget
l: {28 × 256, 14 × 512, 7 × 1024}. We set the total branching budget at each depth as 2d; specifically, the
branching budget b for each active path is b = 2, forming a binary tree search. The maximum tree width
is set to w = 16, a parameter shared by the sequential sampling baselines. During training, we explore
an enhancement to the initial branching budget by randomly assigning 2 to 8 divergences, aiming
to improve diversity. We use “More Init Divergence” and “Fixed Init Divergence” to distinguish
between these settings.

3.2 MAIN RESULTS

Table 1: Performance Comparison with Sequential Sampling with Maj@16 Acc.

Model AIME AMC MATH MINERVA Olympiad
Bench Overall

GRPO 17.13% 44.42% 72.89% 30.94% 35.09% 46.63%
GRPO w/ TreePO Sampling 19.66% 51.63% 81.85% 33.74% 44.76% 54.61%
TreePO w/ Fixed Init Divergence 28.89% 56.63% 82.41% 35.76% 47.75% 56.88%
TreePO w/ More Init Divergence 27.83% 55.53% 85.34% 34.98% 49.15% 58.21%

Table 2: Performance Comparison Between Sequential and Tree-based Sampling with Maj@16 Acc.

Model Sampling AIME AMC MATH MINERVA Olympiad
Bench Overall ↑ GPU Hour ↓

Sequential 28.89% 56.63% 82.41% 35.76% 47.75% 56.88% 5.78

8x2048, b = 2 23.33% 57.83% 81.80% 36.76% 45.93% 56.03% 4.29 (↓26%)
8x2048, b = 4 23.33% 57.83% 84.00% 36.03% 48.00% 57.50% 4.82 (↓17%)TreePO w/ Fixed Init Divergence

8x2048, b = 8 26.67% 55.42% 83.60% 36.40% 46.22% 56.60% 5.09 (↓12%)

Sequential 27.83% 55.53% 85.34% 34.98% 49.15% 58.21% 6.40

8x2048, b = 2 21.52% 53.99% 81.89% 33.93% 44.41% 54.67% 3.65 (↓43%)
8x2048, b = 4 22.90% 57.24% 84.66% 35.66% 47.19% 57.26% 4.56 (↓29%)TreePO w/ More Init Divergence

8x2048, b = 8 26.21% 56.72% 85.23% 35.02% 48.81% 58.06% 5.05 (↓22%)

The results of the main experiment set are provided in Table 1, where we use sequential sampling to
validate the full potential of the model performances. Based on the provided results and the training
curves in Figure 1 (Left, Mid), the introduction of tree-based methods — TreePO sampling and
advantage estimator—serves to significantly enhance training stability and computational efficiency,
albeit with a trade-off against raw convergence speed and peak accuracy in some configurations.

The effect of Tree Sampling is twofold. First, as shown in Table 1, adding TreePO sampling to
the baseline GRPO model provides a substantial performance boost across all datasets, increasing
the overall accuracy from 46.63% to 54.61%. This improvement is corroborated by the validation
metric curves, where GRPO w/ TreePO Sampling (orange line) demonstrates far greater training
stability compared to the volatile performance of the GRPO (blue line). Second, Table 2 reveals that
while tree-based sampling does not always outperform a strong sequential baseline in final accuracy
(e.g., 58.21% for Sequential vs. 58.06% for TreePO b=8 in the ”More Init Divergence” model), it
consistently and significantly reduces computation time, cutting GPU hours by 12% to 43%.

Beyond that, the TreePO advantage estimator, when used in conjunction with tree sampling, further
enhances the training process, either with “More Init Divergence” (3.6% ↑) or “Fixed Init Divergence”
setting (2.27% ↑). The green line in the validation curves shows the most stable and consistently
high-performing trajectory during training. This indicates that the estimator component provides
a more precise reward signal based on the tree hierarchy, guiding the model, and leading to more
reliable convergence.

