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Abstract

Physical measurements constitute a large por-001
tion of numbers in academic papers, engineer-002
ing reports, and web tables. Current bench-003
marks fall short of properly evaluating numer-004
acy of pretrained language models on mea-005
surements, hindering research on developing006
new methods and applying them to numeri-007
cal tasks. To that end, we introduce a novel008
task, Masked Measurement Prediction (MMP),009
where a model learns to reconstruct a number010
together with its associated unit given masked011
text. MMP is useful for both training new nu-012
merically informed models as well as evalu-013
ating numeracy of existing systems. To ad-014
dress this task, we introduce a new Generative015
Masked Measurement (GeMM) model that016
jointly learns to predict numbers along with017
their units. We perform fine-grained analy-018
ses comparing our model with various abla-019
tions and baselines. We use linear probing020
of traditional pretrained transformer models021
(RoBERTa) to show that they significantly un-022
derperform jointly trained number-unit mod-023
els, highlighting the difficulty of this new task024
and the benefits of our proposed pre-training025
approach. We hope this framework accelerates026
the progress towards building more robust nu-027
merical reasoning systems in the future.1028

1 Introduction029

Many natural language processing tasks require030

a deep understanding of numbers – for example,031

reading comprehension (Ran et al., 2019), textual032

entailment (Sammons et al., 2010; Roy, 2017) and033

hybrid table tasks such as fact-verification (Chen034

et al., 2020) or question answering (Chen et al.,035

2021). Masked number prediction (MNP) is a popu-036

lar pretraining objective to imbue language models037

with numerical understanding and evaluate existing038

models for their numerical capacity.039

1We will release our trained models and data-splits upon
acceptance on Github.

Figure 1: We present the Masked Measurement Pre-
diction (MMP) task where the model predicts the
dimension, unit and real-valued number. We also
show the model architecture of Generative Masked
Measurement model (GeMM), the model we propose
to perform MMP. We display the fixed operations used
during unit conversion in yellow. In black, we show the
different components of the model’s prediction.

As an example of MNP, given the sentence 040

“Cats have [#NUM] paws.” a model learns to pre- 041

dict the number 4. While appropriate for numerical 042

commonsense, MNP is deficient when it is used 043

to predict measurements. Measurements, such as 044

2 meters or 13.2 square miles, are a special class 045

of particularly common numbers in text that have 046

a well-defined and typed system of units. Given 047

a simple question: “How long did Alex Honnold 048

climb for?”, a single number alone is an insuffi- 049

cient answer since it is meaningless without the 050

unit. Answers like 1000 meters or 4 hours could 051

both suffice. 052

Current MNP systems do not jointly reason 053

about numbers with units. It is reasonable to ex- 054

pect that pretrained models like BERT could lever- 055
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age information of units directly as text without056

any special treatment. However, in preliminary ex-057

periments we find that this yields poor numerical058

abilities (see Appendix B). Furthermore, including059

units as text directly raise more questions: should060

we evaluate using all units (meters, feet, inches)?061

Should we equally weight across the units? Cur-062

rent models have no opinion about which unit is063

appropriate because they are not required to make064

unit predictions during training. Together, this indi-065

cates that current training objectives do not capture066

sufficient representations of measurements and that067

a direct application of MNP to evaluate numeracy068

of measurements is ill-suited.069

To address these shortcomings, we propose the070

more challenging task of Masked Measurement071

Prediction (MMP) along with a new model. In this072

task, a model must reconstruct both the number073

together with the correct unit. In Figure 1 we show074

how in a MMP setting our model generates a di-075

mension (“Length”), a number in metric log-space076

(“3.00”), the unit ("feet") and then uses the con-077

version factor (“3.28”) to deterministically output078

the full measurement (“3280 feet”). This exam-079

ple illustrates a key distinction in that our model080

is flexible and can generate non-metric measure-081

ments (feet) but evaluates numerical prediction in082

canonical units (meters).2083

MMP is useful for two reasons: 1) as a way to084

train models to give them better numeracy 2) as a085

new kind of evaluation that allows for a much more086

fine-grained analysis of reasoning over numerical087

quantities. The task of measurement estimation088

decouples the different aspects of numeracy allow-089

ing for a more interpretable and thorough analy-090

sis of numerical reasoning. We introduce a new091

evaluation benchmark for MMP based on Wiki-092

Convert (WiCo) (Thawani et al., 2021a), a large093

scale dataset of English Wikipedia sentences with094

ground truth measurement annotations. We com-095

pare the performance of our models on their ability096

to accurately predict the dimension, unit, and value097

of a measurement. We employ a large pretrained098

transformer model as our textual encoder and ex-099

amine the performance of different discriminative,100

generative, and latent variable models along with101

several ablations. Our contributions are as follows:102

• We introduce a novel challenging task MMP103

2Our metric of choice described in Equation 2 is invariant
to the specific choice of canonical unit i.e., log-mae in meters
is equal to log-mae in feet.

