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Abstract

Autonomous agents have made great strides in specialist domains like Atari games
and Go. However, they typically learn tabula rasa in isolated environments with
limited and manually conceived objectives, thus failing to generalize across a wide
spectrum of tasks and capabilities. Inspired by how humans continually learn
and adapt in the open world, we advocate a trinity of ingredients for building
generalist agents: 1) an environment that supports a multitude of tasks and goals,
2) a large-scale database of multimodal knowledge, and 3) a flexible and scalable
agent architecture. We introduce MINEDOJO, a new framework built on the
popular Minecraft game that features a simulation suite with thousands of diverse
open-ended tasks and an internet-scale knowledge base with Minecraft videos,
tutorials, wiki pages, and forum discussions. Using MINEDOJO’s data, we propose
a novel agent learning algorithm that leverages large pre-trained video-language
models as a learned reward function. Our agent is able to solve a variety of open-
ended tasks specified in free-form language without any manually designed dense
shaping reward. We open-source the simulation suite, knowledge bases, algorithm
implementation, and pretrained models (https://minedojo.org) to promote
research towards the goal of generally capable embodied agents.

1 Introduction

Developing autonomous embodied agents that can attain human-level performance across a wide
spectrum of tasks has been a long-standing goal for AI research. There has been impressive progress
towards this goal, most notably in games [62, 66, 96] and robotics [53, 74, 110, 101, 80]. These
embodied agents are typically trained tabula rasa in isolated worlds with limited complexity and
diversity. Although highly performant, they are specialist models that do not generalize beyond a
narrow set of tasks. In contrast, humans inhabit an infinitely rich reality, continuously learn from and
adapt to a wide variety of open-ended tasks, and are able to leverage large amount of prior knowledge
from their own experiences as well as others.

We argue that three main pillars are necessary for generalist embodied agents to emerge. First, the
environment in which the agent acts needs to enable an unlimited variety of open-ended goals
[88, 55, 92, 89]. Natural evolution is able to nurture an ever-expanding tree of diverse life forms
thanks to the infinitely varied ecological settings that the Earth supports [89, 98]. This process has
not stagnated for billions of years. In contrast, today’s agent training algorithms cease to make new
progress after convergence in narrow environments [62, 110]. Second, a large-scale database of
prior knowledge is necessary to facilitate learning in open-ended settings. Just as humans frequently
learn from the internet, agents should also be able to harvest practical knowledge encoded in large
amounts of video demos [31, 59], multimedia tutorials [61], and forum discussions [97, 51, 41]. In a
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Figure 1: MINEDOJO is a novel framework for developing open-ended, generally capable agents
that can learn and adapt continually to new goals. MINEDOJO features a benchmarking suite with
thousands of diverse open-ended tasks specified in natural language prompts, and also provides an
internet-scale, multimodal knowledge base of YouTube videos, Wiki pages, and Reddit posts. The
database captures the collective experience and wisdom of millions of Minecraft gamers for an AI
agent to learn from. Best viewed zoomed in.

complex world, it would be extremely inefficient for an agent to learn everything from scratch through
trial and error. Third, the agent’s architecture needs to be flexible enough to pursue any task in open-
ended environments, and scalable enough to convert large-scale knowledge sources into actionable
insights [16, 72]. This motivates the design of an agent that has a unified observation/action space,
conditions on natural language task prompts, and adopts the Transformer pre-training paradigm [23,
68, 13] to internalize knowledge effectively.

In light of these three pillars, we introduce MINEDOJO, a new framework to help the community
develop open-ended, generally-capable agents. It is built on the popular Minecraft game, where a
player explores a procedurally generated 3D world with diverse types of terrains to roam, materials to
mine, tools to craft, structures to build, and wonders to discover. Unlike most other games [62, 66, 96],
Minecraft defines no specific reward to maximize and no fixed storyline to follow, making it well
suited for developing open-ended environments for embodied AI research. We make the following
three major contributions:

1. Simulation platform with thousands of diverse open-ended tasks. MINEDOJO provides
convenient APIs on top of Minecraft that standardizes task specification, world settings, and agent’s
observation/action spaces. We introduce a benchmark suite that consists of thousands of natural
language-prompted tasks, making it two orders of magnitude larger than prior Minecraft benchmarks
like the MineRL Challenge [36, 49]. The suite includes long-horizon, open-ended tasks that cannot
be easily evaluated through automated procedures, such as “build an epic modern house with two
floors and a swimming pool”. Inspired by the Inception score [73] and FID score [42] that are
commonly used to assess AI-generated image quality, we introduce a novel agent evaluation protocol
using a large video-language model pre-trained on Minecraft YouTube videos. This complements
human scoring [78] that is precise but more expensive. Our learned evaluation metric has good
agreement with human judgment in a subset of the full task suite considered in the experiments.

2. Internet-scale multimodal Minecraft knowledge base. Minecraft has more than 100 million
active players [100], who have collectively generated an enormous wealth of data. They record
tutorial videos, stream live play sessions, compile recipes, and discuss tips and tricks on forums.
MINEDOJO features a massive collection of 730K+ YouTube videos with time-aligned transcripts,
6K+ free-form Wiki pages, and 340K+ Reddit posts with multimedia contents (Fig. 3). We hope that
this enormous knowledge base can help the agent acquire diverse skills, develop complex strategies,
discover interesting objectives, and learn actionable representations automatically.
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Figure 2: Visualization of our agent’s learned behaviors on four selected tasks. Leftmost texts are the
task prompts used in training. Best viewed on a color display.