4 DISCUSSION

This section is organized around a set of research questions (RQs) that guide our investigation, with
targeted ablation studies presented in the subsections. We start with a detailed analysis of offline
sampling efficiency improvement to probe the basis of TreePO. We then provide a thorough study on
the designed advantage estimation function and the tree sampling settings. We also place extended
observations and discussions in Appendix D: sampling efficiency analysis, probability-based heuristic
branching, and the performance curves along the scaling compute.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Qwen2.5-7B-Instruct (b) Qwen2.5-Math-7B-Instruct (c) Qwen2.5-Math-7B

Figure 4: Performance comparison between Tree-based Sampling and Conventional Sampling across
different tree depths.

4.1 SAMPLING EFFICIENCY ANALYSIS

RQ. Does tree-based sampling improve sampling efficiency relative to non–tree baselines, and
under which segment and branching configurations?

Setup. To isolate efficiency, we conduct offline efficiency analyses using three variants of the
Qwen2.5: Qwen2.5-Math-7B, Qwen2.5-Math-7B-instruct, and Qwen2.5-7B-instruct. We benchmark
throughput on randomly sampled prompts from a held-out pool independent of model training. The
experiments are carried out on H100 GPUs without any parallelization, maintaining a GPU utilization
of 60%. Single inference maximum output length is determined by the tree segment length. Unless
noted, each run processes a batch of 64 prompts and, for tree-based sampling, 64 rollouts per prompt.
We fix a per-trajectory token budget B = 7,000 and vary tree depth d and max segment length Lseg

subject to d × Lseg = w (segments are equal-length chunks). The non–tree baseline generates the same
number of completions per prompt with identical sampling hyper parameters and the same budget w.
We report Tokens per second (TokenPS; total processed tokens, including prefill and decode) and
Trajectories per second (TrajPS; completions per second), measured as wall-clock throughput.

Tree-based sampling generally improves efficiency. Under the same batch size, rollout count, and
budget B, tree-based sampling yields on average +40% TrajPS and +30% TokenPS across the three
models (geometric mean across configurations). Figure 4 shows that both TokenPS and TrajPS peak
at intermediate depth–segment combinations rather than grow monotonically with depth. The derived
conclusions are intuitive: longer segments and shallower trees fit the prefilling stage better, which
reduces repeated KV cache and attention computation; the decoding stage prefers deeper trees with
more branches and parallel rollouts, better exploiting speculative execution and batched sampling.
We also observe that if segments are too short, the extra recomputation offsets the gains from depth,
and the peak appears where these opposing effects balance under the same trajectory budget. More
observations regarding model priors and rollout scaling are discussed in Appendix D.1.

4.2 ANALYSIS ON THE TREEPO ADVANTAGE ESTIMATION

RQ. How does the design of the advantage estimation (e.g., subgroup aggregation choices) shape
the optimization dynamics during training?

Setup. (1)–(3) use depth×segment 14 × 512 with a 512-token fallback; (4) uses 7 × 1024 rollout but
still a 512-token fallback, inducing prefix misalignment. Figure 5 reports MATH/AIME accuracy,
entropy loss, and response length, and the “Subgroup-size Weighted” curve serves as a reference
baseline for comparison across variants.

Âi,t =

∑J
j=1 |Gj | · Âi,t,j

std({Âi,t,j}J−1)
∑J

j=1 |Gj |
, (6)

Simple averaging across subgroups is better than subgroup-size weighting. We further propose
a modified estimation function Equation 6 from Equation 5 to validate whether a simple modification
on the aggregation, based on subgroup size, is more appropriate for modeling the advantages.
Averaging tracks higher accuracy on both MATH and AIME, with lower and more stable entropy and
no unnecessary growth in response length. Size-weighting over-emphasizes large/easy subgroups and
down-weights informative small/hard ones, whereas simple averaging preserves a balanced signal;
we therefore adopt averaging in the method and keep size-weighting only for discussion.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Training Steps

0.76

0.78

0.80

0.82

0.84

0.86

M
aj

@
16

 A
cc

ur
ac

y
on

 M
AT

H
0 25 50 75 100 125 150 175 200

Training Steps

0.125

0.150

0.175

0.200

0.225

0.250

0.275

M
aj

@
Ac

cu
ra

cy
 o

n
AI

M
E

0 25 50 75 100 125 150 175 200
Training Steps

0.1

0.2

0.3

0.4

0.5

En
tr

op
y

Lo
ss

Subgroup-size Weighted
Average Weighted
Subgroup-size Weighted & Subgroup Rejection
Subgroup-size Weighted & No Root Group
Subgroup-size Weighted & Miss Aligned Fallback

0 25 50 75 100 125 150 175 200
Training Steps

1000

1500

2000

2500

3000

Re
sp

on
se

 L
en

gt
h

Figure 5: Study on the Terms in TreePO Advantage. These group of experiments sets the
depth×segment as 7×1024 and uses the subgroup size weighted aggregation advantage as the baseline.