Figure 2: GeMM as a graphical model. The broken ar-
rows represent a deterministic unit conversion. Exam-
ples of unit values and their corresponding dimension
values are also shown.

for pretraining and evaluating numeracy. 104

• We show that linear probing of existing pre- 105

trained models on MMP significantly under- 106

performs fully finetuned models. 107

• We train a model that reasons jointly about 108

numbers and units which predicts numbers 109

8.1 times more accurately than the probed 110

pretrained models. 111

• We find our best performing generative model 112

outperforms human annotators on two evalu- 113

ations, achieving 7.4-7.8% better dimension 114

accuracy and 33.5-39.9% better unit accuracy. 115

Furthermore, this model predicts a number 116

closer to ground truth than our annotators 117

66.2-78.8% of the time. 118

Furthermore there are numerous applications 119

of better measurement prediction and unit re- 120

construction such as in table to text genera- 121

tion (Moosavi et al., 2021), answering numeri- 122

cal queries (Sarawagi and Chakrabarti, 2014; Ho 123

et al., 2019) or for improving e-commerce product 124

search(Arici et al., 2021). We hope that Masked 125

Measurement Prediction becomes a standard bench- 126

marking tool from which we can gain insight how 127

to best incorporate new numeracy modeling tech- 128

niques as well as evaluate existing models. 129

2 Models 130

2.1 Background + Notation 131

The International System of Units (SI) defines 132

seven fundamental dimensions (Length, Time, 133

Mass, etc.) and seven corresponding base SI units 134
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(meters, seconds, kilograms, etc.). The SI system135

is the most widely adopted measurement standard136

and is used internationally in domains such as com-137

merce, finance, logistics, and science. We des-138

ignate D to be the set of composite dimensions139

obtained from (and including) the fundamental di-140

mensions. Values of D include velocity and power.141

We let U be the set of all units: the various ways to142

describe dimensions. For example, units of Length143

include meters and miles. Each training example144

consists of a real number y, a dimension d ∈ D, a145

unit u ∈ U , and the remainder of the sentence S.146

In MMP, our task is to predict y, d, and u given147

only S. In the next sections we describe our gen-148

erative model designed for MMP followed by the149

ablations we consider.150

2.2 Model151

Measurements have complex semantic meanings,152

shaped by many standards, particular instruments,153

and natural world phenomena. Consider a text154

concerning rainfall. From a dimensional analysis155

perspective, the units inches per year (in/y) and156

meters per second (m/s) share the same dimension157

velocity. However, mentioning in/y usually implies158

that the text is discussing total rainfall in a region.159

Likewise, the use of m/s suggests that the text is160

examining the speed of falling rain droplets. To161

capture this complexity, we consider a generative162

model that learns the joint distribution of the num-163

ber, dimension, and unit.164

We now describe the generative process of our
full model. To start, conditioned on S, our model
samples a discrete dimension variable D. Then
conditioned on the sampled dimension, our model
samples a discrete unit variable U compatible with
the dimension. For example, conditioned on the
dimension velocity our model will output a distri-
bution over the units of velocity such as [miles per
hour; meters per second, inches per year] as op-
posed to all of U . We then separately predict a
distribution on the canonicalized measurement, Ȳ ,
which is the numerical quantity represented in a
base canonical (metric) unit like meters. During
inference time, we use the highest scoring dimen-
sion and unit and choose the proper conversion
factor to deterministically produce the final num-
ber y represented in the predicted unit. We refer
to this Generative Masked Measurement model as
GeMM, where the joint p(D,Y ,U |S) is given by

the following equation:

p(D|S)× p(U |D,S)× p(Y |S)

We show the graphical model of GeMM in Figure
2. We also consider, GeMM U)Y , a slight variant
where we have a direct dependence between the
unit and number prediction with a joint equal to:

p(D|S)× p(U |D,S)× p(Y |U ,S)

2.3 Discrete Latent Dimension Model 165

We also consider an unsupervised generative model
which treats the dimension as a discrete latent vari-
able. We use the same number of dimension classes
|D| and train to maximize the log-likelihood of the
observed Y . We refer to this model as Lat-Dim
and is characterized by:

p(Y |S) =
∑
D

p(D|S)× p(Y |D,S)

