
Submitted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

SPEQNETS: SPARSITY-AWARE PERMUTATION-
EQUIVARIANT GRAPH NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

While graph neural networks have clear limitations in approximating permutation-
equivariant functions over graphs, more expressive, higher-order graph neural networks
do not scale to large graphs. By introducing new heuristics for the graph isomorphism
problem, we devise a class of universal, permutation-equivariant graph networks, which
offers a fine-grained control between expressivity and scalability and adapt to the
sparsity of the graph. These architectures lead to vastly reduced computation times
compared to standard higher-order graph networks while significantly improving over
standard graph neural network and graph kernel architectures in terms of predictive
performance.

1 INTRODUCTION

In recent years, numerous approaches have been proposed for machine learning with graphs—most notably,
approaches based on graph kernels (Borgwardt et al., 2020; Kriege et al., 2020) or using graph neural
networks (GNNs) (Chami et al., 2020; Gilmer et al., 2017; Grohe, 2021; Morris et al., 2021). Here, graph
kernels based on the 1-dimensional Weisfeiler–Leman algorithm (1-WL) (Weisfeiler & Leman, 1968), a
simple heuristic for the graph isomorphism problem, and corresponding GNNs (Morris et al., 2019; Xu
et al., 2019) have recently advanced the state-of-the-art in supervised node- and graph-level learning.
However, the 1-WL operates via simple neighborhood aggregation, and the purely local nature of the
related approaches misses important patterns in the given data. A provably more powerful algorithm for
graph isomorphism testing is the k-dimensional Weisfeiler–Leman algorithm (k-WL) (Babai, 1979; Cai
et al., 1992). The algorithm captures more global, higher-order patterns by iteratively computing a coloring
or discrete labeling for k-tuples defined over the set of nodes of a given graph based on an appropriately
defined notion of adjacency between tuples. See (Kiefer, 2020a;b) for a survey and more background.
However, since the algorithm considers all nk many k-tuples of an n-node graph, it does not scale to large,
real-world graphs. Moreover, it fixes the cardinality of the neighborhood to k · n. Hence, a potential
sparsity of the input graph does not reduce the running time. Further, new neural architectures that possess
the same power as the k-WL in terms of separating non-isomorphic graphs (Geerts, 2020; Maron et al.,
2019b; Morris et al., 2020b) suffer from the same drawbacks.

Present work To address the described drawbacks, we introduce a new set of heuristics for the graph
isomorphism problem, denoted (k, s)-LWL, which only considers a subset of all k-tuples, namely those
inducing subgraphs with at most s connected components. We study the effect of k and s on the expressive
power of the heuristics, see Figure 1 for an overview of these theoretical results. Building on these
combinatorial insights, we derive corresponding provably expressive, permutation-equivariant neural
architectures, denoted (k, s)-SpeqNets, which offer a more fine-grained trade-off between scalability and
expressivity compared to previous architectures based on the k-WL. Empirically, we show how our
architectures offer vastly reduced computation times while beating baseline GNNs and other higher-order
graph networks in terms of predictive performance. See Appendix A for a discussion of related work.

2 PRELIMINARIES

We briefly describe the Weisfeiler–Leman algorithm and, along the way, introduce our notation,
see Appendix B for details. We let [n] := {1, . . . , n} ⊂ N for n ≥ 1, and use {{. . . }} to denote multisets.
We also use standard concepts from graph theory (such as graphs, directed graphs, neighbors, trees, and
so on). The vertex and the edge set of a graph G are denoted by V (G) and E(G), respectively. The
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neighborhood of v in V (G) is δ(v) = {u ∈ V (G) | (v, u) ∈ E(G)}. We say that two graphs G and H
are isomorphic (G ' H) if there exists a bijection ϕ : V (G)→ V (H) preserving the adjacency relation,
i.e., (u, v) is in E(G) if and only if (ϕ(u), ϕ(v)) is in E(H), call ϕ an isomorphism from G to H . If the
graphs have vertex or edges labels, the isomorphism is additionally required to match these labels. Let v be
a tuple in V (G)k for k > 0, then G[v] is the subgraph induced by the elements of v, where the nodes are
labeled with integers from {1, . . . , k} corresponding to their positions in v. A connected component of a
graph G is an inclusion-wise maximal subgraph of G in which every two nodes are connected by paths.

2.1 NODE-REFINEMENT ALGORITHMS

In the following, we review the Weisfeiler–Leman algorithm and related variants (Morris et al., 2020b). Let
k be a fixed positive integer and let V (G)k denote the set of k-tuples of nodes of the graph G. A coloring
of V (G)k is a mapping C : V (G)k → N, i.e., we assign a number (color) to every tuple in V (G)k. The
initial coloring C0 of V (G)k is specified by the atomic types of the tuples, i.e., two tuples v and w in
V (G)k have the same initial color iff the mapping vi 7→ wi induces an isomorphism between the labeled
subgraphs G[v] and G[w]. A color class corresponding to a color c is the set of all tuples colored c, i.e.,
the set C−1(c). For j in [k] and w in V (G), let φj(v, w) be the k-tuple obtained by replacing the jth
component of v with the node w. If w = φj(v, w) for some w in V (G), call w a j-neighbor of v. The
neighborhood of v is the set of all w such that w = φj(v, w) holds for some j in [k] and a w in V (G).

The refinement of a coloring C : V (G)k → N, denoted by Ĉ, is a coloring Ĉ : V (G)k → N defined as
follows. For each j in [k], collect the colors of the j-neighbors of v in a multiset Sj = {{C(φj(v, w)) | w
in V (G)}}. Then, for a tuple v, define Ĉ(v) := (C(v),M(v)), whereM(v) is the k-tuple (S1, . . . , Sk).
For consistency, the strings Ĉ(v) thus obtained are lexicographically sorted and renamed as fresh integers,
i.e., ones that have not been used in previous iterations.

k-dimensional Weisfeiler–Leman For k ≥ 2, the k-WL computes a coloring C∞ : V (G)k → N
of a given graph G, as follows.1 To begin with, the initial coloring C0 is computed. Then, starting
with C0, successive refinements Ci+1 = Ĉi are computed until convergence. That is, Ci+1(v) =
(Ci(v),Mi(v)),where

Mi(v) :=
(
{{Ci(φ1(v, w)) | w ∈ V (G)}}, . . . , {{Ci(φk(v, w)) | w ∈ V (G)}}

)
.

Since the color classes form a partition of V (G)k, there must exist a finite ` ≤ |V (G)|k such that
C` = Ĉ`, i.e., the partition induced by C` is not refined further.