Âi,t =

∑J
j=1 |Gj | · Âi,t,j

std({Âi,t,j}J−1)
∑J

j=1 |Gj |
,

Âi,t,j = Ri − mean({Ri,j}Gj),

s.t. std({Ri,j}Gj) ̸= 0

(7)

Naı̈ve subgroup rejection has marginal effect. As shown in Equation 7, we tested subgroup-level
dynamic rejection sampling (with extra subgroup hierarchy info). This DAPO-style rejection discards
all-positive/all-negative subgroups to bias feedback signals—we expected better calibration, but
accuracy dropped. Thus, in current settings, removing extremes doesn’t always eliminate unwanted
cases; we omitted subgroup-level rejection for final design simplicity.

Removing the root-group advantage does not harm performance. Using only aggregated
subgroup advantages (dropping the root-group term) yields comparable curves, showing subgroup
signals can approximate full-group optimization signals. This redundancy means the root term is
non-essential, pointing to a promising direction for credit assignment analysis. This aligns with the
fact that average weighting outperforms subgroup weighting—meaningful comparisons from smaller
subgroups offer more effective calibration signals.

Misaligned fallback degrades accuracy and inflates response length. With 7 × 1024 segments
but a 512-token random fallback, trajectories can share an abstract tree prefix while being token-
misaligned. Figure 5 shows a drop in AIME accuracy and a sharp rise in response length for the
misaligned variant, highlighting that token-aligned segments are important for stable optimization
and precise stopping behavior.

4.3 ANALYSIS OF EFFECTS OF SEGMENT BUDGET

RQ. How do the tree-sampling hyper parameters affect the convergence?

Setup We adopt the same subgroup-size weighted setting as in §4.2 to explore a the combination
parameter of d × Lseg. Here we set the Lseg ∈ 128, 256, 512, 1024 and adjust the maximum depth to fit
the response length limit 7 × 1024 accordingly. The training curves are shown in Figure 6.

Depth–segment trade-off, 14 × 512 is the sweet spot while 7 × 1024 underperforms. Under the
group-size weighted advantage, 14 × 512 attains the highest final MATH/AIME accuracy; 56 × 128

and 28 × 256 are close, whereas 7 × 1024 lags—especially on AIME—indicating that deeper trees with
moderate segments provide stronger credit assignment than shallow rollouts with very long segments.

Accuracy–length coupling, Better accuracy comes with longer generations. The best-
performing 14 × 512 also drives the largest growth in response length (and higher entropy), while

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400
Training Steps

0.76

0.78

0.80

0.82

0.84

0.86

M
aj

@
16

 A
cc

ur
ac

y
on

 M
AT

H
0 100 200 300 400

Training Steps

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

M
aj

@
Ac

cu
ra

cy
 o

n
AI

M
E

0 100 200 300 400
Training Steps

0.1

0.2

0.3

0.4

0.5

En
tr

op
y

Lo
ss

Subgroup-size Weighted 56x128
Subgroup-size Weighted 28x256
Subgroup-size Weighted 14x512
Subgroup-size Weighted 7x1024

0 100 200 300 400
Training Steps

1000

1500

2000

2500

3000

Re
sp

on
se

 L
en

gt
h

Figure 6: Study on the Online Depth-Segment under Setting the Group Size Weighted TreePO
Advantage.

7 × 1024 keeps outputs shorter but sacrifices accuracy. This suggests online TreePO benefits from
more exploratory, longer reasoning traces; shorter traces trade accuracy for brevity.