To evaluate this model we build a contingency 166

matrix of the predicted classes and using a linear 167

solver find the best mapping between our predicted 168

and true dimensions. We can then apply this map- 169

ping to the model predictions and calculate classifi- 170

cation metrics for dimension prediction. 171

2.4 Model Ablations 172

We also consider several model ablations of GeMM. 173

Our first ablation is GeMM -Y -U which models 174

p(D|S). The second, GeMM -Y , learns the distri- 175

bution p(U ,D|S) = p(D|S)× p(U |D,S). The 176

third, GeMM -U , models p(Y ,D|S) = p(D|S)× 177

p(Y |D,S). Our final ablation is GeMM -U -D 178

which learns P (Y |S) directly. 179

2.5 Model Architectures 180

For our textual encoder, we use the Huggingface 181

Transformers (Wolf et al., 2020; Liu et al., 2019) 182

implementation of RoBERTa, a pretrained 12-layer 183

transformer. We refer to this text encoder as T 184

such that given a sentence S, our model outputs a 185

768-dimensional vector hT . We use a single linear 186

layer, WS ∈ R768×M, to project hT to h and treat 187

the dimension M as a hyper-parameter. To form 188

a distribution over the real number line R we use 189

a Log-Laplace model, a competitive model used 190

in the numeracy literature (Spokoyny and Berg- 191

Kirkpatrick, 2020; Thawani et al., 2021a; Zhang 192

et al., 2020). This is equivalent to L1 regression 193

in log-space and yields the following loss function 194
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where Y and Y ∗ are predicted and ground truth195

numbers, respectively:196

logP (Y |S) = |logY ∗ − logY |+ log

∣∣∣∣ 1

Y

∣∣∣∣ (1)197

As shown in Figure 1, we project h with a lin-198

ear layer WD ∈ RM×|D| to obtain a distribution199

over D. We then use a separate linear layer,200

WU ∈ RM×|U|, to project h and obtain a distri-201

bution over U . To predict Ȳ , we project h with202

a linear layer WY . In the case of GeMM, we let203

WY ∈ RM×|D| in order to parameterize a mean204

of a Log-Laplace distribution for each dimension205

in D. For GeMM U)Y , we set WY ∈ RM×|U|206

to output the mean of a Log-Laplace distribution207

for each unit in U and the remaining models, we208

set WY ∈ RM×1 resulting in a single mean of209

a Log-Laplace distribution. For training, we use210

cross-entropy loss for the dimension and unit dis-211

tributions, and the loss from the equation above for212

number prediction.213

3 Dataset214

We train and evaluate our models on WiCo215

(Thawani et al., 2021a), a dataset of English216

Wikipedia sentences where the number and unit217

in each sentence are human-annotated. We canoni-218

calize the units and map each to a single dimension.219

For example both feet per second and miles per220

hour map to velocity. We show the distribution of221

all measurements and lengths in Figure 3. The re-222

sulting dataset consists of 919,237 sentences with223

annotated (number, unit, dimension) triples. We224

provide more details on the data in Appendix A.225

4 Experiments226

We train all models using a batch size of 200 and227

use the AdamW (Loshchilov and Hutter, 2019)228

optimizer with a learning rate of 1e−4 and a linear229

warm-up schedule of 500 steps. We use the “^”230

symbol to indicate that we freeze the transformer231

parameters for training. For all frozen models we232

use a log frequency weighted cross-entropy due to233

the highly imbalanced classes as well as a higher234

learning rate of 1e−3. We employ early stopping235

with a patience of five epochs on validation score.236

To evaluate the performance of our models, we237

report the macro averaged F1 score for dimension238

and unit prediction and log-mae to evaluate number239

prediction. We define log-mae in Equation 2 where240

Y is the predicted number and Y ∗ is the ground241

Model 10-shot 40-shot 70-shot 100-shot

GeMM -Y -U^ 15.5 50.0 52.5 53.4

GeMM -Y -U 42.5 51.2 57.6 60.5

Majority 14.3 14.3 14.3 14.3

Table 1: Results (measured by F1 ↑) of our few-shot ex-
periment on dimension classification (probing p(D|S)).
x-shot implies the model is trained on x labeled exam-
ples per dimension. GeMM -Y -U indicates an ablation
of GeMM where Y and U are not modeled. ^ indi-
cates the model’s parameters are frozen during training.