Local δ-k-dimensional Weisfeiler–Leman algorithm Morris et al. (2020b) introduced a more efficient
modification of the k-WL, namely the local δ-k-dimensional Weisfeiler–Leman algorithm (δ-k-LWL). In
contrast to the k-WL, the δ-k-LWL considers only a subset of the entire neighborhood of a node tuple. Let
the tuple w = φj(v, w) be a j-neighbor of v. We say that w is a local j-neighbor of v if w is adjacent to
the replaced node vj . Formally, the δ-k-LWL algorithm refines a coloring Ck,δi , obtained after i rounds of
δ-k-LWL, via,

Mδ
i (v) :=

(
{{Ck,δi (φ1(v, w)) | w ∈ δ(v1)}}, . . . , {{Ck,δi (φk(v, w)) | w ∈ δ(vk)}}

)
, (1)

hence considering only the local j-neighbors of the tuple v in each iteration. The coloring function for the
δ-k-LWL is then defined by

Ck,δi+1(v) := (Ck,δi (v),Mδ
i (v)). (2)

We define the 1-WL to be the δ-1-LWL. Morris et al. (2020b) also defined the δ-k-LWL+ and showed
that the δ-k-LWL+ is slightly more powerful than the k-WL in distinguishing non-isomorphic graphs,
see Appendix B for details.

Comparing k-WL variants Let A1 and A2 denote two node-refinement algorithms. We write A1 v A2

if A1 distinguishes between all non-isomorphic pairs that A2 distinguishes, and A1 ≡ A2 if both
A1 v A2 and A2 v A1 hold. The corresponding strict relation is denoted by @.

Kernels based on node-refinement algorithms After running the k-WL (and the other node-refinement
algorithms), the concatenation of the histogram of colors in each iteration can be used as a feature vector in
a kernel computation. Specifically, in the histogram, for every color c in N, an entry contains the number
of nodes or k-tuples colored c.

1We define the 1-WL in the next subsection.
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3 THE (k, s)-LWL ALGORITHM AND SPEQNETS

Since both k-WL and its local variant δ-k-LWL consider all k-tuples of a graph, they do not scale to large
graphs for growing k. To address this issue, we introduce the (k, s)-LWL, it considers a subset of all
k-tuples, namely those inducing subgraphs with at most s connected components. Formally, let G be a
graph. Then #com(G) denotes the number of (connected) components of G. Further, let k ≥ 1 and s in
[k], then

V (G)ks := {v ∈ V (G)k | #com(G[v]) ≤ s}
is the set of (k, s)-tuples of nodes, i.e, k-tuples which induce (sub-)graphs with at most s (connected)
components. In contrast to the algorithms of Section 2.1, the (k, s)-LWL colors tuples from V (G)ks instead
of the entire V (G)k. Just as in Section 2.1, a coloring of V (G)ks is a mapping Ck,si : V (G)ks → N for
i ≥ 0, assigning a number (color) to every tuple in V (G)ks , and Equation (1) is replaced with

Mδ,k,s
i (v) :=

(
{{Ck,si (φ1(v, w)) | w ∈ δ(v1); φ1(v, w) ∈ V (G)ks}}, . . . ,
{{Ck,si (φk(v, w)) | w ∈ δ(vk); φk(v, w) ∈ V (G)ks}}

)
.

The following results show that the (k, 1)-LWL forms a hierarchy, i.e., the algorithm becomes more
expressive as k increases.

Theorem 1. For k ≥ 1, it holds that

(k + 1, 1)-LWL @ (k, 1)-LWL.

Moreover, we also show that the (k, 2)-LWL is more expressive than the (k, 1)-LWL.

Proposition 2. For k ≥ 2, it holds that

(k, 2)-LWL @ (k, 1)-LWL.

Further, the following theorem yields that increasing the parameter s results in higher expressivity.

Theorem 3. For k ≥ 2, it holds that

(k, k)-LWL @ (k, 2)-LWL.

See Appendix C.2 for an analysis of the running time of the (k, s)-LWL, showing that is running time on
an bounded-degree, n-vertex graph is Õ(ns) instead of the usual Õ(nk) for the k-WL, for fixed k and s.

3.1 SPEQNETS

We can now leverage the above combinatorial insights to derive sparsity-aware, permutation-equivariant
graph networks, denoted (k, s)-SpeqNets. Given a node-labeled graph G, let each (k, s)-tuple v in
V (G)ks be annotated with an initial feature f (0)(v) determined by its (labeled) isomorphism type, e.g., a
one-hot encoding. In each layer t > 0, we compute a new feature f (t)(v) as

fW1
mrg

(
f (t−1)(v), fW2

agg

((
{{f (t−1)(φi(v, w)) | w ∈ δ(vi) and φi(v, w) ∈ V (G)ks}}

)
i∈[k]

))
, (3)

in R1×e, where W (t)
1 and W (t)

2 are learnable parameter matrices from Rd×e.2 Here, fW2
mrg and fW1

agg
are differentiable functions to merge and aggregate the relevant feature information, respectively.
See Appendix D for further theoretical properties of the architecture.

4 EXPERIMENTAL EVALUATION

Here, we aim to investigate the learning performance of the (k, s)-LWL-based kernel and neural
architectures. Concretely, we aim to answer the following questions.
Q1 Do the (k, s)-LWL-based algorithms lead to improved classification and regression scores on
graph-level benchmark datasets compared standard baselines?
Q2 How does the (k, s)-SpeqNets compare to standard GNN baselines for node classification?
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Table 1: Classification accuracies in percent and standard deviations.

Method
Dataset

ENZYMES IMDB-BINARY IMDB-MULTI MUTAG NCI1 PROTEINS PTC MR REDDIT-BINARY
B

as
el

in
e GR 29.9 ±0.8 59.3 ±0.9 39.2 ±0.6 72.5 ±1.7 66.2 ±0.2 71.5 ±0.5 56.6 ±1.3 59.7 ±0.5

SP 40.3 ±0.9 58.7 ±0.6 39.7 ±0.3 81.7 ±1.5 74.1 ±0.2 75.8 ±0.7 59.6 ±1.5 84.5 ±0.2
1-WL 50.6 ±1.2 72.5 ±0.8 50.0 ±0.8 75.9 ±2.0 84.4 ±0.3 73.1 ±0.6 59.3 ±2.1 73.4 ±0.9
WLOA 57.1 ±0.8 73.2 ±0.4 49.8 ±0.4 83.4 ±1.2 85.2 ±0.2 73.0 ±0.9 60.3 ±1.9 88.3 ±0.4