5 RELATED WORK

Efficient Sampling. Recent work on efficient sampling for RL and inference concentrates on
making the rollout loop lighter by batching many completions together, re-using the prompt KV-cache
and hiding latency behind parallel decoding; typical examples are (Wu et al., 2025) (Hooper et al.,
2025), (Zheng et al., 2025b), and (Guldogan et al., 2024), which all treat a prompt as a mini-batch
and schedule tokens in groups so that GPUs stay busy. (Wang et al., 2025b) keeps this idea but
breaks a large group into small “micro” groups, runs them with continuous inter-leaving, and adds
a length-aware scheduler; this saves memory and keeps the buffer fixed, yet it does not look at
the partial trajectories while they are generated, introduces extra scheduling logic, and leaves the
advantage estimator untouched (Wang et al., 2025b). (Fan et al., 2025) improves wall-time by cutting
every sampled chain after a short window and back-propagating early; the price is that long-range
information is lost and credit assignment becomes harder.

Segment-level Modeling. A second line of research studies reinforcement learning with tree search.
Recent systems such as (Wang et al., 2025a), (Hooper et al., 2025), (Hou et al., 2025) and (Guo
et al., 2025b) build explicit trees and use them to explore many reasoning branches in one rollout,
giving denser feedback than plain chain sampling (Wang et al., 2025a; Hooper et al., 2025; Hou et al.,
2025; Guo et al., 2025b). TreeRL couples on-policy tree expansion with process-level rewards, but
its trees stay shallow and the algorithm rolls one full answer to compute log-probabilities before
it can branch again, which doubles the running time (Hou et al., 2025). (Lou et al., 2024) adopts
an unconstrained tree and a “progress advantage” similar to Monte-Carlo returns; while this brings
a simple tree-based update, it lacks depth control and is not validated against a frozen base policy.
Similarly, ARPO (Dong et al., 2025) apply a segment-level entropy-guided divergence strategy based
on the finished tool call trajectories, analogical to the FR3E (Zheng et al., 2025a) in math domain.

6 CONCLUSION

In this work, we introduced TreePO, a reinforcement learning framework designed to address the
computational inefficiency and exploration instability in training large language models for complex
reasoning. By reformulating on-policy rollouts as a segment-based tree search and using a hierarchical
advantage estimator, TreePO significantly reduces reasoning computational costs while improving
training stability and maintaining strong performance. The efficiency and structural modeling of
TreePO open promising avenues for scaling reinforcement learning to more complex, long-horizon
tasks such as multi-turn dialogue, tool use, and multi-agent systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work trains and evaluates models solely on publicly available math and problem-solving
corpora; no personal or sensitive data were used, and no human subjects research was conducted,
so IRB approval was not required. We complied with dataset licenses and attribution requirements
and removed content if licensing status was unclear. While the proposed tree-based sampling can
generally improve efficiency, it could also be repurposed to optimize harmful generations; accordingly,
any released artifacts will include usage restrictions, safety filters, and refusal policies, and are not
intended for high-stakes or autonomous decision-making.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we has released our source code on GitHub and
pre-trained model checkpoints on HuggingFace. The links will be updated in the paper after the
anonymous period. We also provides hyperparameters and training setup required to replicate our
experiments. We are confident that these resources will enable the research community to verify our
findings and build upon our work.

REFERENCES

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen,
Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, and Zhicheng
Dou. Agentic reinforced policy optimization, 2025. URL https://arxiv.org/abs/2507.
19849.

Tiantian Fan, Lingjun Liu, Yu Yue, Jiaze Chen, Chengyi Wang, Qiying Yu, Chi Zhang, Zhiqi Lin,
Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Bole Ma, Mofan Zhang, Gaohong Liu, Ru Zhang,
Haotian Zhou, Cong Xie, Ruidong Zhu, Zhi Zhang, Xin Liu, Mingxuan Wang, Lin Yan, and
Yonghui Wu. Truncated proximal policy optimization, 2025. URL https://arxiv.org/
abs/2506.15050.