3. Novel algorithm for embodied agents with large-scale pre-training. We develop a new
learning algorithm for embodied agents that makes use of the internet-scale domain knowledge we
have collected from the web. Using the massive volume of YouTube videos from MINEDOJO, we
train a video-text contrastive model in the spirit of CLIP [69], which associates natural language
subtitles with their time-aligned video segments. We demonstrate that this learned correlation score
can be used effectively as an open-vocabulary, massively multi-task reward function for RL training.
Our agent solves the majority of 12 tasks in our experiment using the learned reward model (Fig. 2).
It achieves competitive performance to agents trained with meticulously engineered dense-shaping
rewards, and in some cases outperforms them, with up to 73% improvement in success rates. For
open-ended tasks that do not have a simple success criterion, our agents also perform well without
any special modifications.

In summary, this paper proposes an open-ended task suite, internet-scale domain knowledge, and agent
learning with recent advances on large pre-trained models [11]. We have open-sourced MINEDOJO’s
simulator, knowledge bases, algorithm implementations, pretrained model checkpoints, and task
curation tools at https://minedojo.org/. We hope that MINEDOJO will serve as an effective
starter framework for the community to develop new algorithms and advance towards generally
capable embodied agent.

2 MINEDOJO Simulator & Benchmark Suite

MINEDOJO offers a set of simulator APIs help researchers develop generally capable, open-ended
agents in Minecraft. It builds upon the open-source MineRL codebase [36] and makes the following
upgrades: 1) We provide unified observation and action spaces across all tasks, facilitating the
development of multi-task and continually learning agents that can constantly adapt to new scenarios
and novel tasks. This deviates from the MineRL Challenge design that tailors observation and action
spaces to individual tasks; 2) Our simulation unlocks all three types of worlds in Minecraft, including
the Overworld, the Nether, and the End, which substantially expands the possible task space, while
MineRL only supports the Overworld natively; and 3) We provide convenient APIs to configure
initial conditions and world settings to standardize our tasks.

With this MINEDOJO simulator, we define thousands of benchmarking tasks, which are divided into
two categories: 1) Programmatic tasks that can be automatically assessed based on the ground-truth
simulator states; and 2) Creative tasks that do not have well-defined or easily-automated success
criteria, which motivates our novel evaluation protocol using a learned model (Sec. 4). To scale up
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the number of Creative tasks, we mine ideas from YouTube tutorials and use OpenAI’s GPT-3 [13]
service to generate substantially more task definitions. Compared to Creative tasks, Programmatic
tasks are simpler to get started, but tend to have restricted scope, limited language variations, and less
open-endedness in general.

2.1 Task Suite I: Programmatic Tasks

We formalize each programmatic task as a 5-tuple: T = (G,G, I, fS , fR). G is an English
description of the task goal, such as “find material and craft a gold pickaxe”. G is a natural
language guidance that provides helpful hints, recipes, or advice to the agent. We leverage
OpenAI’s GPT-3-davinci API to automatically generate detailed guidance for a subset of
the tasks. For the example goal “bring a pig into Nether”, GPT-3 returns: 1) Find a pig
in the overworld; 2) Right-click on the pig with a lead; 3) Right-click on
the Nether Portal with the lead and pig selected; 4) The pig will be pulled
through the portal! I is the initial conditions of the agent and the world, such as the initial
inventory, spawn terrain, and weather. fS : st → {0, 1} is the success criterion, a deterministic
function that maps the current world state st to a Boolean success label. fR: st → R is an optional
dense reward function. We only provide fR for a small subset of the tasks in MINEDOJO due
to the high costs of meticulously crafting dense rewards. For our current agent implementation
(Sec. 4.1), we do not use detailed guidance. Inspired by concurrent works SayCan [3] and Socratic
Models [107], one potential idea is to feed each step in the guidance to our learned reward model
sequentially so that it becomes a stagewise reward function for a complex multi-stage task.

MINEDOJO provides 4 categories of programmatic tasks with 1,581 template-generated natural
language goals to evaluate the agent’s different capabilities systematically and comprehensively,
including: 1) Survival: surviving for a designated number of days, 2) Harvest: finding, obtaining,
cultivating, or manufacturing hundreds of materials and objects, 3) Tech Tree: crafting and using a
hierarchy of tools, and 4) Combat: fighting various monsters and creatures that require fast reflex
and martial skills. Each template has a number of variations based on the terrain, initial inventory,
quantity, etc., which form a flexible spectrum of difficulty. In comparison, the NeurIPS MineRL
Diamond challenge [36] is a subset of our programmatic task suite, defined by the task goal “obtain 1
diamond" in MINEDOJO.

2.2 Task Suite II: Creative Tasks

We define each creative task as a 3-tuple, T = (G,G, I), which differs from programmatic tasks due
to the lack of straightforward success criteria. Inspired by model-based metrics like the Inception
score [73] and FID score [42] for image generation, we design a novel task evaluation metric based
on a pre-trained contrastive video-language model (Sec. 4.1). In the experiments, we find that the
learned metric exhibits a high level of agreement with human evaluations (see Table 2).

