
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TREEPO: ENHANCING POLICY EFFICACY AND
INFERENCE EFFICIENCY WITH TREE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in aligning large language models via reinforcement learning
have achieved remarkable gains in solving complex reasoning problems, but at the
cost of expensive on-policy rollouts and limited exploration of diverse reasoning
paths. In this work, we introduce TreePO, involving a self-guided rollout algorithm
that views sequence generation as a tree-structured searching process. Composed of
dynamic tree sampling policy and fixed-length segment decoding, TreePO leverages
local uncertainty to warrant additional branches. By amortizing computation across
common prefixes and pruning low-value paths early, TreePO essentially reduces
the per-update compute burden while preserving or enhancing exploration diversity.
Key contributions include: (1) a segment-wise sampling algorithm that alleviates
the KV cache burden through contiguous segments and spawns new branches along
with an early-stop mechanism; (2) a tree-based segment-level advantage estimation
that considers both global and local proximal policy optimization. and (3) analysis
on the effectiveness of probability and quality-driven dynamic divergence and
fallback strategy. We empirically validate the performance gain of TreePO on a
set of reasoning benchmarks and the efficiency saving of GPU hours from 22%
up to 43% of the sampling design for the trained models, meanwhile showing up
to 40% reduction at trajectory-level and 35% at token-level sampling compute for
the existing models. While offering a free lunch of inference efficiency, TreePO
reveals a practical path toward scaling RL-based post-training with fewer samples
and less compute. Codes and repo will be released.
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Figure 1: Demonstration of the Validation Performance Curves along Training based on Qwen2.5-7B
(Left, Mid) and Demonstration of TreePO Sampling (Right). Left, Mid: Compared to the GRPO
setting, although replacing additional treed-based sampling causes a slower convergence, it could
stabilize the training.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful paradigm for enhancing the complex
reasoning abilities of Large Language Models (LLMs) (Jaech et al., 2024; Shao et al., 2024; Yu
et al., 2025). However, the efficacy and scalability of RL face fundamental constraints from two
long-standing challenges: exploration (generating diverse responses) and exploitation (obtaining
guidance from external feedback). In the context of LLMs, these challenges become even more
pronounced, as models must generate sequences spanning thousands of tokens before receiving a
single reward signal—which is typically sparse and delayed (Li et al., 2024; Guo et al., 2025a).
This constraint creates two critical research challenges: (1) How can we enable LLMs to explore

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

potentially correct reasoning paths while maintaining or reducing computational costs? and (2) How
can we accurately attribute sparse outcome rewards to the specific tokens that contributed to correct
answers?

We present key observations that inspire our approach to addressing these challenges: standard RL
approaches typically generate multiple independent trajectories for a single query—a strategy that is
both computationally inefficient and conceptually sub-optimal. From a computational perspective,
this approach creates paths with separate Key-Value (KV) caches, failing to utilize shared KV caching
mechanisms that could significantly accelerate inference. Conceptually, continuing to explore paths
already known to be impossible or incorrect, without early termination, represents a critical limitation
in adaptability. That is, while this sampling strategy may appear simple to implement, its lack of
structural design ultimately limits its effectiveness.

A promising sampling strategy is Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006)
or its variants (Silver et al., 2017; Świechowski et al., 2023), which enables agents to leverage tree
structures to achieve functions like early termination and roll back. Despite its promise, MCTS is
often inefficient for LLM inference, requiring numerous sequential rollouts that are poorly suited
for parallelized engines. Recent efforts have moved toward better utilization of LLM inference
engines, recognizing that optimizing the data generation process itself is a critical frontier (Fan
et al., 2025; Wang et al., 2025b). We believe this is the correct direction and accordingly propose
a heuristic, self-guided, tree-based sampling mechanism designed to fully leverage the Key-Value
(KV) cache mechanism. By structuring the rollout process as a tree, we maximize the reuse of
shared prefixes as demonstrated in the Figure 1 (Right). Our findings show this approach can reduce
40% of trajectory-level inference time for the baselines on average (see §4.1), thereby improving
computational efficiency without sacrificing performance.

To address the second question of credit assignment, our tree-based sampling structure naturally
facilitates a more granular advantage estimation. This allows us to propose a new advantage function
that is distinct from recent related works like TreeRL (Hou et al., 2025) and SPO (Guo et al., 2025b).
While these methods also leverage tree or segment-based structures, their advantage calculations
are primarily MCTS-like, focusing on the value difference between a parent and its child node to
assign credit. Our approach, in contrast, models entire sub-trees as coherent sub-groups, enabling a
more robust relative advantage calculation based on the collective outcomes of all descendants. More
critically, our design is proven to be feasible for training directly from a base model, aligning with the
”RL-zero” paradigm where reasoning capabilities are elicited without prior supervised fine-tuning
(SFT). This stands in contrast to these related methods, which are demonstrated on models that have
already undergone SFT.