Ozgur Guldogan, Jackson Kunde, Kangwook Lee, and Ramtin Pedarsani. Multi-bin batching for
increasing llm inference throughput, 2024. URL https://arxiv.org/abs/2412.04504.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Yiran Guo, Lijie Xu, Jie Liu, Dan Ye, and Shuang Qiu. Segment policy optimization: Effective
segment-level credit assignment in rl for large language models, 2025b. URL https://arxiv.
org/abs/2505.23564.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Coleman Hooper, Sehoon Kim, Suhong Moon, Kerem Dilmen, Monishwaran Maheswaran, Nicholas
Lee, Michael W. Mahoney, Sophia Shao, Kurt Keutzer, and Amir Gholami. Ets: Efficient tree
search for inference-time scaling, 2025. URL https://arxiv.org/abs/2502.13575.

Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforcement
learning with on-policy tree search. arXiv preprint arXiv:2506.11902, 2025.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
robustness to both prompt and reward models. arXiv preprint arXiv:2501.03262, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

10

https://arxiv.org/abs/2507.19849
https://arxiv.org/abs/2507.19849
https://arxiv.org/abs/2506.15050
https://arxiv.org/abs/2506.15050
https://arxiv.org/abs/2412.04504
https://arxiv.org/abs/2505.23564
https://arxiv.org/abs/2505.23564
https://arxiv.org/abs/2502.13575

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
In International Conference on Machine Learning, pp. 29128–29163. PMLR, 2024.

Xingzhou Lou, Junge Zhang, Jian Xie, Lifeng Liu, Dong Yan, and Kaiqi Huang. Spo: Multi-
dimensional preference sequential alignment with implicit reward modeling, 2024. URL https:
//arxiv.org/abs/2405.12739.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-
Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2, 2025. Notion
Blog.

MAA. Amc 2023 problems, 2023. URL https://artofproblemsolving.com/wiki/
index.php/2023_AMC_12A_Problems. Accessed: 2025-05-11.

MAA. Aime 2024 problems, 2024. URL https://artofproblemsolving.com/wiki/
index.php/2024_AIME_I_Problems. Accessed: 2025-05-11.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte carlo tree
search: A review of recent modifications and applications. Artificial Intelligence Review, 56(3):
2497–2562, 2023.

Kaiwen Wang, Jin Peng Zhou, Jonathan Chang, Zhaolin Gao, Nathan Kallus, Kianté Brantley, and
Wen Sun. Value-guided search for efficient chain-of-thought reasoning, 2025a. URL https:
//arxiv.org/abs/2505.17373.

11

https://arxiv.org/abs/2405.12739
https://arxiv.org/abs/2405.12739
https://artofproblemsolving.com/wiki/index.php/2023_AMC_12A_Problems
https://artofproblemsolving.com/wiki/index.php/2023_AMC_12A_Problems
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2505.17373
https://arxiv.org/abs/2505.17373

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Liangyu Wang, Huanyi Xie, Xinhai Wang, Tianjin Huang, Mengdi Li, and Di Wang. Infinite
sampling: Efficient and stable grouped rl training for large language models, 2025b. URL
https://arxiv.org/abs/2506.22950.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models, 2025.
URL https://arxiv.org/abs/2408.00724.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model
and 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient.
https://hkust-nlp.notion.site/simplerl-reason, 2025. Notion Blog.

Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li,
Zhoufutu Wen, Chenghua Lin, Wenhao Huang, Qian Liu, Ge Zhang, and Zejun Ma. First return,
entropy-eliciting explore, 2025a. URL https://arxiv.org/abs/2507.07017.

Zhen Zheng, Xin Ji, Taosong Fang, Fanghao Zhou, Chuanjie Liu, and Gang Peng. Batchllm:
Optimizing large batched llm inference with global prefix sharing and throughput-oriented token
batching, 2025b. URL https://arxiv.org/abs/2412.03594.

12

https://arxiv.org/abs/2506.22950
https://arxiv.org/abs/2408.00724
https://hkust-nlp.notion.site/simplerl-reason
https://arxiv.org/abs/2507.07017
https://arxiv.org/abs/2412.03594

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)
During the preparation of this manuscript, we utilized a Large Language Model (LLM) as a general-
purpose writing assistant. Its role was confined to proofreading for grammatical errors, correcting
typos, and improving sentence structure for better readability. The LLM did not contribute to the
core research ideas, experimental methodology, or the substantive content of the paper.