Model 10-shot 40-shot 70-shot 100-shot

GeMM -U -D^ 1.94 1.82 1.72 1.75
GeMM -U -D 1.70 1.56 1.43 1.41

Median 1.99 1.99 1.99 1.99

Table 2: Results (log-mae ↓) of our few-shot experi-
ment on number prediction (probing p(Y |S)).

truth number. As a simple baseline for dimension 242

and unit prediction, we employ majority class vot- 243

ing. For number prediction we use the median of 244

all the numbers in the training set. 245

log-mae =
1

|Dtest|
∑
Dtest

| log10 Y
∗ − log10 Y |

(2) 246

4.1 Few-Shot 247

To study the degree to which current pretrained 248

models capture different aspects of numeracy, we 249

consider the following few-shot experiment. We 250

sample a balanced dataset of dimensions where 251

each class gets 10, 40, 70, or 100 labeled exam- 252

ples. We train GeMM -Y -U and GeMM -U -D on 253

the few-shot task where the pretrained text encoder 254

T parameters are frozen and compare their perfor- 255

mance against full fine-tuning. Due to the high 256

variance of GeMM -Y -U , we report the average 257

of three random seeds. In Table 1 and Table 2 we 258

show results of GeMM -Y -U and GeMM -U -D 259

respectively. 260

Although performance improves with more data, 261

the frozen models significantly underperform their 262

unfrozen counterparts across all dataset sizes. For 263

example, in the 100-shot dataset, the frozen model 264

shows 7.1 lower F1 and 0.34 higher log-mae. These 265

results suggest that current pretrained transformers 266

do not capture numeracy to a large extent. 267
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Figure 3: Histograms of WiCo numbers binned by base-10 exponent. All numbers are canonicalized to their SI
form. Left: All numbers labeled by dimension. Right: Numbers in the length dimension labeled by unit.

Model Probing Type Val Test

Majority - 33.1 33.1

GeMM^ p(D|S) 69.1 67.5

GeMM -Y -U p(D|S) 88.0 86.8

GeMM -Y p(D|S) 87.0 87.3

GeMM -U p(D|S) 87.2 86.6
Lat-Dim p(D|S) 9.0 9.1
GeMM p(D|S) 87.4 87.0

GeMM U)Y p(D|S) 86.4 86.1

Table 3: Results (F1 ↑) for dimension prediction con-
ditioned on S only. GeMM U)Y indicates a variant of
GeMM where Ȳ is dependent on U (in addition to S).

Model Probing Type Val Test

GeMM -U p(D|Ȳ ,S) 95.5 95.7

GeMM U)Y p(D|Ȳ ,S) 96.4 96.6

Table 4: Results (F1 ↑) for dimension prediction condi-
tioned on Ȳ and S.

4.2 Dimension Prediction268

We train our models and their ablations on the full269

dataset and measure their performance on dimen-270

sion prediction. In Table 3, we show the results271

of dimension prediction conditioned on S. We ob-272

serve that the performance gap between the frozen273

and unfrozen GeMM grows to 19.5 F1 on the test274

split despite training on 3 orders of magnitude more275

training data than the few-shot setting.276

By using Bayes’ rule, we perform dimension277

prediction conditioned on both S and Ȳ and show278

our results in Table 4. We observe that both models279

Model Probing Type Val Test

Majority - 8.9 9.0

GeMM^ p(U |D,S) 29.8 29.8

GeMM -Y p(U |D,S) 52.9 51.7
GeMM p(U |D,S) 51.5 54.9

GeMM U)Y p(U |D,S) 49.3 47.8

Table 5: Results (F1 ↑) on unit prediction conditioned
on the true dimension and text. Ablations are above the
double horizontal line.

show improved dimension prediction ability when 280

supplied with the number with GeMM U)Y reach- 281

ing 96.6 F1 score, an effective error rate reduction 282

of 75%. 283

4.3 Unit Prediction 284

We show the unit prediction performance of our 285

models in Table 5. The strongest performing model 286

for unit prediction was GeMM with a F1 score of 287

54.9. Again, the frozen GeMM^ produced a 25.1 288

lower F1 score than its unfrozen counterpart. 289

We note that even though the F1 scores on unit 290

prediction are much lower than dimension predic- 291

tion, they are still significantly better than the ma- 292

jority baseline. Although one can freely substitute 293

a unit with one in the same dimensional class, we 294

tend to be more systematic and choose units that 295

allow for more straightforward human readability 296

or reflect the actual instruments used for measure- 297

ment. As a result, we gravitate towards regularities 298

that models can learn to recognize. The converse 299

of this is also interesting as it suggests that the ex- 300

pressed units imply more semantic meaning than 301

what is captured in the standardized measurement. 302
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Model Probing Type Val Test