In this paper, we introduce Tree-based Policy Optimization (TreePO), a framework that integrates
these solutions into a unified RL pipeline. TreePO replaces inefficient independent rollouts with a
computationally efficient and algorithmically flexible tree search. This structure not only improves
sampling efficiency but also enables principled credit assignment and controllable exploration. We
introduce novel heuristic sampling strategies, including dynamic divergence and probability-based
fallback, which strategically allocate the generation budget to explore more diverse and promising
reasoning paths. This transforms the rollout phase into a transparent and controllable search process,
providing a powerful tool for analyzing the training dynamics of RL models. In summary, our
contributions are:

• We introduce TreePO, a novel RL training scheme that replaces standard i.i.d. sequential
sampling with a heuristic tree-based rollout mechanism. By implementing heuristic-driven
exploration strategies, including dynamic divergence and probability-based fallback, this
mechanism enhances the model’s ability to explore the reasoning space effectively while
significantly improving computational efficiency by leveraging KV-caching.

• We propose a new tree-based advantage estimation function that enables more precise credit
assignment and is uniquely suited for training LLMs from a base model, without requiring
an initial instruction tuning stage.

• We demonstrate through extensive experiments that TreePO provides a superior trade-off
between computational cost and model performance, establishing a more efficient and
scalable frontier for training large reasoning models.
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2 TREEPO: A TREE-BASED TRAINING SCHEME FOR POLICY OPTIMIZATION

Consider the geometric
sequence ,
What is the eighth term of the
sequence? Express your
answer as a common fraction.​

Question

Answer

need to determine
the common ratio , which is given by...

We
first of the sequence...

We

We and then use the formula for the n-
th term of a geometric sequence

. Find the common ratio...and then use the formula for the n-
th term of a geometric sequence

......

need to determine
the common ratio 

need to determine
the common ratio 

Figure 2: Multiple sampled trajectories from the same prompt, with shared reasoning segments high-
lighted in matching colors. Despite stochastic generation, key problem-solving steps are consistently
reproduced.

2.1 CASE STUDY: THE ALIGNED MODEL PRODUCES SHARED PREFIX

We begin with an empirical observation on the structure of reasoning trajectories. Given a fixed
prompt, we perform 16 independent stochastic rollouts using a temperature of 0.8 to encourage diverse
generation while preserving coherence. Upon close inspection, we find that despite the variation
in final solutions, the generated trajectories share extensive overlapping segments, particularly in
the early and intermediate stages of reasoning. As illustrated in Figure 2, components such as
problem interpretation, variable assignment, and initial logical deductions appear nearly identical
across multiple rollouts. These recurring segments are highlighted with consistent colors, visually
demonstrating the emergence of stable reasoning prefixes.

This phenomenon indicates that, even under stochastic sampling, the model consistently follows
a common path for the initial stages of reasoning before diverging at later decision points. Such
redundancy across trajectories suggests a fundamental inefficiency in standard on-policy reinforce-
ment learning: each rollout independently recomputes the same prefix tokens, leading to duplicated
computation and KV cache storage. Since reasoning paths naturally form a tree-like structure where
common prefixes branch into diverse continuations, it is both feasible and highly beneficial to model
sequence generation as a tree-structured search process. By explicitly representing shared prefixes
only once and amortizing computation over them, using TreePO avoids redundant forward passes.
Furthermore, the natural branching points provide ideal locations for uncertainty-driven exploration,
enabling efficient and targeted expansion of reasoning paths.

2.2 TREE-BASED ROLLOUT ALGORITHM

Preliminaries. For a given query qi ∈ Q, we formalize the problem of complex reasoning with chain
of thought (Wei et al., 2022) as the search algorithm to acquire a group of corresponding answers,
oi,j ∈ O, under a certain constraint of the computing budget. Specifically, we define the exact input of
model as a prompt p, to distinguish the query itself as the input might contain additional context. In
the TreePO sampling setting, we align terminology of RLVR and tree search to define:

i. the query q as the root node at depth 0;
ii. the number of complete trajectories as the tree width, w;

iii. the maximum decoding steps of a trajectory as the depth, d;
iv. the maximum decoding tokens of each time as the length of the segment, l; and
v. branching budget b for each segment node.

Under the context of RL training of large language models, the computing budget for sampling the
trajectories of a given set of queries could be defined by the trajectory group size of each query (also
noted as the tree width w), if the maximum trajectory length d × l is fixed.

Segment-level Tree Sampling. As shown in Figure 1 (Upper Right), the vanilla sampling design
requires the model to conduct token-level decoding and stem multiple complete trajectories from the
same query independently. We re-organize such a sampling progress into a hybrid of segment-level
tree searching and token-level decoding as in Figure 1 (Lower Right): for each trajectory, the model
generates a segment s in max length l step by step, until it hits the maximum response length or
meets the any self-designed criteria of early stopping. We maintain a queue of prompts P to manage
the sampling progress, and assign the queries as the initial prompt set. For an input query set q, the
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token-level decoding stops when the model generates [EOS] token or reaches the preset maximum
segment token l; and the overall segment-level tree sampling progress ends when the prompt queue
becomes empty (P = ∅). Specifically, given a P in each step of decoding, the inference engine would
produce a set of output segments in the exact number of |P |. And each generated segment will be
either appended to existing contexts to form a new input prompt in the queue, or stop generation as
a leaf node if it contains flawed sub-string patterns or answer boxed. We introduce the branching of
each search paths by forking the corresponding prompts b times before segment inference, where the
value of b is dynamically calculated and assigned by design (see the details in the following literature).
To fulfill the requirement of acquiring w trajectories for each q when the searching paths stop early
before the tree reaches w, we introduce the feedback mechanism and stem new branches from the
stopped paths to achieve better efficiency. The pseudo code of the proposed sampling algorithm are
described in Algo. 1, Appendix B.