B EXTENDED METHODOLOGY DETAILS

Algorithm 1 Tree-based Sampling

Require: An array of queries Q = {q1, q2, . . . , qn}
Ensure: Rollout responses O that satisfy the budget requirement for all q ∈ Q.
1: P ← Q ▷ Init inference prompts with queries
2: P ← BRANCHING(P) ▷ Fork the prompts with designed policy
3: while P ̸= ∅ do
4: S ← INFERENCE(P) ▷ Inference one step
5: P last ← P
6: P ← ∅ ▷ Clean up the inference queue
7: for sk in S do ▷ Iterate throuhg the generated segments
8: if FINISH(sk) or FAILEDNODE(sk) then
9: O ← O ∪ {{plastk ⊕ sk} ▷ Build the full response for final output

10: else
11: P ← P ∪ {plastk ⊕ sk} ▷ Concatenate the segment as new prompt
12: end if
13: end for
14: P ← BRANCHING(P) ▷ Fork the prompts with designed policy
15: P ← FALLBACK(P,O) ▷ Do fallback for unsufficient outputs
16: end while
17: return O ▷ Return the final outputs

C EXPERIMENT DETAILS

Model. The main part of the reinforcement training experiments are trained from the Qwen2.5-7B
base model (Qwen et al., 2025). Moreover, to further probe on the efficiency performance
of the tree-based sampling on well aligned LLMs, we use the Qwen2.5-7B-Instruct and
Qwen2.5-Math-7B-Instruct to compare the vanilla sequential and the tree-based sampling.

Data and Evaluation. One source of the training samples is the MATH dataset Hendrycks et al.
(2021), deriving about 8 thousands queries of difficulty level 3 to 5 from, same as the setting in
SimpleRL (Zeng et al., 2025). Another part of the training set consists 40 thousands samples from the
DeepScaler (Luo et al., 2025) collection. For evaluation, we use the AIME 2024 (MAA, 2024), AMC
2023 (MAA, 2023), MATH500(Hendrycks et al., 2021), MINERVA (Lewkowycz et al., 2022), and
Olympiad Bench (He et al., 2024). During validation and testing, we set the rollout N as 16 and use
the majority voting accuracy via 1000 times of sampling as the main metric. For the overall metric,
we use the weighted average among the individual benchmarks bases on the sizes of the test sets.

Tree Setting. With the constraint of response length, we search three sets of the depth d and segment
token budget l of tree sampling in online training: {28 × 256, 14 × 512, 7 × 1024}. We set the fixed total
branching budget at each depth as 2d, i.e., the branching budget b of each active path is set as b = 2.
Note that this forms a binary tree search paths if no early stop happens. And the maximum tree
width is set as w = 16, where the sequential sampling baselines share the same group size parameter.
During training, we explore whether additional initial branching budget by randomly assign 2 to
8 divergences, which is expected to improve the distribution diversity and thus break through the
upper bound. Correspondingly, we use “More Init Divergence” and “Fixed Init Divergence” in the
following literature to distinguish the settings of additional and fixed initial branching budget.

Training. We filter out the prompts longer than 1024 tokens, and set the response length as 7 × 1024

in training. The trainings run on 64 GPUs with the VeRL framework (Sheng et al., 2024) on FSDP
mode, and use V0 inference engine of vLLM (Kwon et al., 2023) as the inference backend. The
learning rate is set as 1e − 6 with 10 warm up steps. And the training batch size are set as 512 with the
limit of maximum 20 epoch. The checkpoint saving interval as 50 steps. As the dynamic sampling
strategy from DAPO is adopted, queries of 3 × bsz would be sent to sampling out a group of 16

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

trajectories, where 512 queries with std({Ri}G) ̸= 0 are randomly selected. When there is not sufficient
queries to form a training batch, maximum two other additional samplings will be conducted, which
could cause a less training steps due to the enumeration logic of the data loader.

D EXTENDED DISCUSSION

D.1 SAMPLING EFFICIENCY ANALYSIS (EXTENDED)

The optimal depth–segment configuration is model-specific. Qwen2.5-7B-Instruct peaks at
depth 28, likely because instruction-following finds a mid-depth balance: segments are not too short
(better batched prefilling and context retention) while depth still yields sufficient decoding parallelism.
Qwen2.5-Math-7B peaks at depth 14; for compute-intensive math reasoning, longer segments at
shallower depth reduce repeated KV-cache and attention recomputation, improving throughput under
the fixed budget. Qwen2.5-Math-7B-Instruct splits—TokenPS peaks at 14, whereas TrajPS peaks
at 28 and 56—consistent with deeper trees (which shorten segments under the 7k-token budget)
lowering token-level throughput via recomputation and decoder overhead, but raising trajectory-level
throughput by enabling more branching and parallel rollouts.