Median - 1.98 1.97

GeMM^ p(Ȳ |S) 1.377 1.370

GeMM -U -D p(Ȳ |S) 0.529 0.531

GeMM -U p(Ȳ |D,S) 0.468 0.469
p(Ȳ ,D|S) 0.517 0.518

Lat-Dim p(Ȳ ,D|S) 0.545 0.546

GeMM p(Ȳ |S) 0.517 0.515

GeMM U)Y p(Ȳ |U ,D,S) 0.401 0.401
p(Ȳ ,U ,D|S) 0.526 0.526

Table 6: Results (log-mae ↓) for number prediction con-
ditioned on S. In the second row of GeMM -U , we
select the highest scoring d∗ ∈ D and predict y condi-
tioned on d∗ and S. In the second row of GeMM U)Y ,
we select the highest scoring u∗ ∈ U and d∗ ∈ D and
predict y conditioned on u∗, d∗, and S. For Lat-Dim,
we sum over the latent variable D to predict y condi-
tioned on S.

4.4 Number Prediction303

We show the number prediction performance of our304

models in Table 6. Consistent with our previous305

experiments, all models outperform GeMM^. Fur-306

thermore, we observe that not modeling U and D307

(as is the case in GeMM -U -D ) increases log-mae,308

i.e., results in worse numerical prediction. While309

competitive with GeMM and its variants on num-310

ber prediction, Lat-Dim cannot predict dimensions311

with the same efficacy (Table 3).312

We also experiment with the setting where313

GeMM -U conditionally generates the number for314

a particular dimension. In this setting, GeMM -U315

improves log-mae to 0.469. Extending this set-316

ting further, we condition GeMM U)Y on both a317

unit and a dimension to produce the best log-mae318

among our models: 0.401.319

We now revisit our original motivating example:320

“Alex Honnold climbed for [NUM] [UNIT]”. As-321

sume we want to know the distance of a climb. To322

do this, we condition GeMM U)Y on D = length323

and U = feet. If, on the other hand, we want to324

know the duration of a climb, we change the condi-325

tioning to D = time and U = hours. Now, if we326

want to know the length of Alex Honnold’s climb-327

ing career, we condition GeMM U)Y on D = time328

and U = years. These examples illustrate the flex-329

ibility of GeMM U)Y and the importance of jointly330

modeling numbers, units, and dimensions.331

Figure 4: Manhattan distance between true and pre-
dicted dimensions by GeMM U)Y . We treat dimen-
sions as vectors whose elements are the exponents of
the fundamental dimensions that compose a given di-
mension. Note that the y-axis is in log-scale.

4.5 Quantitative Analysis 332

4.5.1 Dimensions and Unit 333

In Figure 7a shown in Appendix C.1, we visual- 334

ize a confusion matrix of dimension predictions by 335

GeMM U)Y . The low accuracy for electric charge 336

and temperature is attributed to a mislabeling in the 337

dataset.3 For mass, we find many ambiguous situa- 338

tions where either mass or length are appropriate. 339

See the first row of Table 9 for such an example. 340

Thus far, we have treated dimensions as distinct 341

classes with no relationships. However, dimen- 342

sions are compositions of the seven fundamental 343

dimensions. Therefore, dimensions that share fun- 344

damental dimensions are more similar than those 345

that do not. To quantify this similarity, we can treat 346

dimensions as a vector where each element rep- 347

resents the exponent of a fundamental dimension. 348

Then to measure the similarity of two dimensions, 349

we take their Manhattan distance. To illustrate, 350

assume there exist only two fundamental dimen- 351

sions: Length and Time. Let speed = (1,−1) and 352

length = (1, 0) where the first element represents 353

Length and the second represents Time. The Man- 354

hattan distance between speed and length is equal 355

to one. In Figure 4, we visualize the Manhattan dis- 356

tance between the predictions of GeMM U)Y and 357

ground truth. We observe that there is generally 358

an inverse relationship between error count and the 359

distance of the errors. This observation suggests 360

3Sentences with mislabeled Celsius as Coulombs,
which may due to wrong annotation between ◦C and C. Also
observed by Elazar et al. (2019)
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Length Area Velocity Mass Power

0.37 0.54 0.19 0.55 0.27

Table 7: log-mae ↓ by dimension. It is harder to predict
numbers of Area and Mass than other dimensions.