G
N

N Gin-ε 38.7 ±1.5 72.9 ±0.7 49.7 ±0.7 84.1 ±1.4 77.7 ±0.8 72.2 ±0.6 55.2 ±1.7 89.8 ±0.4
Gin-ε-JK 39.3 ±1.6 73.0 ±1.1 49.6 ±0.7 83.4 ±2.0 78.3 ±0.3 72.2 ±0.7 56.0 1.3± 90.4 ±0.4

k
-W

L

2-WL 37.0 ±1.0 68.1 ±1.7 47.5 ±0.7 85.7 ±1.6 66.9 ±0.3 75.2 ±0.4 60.5 ±1.1 OOM
3-WL 42.3 ±1.1 67.1 ±1.5 46.8 ±0.8 85.4 ±1.5 OOT OOT 59.0 ±2.0 OOM
δ-2-LWL 55.9 ±1.0 73.0 ±0.7 50.1 ±0.9 85.6 ±1.4 84.6 ±0.3 75.1 ±0.5 61.7 ±2.4 89.4 ±0.6
δ-2-LWL+ 53.9 ±1.4 75.6 ±1.0 62.7 ±1.4 84.1 ±2.1 91.3 ±0.3 79.2 ±1.2 61.6 ±1.3 91.4 ±0.4
δ-3-LWL 58.2 ±1.2 72.6 ±0.9 49.0 ±1.2 84.1 ±1.6 83.2 ±0.4 OOM 60.7 ±2.2 OOM
δ-3-LWL+ 56.5 ±1.4 76.1 ±1.2 64.3 ±1.2 85.4 ±1.8 82.7 ±0.4 OOM 61.5 ±1.8 OOM

(k
,s
)-

LW
L (2, 1)-LWL 53.7 ±1.7 73.5 ±0.8 50.8 ±0.7 84.2 ±1.7 82.8 ±0.3 73.2 ±0.6 55.9 ±2.4 76.9 ±0.6

(2, 1)-LWL+ 51.6 ±1.8 73.7 ±1.1 55.4 ±0.9 79.6 ±3.4 81.9 ±0.3 76.0 ±0.9 60.2 ±2.1 94.7 ±0.3
(3, 1)-LWL 53.4 ±1.4 74.6 ±1.0 51.3 ±0.6 85.3 ±2.4 81.4 ±0.5 72.9 ±1.1 60.2 ±1.7 OOM
(3, 1)-LWL+ 57.0 ±1.9 87.1 ±0.6 67.1 ±1.1 79.2 ±1.5 89.8 ±0.4 81.2 ±0.8 59.2 ±2.0 OOM
(3, 2)-LWL 56.4 ±0.7 73.5 ±0.5 49.7 ±0.6 86.4 ±2.6 84.9 ±0.4 75.1 ±0.9 61.9 ±2.4 OOM
(3, 2)-LWL+ 55.8 ±1.7 78.1 ±1.4 59.5 ±1.0 84.5 ±1.9 89.4 ±0.3 78.8 ±0.6 62.3 ±3.3 OOM

Table 2: Additional experimental results for graph regression and node classification.

(a) Mean MAE (mean std. MAE, logMAE) on large-scale
(multi-target) molecular regression tasks.

Method
Dataset

ALCHEMY (10K) QM9
GINE-ε 0.180 ±0.006 -1.958 ±0.047 0.079 ±0.003 -3.430 ±0.080

(2, 1)-SpeqNet 0.169 ±0.005 -2.010 ±0.056 0.078 ±0.007 -2.947 ±0.171
(2, 2)-SpeqNet 0.115 ±0.001 -2.722 ±0.054 0.029 ±0.001 -4.081 ±0.058

(3, 1)-SpeqNet 0.180 ±0.011 -1.914 ±0.097 0.068 ±0.003 -3.397 ±0.086
(3, 2)-SpeqNet 0.115 ±0.002 -2.767 ±0.079 OOT

(b) Classification accuracies and standard deviations
for node classification.

Method
Dataset

CORNELL TEXAS WISCONSIN

GCN 56.5 ±0.9 58.2 ±0.8 50.9 ±0.7
SDRF + Undirected 57.5 ±0.3 70.4 ±0.6 61.6 ±0.9

(2, 1)-SpeqNet 63.9 ±1.7 66.8 ±0.9 67.7 ±2.2
(2, 2)-SpeqNet 67.9 ±1.7 67.3 ±2.0 68.4 ±2.2
(3, 1)-SpeqNet 61.8 ±3.3 68.3 ±1.3 60.4 ±2.8

Q3 To what extend does the (k, s)-LWL reduce computation times compared to k-WL-based architectures?
See Appendix E for details on the experiments.

Results and discussion In the following, we answer questions Q1 to Q3.
A1 Kernels See Table 1. The (k, s)-LWL for k, s in {2, 3} significantly improves the classification
accuracy compared to the k-WL and the δ-k-WL, and the other kernel baselines, while being on par with
or better than the δ-2-LWL and δ-3-LWL. The (k, s)-LWL and (k, s)-LWL+ achieve a new state-of-the-art
on five out of eight datasets. Our algorithms also perform vastly better than the neural baselines.
Neural architectures See Table 2. On both datasets, all (k, s)-SpeqNet architectures beat the GNN
baseline. On the ALCHEMY dataset the (2, 2)-SpeqNet and (3, 1)-SpeqNet perform best, while on the
QM9 dataset the (2, 2)-SpeqNet performs best by a large margin.
A2 See Table 2. Over all three datasets, the (k, s)-SpeqNet architectures improve over the GCN baseline.
Specifically, over all datasets, the (2, 1)-SpeqNet and the (2, 2)-SpeqNet lead to an increase of at
least 7% in accuracy. For example, both architectures beat the GCN baseline by at least 17% on the
WISCONSIN dataset. Further, the (k, s)-SpeqNet architectures lead to better accuracies compared to the
SDRF architecture.
A3 See Appendix F.

5 CONCLUSION

To circumvent the exponential running time requirements of k-WL, we introduced a new heuristic for the
graph isomorphism problem, namely the (k, s)-LWL. By varying the parameters k and s, the (k, s)-LWL
offers a tradeoff between scalability and expressivity and, unlike the k-WL, takes into account the potential
graph’s sparsity. Based on these combinatorial insights, we designed provably expressive machine-learning
architectures. Empirically, we showed that such architectures lead to state-of-the-art results in node- and
graph-level classification regimes while obtaining promising results on graph-level regression tasks.

2For clarity of presentation, we omit biases.
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A RELATED WORK

In the following, we review related work from graph kernels, GNNs and graph theory.