(a) Qwen2.5-7B-Instruct (b) Qwen2.5-Math-7B-Instruct (c) Qwen2.5-Math-7B

Figure 7: Performance comparison between Tree-based Sampling and Conventional Sampling across
different numbers of rollouts.

Rollout scaling is model- and workload-dependent. Qwen2.5-7B-Instruct shows nearly linear
TokenPS/TrajPS growth as rollouts increase under tree-based sampling (with query count fixed
at 64 and tree depth 28), reaching roughly 2× the baseline thanks to shared-prefix prefilling and
more parallel decoding; by contrast, standard autoregressive decoding yields only modest gains
(Figure 7). Qwen2.5-Math-7B-Instruct maintains a stable ≈ 2× speedup across rollout counts, as
structured, semantically aligned math trajectories sustain high cache-hit rates and efficient KV reuse,
keeping batched decoding effective. Qwen2.5-Math-7B is non-monotonic: throughput peaks around
16 rollouts, then TokenPS/TrajPS decline as trajectory divergence reduces shared prefixes, KV-cache
fragmentation and management overhead grow, memory pressure rises, and batching efficiency
degrades; the lack of instruction tuning further loosens output structure. Overall, more rollouts
can boost parallelism and cache reuse but also amplify memory and synchronization costs when
trajectories diverge, implying a model- and workload-dependent optimum.

D.2 ANALYSIS OF PROBABILITY-BASED BRANCHING ASSIGNMENT

RQ. How do different probability-based branching budget assignment strategies affect the conver-
gence?

Setup With segment-level control, TreePO sampling provide a more feasible environment to study
the training dynamics of the LLM bounding to the decoding progress. Stemming from the TreePO
“w/ More Init Divergence” setting, we conduct a set of experiments to control modify the branching
assignment at a given depth d. Under this setting, the total branching budget 2d is assign among the
active paths conditioned on the log probabilities of their last segment, return from the inference engine.
To prevent a sudden truncation of the search, the probabilities are passed through a softmax function
with temperature set as 2.0, and all the active search paths are guaranteed with at least one branching
budget. The comparison between different branching budget controls are shown in Figure 8, where
the ”Low Prob Encourage” suggests the paths with lower probability get more branching budget, and
vice versa for ”High Prob Encourage”. We also try with a more sophisticated ”Low Prob Encourage”
setting that the temperature of the softmax function is schedule from 5.0 to 1.0 across the training.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 100 200 300 400
Training Steps

0.76

0.78

0.80

0.82

0.84

0.86

M
aj

@
16

 A
cc

ur
ac

y
on

 M
AT

H
0 100 200 300 400

Training Steps

0.15

0.20

0.25

0.30

M
aj

@
Ac

cu
ra

cy
 o

n
AI

M
E

0 100 200 300 400
Training Steps

0.25

0.50

0.75

1.00

1.25

1.50

1.75

En
tr

op
y

Lo
ss

TreePO
TreePO w/ Low Prob Encourage
TreePO w/ High Prob Encourage
TreePO w/ Naive2Low Scheduler

0 100 200 300 400
Training Steps

1000

2000

3000

4000

5000

Re
sp

on
se

 L
en

gt
h

Figure 8: Study on a Probability-based Heuristic Tree Branching Budget Assignment.

Monotonous Pattern Could Be Harmful. As shown in Figure 8, both static heuristic con-
trols—”Low Prob Encourage” and ”High Prob Encourage”—underperform the baseline and the
scheduled variant. The ”Low Prob Encourage” strategy, in particular, consistently yields the lowest
accuracy on both benchmarks. This performance degradation is strongly correlated with a signif-
icant increase in response length and entropy loss, suggesting that forcing the model to explore
low-probability states leads to less efficient and coherent search trajectories across the whole training.
Conversely, the ”High Prob Encourage” setting, while performing better, results in the lower entropy
and shorter responses, indicating a potentially overly greedy search that may prune promising, less
obvious paths too early. Even when the scheduled ”Naive2Low” probability setting ensures a similar
branching assignment scheme at the beginning of the training, it still does not provide significant
advantages.