We brainstormed and authored 216 Creative tasks, such as “build a haunted house with zombie inside”
and “race by riding a pig”. Nonetheless, such a manual approach is not scalable. Therefore, we
develop two systematic approaches to extend the total number of task definitions to 1,560. This
makes our Creative tasks 3 orders of magnitude larger than Minecraft BASALT challenge [78], which
has 4 Creative tasks.

Approach 1. Task Mining from YouTube Tutorial Videos. We identify our YouTube dataset as a
rich source of tasks, as many human players demonstrate and narrate creative missions in the tutorial
playlists. To collect high-quality tasks and accompanying videos, we design a 3-stage pipeline
that makes it easy to find and annotate interesting tasks (see supplementary for details). Through
this pipeline, we extract 1,042 task ideas from the common wisdom of a huge number of veteran
Minecraft gamers, such as “make an automated mining machine” and “grow cactus up to the sky”.

Approach 2. Task Creation by GPT-3. We leverage GPT-3’s few-shot capability to generate new
task ideas by seeding it with the tasks we manually authored or mined from YouTube. The prompt tem-
plate is: Here are some example creative tasks in Minecraft: {a few examples}.
Let’s brainstorm more detailed while reasonable creative tasks in Minecraft.
GPT-3 contributes 302 creative tasks after de-duplication, and demonstrates a surprisingly proficient
understanding of Minecraft terminology.
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Figure 3: MINEDOJO’s internet-scale, multimodal knowledge base. Left, YouTube videos:
Minecraft gamers showcase the impressive feats they are able to achieve. Clockwise order: an
archery range, Hogwarts castle, Taj Mahal, a Nether homebase. Middle, Wiki: Wiki pages contain
multimodal knowledge in structured layouts, such as comprehensive catalogs of creatures and recipes
for crafting. Right, Reddit: We create a word cloud from Reddit posts and comment threads. Gamers
ask questions, share achievements, and discuss strategies extensively. Best viewed zoomed in.

2.3 Collection of Starter Tasks

We curate a set of 64 core tasks for future researchers to get started more easily. If their agent works
well on these tasks, they can more confidently scale to the full benchmark. 1) 32 programmatic
tasks: 16 “standard” and 16 “difficult”, spanning all 4 categories (survival, harvesting, combat, and
tech tree). We rely on our Minecraft knowledge to decide the difficulty level. “Standard” tasks require
fewer steps and lower resource dependencies to complete; and 2) 32 creative tasks: 16 “standard”
and 16 “difficult”. Similarly, tasks labeled with “standard” are typically short-horizon tasks. We
recommend that researchers run 100 evaluation episodes for each task and report the percentage
success rate. The programmatic tasks have ground-truth success, while the creative tasks need our
novel evaluation protocol (Sec. 5).

3 Internet-scale Knowledge Base

Two commonly used approaches [85, 96, 66, 27] to train embodied agents include training agents
from scratch using RL with well-tuned reward functions for each task, or using a large amount of
human-demonstrations to bootstrap agent learning. However, crafting well-tuned reward functions is
challenging or infeasible for our task suite (Sec. 2.2), and employing expert gamers to provide large
amounts of demonstration data would also be costly and infeasible [96].

Instead, we turn to the open web as an ever-growing, virtually unlimited source of learning material
for embodied agents. The internet provides a vast amount of domain knowledge about Minecraft,
which we harvest by extensive web scraping and filtering. We collect 33 years worth of YouTube
videos, 6K+ Wiki pages, and millions of Reddit comment threads. Instead of hiring a handful of
human demonstrators, we capture the collective wisdom of millions of Minecraft gamers around the
world. Furthermore, language is a key and pervasive component of our database that takes the form
of YouTube transcripts, textual descriptions in Wiki, and Reddit discussions. Language facilitates
open-vocabulary understanding, provides grounding for image and video modalities, and unlocks the
power of large language models [23, 82, 13] for embodied agents. To ensure socially responsible
model development, we take special measures to filter out low-quality and toxic contents [11, 39]
from our databases, detailed in the supplementary.

YouTube Videos and Transcripts. Minecraft is among the most streamed games on YouTube [30].
Human players have demonstrated a stunning range of creative activities and sophisticated missions
that take hours to complete (examples in Fig. 3). We collect 730K+ narrated Minecraft videos, which
add up to 33 years of duration and 2.2B words in English transcripts. In comparison, HowTo100M [59]
is a large-scale human instructional video dataset that includes 15 years of experience in total – about
half of our volume. The time-aligned transcripts enable the agent to ground free-form natural lan-

5



“Shear sheep to 
obtain wool”

MineCLIP
Correlation = 0.95

RGB Voxel

GPS Inventory

Observation space

Move Attack

Cam Equip

Action space

MineDojo Sim

<latexit sha1_base64="ca4T8nSUbwsT4Z+NGlf9Q5N3EkE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GmbKdGp3RTcuK9hpoR1KJs20sZlkSDJCGfoPblwo4tb/ceffmD4EFT0kcDjnXu69J0oZVdpxPqzC2vrG5lZxu7Szu7d/UD48CpTIJCZtLJiQ3QgpwignbU01I91UEpREjHSiydXc79wTqajgt3qakjBBI05jipE2UtBPx3QQDMoVx676NfOgY3ue59erhri1huc3oGs7C1TACq1B+b0/FDhLCNeYIaV6rpPqMEdSU8zIrNTPFEkRnqAR6RnKUUJUmC+2ncEzowxhLKT5XMOF+r0jR4lS0yQylQnSY/Xbm4t/eb1MxxdhTnmaacLxclCcMagFnJ8Oh1QSrNnUEIQlNbtCPEYSYW0CKpkQvi6F/5Ogaru+7d14leblKo4iOAGn4By4oA6a4Bq0QBtgcAcewBN4toT1aL1Yr8vSgrXqOQY/YL19AvPQj2g=</latexit>