Graph kernels Historically, kernel methods—which implicitly or explicitly map graphs to elements of a
Hilbert space—have been the dominant approach for supervised learning on graphs. Important early work
in this area includes random-walk based kernels (Gärtner et al., 2003; Kashima et al., 2003; Kriege et al.,
2017) and kernels based on shortest paths (Borgwardt & Kriegel, 2005). More recently, developments
in the field have emphasized scalability, focusing on techniques that bypass expensive Gram matrix
computations by using explicit feature maps, see, e.g., (Shervashidze et al., 2011). Morris et al. (2017)
devised a local, set-based variant of the k-WL and a corresponding kernel. However, the approach is
(provably) weaker than the tuple-based algorithm. Further, Morris et al. (2020a) proposed kernels based on
the δ-k-LWL.

Yanardag & Vishwanathan (2015a) successfully employed Graphlet (Shervashidze et al., 2009), and
Weisfeiler–Leman kernels within frameworks for smoothed (Yanardag & Vishwanathan, 2015a) and
deep graph kernels (Yanardag & Vishwanathan, 2015b). Other recent work focuses on assignment-
based (Johansson & Dubhashi, 2015; Kriege et al., 2016; Nikolentzos et al., 2017), spectral (Kondor & Pan,
2016; Verma & Zhang, 2017), graph decomposition (Nikolentzos et al., 2018), randomized binning
approaches (Heimann et al., 2019), and the extension of kernels based on the 1-WL (Rieck et al., 2019;
Togninalli et al., 2019). For a theoretical investigation of graph kernels, see (Kriege et al., 2018), and for a
thorough survey of graph kernels, see (Borgwardt et al., 2020; Kriege et al., 2020).

GNNs Recently, GNNs (Gilmer et al., 2017; Scarselli et al., 2009) emerged as an alternative to graph
kernels. Notable instances of this architecture include, e.g., (Duvenaud et al., 2015; Hamilton et al.,
2017; Velickovic et al., 2018), which can be subsumed under the message-passing framework introduced
in (Gilmer et al., 2017). Also, approaches based on spectral information were introduced in, e.g., (Defferrard
et al., 2016; Bruna et al., 2014; Kipf & Welling, 2017; Monti et al., 2017)—all of which descend from
early work in (Kireev, 1995; Baskin et al., 1997; Micheli & Sestito, 2005; Merkwirth & Lengauer, 2005;
Micheli, 2009; Sperduti & Starita, 1997; Scarselli et al., 2009).

Limits of GNNs and more expressive architectures Recently, connections of GNNs to Weisfeiler–
Leman type algorithms have been shown (Azizian & Lelarge, 2020; Barceló et al., 2020; Chen et al.,
2019b; Geerts et al., 2020; Geerts, 2020; Maehara & NT, 2019; Maron et al., 2019a; Morris et al., 2019;
Xu et al., 2019). Specifically, (Morris et al., 2019; Xu et al., 2019) showed that the expressive power of any
possible GNN architecture is limited by the 1-WL in terms of distinguishing non-isomorphic graphs.

Triggered by the above results, a large set of papers proposed architectures to overcome the expressivity
limitations of the 1-WL. Morris et al. (2019) introduced k-dimensional GNNs (k-GNN) which rely on a
message-passing scheme between subgraphs of cardinality k. Similar to (Morris et al., 2017), the paper
employed a local, set-based (neural) variant of the k-WL. Later, this was refined in (Maron et al., 2019a;
Azizian & Lelarge, 2020) by introducing k-order folklore graph neural networks (k-FGNN), which are
equivalent to the folklore or oblivious variant of the k-WL (Grohe, 2021; Morris et al., 2021) in terms of
distinguishing non-isomorphic graphs. Subsequently, Morris et al. (2020b) introduced neural architectures
based on the δ-k-LWL, which only considers a subset of the neighborhood from the k-WL, taking sparsity
of the underlying graph (to some extent) into account. Although more scalable, the algorithm reaches
computational exhaustion on large-scale graphs since it considers all nk tuples of size k. Chen et al.
(2019b) connected the theory of universal approximations of permutation-invariant functions and the graph
isomorphism viewpoint and introduced a variation of the 2-WL. See (Morris et al., 2021) for an in-depth
survey on this topic.

Recent works have extended the expressive power of GNNs, e.g., by encoding node identifiers (Murphy
et al., 2019; Vignac et al., 2020), leveraging random features (Abboud et al., 2020; Dasoulas et al., 2020;
Sato et al., 2020), subgraph information (Bevilacqua et al., 2021; Bouritsas et al., 2020; Cotta et al.,
2021; Papp et al., 2021; Thiede et al., 2021; You et al., 2021; Zhang & Li, 2021; Zhao et al., 2021),
homomorphism counts (Barceló et al., 2021; Nguyen & Maehara, 2020), spectral information (Balcilar
et al., 2021), simplicial and cellular complexes (Bodnar et al., 2021b;a), random walks (Tönshoff
et al., 2021), graph decompositions (Talak et al., 2021), distance (Li et al., 2020) and directional
information (Beaini et al., 2020).
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(1, 1)-LWL
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Figure 1: Overview of the power of the proposed algorithms and neural architectures. The green and
red nodes represent algorithms proposed in the present work. Forward arrows point to more powerful
algorithms or neural architectures.
A @ B (A ≡ B): algorithm A is strictly more powerful (equally powerful) than B.

However, up to a few exceptions, all of the above approaches only overcome limitations of the 1-WL or the
2-WL, and do not induce a hierarchy of provably powerful, permutation-equivariant neural architectures
aligned with the k-WL hierarchy.

Theory The Weisfeiler–Leman algorithm constitutes one of the earliest and most natural approaches to
isomorphism testing (Weisfeiler, 1976; Weisfeiler & Leman, 1968), having been heavily investigated by
the theory community over the last few decades (Grohe, 2017). Moreover, the fundamental nature of
the k-WL is evident from a variety of connections to other fields such as logic, optimization, counting
complexity, and quantum computing. The power and limitations of k-WL can be neatly characterized in
terms of logic and descriptive complexity (Babai, 1979; Immerman & Lander, 1990), Sherali-Adams
relaxations of the natural integer linear program for the graph isomorphism problem (Atserias & Maneva,
2013; Grohe & Otto, 2015; Malkin, 2014), homomorphism counts (Dell et al., 2018), and quantum
isomorphism games (Atserias et al., 2019). In their seminal paper, Cai et al. (1992) showed that, for each
k, there exists a pair of non-isomorphic graphs of size O(k) that are not distinguished by the k-WL.
(Kiefer, 2020a;b) gives a thorough survey of these results. For k = 1, the power of the algorithm has been
completely characterized (Arvind et al., 2015; Kiefer et al., 2015). Moreover, upper bounds on the running
time (Berkholz et al., 2017) and the number of iterations for k = 1 (Kiefer & McKay, 2020) and for the
folklore k = 2 (Kiefer & Schweitzer, 2016; Lichter et al., 2019) have been shown. For k in {1, 2}, Arvind
et al. (2019) studied the abilities of the (folklore) k-WL to detect and count fixed subgraphs, extending the
work of Fürer (2017). The former was refined in (Chen et al., 2020). Kiefer et al. (2019) showed that the
folklore 3-WL completely captures the structure of planar graphs. The algorithm (for logarithmic k) plays
a prominent role in the recent result of Babai (2016) improving the best-known running time for the graph
isomorphism problem. Recently, Grohe et al. (2020) introduced the framework of Deep Weisfeiler–Leman
algorithms, which allow the design of a more powerful graph isomorphism test than Weisfeiler–Leman
type algorithms. Finally, the emerging connections between the Weisfeiler–Leman paradigm and graph
learning are described in two recent surveys (Grohe, 2020; Morris et al., 2021).