Branching and Fallback. After reformulating the sampling progress into a tree-based search, a
subtle balance between the rollout efficiency and model exploration space could be achieved by a
well defined branching and fallback protocol. In TreePO, we define a vanilla N-ary tree as a baseline
searching strategy, i.e., the branching budget for a the root node q (query) at depth d is Nd until
it reaches the maximum width w. To avoid the inference loading skew caused by the scarce long
responses and the over-bias on the short paths, we coordinate two balancing tree searching strategies
with the inference engine:

• Branching Budget Transfer: As early stopped short search paths could derive a small
request batch to the inference engine and thus cause low utilization, we assign the maximum
branching budget Nd at depth d to all existing active paths evenly (or determined by heuristic
information).

• Depth-First Search Fallback: To avoid sampling progress overly conducts fallback on
the early stopped short paths and lose the capability of long complex reasoning, TreePO
launches the fallback mechanism only when there is no active path for q and the tree does
not have enough trajectories wq < w.

Heuristic Sampling. With the designed segment-level tree sampling protocol, we can now accord-
ingly introduce a more fine-grained and flexible control over the sampling progress with heuristic
information. Without waiting for external signals, the TreePO sampling could exploit more in the
desired search space by leveraging heuristic control on early stopping, branching, and fallback
strategies. We first introduce a simple early stopping trick for the flawed searching path by detecting
the pattern with repetitive substrings within the new generated segment, which could reduce redun-
dant computing, and forcedly prune the branches within the mumbling distribution that are usually
generated by the less aligned base models. While conducting fallback, only those stopped paths
containing formatted answer1 or ending with [EOS] can be selected as the candidate to randomly
fallback in segment level. Other than the average branching budget assignment and random fallback
strategy, there are more possible customized heuristic metrics could be applied when maintaining
efficiency of TreePO, as long as no additional bubble of the pipeline is introduced. In the later §??,
we take advantage of the log probabilities to steer the sampling progress without additional cost, as
they are calculated during token-level decoding and returned from the inference engines by default.

2.3 TREE-BASED ADVANTAGE ESTIMATION FOR POLICY OPTIMIZATION

We take the GRPO (Shao et al., 2024) optimizing objective and adopt the improved modifications
proposed in DAPO (Yu et al., 2025) as our starting point, which further highlights clip-higher gradient,
dynamic sampling, and token-level loss:

J (θ) = E
(q,a)∼D,{oi}Gi=1∼πθold

(·|q)[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1 − εlow, 1 + εhigh

)
Âi,t

)]
,

s.t. 0 <
∣∣∣{oi | is equivalent(a, oi)}

∣∣∣ < G.

(1)

where
ri,t(θ) =

πθ(oi,t | q, oi,<t)

πθold
(oi,t | q, oi,<t)

, Âi,t =
Ri − mean({Ri}G

i=1)

std({Ri}G
i=1)

. (2)

1In the context of math reasoning, we set this condition as including a legal answer surrounded by boxed{}.
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Figure 3: Demonstration of the TreePO Advantage Estimation. Assuming that the tree-based sampling
has derived 8 trajectories (leaf) given a query q, we take node c2,2 as an example to calculate the
sub-group advantages. The tree-based sub-groups could be further defined by its predecessors c2, c,
and q. Thus the final advantages can be calculated as the averagely aggregated sub-group advantages.

Although the delicate modifications in DAPO (Yu et al., 2025) largely improve the stability of the
vanilla GRPO, the parallel-generated responses could still look “homogeneous” in the sequence-level
to the policy model under certain circumstances (e.g., inference with low temperature or train with
an over-confident model). Benefiting from the tree structure in the proposed rollout algorithm, the
searching paths could be sourced during advantage calculation. Given arbitrary trajectory oi, it can be
divided into multiple segments Sj by its inference step j:

oi = s1 ⊕ s2 ⊕ · · · ⊕ sj−1 ⊕ sj ,

{j ∈ J | j ≤ depthmax}
(3)

Such a prior allow us to reveal the nuanced segment-level difference among the trajectories, and
introduce more accurate intra-response variations for the advantages to alleviate the obscurity brought
by similar responses. Leveraging the shared prefixes, the advantage estimation function for the
trajectory could be further calibrated by the subgroups derived from the shared predecessor nodes
for the leaf nodes. Let the root node q be the sharing parent as the largest group G, we could denote
a sub-group Gj as the set of trajectories sharing the same predecessor node at inference depth j,
satisfying:

G|J| ⊆ G|J−1| ⊆ · · · ⊆ G2 ⊆ G1 ⊆ G,

{j ∈ J | j < depthmax}
(4)

Given the formulated sub-groups, we keep using the average reward within sub-groups as the
advantage baselines and conduct mean pooling on the relative advantages as the aggregated estimation.
Furthermore, we incorporate the global variance normalization strategy as in REINFORCE++ (Hu
et al., 2025) to improve the robustness of the estimation function, as the probability-based branching
could bring potential turbulent rollout rewards across queries, and conduct dynamic rejection sampling
to remove the queries with all correct or all wrong responses as in DAPO (Yu et al., 2025). Hence the
final TreePO advantage estimation function could be depicted as:

Âi,t =

∑J
j=1 Âi,t,j

|J| · std({Âi,t,j}G)
,

Âi,t,j = Ri − mean({Ri,j}Gj ),

s.t. std({Ri}G
) ̸= 0

(5)

3 EXPERIMENT

3.1 SETTINGS

Train and Eval. The main experiments start from the Qwen2.5-7B base model (Qwen
et al., 2025). To compare sampling methods on well-aligned LLMs, we also use
Qwen2.5-7B-Instruct and Qwen2.5-Math-7B-Instruct. Training data are sourced
from the MATH dataset Hendrycks et al. (2021) and the DeepScaler (Luo et al., 2025) collection.
For evaluation, we use AIME 2024 (MAA, 2024), AMC 2023 (MAA, 2023), MATH500 (Hendrycks
et al., 2021), MINERVA (Lewkowycz et al., 2022), and Olympiad Bench (He et al., 2024), with
majority voting accuracy over 1000 samples as the main metric. The training was conducted on 64
GPUs, with a learning rate of 1e − 6 and a batch size of 512 (more details in Appendix C).
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Tree Setting. With a fixed response length, we search three sets of depth d and segment token budget
l: {28 × 256, 14 × 512, 7 × 1024}. We set the total branching budget at each depth as 2d; specifically, the
branching budget b for each active path is b = 2, forming a binary tree search. The maximum tree width
is set to w = 16, a parameter shared by the sequential sampling baselines. During training, we explore
an enhancement to the initial branching budget by randomly assigning 2 to 8 divergences, aiming
to improve diversity. We use “More Init Divergence” and “Fixed Init Divergence” to distinguish
between these settings.

3.2 MAIN RESULTS

Table 1: Performance Comparison with Sequential Sampling with Maj@16 Acc.

Model AIME AMC MATH MINERVA Olympiad
Bench Overall

GRPO 17.13% 44.42% 72.89% 30.94% 35.09% 46.63%
GRPO w/ TreePO Sampling 19.66% 51.63% 81.85% 33.74% 44.76% 54.61%
TreePO w/ Fixed Init Divergence 28.89% 56.63% 82.41% 35.76% 47.75% 56.88%
TreePO w/ More Init Divergence 27.83% 55.53% 85.34% 34.98% 49.15% 58.21%

Table 2: Performance Comparison Between Sequential and Tree-based Sampling with Maj@16 Acc.

Model Sampling AIME AMC MATH MINERVA Olympiad
Bench Overall ↑ GPU Hour ↓

Sequential 28.89% 56.63% 82.41% 35.76% 47.75% 56.88% 5.78

8x2048, b = 2 23.33% 57.83% 81.80% 36.76% 45.93% 56.03% 4.29 (↓26%)
8x2048, b = 4 23.33% 57.83% 84.00% 36.03% 48.00% 57.50% 4.82 (↓17%)TreePO w/ Fixed Init Divergence

8x2048, b = 8 26.67% 55.42% 83.60% 36.40% 46.22% 56.60% 5.09 (↓12%)

Sequential 27.83% 55.53% 85.34% 34.98% 49.15% 58.21% 6.40

8x2048, b = 2 21.52% 53.99% 81.89% 33.93% 44.41% 54.67% 3.65 (↓43%)
8x2048, b = 4 22.90% 57.24% 84.66% 35.66% 47.19% 57.26% 4.56 (↓29%)TreePO w/ More Init Divergence

8x2048, b = 8 26.21% 56.72% 85.23% 35.02% 48.81% 58.06% 5.05 (↓22%)

The results of the main experiment set are provided in Table 1, where we use sequential sampling to
validate the full potential of the model performances. Based on the provided results and the training
curves in Figure 1 (Left, Mid), the introduction of tree-based methods — TreePO sampling and
advantage estimator—serves to significantly enhance training stability and computational efficiency,
albeit with a trade-off against raw convergence speed and peak accuracy in some configurations.

The effect of Tree Sampling is twofold. First, as shown in Table 1, adding TreePO sampling to
the baseline GRPO model provides a substantial performance boost across all datasets, increasing
the overall accuracy from 46.63% to 54.61%. This improvement is corroborated by the validation
metric curves, where GRPO w/ TreePO Sampling (orange line) demonstrates far greater training
stability compared to the volatile performance of the GRPO (blue line). Second, Table 2 reveals that
while tree-based sampling does not always outperform a strong sequential baseline in final accuracy
(e.g., 58.21% for Sequential vs. 58.06% for TreePO b=8 in the ”More Init Divergence” model), it
consistently and significantly reduces computation time, cutting GPU hours by 12% to 43%.

Beyond that, the TreePO advantage estimator, when used in conjunction with tree sampling, further
enhances the training process, either with “More Init Divergence” (3.6% ↑) or “Fixed Init Divergence”
setting (2.27% ↑). The green line in the validation curves shows the most stable and consistently
high-performing trajectory during training. This indicates that the estimator component provides
a more precise reward signal based on the tree hierarchy, guiding the model, and leading to more
reliable convergence.