Such Branching Control Does Not Show Significant Benefit Even with Higher Entropy. The
most striking observation from our study is the disconnect between search diversity and task per-
formance. The ”Low Prob Encourage” setting was explicitly designed to increase exploration by
allocating more resources to less likely search paths. This is reflected in its entropy loss, which is
substantially higher than all other methods throughout training. However, this artificially inflated
entropy does not translate into better results. Instead, it correlates with the worst performance on
both benchmarks. This suggests that merely forcing the model to explore more diverse paths is not
beneficial; the exploration must be meaningful. In this case, allocating budget to low-probability
segments appears to push the model into irrelevant or erroneous reasoning paths, leading to longer,
less effective solutions, as evidenced by the Response Length plot. The baseline maintains a more
moderate entropy level, which proves more effective for complex reasoning tasks, indicating it strikes
a better intrinsic balance between exploration and exploitation.

D.3 COMPUTE SCALING FOR TREE SAMPLING

RQ. How does the TreePO sampling performance scale along compute budget?

Setup As the sampling mechanism has been modified, the scaling curve of a mono inference setting
along compute does not necessarily follow the similar trend as sequential sampling. To investigate
this, we analyze the test-time compute scaling of TreePO by evaluating weighted average model
performances across benchmarks under various GPU hour budgets, as shown in Figure 9.

Distinct Rules The experiment varies the tree divergence factor, which controls the number of
branches generated at each divergence point, to observe its effect on the performance-compute
trade-off. The results show that all configurations follow a predictable scaling pattern: performance
improves with increased compute before eventually reaching a point of diminishing returns, which
is consistent with established inference scaling observations. However, the key distinction from
conventional sequential sampling becomes apparent when comparing the different divergence strate-
gies. In sequential sampling, scaling compute is typically achieved by increasing the number of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

104 105

Compute (log scale)

54

55

56

57

58

Av
g.

 P
er

fo
rm

an
ce

 (
%

)

tree_div=2
tree_div=4
tree_div=8

Figure 9: Test-time Compute Scaling of TreePO Sampling on the Aggregated Benchmark. The
x-axis represents the compute budget on a log scale, while the y-axis shows average performance.
Each curve corresponds to a different tree divergence factor d = 2, 4, 8. The results illustrate that a
larger divergence factor can achieve higher peak performance at the cost of a larger compute budget,
revealing a trade-off between the exploration strategy and computational cost that distinguishes it
from the scaling behavior of conventional sequential sampling.

independent samples (N), which generally traces a single performance-compute curve. In contrast,
TreePO generates a family of scaling curves, where each curve corresponds to a different internal
search strategy controlled by d. At lower compute budgets, a smaller divergence factor (d = 2) is more
efficient, achieving better performance for less cost. As the compute budget increases, wider search
strategies (d = 4 and d = 8) become superior, with d = 8 ultimately reaching the highest peak perfor-
mance. This demonstrates that the optimal TreePO sampling strategy is dependent on the available
compute budget, allowing for more flexible ”compute-optimal inference”. Rather than simply scaling
the number of samples, one can select the optimal tree structure to maximize performance for a given
computational constraint.

16

	Introduction
	TreePO: A Tree-based Training Scheme for Policy Optimization
	Case Study: The Aligned Model Produces Shared Prefix
	Tree-based Rollout Algorithm
	Tree-based Advantage Estimation for Policy Optimization

	Experiment
	Settings
	Main Results

	Discussion
	Sampling Efficiency Analysis
	Analysis on the TreePO Advantage Estimation
	Analysis of Effects of Segment Budget

	Related Work
	Conclusion
	The Use of Large Language Models (LLMs)
	Extended Methodology Details
	Experiment Details
	Extended Discussion
	Sampling Efficiency Analysis (Extended)
	Analysis of Probability-based Branching Assignment
	Compute Scaling for Tree Sampling