�V

Stack the last 16 RGB frames
<latexit sha1_base64="RalrFwoax4lhGLaFvab2Gtps3C0=">AAAB7XicdVDLSgMxFL3js9ZX1aWbYBFcDTNlOrW7ohvdVbAPaIeSSTNtbGYyJBmhlP6DGxeKuPV/3Pk3pg9BRQ8JHM65l3vvCVPOlHacD2tldW19YzO3ld/e2d3bLxwcNpXIJKENIriQ7RAryllCG5ppTtuppDgOOW2Fo8uZ37qnUjGR3OpxSoMYDxIWMYK1kZrddMh6171C0bFLftk85Nie5/mVkiFuuer5VeTazhxFWKLeK7x3+4JkMU004VipjuukOphgqRnhdJrvZoqmmIzwgHYMTXBMVTCZbztFp0bpo0hI8xON5ur3jgmOlRrHoamMsR6q395M/MvrZDo6DyYsSTNNE7IYFGUcaYFmp6M+k5RoPjYEE8nMrogMscREm4DyJoSvS9H/pFmyXd/2brxi7WIZRw6O4QTOwIUK1OAK6tAAAnfwAE/wbAnr0XqxXhelK9ay5wh+wHr7BOAcj1s=</latexit>

�I

Ti
m
e

<latexit sha1_base64="RalrFwoax4lhGLaFvab2Gtps3C0=">AAAB7XicdVDLSgMxFL3js9ZX1aWbYBFcDTNlOrW7ohvdVbAPaIeSSTNtbGYyJBmhlP6DGxeKuPV/3Pk3pg9BRQ8JHM65l3vvCVPOlHacD2tldW19YzO3ld/e2d3bLxwcNpXIJKENIriQ7RAryllCG5ppTtuppDgOOW2Fo8uZ37qnUjGR3OpxSoMYDxIWMYK1kZrddMh6171C0bFLftk85Nie5/mVkiFuuer5VeTazhxFWKLeK7x3+4JkMU004VipjuukOphgqRnhdJrvZoqmmIzwgHYMTXBMVTCZbztFp0bpo0hI8xON5ur3jgmOlRrHoamMsR6q395M/MvrZDo6DyYsSTNNE7IYFGUcaYFmp6M+k5RoPjYEE8nMrogMscREm4DyJoSvS9H/pFmyXd/2brxi7WIZRw6O4QTOwIUK1OAK6tAAAnfwAE/wbAnr0XqxXhelK9ay5wh+wHr7BOAcj1s=</latexit>

�I

<latexit sha1_base64="RalrFwoax4lhGLaFvab2Gtps3C0=">AAAB7XicdVDLSgMxFL3js9ZX1aWbYBFcDTNlOrW7ohvdVbAPaIeSSTNtbGYyJBmhlP6DGxeKuPV/3Pk3pg9BRQ8JHM65l3vvCVPOlHacD2tldW19YzO3ld/e2d3bLxwcNpXIJKENIriQ7RAryllCG5ppTtuppDgOOW2Fo8uZ37qnUjGR3OpxSoMYDxIWMYK1kZrddMh6171C0bFLftk85Nie5/mVkiFuuer5VeTazhxFWKLeK7x3+4JkMU004VipjuukOphgqRnhdJrvZoqmmIzwgHYMTXBMVTCZbztFp0bpo0hI8xON5ur3jgmOlRrHoamMsR6q395M/MvrZDo6DyYsSTNNE7IYFGUcaYFmp6M+k5RoPjYEE8nMrogMscREm4DyJoSvS9H/pFmyXd/2brxi7WIZRw6O4QTOwIUK1OAK6tAAAnfwAE/wbAnr0XqxXhelK9ay5wh+wHr7BOAcj1s=</latexit>

�I

<latexit sha1_base64="RalrFwoax4lhGLaFvab2Gtps3C0=">AAAB7XicdVDLSgMxFL3js9ZX1aWbYBFcDTNlOrW7ohvdVbAPaIeSSTNtbGYyJBmhlP6DGxeKuPV/3Pk3pg9BRQ8JHM65l3vvCVPOlHacD2tldW19YzO3ld/e2d3bLxwcNpXIJKENIriQ7RAryllCG5ppTtuppDgOOW2Fo8uZ37qnUjGR3OpxSoMYDxIWMYK1kZrddMh6171C0bFLftk85Nie5/mVkiFuuer5VeTazhxFWKLeK7x3+4JkMU004VipjuukOphgqRnhdJrvZoqmmIzwgHYMTXBMVTCZbztFp0bpo0hI8xON5ur3jgmOlRrHoamMsR6q395M/MvrZDo6DyYsSTNNE7IYFGUcaYFmp6M+k5RoPjYEE8nMrogMscREm4DyJoSvS9H/pFmyXd/2brxi7WIZRw6O4QTOwIUK1OAK6tAAAnfwAE/wbAnr0XqxXhelK9ay5wh+wHr7BOAcj1s=</latexit>