4 DISCUSSION

This section is organized around a set of research questions (RQs) that guide our investigation, with
targeted ablation studies presented in the subsections. We start with a detailed analysis of offline
sampling efficiency improvement to probe the basis of TreePO. We then provide a thorough study on
the designed advantage estimation function and the tree sampling settings. We also place extended
observations and discussions in Appendix D: sampling efficiency analysis, probability-based heuristic
branching, and the performance curves along the scaling compute.
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(a) Qwen2.5-7B-Instruct (b) Qwen2.5-Math-7B-Instruct (c) Qwen2.5-Math-7B

Figure 4: Performance comparison between Tree-based Sampling and Conventional Sampling across
different tree depths.

4.1 SAMPLING EFFICIENCY ANALYSIS

RQ. Does tree-based sampling improve sampling efficiency relative to non–tree baselines, and
under which segment and branching configurations?

Setup. To isolate efficiency, we conduct offline efficiency analyses using three variants of the
Qwen2.5: Qwen2.5-Math-7B, Qwen2.5-Math-7B-instruct, and Qwen2.5-7B-instruct. We benchmark
throughput on randomly sampled prompts from a held-out pool independent of model training. The
experiments are carried out on H100 GPUs without any parallelization, maintaining a GPU utilization
of 60%. Single inference maximum output length is determined by the tree segment length. Unless
noted, each run processes a batch of 64 prompts and, for tree-based sampling, 64 rollouts per prompt.
We fix a per-trajectory token budget B = 7,000 and vary tree depth d and max segment length Lseg

subject to d × Lseg = w (segments are equal-length chunks). The non–tree baseline generates the same
number of completions per prompt with identical sampling hyper parameters and the same budget w.
We report Tokens per second (TokenPS; total processed tokens, including prefill and decode) and
Trajectories per second (TrajPS; completions per second), measured as wall-clock throughput.

Tree-based sampling generally improves efficiency. Under the same batch size, rollout count, and
budget B, tree-based sampling yields on average +40% TrajPS and +30% TokenPS across the three
models (geometric mean across configurations). Figure 4 shows that both TokenPS and TrajPS peak
at intermediate depth–segment combinations rather than grow monotonically with depth. The derived
conclusions are intuitive: longer segments and shallower trees fit the prefilling stage better, which
reduces repeated KV cache and attention computation; the decoding stage prefers deeper trees with
more branches and parallel rollouts, better exploiting speculative execution and batched sampling.
We also observe that if segments are too short, the extra recomputation offsets the gains from depth,
and the peak appears where these opposing effects balance under the same trajectory budget. More
observations regarding model priors and rollout scaling are discussed in Appendix D.1.

4.2 ANALYSIS ON THE TREEPO ADVANTAGE ESTIMATION

RQ. How does the design of the advantage estimation (e.g., subgroup aggregation choices) shape
the optimization dynamics during training?

Setup. (1)–(3) use depth×segment 14 × 512 with a 512-token fallback; (4) uses 7 × 1024 rollout but
still a 512-token fallback, inducing prefix misalignment. Figure 5 reports MATH/AIME accuracy,
entropy loss, and response length, and the “Subgroup-size Weighted” curve serves as a reference
baseline for comparison across variants.

Âi,t =

∑J
j=1 |Gj | · Âi,t,j

std({Âi,t,j}J−1)
∑J

j=1 |Gj |
, (6)

Simple averaging across subgroups is better than subgroup-size weighting. We further propose
a modified estimation function Equation 6 from Equation 5 to validate whether a simple modification
on the aggregation, based on subgroup size, is more appropriate for modeling the advantages.
Averaging tracks higher accuracy on both MATH and AIME, with lower and more stable entropy and
no unnecessary growth in response length. Size-weighting over-emphasizes large/easy subgroups and
down-weights informative small/hard ones, whereas simple averaging preserves a balanced signal;
we therefore adopt averaging in the method and keep size-weighting only for discussion.
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Figure 5: Study on the Terms in TreePO Advantage. These group of experiments sets the
depth×segment as 7×1024 and uses the subgroup size weighted aggregation advantage as the baseline.

Âi,t =

∑J
j=1 |Gj | · Âi,t,j

std({Âi,t,j}J−1)
∑J

j=1 |Gj |
,

Âi,t,j = Ri − mean({Ri,j}Gj ),

s.t. std({Ri,j}Gj ) ̸= 0

(7)

Naı̈ve subgroup rejection has marginal effect. As shown in Equation 7, we tested subgroup-level
dynamic rejection sampling (with extra subgroup hierarchy info). This DAPO-style rejection discards
all-positive/all-negative subgroups to bias feedback signals—we expected better calibration, but
accuracy dropped. Thus, in current settings, removing extremes doesn’t always eliminate unwanted
cases; we omitted subgroup-level rejection for final design simplicity.

Removing the root-group advantage does not harm performance. Using only aggregated
subgroup advantages (dropping the root-group term) yields comparable curves, showing subgroup
signals can approximate full-group optimization signals. This redundancy means the root term is
non-essential, pointing to a promising direction for credit assignment analysis. This aligns with the
fact that average weighting outperforms subgroup weighting—meaningful comparisons from smaller
subgroups offer more effective calibration signals.

Misaligned fallback degrades accuracy and inflates response length. With 7 × 1024 segments
but a 512-token random fallback, trajectories can share an abstract tree prefix while being token-
misaligned. Figure 5 shows a drop in AIME accuracy and a sharp rise in response length for the
misaligned variant, highlighting that token-aligned segments are important for stable optimization
and precise stopping behavior.