B PRELIMINARIES

As usual, let [n] := {1, . . . , n} ⊂ N for n ≥ 1, and we use {{. . . }} to denote multisets, i.e., the
generalization of sets allowing for multiple instances for each of its elements.

Graphs A graphG is a pair (V (G), E(G)) with finite sets of nodes V (G) and edgesE(G) ⊆ {{u, v} ⊆
V | u 6= v}. If not otherwise stated, we set n := |V (G)|. For ease of notation, we denote the edge {u, v}
in E(G) by (u, v) or (v, u). In the case of directed graphs, E ⊆ {(u, v) ∈ V × V | u 6= v}. A labeled
graph G is a triple (V,E, `) with a label function ` : V (G)∪E(G)→ N. Then `(v) is a label of x for x
in V (G)∪E(G). The neighborhood of v in V (G) is denoted by δ(v) = {u ∈ V (G) | (v, u) ∈ E(G)}
and the degree of a node v is |δ(v)|. Let S ⊆ V (G) then G[S] = (S,ES) is the subgraph induced by S,
where ES = {(u, v) ∈ E(G) | u, v ∈ S}. A connected component of a graph G is an inclusion-wise
maximal subgraph of G in which every two nodes are connected by paths. A tree is a connected graph
without cycles. A rooted tree is an oriented tree with a designated node called root, in which the edges are
directed away from the root. Let p be a node in a rooted tree. Then we call its out-neighbors children with
parent p. We denote an undirected cycle on k nodes by Ck. Given two graphs G and H with disjoint node
sets, we denote their disjoint union by G ∪̇H .
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Two graphs G and H are isomorphic and we write G ' H if there exists a bijection ϕ : V (G)→ V (H)
preserving the adjacency relation, i.e., (u, v) is in E(G) if and only if (ϕ(u), ϕ(v)) is in E(H). Then
ϕ is an isomorphism between G and H . Moreover, we call the equivalence classes induced by '
isomorphism types, and denote the isomorphism type of G by τG. In the case of labeled graphs, we
additionally require that `(v) = `(ϕ(v)) for v in V (G) and `((u, v)) = `((ϕ(u), ϕ(v))) for (u, v) in
E(G). Let v be a tuple in V (G)k for k > 0, then G[v] is the subgraph induced by the multiset of
elements of v, where the nodes are labeled with integers from {1, . . . , k} corresponding to their positions
in v.

Equivariance For n > 0, let Sn denote the set of all permutations of [n], i.e., the set of all bijections
from [n] to itself. For σ in Sn and a graph G such that V (G) = [n], let Gσ = σ ·G be the graph such
that V (σ ·G) = {vσ−1(1), . . . , vσ−1(n)} and E(Gσ) = {(vσ−1(i), vσ−1(j)) | (vi, vj) ∈ E(G)}. That
is, applying the permutation σ reorders the nodes. Hence, for two isomorphic graphs G and H on the same
vertex set, i.e., G ' H , there exists σ in Sn such that σ ·G = H .

Let G denote the set of all graphs, and let Gn denote the set of all graphs on n nodes. A function
f : G → R is invariant if for every n > 0 and every σ in Sn and graph G, f(σ ·G) = f(G). A function
f : G 7→ G is equivariant if for every n > 0, f(Gn) ⊆ Gn and for every σ in Sn, f(σ ·G) = σ · f(G).
Kernels A kernel on a non-empty set X is a symmetric, positive semidefinite function k : X × X → R.
Equivalently, a function k : X × X → R is a kernel if there is a feature map φ : X → H to a Hilbert
spaceH with inner product 〈·, ·〉, such that k(x, y) = 〈φ(x), φ(y)〉 for all x and y in X . A graph kernel
is a kernel on the set G of all graphs.

B.1 NODE-REFINEMENT ALGORITHMS (EXTENDED)

In the following, we briefly describe the Weisfeiler–Leman algorithm and related variants (Morris et al.,
2020b). Let k be a fixed positive integer. There exist two definitions of the k-WL, the so-called oblivious
k-WL and folklore or non-oblivious k-WL, in literature, see, e.g., (Grohe, 2021). There is a subtle
difference in how they aggregate neighborhood information. Within the graph learning community, it is
customary to abbreviate the oblivious k-WL as k-WL, a convention that we follow in this paper.

We proceed to the definition of the k-WL. Let V (G)k denote the set of k-tuples of nodes of the graph G.
A coloring of V (G)k is a mapping C : V (G)k → N, i.e., we assign a number (color) to every tuple in
V (G)k. The initial coloring C0 of V (G)k is specified by the atomic types of the tuples, i.e., two tuples v
and w in V (G)k have the same initial color iff mapping vi 7→ wi induces an isomorphism between the
labeled subgraphs G[v] and G[w]. Note that, given a tuple v in V (G)k, we can upper-bound the running
time of the computation of this initial coloring for v by O(k2). A color class corresponding to a color c is
the set of all tuples colored c, i.e., the set C−1(c).

For j in [k] and w in V (G), let φj(v, w) be the k-tuple obtained by replacing the jth component of v
with the node w. That is, φj(v, w) = (v1, . . . , vj−1, w, vj+1, . . . , vk). If w = φj(v, w) for some w in
V (G), call w a j-neighbor of v. The neighborhood of v is the set of all w such that w = φj(v, w) for
some j in [k] and a w ∈ V (G).