Model Human Model >
Human

D U D U Y

Tech Ann. 96.7 86.2 88.9 46.3 78.8

AMT Ann. 96.7 77.0 89.3 43.5 66.2

Table 8: Dimension and unit prediction accuracy of
our human evaluation experiment. GeMM U)Y outper-
formed the human annotators in both evaluations. Tech
Ann. is over a balanced set of 90 sentences labeled by
Technical Annotators. AMT Ann. is over a balanced
set of 2,122 sentences annotated by AMT Annotators.
The final column shows the model predicted a number
closer to ground truth in 66.2-78.8% of the cases.

that our model has learned that some dimensions361

are more similar than others. This suggestion is re-362

inforced by Figure 7a where misclassifications tend363

to have small distances from the true dimension.364

For example, velocity is most often misclassified as365

length. For unit prediction, we find that most mis-366

takes occur substituting units with ones that have367

similar magnitudes like feet for meters or kilome-368

ters for miles (see Appendix 7b).369

4.5.2 Numeracy370

In Table 7, we show log-mae by dimension as pre-371

dicted by GeMM U)Y . We note that errors are not372

uniform across dimensions, predicting areas is 2.2373

times harder velocities. We also observe that the374

magnitudes of errors seem to be positively corre-375

lated with the variances observed in Figure 3.376

4.5.3 Human Evaluation377

We perform two evaluations of GeMM U)Y against378

human annotators. In the first evaluation, we com-379

pare against the combined effort of three Technical380

Annotators on a balanced set of 90 sentences ran-381

domly sampled from the test set. The annotators382

worked together to predict the missing dimensions,383

units, and accurate measurement estimates. Exam-384

ples of sentences and annotations shown in Table 9.385

In the second evaluation, we compare against386

Amazon Mechanical Turk (AMT) Annotators on a387

balanced set of 2,122 sentences randomly sampled388

from the test set. We show the results for both 389

evaluations in Table 8. 390

In both evaluations, the model outperforms the 391

human annotators on every task. For dimension pre- 392

diction, the model led by 7.4-7.8 percentage points. 393

Of the sentences where the dimension was correctly 394

annotated, the model led by 33.5-39.9 percentage 395

points on unit prediction. For sentences where both 396

the model and human correctly predicted the di- 397

mension, the model predicted a number closer to 398

ground truth 66.2-78.8% of the time. 399

4.6 Qualitative Analysis 400

4.6.1 Semantic Head Embeddings 401

In Figure 5 we plot the t-SNE embeddings of the 402

sentences’ h, the output of our text encoder. We 403

label each h with the masked measurement’s true 404

dimension, unit and exponent of the number. In 5a 405

we observe that most embeddings labeled by their 406

true dimension tend to form tight clusters. In 5b 407

we filter to only show embeddings that share the 408

Length dimension and label them by their units. 409

We find that clusters are organized by the rela- 410

tive magnitudes of their units: large (Kilometers, 411

miles), medium (feet, meters), and small (millime- 412

ters, inches, centimeters). Further we see that yards 413

appear close to other imperial units of feet and 414

miles. Finally, in 5c when embeddings are binned 415

by the exponent of their values we observe that 416

the left to right direction appears to capture the 417

increasing magnitude of a number. 418

5 Related Work 419

5.1 Numeracy 420

Multiple works have probed word embeddings like 421

word2vec, GloVe, FastText (Naik et al., 2019) and 422

contextual embeddings from models like BERT 423

(Wallace et al., 2019; Zhang et al., 2020) or T5 424

(Pal and Baral, 2021) on a variety of numerical 425

tasks like sorting, numeration, magnitude predic- 426

tion, and common sense (Lin et al., 2020). Several 427

works have targeted numeracy pretraining using 428

left to right language models (Spithourakis and 429

Riedel, 2018), CNN and RNN based models (Chen 430

et al., 2019), pretrained transformers (Spokoyny 431

and Berg-Kirkpatrick, 2020; Jin et al., 2021), for 432

an overview (Thawani et al., 2021b). 433

Incorporating synthetic mathematical data aug- 434

mentations (Geva et al., 2020) has improved ques- 435

tion answering while numerical pretraining has 436

been shown to lower masked language modelling 437
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True GeMM U)Y Prediction Human Prediction

# Text Dim Unit Num Dim Unit Num Dim Unit Num

1 Hope is gaff rigged, ’V’-bottomed and has an [#NUM] [UNIT] centerboard. Mass pounds 385.6 Length feet 2.97 Length meter 50

2 Some have been running for over 50 years, each covering about [#NUM] [UNIT]. Velocity
miles
year

0.10 Area sqkm 2.09E+10 Area sqmi 2.59E+07

3 Another medium-sized corvid, the [#NUM] [UNIT] Eurasian magpie (Pica pica) is
also amongst the most widely reported secondary prey species for goshawks there.