4.3 ANALYSIS OF EFFECTS OF SEGMENT BUDGET

RQ. How do the tree-sampling hyper parameters affect the convergence?

Setup We adopt the same subgroup-size weighted setting as in §4.2 to explore a the combination
parameter of d × Lseg. Here we set the Lseg ∈ 128, 256, 512, 1024 and adjust the maximum depth to fit
the response length limit 7 × 1024 accordingly. The training curves are shown in Figure 6.

Depth–segment trade-off, 14 × 512 is the sweet spot while 7 × 1024 underperforms. Under the
group-size weighted advantage, 14 × 512 attains the highest final MATH/AIME accuracy; 56 × 128

and 28 × 256 are close, whereas 7 × 1024 lags—especially on AIME—indicating that deeper trees with
moderate segments provide stronger credit assignment than shallow rollouts with very long segments.

Accuracy–length coupling, Better accuracy comes with longer generations. The best-
performing 14 × 512 also drives the largest growth in response length (and higher entropy), while

8
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Figure 6: Study on the Online Depth-Segment under Setting the Group Size Weighted TreePO
Advantage.

7 × 1024 keeps outputs shorter but sacrifices accuracy. This suggests online TreePO benefits from
more exploratory, longer reasoning traces; shorter traces trade accuracy for brevity.

5 RELATED WORK

Efficient Sampling. Recent work on efficient sampling for RL and inference concentrates on
making the rollout loop lighter by batching many completions together, re-using the prompt KV-cache
and hiding latency behind parallel decoding; typical examples are (Wu et al., 2025) (Hooper et al.,
2025), (Zheng et al., 2025b), and (Guldogan et al., 2024), which all treat a prompt as a mini-batch
and schedule tokens in groups so that GPUs stay busy. (Wang et al., 2025b) keeps this idea but
breaks a large group into small “micro” groups, runs them with continuous inter-leaving, and adds
a length-aware scheduler; this saves memory and keeps the buffer fixed, yet it does not look at
the partial trajectories while they are generated, introduces extra scheduling logic, and leaves the
advantage estimator untouched (Wang et al., 2025b). (Fan et al., 2025) improves wall-time by cutting
every sampled chain after a short window and back-propagating early; the price is that long-range
information is lost and credit assignment becomes harder.

Segment-level Modeling. A second line of research studies reinforcement learning with tree search.
Recent systems such as (Wang et al., 2025a), (Hooper et al., 2025), (Hou et al., 2025) and (Guo
et al., 2025b) build explicit trees and use them to explore many reasoning branches in one rollout,
giving denser feedback than plain chain sampling (Wang et al., 2025a; Hooper et al., 2025; Hou et al.,
2025; Guo et al., 2025b). TreeRL couples on-policy tree expansion with process-level rewards, but
its trees stay shallow and the algorithm rolls one full answer to compute log-probabilities before
it can branch again, which doubles the running time (Hou et al., 2025). (Lou et al., 2024) adopts
an unconstrained tree and a “progress advantage” similar to Monte-Carlo returns; while this brings
a simple tree-based update, it lacks depth control and is not validated against a frozen base policy.
Similarly, ARPO (Dong et al., 2025) apply a segment-level entropy-guided divergence strategy based
on the finished tool call trajectories, analogical to the FR3E (Zheng et al., 2025a) in math domain.

6 CONCLUSION

In this work, we introduced TreePO, a reinforcement learning framework designed to address the
computational inefficiency and exploration instability in training large language models for complex
reasoning. By reformulating on-policy rollouts as a segment-based tree search and using a hierarchical
advantage estimator, TreePO significantly reduces reasoning computational costs while improving
training stability and maintaining strong performance. The efficiency and structural modeling of
TreePO open promising avenues for scaling reinforcement learning to more complex, long-horizon
tasks such as multi-turn dialogue, tool use, and multi-agent systems.

9
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This work trains and evaluates models solely on publicly available math and problem-solving
corpora; no personal or sensitive data were used, and no human subjects research was conducted,
so IRB approval was not required. We complied with dataset licenses and attribution requirements
and removed content if licensing status was unclear. While the proposed tree-based sampling can
generally improve efficiency, it could also be repurposed to optimize harmful generations; accordingly,
any released artifacts will include usage restrictions, safety filters, and refusal policies, and are not
intended for high-stakes or autonomous decision-making.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we has released our source code on GitHub and
pre-trained model checkpoints on HuggingFace. The links will be updated in the paper after the
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Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte carlo tree
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)
During the preparation of this manuscript, we utilized a Large Language Model (LLM) as a general-
purpose writing assistant. Its role was confined to proofreading for grammatical errors, correcting
typos, and improving sentence structure for better readability. The LLM did not contribute to the
core research ideas, experimental methodology, or the substantive content of the paper.