The refinement of a coloring C : V (G)k → N, denoted by Ĉ, is a coloring Ĉ : V (G)k → N defined as
follows. For each j in [k], collect the colors of the j-neighbors of v in a multiset Sj = {{C(φj(v, w)) |
w ∈ V (G)}}. Then, for a tuple v, define

Ĉ(v) := (C(v),M(v)),

where M(v) is the k-tuple (S1, . . . , Sk). For consistency, the strings Ĉ(v) thus obtained are lexicograph-
ically sorted and renamed as integers, not used in previous iterations. Observe that the new color Ĉ(v) of
v is solely dictated by the color histogram of the neighborhood of v. In general, a different mapping M(·)
could be used, depending on the neighborhood information that we would like to aggregate. We will refer
to a mapping M(·) as an aggregation map.

k-dimensional Weisfeiler–Leman For k ≥ 2, the k-WL computes a coloring C∞ : V (G)k → N of a
given graph G, as follows.3 To begin with, the initial coloring C0 is computed. Then, starting with C0,
successive refinements Ci+1 = Ĉi are computed until convergence. That is,

Ci+1(v) = (Ci(v),Mi(v)),

3We define the 1-WL in the next subsection.
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where

Mi(v) =
(
{{Ci(φ1(v, w)) | w ∈ V (G)}}, . . . , {{Ci(φk(v, w)) | w ∈ V (G)}}

)
. (4)

The successive refinement steps are also called rounds or iterations. Since the disjoint union of the color
classes form a partition of V (G)k, there must exist a finite ` ≤ |V (G)|k such that C` = Ĉ`, i.e., the
partition induced by C` cannot be refined further. The k-WL outputs C` as the stable coloring C∞.

The k-WL distinguishes two graphs G and H if, upon running the k-WL on their disjoint union G ∪̇H ,
there exists a color c in N in the stable coloring such that the corresponding color class Sc satisfies

|V (G)k ∩ Sc| 6= |V (H)k ∩ Sc|,

i.e., there the numbers of c-colored tuples in V (G)k and V (H)k differ. Two graphs that are distinguished
by the k-WL must be non-isomorphic, because the algorithm is defined in an isomorphism-invariant way.

Finally, the application of different aggregation maps M(·) yield related versions of k-WL. For example,
setting M(·) to be

MF (v) = {{
(
C(φ1(v, w)), . . . , C(φk(v, w))

)
| w ∈ V (G)}},

yields the so-called folklore-version of k-WL (see e.g. (Cai et al., 1992)). It is known that the oblivious
version of the k-WL is as powerful as the folklore version of the (k−1)-WL (Grohe, 2021).

Local δ-k-dimensional Weisfeiler–Leman algorithm

Morris et al. (2020b) introduced a more efficient variant of the k-WL, namely the local δ-k-dimensional
Weisfeiler–Leman algorithm (δ-k-LWL). In contrast to the k-WL, the δ-k-LWL considers only a subset of
the entire neighborhood of a node tuple. Let the tuple w = φj(v, w) be a j-neighbor of v. We say that w
is a local j-neighbor of v if w is adjacent to the replaced node vj . Otherwise, the tuple w is a global
j-neighbor of v. The δ-k-LWL considers only local neighbors during the neighborhood aggregation
process, and discards any information about the global neighbors. Formally, the δ-k-LWL algorithm refines
a coloring Ck,δi (obtained after i rounds of δ-k-LWL) via the aggregation function,

M δ
i (v) =

(
{{Ck,δi (φ1(v, w)) | w ∈ δ(v1)}}, . . . , {{Ck,δi (φk(v, w)) | w ∈ δ(vk)}}

)
, (5)

hence considering only the local j-neighbors of the tuple v in each iteration. The coloring function for the
δ-k-LWL is then defined by

Ck,δi+1(v) = (Ck,δi (v),Mδ
i (v)). (6)

We define the 1-WL to be the δ-1-LWL, which is commonly known as Color Refinement or Naive Node
Classification.4 Hence, we can equivalently define

C1,δ
i+1(v) = (C1,δ

i (v), {{C1,δ
i (w) | w ∈ δ(v)}}). (7)

for a node v in V (G).

Morris et al. (2020b) also defined the δ-k-LWL+, a minor variation of the δ-k-LWL. Formally, the
δ-k-LWL+ refines a coloring Ci (obtained after i rounds) via the aggregation function

Mδ,+(v) =
(
{{(Ck,δi (φ1(v, w)),#

1
i (v, φ1(v, w))) | w ∈ δ(v1)}}, . . . ,

{{(Ck,δi (φk(v, w)),#
k
i (v, φk(v, w))) | w ∈ δ(vk)}}

)
,

(8)

instead of the δ-k-LWL aggregation defined in Equation (5). Here, we set

#j
i (v,x) :=

∣∣{w : w ∼j v, Ck,δi (w) = Ck,δi (x)}
∣∣, (9)

where w ∼j v denotes that w is a j-neighbor of v, for j in [k]. Essentially, #j
i (v,x) counts the number

of j-neighbors (local or global) of v which have the same color as x under the coloring Ci (i.e., after i
rounds). Morris et al. (2020b) showed that the δ-k-LWL+ is slightly more powerful than the k-WL in
distinguishing non-isomorphic graphs.

4Strictly speaking, the 1-WL and Color Refinement are two different algorithms. That is, the 1-WL considers
neighbors and non-neighbors to update the coloring, resulting in a slightly higher expressivity when distinguishing
nodes in a given graph, see (Grohe, 2021) for details. For brevity, we consider both algorithms to be equivalent.
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C THE (k, s)-LWL ALGORITHM (EXTENDED)

Since both k-WL and its local variant δ-k-LWL consider all k-tuples of a graph, they do not scale to large
graphs for larger k. Specifically, for an n-node graph, the memory requirement is Ω(nk). Further, since
the k-WL considers the graph structure only at initialization, it does not adapt to its sparsity, i.e., it does
not run faster for sparser graphs. To address this issue, we introduce the (k, s)-LWL. The algorithm offers
more fine-grained control over the trade-off between expressivity and scalability by only considering a
subset of all k-tuples, namely those inducing subgraphs with at most s connected components. This
combinatorial algorithm will be the basis of the permutation-equivariant neural architectures, see below.

Formally, let G be a graph, then #com(G) denotes the number of (connected) components of G. Further,
let k ≥ 1 and 1 ≤ s ≤ k, then

V (G)ks := {v ∈ V (G)k | #com(G[v]) ≤ s}
is the set of (k, s)-tuples of nodes, i.e, k-tuples which induce (sub-)graphs with at most s (connected)
components.