�I
Aggregate

Video
Feature

Per-frame
Feature

Figure 4: Algorithm design. MINECLIP is a contrastive video-language model pre-trained on
MINEDOJO’s massive Youtube database. It computes the correlation between an open-vocabulary
language goal string and a 16-frame video snippet. The correlation score can be used as a learned
dense reward function to train a strong multi-task RL agent.

guage in video pixels and learn the semantics of diverse activities without laborious human labeling.
We operationalize this insight in our pre-trained video-language model (Sec. 4.1).

Minecraft Wiki. The Wiki pages cover almost every aspect of the game mechanics, and supply
a rich source of unstructured knowledge in multimodal tables, recipes, illustrations, and step-by-step
tutorials. We use Selenium [77] to scrape 6,735 pages that interleave text, images, tables, and
diagrams. The pages are highly unstructured and do not share any common schema, as the Wiki
is meant for human consumption rather than AI training. To preserve the layout information, we
additionally save the screenshots of entire pages and extract 2.2M bounding boxes of the visual
elements (visualization in supplementary). We do not use Wiki data in our current experiments. Since
the Wiki contains detailed recipes for all crafted objects, they could be provided as input or training
data for hierarchical planning methods and policy sketches [7]. Another promising future direction
is to apply document understanding models such as LayoutLM [105, 104] and DocFormer [8] to
learn actionable knowledge from these unstructured Wiki data.

Reddit. We scrape 340K+ posts along with 6.6M comments under the “r/Minecraft” subreddit.
These posts ask questions on how to solve certain tasks, showcase cool architectures and achievements
in image/video snippets, and discuss general tips and tricks for players of all expertise levels. We do
not use Reddit data to train our current agent. A potential idea is to finetune large language models
[23, 68] on our Reddit corpus to generate instructions and execution plans that are better grounded
in the Minecraft domain. Concurrent works [3, 43, 107] have explored similar ideas and showed
excellent results on robot learning, which is encouraging for more future research in MINEDOJO.

4 Agent Learning with Large-scale Pre-training

One of the grand challenges of embodied AI is to build a single agent that can complete a wide range
of open-world tasks. The MINEDOJO framework aims to facilitate new techniques towards this goal
by providing an open-ended task suite (Sec. 2) and large-scale internet knowledge base (Sec. 3).
Here we take an initial step towards this goal by developing a proof of concept that demonstrates
how a single language-prompted agent can be trained in MINEDOJO to complete several complex
Minecraft tasks. To this end, we propose a novel agent learning algorithm that takes advantage of the
massive YouTube data offered by MINEDOJO. We note that this is only one of the numerous possible
ways to use MINEDOJO’s internet database — the Wiki and Reddit corpus also hold great potential
to drive new algorithm discoveries for the community in future works.

In this paper, we consider a multi-task reinforcement learning (RL) setting, where an agent is tasked
with completing a collection of MINEDOJO tasks specified by language instructions (Sec. 2). Solving
these tasks often requires the agent to interact with the Minecraft world in a prolonged fashion.
Agents developed in popular RL benchmarks [91, 110] often rely on meticulously crafted dense and
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Table 1: Our novel MINECLIP reward model is able to achieve competitive performance with
manually written dense reward function for Programmatic tasks, and significantly outperforms the
CLIPOpenAI method across all Creative tasks. Entries represent percentage success rates averaged
over 3 seeds, each tested for 200 episodes. Success conditions are precise in Programmatic tasks, but
estimated by MineCLIP for Creative tasks.

Group Tasks Ours (Attn) Ours (Avg) Manual Reward Sparse-only CLIPOpenAI

Milk Cow 64.5± 37.1 6.5± 3.5 62.8± 40.1 0.0± 0.0 0.0± 0.0
Hunt Cow 83.5± 7.1 0.0± 0.0 48.3± 35.9 0.3± 0.4 0.0± 0.0

Shear Sheep 12.1± 9.1 0.6± 0.2 52.3± 33.2 0.0± 0.0 0.0± 0.0
Hunt Sheep 8.1± 4.1 0.0± 0.0 41.9± 33.0 0.3± 0.4 0.0± 0.0

Combat Spider 80.5± 13.0 60.1± 42.5 87.5± 4.6 47.8± 33.8 0.0± 0.0
Combat Zombie 47.3± 10.6 72.3± 6.4 49.8± 26.9 8.8± 12.4 0.0± 0.0
Combat Pigman 1.6± 2.3 0.0± 0.0 13.6± 9.8 0.0± 0.0 0.0± 0.0

Combat Enderman 0.0± 0.0 0.0± 0.0 0.3± 0.2 0.0± 0.0 0.0± 0.0

Find Nether Portal 37.4± 40.8 89.8± 5.7 N/A N/A 26.3± 32.6
Find Ocean 33.4± 45.6 54.3± 40.7 N/A N/A 9.9± 14.1

Dig Hole 91.6± 5.9 88.1± 13.3 N/A N/A 0.0± 0.0
Lay Carpet 97.6± 1.9 98.8± 1.0 N/A N/A 0.0± 0.0

task-specific reward functions to guide random explorations. However, these rewards are hard or even
infeasible to define for our diverse and open-ended tasks in MINEDOJO. To address this challenge, our
key insight is to learn a dense, language-conditioned reward function from in-the-wild YouTube
videos and their transcripts. Therefore, we introduce MINECLIP, a contrastive video-language
model that learns to correlate video snippets and natural language descriptions (Fig. 4). MINECLIP
is multi-task by design, as it is trained on open-vocabulary and diverse English transcripts.