Mass grams 0.22 Mass grams 0.05 Mass grams 0.2

4 The twin cylinder, liquid-cooled, in-line two-stroke, [#NUM] [UNIT] Rotax 582
has also been used.

Power horse-
power

47725 Power horse-
power

39248 Power horse-
power

45000

5 Chrysothamnus may grow up to a [#NUM] [UNIT] tall shrub or subshrub, usually
with woody stem bases

Length cms 1.2 Length meters 1.147 Length meters 1

6 Kurt Busch was the fastest in the first practice session with a time of 21.372
seconds and a speed of [#NUM] [UNIT].

Velocity
miles
hour

75.1 Velocity
miles
hour

63.584 Velocity
meters
second

10

Table 9: Instances of the MMP task performed during our human evaluation experiment, all numbers are in SI
units. In ex. 1, both the model and humans predict the incorrect dimension length instead of mass. The preceding
sentence of ex. 2 references “trains” leading both to incorrectly predict area instead of velocity. In ex. 6 the model
predicts the speed of the NASCAR driver Kurt Busch’s car whereas the humans had mistaken him for a runner.

(a) (b) (c)

Figure 5: t-SNE visualizations of semantic head embeddings labeled by (left 5a) dimension, (middle 5b) units of
length, and (right 5c) number exponent bin. Middle: we observe a clustering of imperial units: feet, yards, miles.
Right: we show two directions where magnitudes of length and area measurements increase in value.

perplexity (Thawani et al., 2021a). Either directly438

or indirectly units have been involved in providing439

more interpretable explanation of quantities (Cha-440

ganty and Liang, 2016), solving Fermi problems441

(Kalyan et al., 2021) and resolving numeric Fused-442

Heads (Elazar and Goldberg, 2019).443

5.1.1 Numeracy Benchmarks444

Several numeracy benchmarks have been proposed445

like quantitative reasoning in natural language en-446

tailment (Ravichander et al., 2019) and synthetic447

measurement estimation (Jin et al., 2021). The448

closest benchmark to our work is the Distribution449

over Quantities dataset (DoQ) introduced by Elazar450

et al. (2019). A rule-based method was combined451

with simple heuristics to build DoQ resulting in its452

high-coverage albeit also higher noise. Although,453

WiCo is smaller, it has much higher fidelity since454

it utilizes a feature used by editors of Wikipedia to455

automatically convert quantities into different units.456

Further, WiCo provides the whole sentence as con-457

text as opposed to triplets of words. Zhang et al.458

(2020) use artificial templates to probe models on459

DoQ and find little difference between numerically460

pretrained and frozen embeddings such as ELMo. 461

In contrast, our findings show there is a significant 462

gap on WiCo between fully finetuned models and 463

their frozen counterparts. 464

6 Conclusion 465

In this work we propose Masked Measurement 466

Prediction, a new task to resolve the limitation 467

of masked number prediction in which units are 468

not considered. In our study, we show probing of 469

traditional pretrained transformers exposes a gap 470

in their understanding of contextualized quantities. 471

Through careful quantitative and qualitative analy- 472

sis of our new model, which directly reasons about 473

underlying units and dimensions, we find that it 474

is possible to learn good representations of mea- 475

surements. For future work we aim to extend this 476

dataset to cover more existing standardized units 477

from organizations such as UNECE.4 We hope our 478

MMP task encourages research into further devel- 479

opment of better numeracy methodologies. 480

4United Nations Economic Commission for Europe
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A Dataset625

We train and evaluate our models on Wiki-Convert626

(WiCo) (Thawani et al., 2021a), a dataset of627

English Wikipedia sentences where the number628

and unit in each sentence are human-annotated.629

The built-in template in Wikipedia can ensure630

the text contains numbers and units. For ex-631

ample, {{convert|2|km|mi}} displays as 2632

kilometres (1.2 mi). By searching within633

Wikipedia articles for the use of this template,634

the authors of WiCo automatically extract human-635

annotated numbers. To perform unit canonical-636

ization, we use Pint 5 whenever the mapping is637

unambiguous. In the ambiguous case, we manu-638

ally inspect the sentence and perform the mapping.639

For example, we map the unit sqmi in WiCo to640

square miles to let pint perform unit canoni-641

calization. Table 9 shows examples of the extended642

5Pint: https://github.com/hgrecco/pint

Split Examples Max # Min #

All 919,237 5.5E+36 1E-06

Train 728,629 5.5E+36 1E-06

Val 91,110 4.4E+14 1.2E-06

Test 91,092 1.6E+21 1.8E-06

Table 10: Summary statistics for Wiki-Convert. The
median number of characters and tokens per example
is 106 and 33, respectively.