In contrast to the algorithms of Section 2.1, the (k, s)-LWL colors tuples from V (G)ks instead of the
entire V (G)k. Hence, analogously to Section 2.1, a coloring of V (G)ks is a mapping Ck,si : V (G)ks → N
for i ≥ 0, assigning a number (color) to every tuple in V (G)ks . The initial coloring Ck,s0 of V (G)ks is
defined in the same way as before, i.e., specified by the isomorphism types of the tuples, see Section 2.1.
Subsequently, the coloring is updated using the δ-k-LWL aggregation map, see Equation (1). Hence, the
(k, s)-LWL is a variant of the δ-k-LWL considering only (k, s)-tuples, i.e., Equation (1) is replaced with

M δ,k,s
i (v) :=

(
{{Ck,si (φ1(v, w)) | w ∈ δ(v1) and φ1(v, w) ∈ V (G)ks}},

. . . ,{{Ck,si (φk(v, w)) | w ∈ δ(vk) and φk(v, w) ∈ V (G)ks}}
)
,

(10)

i.e., Mδ
i (v) restricted to colors of (k, s)-tuples. The stable coloring Ck,s∞ is defined analogously to the

stable coloring Ck∞. In the following two subsections, we investigate the properties of the algorithm in
detail.

Analogously to the δ-k-LWL+, we also define the (k, s)-LWL+ using

M δ,+(v) =
(
{{(Ck,si (φ1(v, w)),#

1
i,s(v, φ1(v, w))) | w ∈ δ(v1) and φ1(v, w) ∈ V (G)ks}}, . . . ,

{{(Ck,si (φk(v, w)),#
k
i,s(v, φk(v, w))) | w ∈ δ(vk) and φk(v, w) ∈ V (G)ks}}

)
,

where the function

#j
i,s(v,x) =

∣∣{w : w ∼j v, Ck,si (w) = Ck,si (x) and w ∈ V (G)ks}
∣∣,

restricts #j
i (v,x) to (k, s)-tuples.

C.1 EXPRESSIVITY

Here, we investigate the expressivity of the (k, s)-LWL, i.e., its ability to distinguish non-isomorphic
graphs, for different choices of k and s. Below. we will leverage these results to devise universal,
permutation-equivariant graph networks. We start off with the following simple observation. Since the
(k, k)-LWL colors all k-tuples, it is equal to the δ-k-LWL.
Observation 1. Let k ≥ 1, then

(k, k)-LWL ≡ δ-k-LWL.

The following results shows that the (k, 1)-LWL forms a hierarchy, i.e., the algorithm gets more expressive
as k increases.
Theorem 4. Let k ≥ 1, then

(k + 1, 1)-LWL @ (k, 1)-LWL.

To prove Theorem 4, we introduce the (k, s)-tuple graph. It essentially contains the set of all (k, s)-tuples
as nodes, where each node vt is labeled by the isomorphism type of the (k, s)-tuple t. We join two
nodes by an edge, labeled j, if the underlying (k, s)-tuples are j-neighbors. The formal definition of the
(k, s)-tuple graph is as follows. (Recall that τ denotes isomorphism types.)

15



Submitted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

ab c

d

(a)

a(0,a)

c(1,a) b(1,a)d(1,a)

a(2,d)b(2,d)
a(2,c) a(2,b) d(2,b)

(b)

Figure 2: Illustration of the unrolling operation around the node a for i = 2.

Definition 5. Let G be a graph and let k ≥ 1, and s in [k]. Further, let s and t be tuples in V (G)ks . Then
the directed, labeled (k, s)-tuple graph T ks (G) = (VT , ET , `T ) has node set VT = {vt | t ∈ V (G)ks},
and

(vs, vt) ∈ ET ⇐⇒ t = φj(s, w) holds for some j in [k] and some w in V (G). (11)
We set `T ((vs, vt)) := j if t is a local j-neighbor of s, and let `T (vs) := τG[s].

Given a graph G and the corresponding (k, s)-tuple graph T ks (G), we define the following variant of the
1-WL, taking into account edge labels, using the coloring

C1,δ,∗
i+1 (vt) = (C1,δ,∗

i (vt), {{(C1,δ,∗
i (vs), `(vt, vs)) | vs ∈ δ(vt)}} (12)

for i > 0 and C1,δ,∗
0 (vt) = τG[t] for vt in VT . Note that 1-WL and the variant defined via Equation (12)

have the same asymptotic running time. The following lemma states that the (k, s)-LWL can be simulated
on the (k, s)-tuple graph using the above variant of 1-WL.
Lemma 6. Let G be a graph, k ≥ 1, and s in [k], then

Ck,si (t) = Ck,si (u) ⇐⇒ C1,δ,∗
i (vt) = C1,δ,∗

i (vu),

for all i ≥ 0, and all (k, s)-tuples t and u in V (G)ks .

Proof sketch. Induction on the number of iterations using Definition 5.

The unrolling of a neighborhood around a node of a given graph to a tree is defined as follows, see Figure 2
for an illustration.
Definition 7. Let G = (V,E, `) be a labeled (directed) graph and let v be in V . Then U iG,v =

(Wi, Fi, li) for i ≥ 0 denotes the unrolled tree G around v at depth i, where

Wi =

{
{v(0,v)} if i = 0

Wi−1 ∪ {u(i,w(i−1,p)) | u ∈ δ(w) for w(i−1,p) ∈Wi−1} otherwise,

and

Fi =

{
∅ if i = 0

Fi−1 ∪ {(w(i−1,p), u(i,w)) | u ∈ δ(w) for w(i−1,p) ∈Wi−1} otherwise.

The label function is defined as li(u(j,p)) = `(u) for u in V , and li(u(j,w)) = `((w, u)). For notational
convenience, we usually omit the subscript i.

In the following, we use the unrolled tree for the above defined (k, s)-tuple graph. For k ≥ 2 and s in
[k], we denote the directed, unrolled tree of the (k, s)-tuple graph of G around the node vt at depth i
for the tuple t in V (G)ks by Ui

Tk
s (G),vt

. For notational convenience, we write Ui
T,vt

. Further, for two
(k, s)-tuples t and u, we write

Ui
T,vt 'vt→vu Ui

T,vu (13)
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(a) (b)

Figure 3: The graphs Ak+2 and Bk+2 for k = 4.

if there exists a (labeled) isomorphism ϕ between the two unrolled trees, mapping the (root) node vt to vu.
Moreover, we need the following two results. The first one states that the 1-WL can distinguish any two
directed, labeled non-isomorphic trees.

Theorem 8 ((Busacker & Saaty, 1965; Valiente, 2002)). The 1-WL distinguishes any two directed,
labeled non-isomorphic trees.

Using the first result, the second one states that the (k, s)-LWL can be simulated by the variant of the
1-WL of Equation (12) on the unrolled tree of the (k, s)-tuple graph, and hence can be reduced to a
tree-isomorphism problem.

Lemma 9. Let G be a connected graph, then the (k, s)-LWL colors the tuples t and u in V (G)ks equally
if and only if the corresponding unrolled (k, s)-tuple trees are isomorphic, i.e.,

Ck,si (t) = Ck,si (u) ⇐⇒ Ui
T,vt 'vt→vu Ui

T,vu ,

for all i ≥ 0.