During RL training, MINECLIP provides a high-quality reward signal without any domain adaptation
techniques, despite the domain gap between noisy YouTube videos and clean simulator-rendered
frames. MINECLIP eliminates the need to manually engineer reward functions for each and every
MINEDOJO task. For Creative tasks that lack a simple success criterion (Sec. 2.2), MINECLIP also
serves the dual purpose of an automatic evaluation metric that agrees well with human judgement
on a subset of tasks we investigate (Sec. 4.2, Table 2). Because the learned reward model incurs
a non-trivial computational overhead, we introduce several techniques to significantly improve RL
training efficiency, making MINECLIP a practical module for open-ended agent learning in Minecraft
(Sec. 4.2).

4.1 Pre-Training MINECLIP on Large-scale Videos

Formally, the learned reward function can be defined as ΦR : (G,V ) → R that maps a language goal
G and a video snippet V to a scalar reward. An ideal ΦR should return a high reward if the behavior
depicted in the video faithfully follows the language description, and a low reward otherwise. This
can be achieved by optimizing the InfoNCE objective [95, 40, 17], which learns to correlate positive
video and text pairs [90, 5, 60, 4, 103].

Similar to the image-text CLIP model [69], MINECLIP is composed of a separate text encoder ϕG

that embeds a language goal and a video encoder ϕV that embeds a moving window of 16 consecutive
frames with 160× 256 resolution (Fig. 4). Our neural architecture has a similar design as CLIP4Clip
[58], where ϕG reuses OpenAI CLIP’s pretrained text encoder, and ϕV is factorized into a frame-wise
image encoder ϕI and a temporal aggregator ϕa that summarizes the sequence of 16 image features
into a single video embedding. Unlike CLIP4Clip, we insert two extra layers of residual CLIP
Adapter [29] after the aggregator ϕa to produce a better video feature, and finetune only the last two
layers of the pretrained ϕI and ϕG.

From the MINEDOJO YouTube database, we follow the procedure in VideoCLIP [103] to sample
640K pairs of 16-second video snippets and time-aligned English transcripts, after applying a keyword
filter. We train two MINECLIP variants with different types of aggregator ϕa: (1) MINECLIP[avg]
does simple average pooling, which is fast but agnostic to the temporal ordering; (2) MINECLIP[attn]
encodes the sequence by two transformer layers, which is relatively slower but captures more temporal
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Table 2: MINECLIP agrees well with the ground-truth human judgment on the Creative tasks we
consider. Numbers are F1 scores between MINECLIP’s binary classification of tasks success and
human labels (scaled to the percentage for better readability).

Tasks Find Nether Portal Find Ocean Dig Hole Lay Carpet

Ours (Attn) 98.7 100.0 99.4 97.4
Ours (Avg) 100.0 100.0 100.0 98.4
CLIPOpenAI 48.7 98.4 80.6 54.1

information, and thus produces a better reward signal in general. Details of data preprocessing,
architecture, and hyperparameters are in the supplementary.

4.2 RL with MINECLIP Reward

We train a language-conditioned policy network that takes as input raw pixels and predicts discrete
control. The policy is trained with PPO [76] on the MINECLIP rewards. In each episode, the
agent is prompted with a language goal and takes a sequence of actions to fulfill this goal. When
calculating the MINECLIP rewards, we concatenate the agent’s latest 16 egocentric RGB frames in a
temporal window to form a video snippet. MINECLIP handles all task prompts zero-shot without any
further finetuning. In our experiments (Sec. 5), we show that MINECLIP provides effective dense
rewards out of the box, despite the domain shift between in-the-wild YouTube frames and simulator
frames. Besides regular video data augmentation, we do not employ any special domain adaptation
methods during pre-training. Our finding is consistent with CLIP’s strong zero-shot performances on
robustness benchmarks in object recognition [69].

Compared to hard-coded reward functions in popular benchmarks [110, 91, 26], the MINECLIP
model has 150M parameters and is thus much more expensive to query. We make several design
choices to greatly accelerate RL training with MINECLIP in the loop: 1) The language goal G is fixed
for a specific task, so the text features ϕG can be precomputed to avoid invoking the text encoder
repeatedly; 2) Our agent’s RGB encoder reuses the pre-trained weights of ϕI from MINECLIP.
We do not finetune ϕI during RL training, which saves computation and endows the agent with good
visual representations from the beginning; 3) MINECLIP’s video encoder ϕV is factorized into an
image encoder ϕI and a light-weight aggregator ϕa. This design choice enables efficient image
feature caching. Consider two overlapping video sequences of 8 frames, V[0:8] and V[1:9]. We
can cache the image features of the 7 overlapping frames V[1] to V[7] to maximize compute savings.
If ϕV is a monolithic model like S3D [102] in VideoCLIP [103], then the video features from every
sliding window must be recomputed, which would incur a much higher cost per time step; and 4) We
leverage Self-Imitation Learning [65] to store the trajectories with high MINECLIP reward values
in a buffer, and alternate between PPO and self-imitation gradient steps. It further improves sample
efficiency as shown in the supplementary materials.