B EXTENDED METHODOLOGY DETAILS

Algorithm 1 Tree-based Sampling

Require: An array of queries Q = {q1, q2, . . . , qn}
Ensure: Rollout responses O that satisfy the budget requirement for all q ∈ Q.
1: P ← Q ▷ Init inference prompts with queries
2: P ← BRANCHING(P ) ▷ Fork the prompts with designed policy
3: while P ̸= ∅ do
4: S ← INFERENCE(P ) ▷ Inference one step
5: P last ← P
6: P ← ∅ ▷ Clean up the inference queue
7: for sk in S do ▷ Iterate throuhg the generated segments
8: if FINISH(sk) or FAILEDNODE(sk) then
9: O ← O ∪ {{plastk ⊕ sk} ▷ Build the full response for final output

10: else
11: P ← P ∪ {plastk ⊕ sk} ▷ Concatenate the segment as new prompt
12: end if
13: end for
14: P ← BRANCHING(P ) ▷ Fork the prompts with designed policy
15: P ← FALLBACK(P,O) ▷ Do fallback for unsufficient outputs
16: end while
17: return O ▷ Return the final outputs

C EXPERIMENT DETAILS

Model. The main part of the reinforcement training experiments are trained from the Qwen2.5-7B
base model (Qwen et al., 2025). Moreover, to further probe on the efficiency performance
of the tree-based sampling on well aligned LLMs, we use the Qwen2.5-7B-Instruct and
Qwen2.5-Math-7B-Instruct to compare the vanilla sequential and the tree-based sampling.

Data and Evaluation. One source of the training samples is the MATH dataset Hendrycks et al.
(2021), deriving about 8 thousands queries of difficulty level 3 to 5 from, same as the setting in
SimpleRL (Zeng et al., 2025). Another part of the training set consists 40 thousands samples from the
DeepScaler (Luo et al., 2025) collection. For evaluation, we use the AIME 2024 (MAA, 2024), AMC
2023 (MAA, 2023), MATH500(Hendrycks et al., 2021), MINERVA (Lewkowycz et al., 2022), and
Olympiad Bench (He et al., 2024). During validation and testing, we set the rollout N as 16 and use
the majority voting accuracy via 1000 times of sampling as the main metric. For the overall metric,
we use the weighted average among the individual benchmarks bases on the sizes of the test sets.

Tree Setting. With the constraint of response length, we search three sets of the depth d and segment
token budget l of tree sampling in online training: {28 × 256, 14 × 512, 7 × 1024}. We set the fixed total
branching budget at each depth as 2d, i.e., the branching budget b of each active path is set as b = 2.
Note that this forms a binary tree search paths if no early stop happens. And the maximum tree
width is set as w = 16, where the sequential sampling baselines share the same group size parameter.
During training, we explore whether additional initial branching budget by randomly assign 2 to
8 divergences, which is expected to improve the distribution diversity and thus break through the
upper bound. Correspondingly, we use “More Init Divergence” and “Fixed Init Divergence” in the
following literature to distinguish the settings of additional and fixed initial branching budget.

Training. We filter out the prompts longer than 1024 tokens, and set the response length as 7 × 1024

in training. The trainings run on 64 GPUs with the VeRL framework (Sheng et al., 2024) on FSDP
mode, and use V0 inference engine of vLLM (Kwon et al., 2023) as the inference backend. The
learning rate is set as 1e − 6 with 10 warm up steps. And the training batch size are set as 512 with the
limit of maximum 20 epoch. The checkpoint saving interval as 50 steps. As the dynamic sampling
strategy from DAPO is adopted, queries of 3 × bsz would be sent to sampling out a group of 16
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trajectories, where 512 queries with std({Ri}G) ̸= 0 are randomly selected. When there is not sufficient
queries to form a training batch, maximum two other additional samplings will be conducted, which
could cause a less training steps due to the enumeration logic of the data loader.

D EXTENDED DISCUSSION

D.1 SAMPLING EFFICIENCY ANALYSIS (EXTENDED)

The optimal depth–segment configuration is model-specific. Qwen2.5-7B-Instruct peaks at
depth 28, likely because instruction-following finds a mid-depth balance: segments are not too short
(better batched prefilling and context retention) while depth still yields sufficient decoding parallelism.
Qwen2.5-Math-7B peaks at depth 14; for compute-intensive math reasoning, longer segments at
shallower depth reduce repeated KV-cache and attention recomputation, improving throughput under
the fixed budget. Qwen2.5-Math-7B-Instruct splits—TokenPS peaks at 14, whereas TrajPS peaks
at 28 and 56—consistent with deeper trees (which shorten segments under the 7k-token budget)
lowering token-level throughput via recomputation and decoder overhead, but raising trajectory-level
throughput by enabling more branching and parallel rollouts.

(a) Qwen2.5-7B-Instruct (b) Qwen2.5-Math-7B-Instruct (c) Qwen2.5-Math-7B

Figure 7: Performance comparison between Tree-based Sampling and Conventional Sampling across
different numbers of rollouts.

Rollout scaling is model- and workload-dependent. Qwen2.5-7B-Instruct shows nearly linear
TokenPS/TrajPS growth as rollouts increase under tree-based sampling (with query count fixed
at 64 and tree depth 28), reaching roughly 2× the baseline thanks to shared-prefix prefilling and
more parallel decoding; by contrast, standard autoregressive decoding yields only modest gains
(Figure 7). Qwen2.5-Math-7B-Instruct maintains a stable ≈ 2× speedup across rollout counts, as
structured, semantically aligned math trajectories sustain high cache-hit rates and efficient KV reuse,
keeping batched decoding effective. Qwen2.5-Math-7B is non-monotonic: throughput peaks around
16 rollouts, then TokenPS/TrajPS decline as trajectory divergence reduces shared prefixes, KV-cache
fragmentation and management overhead grow, memory pressure rises, and batching efficiency
degrades; the lack of instruction tuning further loosens output structure. Overall, more rollouts
can boost parallelism and cache reuse but also amplify memory and synchronization costs when
trajectories diverge, implying a model- and workload-dependent optimum.