dataset. The original dataset contains 924,473 sen- 643

tence. The median sentence length is 106 char- 644

acters, with 29,597 sentences has a length shorter 645

than 20 characters. We provide statistics of the 646

data in Table 10. For preprocessing we exclude 647

sentences which have more than 64 tokens to have 648

efficient computing memory or where the number 649

is negative for simplicity. According to Thawani 650

et al. (2021a) WiCo, “... has been extracted from 651

Wikipedia dumps, which are licensed under the 652

GNU Free Documentation License (GFDL) and 653

the Creative Commons Attribution-Share-Alike 3.0 654

License.” Thawani et al. (2021a) constructed WiCo 655

with the intent that it be used to further numeracy 656

NLP research. Our use of WiCo is aligned with its 657

authors’ goals. 658

B MLM Preliminary Unit Probe 659

We perform a preliminary unit probe shown in Ta- 660

ble 11. The model predicts vastly different numbers 661

when conditioned on different units. We observe a 662

mean of 3086.8 and a standard deviation of 5820 663

for all the converted metric output. 664

C Experiments 665

We train our model GeMM U)Y on a single Nvidia 666

GeForce RTX 2080 Ti for 4 hours and 14 minutes 667

with a total parameter of 124,696,538. 668

C.1 Quantitative Analysis 669

In Figure 6, we show log-mae is relatively small 670

for small magnitude units, which means predicting 671

numbers for small magnitude units is easier than 672

predicting numbers for their larger counterparts. 673

In Figure 7, we show confusion matrices of di- 674

mension and unit predictions by GeMM U)Y . 675
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Input: [UNIT] m km ft mi yd in meters kilometers feet miles yards inches -

Output 200 10 200 2 100 1 200 20 20 2 50 3 -

Convertion factor 1 1000 0.3048 1609.34 0.9144 0.0254 1 1000 0.3048 1609.34 0.9144 0.0254 -

Metric Output 200.0 10000.0 60.96 3218.68 91.44 0.0254 200.0 20000.0 6.096 3218.68 45.72 0.0762 -

Mean (Metric Output) - 3086.8 m

std (Metric Output) - 5820 m

Table 11: Example outputs for Alex Honnold climbed for [MASK] [UNIT].

Figure 6: log-mae ↓ by units of length. Predicting num-
bers for small magnitude units is easier than predicting
numbers for their larger counterparts.

D Human Annotators676

D.1 Evaluation 1677

The Technical Annotators have diverse scientific678

backgrounds ranging from chemistry, earth sci-679

ences, and computer science. One annotator is a680

native Chinese speaker, and two are native English681

speakers.682

D.2 Evaluation 2683

In Figure 8 we show the instructions provided along684

with the interface we designed for our MMP task.685

While the workers’ geographic location were not686

provided to us by Mechanical Turk, we aimed to687

compensate the workers above the US federal min-688

imum wage of $7.25. We paid workers $0.15 per689

annotation with an average completion time of 33690

seconds. This equates to an hourly rate of $12.80691

after Mechanical Turk fees. Other demographic692

information is only provided by Mechanical Turk693

for an extra fee.694

E Ethical Considerations695

Like any system that makes predictions, those made696

by GeMM are not necessarily accurate and may be697

used by malicious actors to generate fake infor- 698

mation to mislead their audience. Additionally, 699

GeMM is an extension of RoBERTa and therefore 700

inherits the biases learned during the training of 701

RoBERTa. Our work focuses exclusively on En- 702

glish and Arabic numerals. As noted by Thawani 703

et al. (2021a), the units in WiCo are heavily biased 704

towards European and American units as they are 705

over-represented in English Wikipedia. 706
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(a) (b)

Figure 7: Confusion matrices for predictions by GeMM U)Y over the validation split. Left 7a: Dimension predic-
tion. Most misclassified dimensions are similar to their ground truth counterparts in terms of Manhattan distance.
Right 7b: Unit prediction for examples that share the length dimension. Most misclassified units of length share
similar magnitudes to their ground truth units.

Figure 8: Left: Instructions for labeling task. Right: we show the interface used by the labelers
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