5 Experiments

We evaluate our agent-learning approach (Section 4) on 8 Programmatic tasks and 4 Creative tasks
from the MINEDOJO benchmarking suite. We select these 12 tasks due to the diversity of skills
required to solve them (e.g., harvesting, combat, building, navigation) and domain-specific entities
(e.g., animals, resources, monsters, terrains, and structures). We split the tasks into 3 groups
and train one multi-task agent for each group: Animal-Zoo (4 Programmatic tasks on hunting or
harvesting resource from animals), Mob-Combat (Programmatic, fight 4 types of hostile monsters),
and Creative (4 tasks).

In the experiments, we empirically check the quality of MINECLIP against manually written reward
functions, and quantify how different variants of our learned model affect the RL performance.
Table 1 presents our main results. Policy networks of all methods share the same architecture and are
trained by PPO + Self-Imitation (Sec. 4.2). We compare the following methods: 1) Ours (Attn): our
agent trained with the MINECLIP[attn] reward model. For Programmatic tasks, we also add the final
success condition as a binary reward. For Creative tasks, MINECLIP is the only source of reward; 2)
Ours (Avg): the average-pooling variant; 3) Manual Reward: hand-engineered dense reward using
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Table 3: MINECLIP agents have stronger zero-shot visual generalization ability to unseen terrains,
weathers, and lighting. Numbers outside parentheses are percentage success rates averaged over 3
seeds (each tested for 200 episodes), while those inside parentheses are relative performance changes.

Tasks Ours (Attn), train Ours (Attn), unseen test CLIPOpenAI, train CLIPOpenAI, unseen test

Milk Cow 64.5± 37.1 64.8± 31.3(+ 0.8%) 90.0± 0.4 29.2± 3.7 (−67.6%)
Hunt Cow 83.5± 7.1 55.9± 7.2 (−32.9%) 72.7± 3.5 16.7± 1.6 (−77.0%)

Combat Spider 80.5± 13.0 62.1± 29.7(−22.9%) 79.5± 2.5 54.2± 9.6 (−31.8%)
Combat Zombie 47.3± 10.6 39.9± 25.3(−15.4%) 50.2± 7.5 30.8± 14.4(−38.6%)

ground-truth simulator states; 4) Sparse-only: the final binary success as a single sparse reward.
Note that neither sparse-only nor manual reward is available for Creative tasks; and 5) CLIPOpenAI:
pre-trained OpenAI CLIP model that has not been finetuned on any MINEDOJO videos. All RL
training details are presented in the supplementary. Fig. 2 visualizes the learned agent behavior in 4
of the considered tasks.

MINECLIP is competitive with manual reward. For Programmatic tasks (first 8 rows), RL agents
guided by MINECLIP achieve competitive performance as those trained by manual reward. In three
of the tasks, they even outperform the hand-engineered reward functions, which rely on privileged
simulator states unavailable to MINECLIP. For a more statistically sound analysis, we conduct the
Paired Student’s t-test to compare the mean success rate of each task (pairing column 3 “Ours (Attn)”
and column 5 “Manual Reward” in Table 1). The test yields p-value 0.3991 ≫ 0.05, which indicates
that the difference between our method and manual reward is not considered statistically significant,
and therefore they are comparable with each other. Because all tasks require nontrivial exploration,
our approach also dominates the Sparse-only baseline. Note that the original OpenAI CLIP model
fails to achieve any success. We hypothesize that the creatures in Minecraft look dramatically different
from their real-world counterparts, which causes CLIP to produce misleading signals worse than no
shaping reward at all. It implies the importance of finetuning on MINEDOJO’s YouTube data.

MINECLIP provides automated evaluation. For Creative tasks (last 4 rows), there are no
programmatic success criteria available. We convert MINECLIP into a binary success classifier
by thresholding the reward value it outputs for an episode. To test the quality of MINECLIP as
an automatic evaluation metric, we ask human judges to curate a dataset of 100 successful and
100 failed trajectories for each task. We then run both MINECLIP variants and CLIPOpenAI on the
dataset and report the binary F1 score of their judgement against human ground-truth in Table 2.
The results demonstrate that both MINECLIP[attn] and MINECLIP[avg] attain a very high degree of
agreement with human evaluation results on this subset of the Creative task suite that we investigate.
CLIPOpenAI baseline also achieves nontrivial agreement on Find Ocean and Dig Hole tasks, likely
because real-world oceans and holes have similar texture. We use the attn variant as an automated
success criterion to score the 4 Creative task results in Table 1. Our proposed method consistently
learns better than CLIPOpenAI-guided agents. It shows that MINECLIP is an effective approach to
solving open-ended tasks when no straightforward reward signal is available. We provide further
analysis beyond these 4 tasks in the supplementary.