D.2 ANALYSIS OF PROBABILITY-BASED BRANCHING ASSIGNMENT

RQ. How do different probability-based branching budget assignment strategies affect the conver-
gence?

Setup With segment-level control, TreePO sampling provide a more feasible environment to study
the training dynamics of the LLM bounding to the decoding progress. Stemming from the TreePO
“w/ More Init Divergence” setting, we conduct a set of experiments to control modify the branching
assignment at a given depth d. Under this setting, the total branching budget 2d is assign among the
active paths conditioned on the log probabilities of their last segment, return from the inference engine.
To prevent a sudden truncation of the search, the probabilities are passed through a softmax function
with temperature set as 2.0, and all the active search paths are guaranteed with at least one branching
budget. The comparison between different branching budget controls are shown in Figure 8, where
the ”Low Prob Encourage” suggests the paths with lower probability get more branching budget, and
vice versa for ”High Prob Encourage”. We also try with a more sophisticated ”Low Prob Encourage”
setting that the temperature of the softmax function is schedule from 5.0 to 1.0 across the training.
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Figure 8: Study on a Probability-based Heuristic Tree Branching Budget Assignment.

Monotonous Pattern Could Be Harmful. As shown in Figure 8, both static heuristic con-
trols—”Low Prob Encourage” and ”High Prob Encourage”—underperform the baseline and the
scheduled variant. The ”Low Prob Encourage” strategy, in particular, consistently yields the lowest
accuracy on both benchmarks. This performance degradation is strongly correlated with a signif-
icant increase in response length and entropy loss, suggesting that forcing the model to explore
low-probability states leads to less efficient and coherent search trajectories across the whole training.
Conversely, the ”High Prob Encourage” setting, while performing better, results in the lower entropy
and shorter responses, indicating a potentially overly greedy search that may prune promising, less
obvious paths too early. Even when the scheduled ”Naive2Low” probability setting ensures a similar
branching assignment scheme at the beginning of the training, it still does not provide significant
advantages.

Such Branching Control Does Not Show Significant Benefit Even with Higher Entropy. The
most striking observation from our study is the disconnect between search diversity and task per-
formance. The ”Low Prob Encourage” setting was explicitly designed to increase exploration by
allocating more resources to less likely search paths. This is reflected in its entropy loss, which is
substantially higher than all other methods throughout training. However, this artificially inflated
entropy does not translate into better results. Instead, it correlates with the worst performance on
both benchmarks. This suggests that merely forcing the model to explore more diverse paths is not
beneficial; the exploration must be meaningful. In this case, allocating budget to low-probability
segments appears to push the model into irrelevant or erroneous reasoning paths, leading to longer,
less effective solutions, as evidenced by the Response Length plot. The baseline maintains a more
moderate entropy level, which proves more effective for complex reasoning tasks, indicating it strikes
a better intrinsic balance between exploration and exploitation.

D.3 COMPUTE SCALING FOR TREE SAMPLING

RQ. How does the TreePO sampling performance scale along compute budget?

Setup As the sampling mechanism has been modified, the scaling curve of a mono inference setting
along compute does not necessarily follow the similar trend as sequential sampling. To investigate
this, we analyze the test-time compute scaling of TreePO by evaluating weighted average model
performances across benchmarks under various GPU hour budgets, as shown in Figure 9.

Distinct Rules The experiment varies the tree divergence factor, which controls the number of
branches generated at each divergence point, to observe its effect on the performance-compute
trade-off. The results show that all configurations follow a predictable scaling pattern: performance
improves with increased compute before eventually reaching a point of diminishing returns, which
is consistent with established inference scaling observations. However, the key distinction from
conventional sequential sampling becomes apparent when comparing the different divergence strate-
gies. In sequential sampling, scaling compute is typically achieved by increasing the number of
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Figure 9: Test-time Compute Scaling of TreePO Sampling on the Aggregated Benchmark. The
x-axis represents the compute budget on a log scale, while the y-axis shows average performance.
Each curve corresponds to a different tree divergence factor d = 2, 4, 8. The results illustrate that a
larger divergence factor can achieve higher peak performance at the cost of a larger compute budget,
revealing a trade-off between the exploration strategy and computational cost that distinguishes it
from the scaling behavior of conventional sequential sampling.

independent samples (N), which generally traces a single performance-compute curve. In contrast,
TreePO generates a family of scaling curves, where each curve corresponds to a different internal
search strategy controlled by d. At lower compute budgets, a smaller divergence factor (d = 2) is more
efficient, achieving better performance for less cost. As the compute budget increases, wider search
strategies (d = 4 and d = 8) become superior, with d = 8 ultimately reaching the highest peak perfor-
mance. This demonstrates that the optimal TreePO sampling strategy is dependent on the available
compute budget, allowing for more flexible ”compute-optimal inference”. Rather than simply scaling
the number of samples, one can select the optimal tree structure to maximize performance for a given
computational constraint.
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