MINECLIP shows good zero-shot generalization to significant visual distribution shift. We
evaluate the learned policy without finetuning on a combination of unseen weather, lighting
conditions, and terrains — 27 scenarios in total. For the baseline, we train agents with the original
CLIPOpenAI image encoder (not trained on our YouTube videos) by imitation learning. The robustness
against visual shift can be quantitatively measured by the relative performance degradation on
novel test scenarios for each task. Table 3 shows that while all methods incur performance drops,
agents with MINECLIP encoder is more robust to visual changes than the baseline across all
tasks. Pre-training on diverse in-the-wild YouTube videos is important to boosting zero-shot visual
generalization capability, a finding consistent with literature [69, 64].

6 Related work

Open-ended Environments for Decision-making Agents. There are many environments
developed with the goal of open-ended agent learning. Prior works include maze-style worlds
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[93, 98, 48], purely text-based game [54], grid worlds [18, 14], browser/GUI-based environments
[81, 94], and indoor simulators for robotics [1, 80, 87, 26, 83, 74, 67]. Minecraft offers an exciting
alternative for open-ended agent learning. It is a 3D visual world with procedurally generated
landscapes and extremely flexible game mechanics that support an enormous variety of activities.
Prior methods in open-ended agent learning [25, 44, 99, 50, 22] do not make use of external
knowledge, but our approach leverages internet-scale database to learn open-vocabulary reward
models, thanks to Minecraft’s abundance of gameplay data online.

Minecraft for AI Research. The Malmo platform [47] is the first comprehensive release of a
Gym-style agent API [12] for Minecraft. Based on Malmo, MineRL [36] provides a codebase and
human play trajectories for the annual Diamond Challenge at NeurIPS [35, 37, 49]. MINEDOJO’s
simulator builds upon the pioneering work of MineRL, but greatly expands the API and benchmarking
task suite. Other Minecraft benchmarks exist with different focuses. For example, CraftAssist [33]
and IGLU [52] study agents with interactive dialogues. BASALT [78] applies human evaluation to 4
open-ended tasks. EvoCraft [34] is designed for structure building, and Crafter [38] optimizes for fast
experimentation. Unlike prior works, MINEDOJO’s core mission is to facilitate the development of
generally capable embodied agents using internet-scale knowledge. We include a feature comparison
table of different Minecraft platforms for AI research in the supplementary.

Internet-scale Multimodal Knowledge Bases. Big dataset such as Common Crawl [20], the Pile
[28], LAION [75], YouTube-8M [2] and HowTo100M [59] have been fueling the success of large pre-
trained language models [23, 68, 13] and multimodal models [90, 5, 60, 109, 6, 4, 103]. While gener-
ally useful for learning representations, these datasets are not specifically targeted at embodied agents.
To provide agent-centric training data, RoboNet [21] collects video frames from 7 robot platforms,
and Ego4D [32] recruits volunteers to record egocentric videos of household activities. In comparison,
MINEDOJO’s knowledge base is constructed without human curation efforts, much larger in volume,
more diverse in data modalities, and comprehensively covers all aspects of the Minecraft environment.

Embodied Agents with Large-scale Pre-training. Inspired by the success in NLP, embodied
agent research [24, 10, 70, 19] has seen a surge in adoption of the large-scale pre-training paradigm.
The recent advances can be roughly divided into 4 categories. 1) Novel agent architecture: Decision
Transformer [16, 45, 108] applies self-attention to sequential decision making. GATO [71] and
Unified-IO [57] learn a single model to accommodate different control interfaces. VIMA [46] unifies
a wide range of robot manipulation tasks with multimodal prompting. 2) Pre-training for better
representations: R3M [64] trains a general-purpose visual encoder for robot perception on Ego4D
videos [32]. CLIPort [84] leverages the pre-trained CLIP model [69] to enable free-form language
instructions for robot manipulation. 3) Pre-training for better policies: AlphaStar [96] achieves
champion-level performance on StarCraft by imitating from numerous human demos. SayCan [3]
leverages large language models (LMs) to ground value functions in the physical world. [56] and [72]
directly reuse pre-trained LMs as policy backbone. VPT [9] is a concurrent work that learns an inverse
dynamics model from human contractors to pseudo-label YouTube videos for behavior cloning. VPT
is complementary to our approach, and can be finetuned to solve language-conditioned open-ended
tasks with our learned reward model. 4) Data-driven reward functions: Concept2Robot [79] and
DVD [15] learn a binary classifier to score behaviors from in-the-wild videos [31]. LOReL [63] crowd-
sources humans labels to train language-conditioned reward function for offline RL. AVID [86] and
XIRL [106] extract reward signals via cycle consistency. MINEDOJO’s task benchmark and internet
knowledge base are generally useful for developing new algorithms in all the above categories. In
Sec. 4, we propose an open-vocabulary, multi-task reward model using MINEDOJO YouTube videos.

7 Conclusion

In this work, we introduce the MINEDOJO framework for developing generally capable embodied
agents. MINEDOJO features a benchmarking suite of thousands of Programmatic and Creative tasks,
and an internet-scale multimodal knowledge base of videos, wiki, and forum discussions. As an
example of the novel research possibilities enabled by MINEDOJO, we propose MINECLIP as an
effective language-conditioned reward function trained with in-the-wild YouTube videos. MINECLIP
achieves strong performance empirically and agrees well with human evaluation results, making it a
good automatic metric for Creative tasks. We look forward to seeing how MINEDOJO empowers the
community to make progress on the important challenge of open-ended agent learning.
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