Proof sketch. First, by Lemma 6, we can simulate the (k, s)-LWL for the graph G using the k-tuple
graph T k(G). Secondly, consider a node vt in the k-tuple graph T k(G) and a corresponding node in the
unrolled tree around vt. Observe that the neighborhoods for both nodes are identical. By definition, this
holds for all nodes (excluding the leaves) in the unrolled tree. Hence, by Lemma 6, we can simulate the
(k, s)-LWL for each tuple t by running the 1-WL in the unrolled tree around vt in the k-tuple graph. Since
the 1-WL decides isomorphism for trees, see Theorem 8, the result follows.

The following lemma shows that (k + 1, 1)-LWL is strictly more expressive than (k, 1)-LWL for every
k ≥ 2.

Lemma 10. Let k ≥ 2. Let G := C2(k+2) and H := C(k+2) ∪̇C(k+2). Then, the graphs G and H are
distinguished by (k + 1, 1)-LWL, but they are not distinguished by (k, 1)-LWL.

Proof. We first show that the (k + 1, 1)-LWL distinguishes the graphs G and H . Let v in V (G)k+1
1 be a

tuple (v1, . . . , vk+1) such that v1, . . . , vk+1 is a path of length k in G. Let w in V (H)k+1
1 be a tuple

(w1, . . . , wk+1) such that w1, . . . , wk+1 is a path of length k in H . By the structure of H , there exists a
vertex wk+2 in V (H) such that w1, . . . , wk+2 forms a cycle of length k + 2. We claim that v does not
have any local 1-neighbor x in V (G)k+1

1 such that x is non-repeating, i.e., every vertex in x is distinct.
This holds because replacing the first vertex of v by any other vertex of G will yield a disconnected tuple.
On the other hand, w admits a non-repeating, local 1-neighbor, obtained by replacing the first vertex w1 by
wk+2. Hence, (k + 1, 1)-LWL distinguishes G and H .

Next, we show that (k, 1)-LWL cannot distinguish the graphs G and H . Indeed, for every j in [k], every
k-tuple x in V (G)k1 or V (H)k1 has exactly two local j-neighbors, corresponding to the two neighbors y, z
of the vertex xj . The exact number of local j-neighbors of x which additionally lie in V (G)k1 (or V (H)k1 )
depends purely only on the atomic type of x, since the length of cycles in G and H is at least k + 2.
Hence, the (k, 1)-LWL neighborhood of every tuple in G or H depends only on its atomic type. This
implies that (k, 1)-LWL does not refine the initial coloring for G as well as H , and hence it does not
distinguish G and H .

Although Lemma 10 already implies Theorem 4, the construction hinges on the fact that the graphs G and
H are not connected. To address this, for k ≥ 2, we introduce two connected graphs Ak+2 and Bk+2
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defined as follows. The graph Ak+2 has 2(k + 2) nodes and 2(k + 2) + 1 edges, and consists of two
disjoint cycles on k + 2 nodes connected by a single edge. The graph Bk+2 also has the same number of
nodes and edges, and consists of two cycles on k + 3 nodes, each, sharing exactly two adjacent nodes.
See Figure 3 for an illustration of the graphs Ak+2 and Bk+2 for k = 4. We obtain the following result
for the two graphs.
Lemma 11. Let k ≥ 2, then the (k, 1)-LWL cannot distinguish the graphs Ak+2 and Bk+2, while the
(k + 1, 1)-LWL can.

Proof. We first show the second part, i.e., the (k + 1, 1)-LWL distinguishes the graphs Ak+2 and Bk+2.
Without loss of generality, assume that V (Ak+2) = {a1, . . . , a2(k+2)}, where (ai, ai+1) in E(Ak+2)
for 1 ≤ i ≤ k+1, (a1, a(k+2)) inE(Ak+2), (ai, ai+1) inE(Ak+2) for (k+3) ≤ i ≤ 2(k+2)−1 and
(ak+3, a2(k+2)) in E(Ak+2). The two cycles are connected by the edge (a(k+2), a(k+3)) in E(Ak+2).
Further, assume V (Bk+2) = {b1, . . . , b2(k+2)} where (bi, bi+1) ∈ E(Bk+2) for 1 ≤ i ≤ 2(k+2)−1
and (b1, b2(k+2)+2) ∈ E(Bk+2). Finally, the edge (b1, bk+3) ∈ E(Bk+2) is shared by the two cycles
of length k + 3 each.

Now, let t = (a1, . . . , ak+1) ∈ V (Ak+2)
k+1
1 . Observe that the tuple (a1, . . . , ak+2) is a (k + 1)-

neighbor of the tuple t, inducing a graph on k + 1 nodes. Further, since the two cycles in the graph Bk+2

have length k + 3, there is no tuple without repeated nodes, in the graph that has a (k + 1)-neighbor
without repeated nodes. Hence, the two graphs are distinguished by (k + 1, 1)-LWL.

We now show that the (k, 1)-LWL does not distinguish the graphs Ak+2 and Bk+2. First, we construct a
bijection θ : V (Ak+2)→ V (Bk+2) as induced by the following coloring:

. . . . . . . . . . . .

Based on the bijection θ, we define the bijection θk : V (Ak+2)
k
1 → (AB+2)

k
1 , by applying θ component-

wise to (k, s)-tuples. Observe that G[s] ' G[θk(s)] for s in V (Ak+2)
k
1 .

Claim 12. Let s be a tuple in V (G)k1 and t = θk(s) in V (H)k1 . LetNj(s) andNj(t) be the j-neighbors
of the tuple s and t, respectively, for j in [k]. Then θk yields a one-to-one correspondence between Nj(s)
and Nj(t). Consequently, G[u] ' G[θk(u)] for u in Nj(s) and θk(u) in Nj(t).

Proof. For brevity, let F = Ak+2 and K = Bk+2. The desired claim follows by observing that
the bijective map θ : V (Ak+2) → V (Bk+2) preserves neighborhoods, i.e. for every x in V (Ak+2),
θ(NF (x)) = NK(θ(x)).

We now again leverage the above claim to show that Ck,si (s) = Ck,si (θk(s)) for i ≥ 0, implying the
required result. By a straightforward inductive argument, using Claim 12, we can inductively construct a
tree isomorphism between the unrolled trees around the node vs and vt in the corresponding (k, s)-tuple
graph such that Ui

T,vs
'vs→vt Ui

T,vt
. By Lemma 9, this implies Ck,si (s) = Ck,si (θ(t)) for i ≥ 0. This

shows that (k, s)-LWL does not distinguish Ak+2 and Bk+2. Hence, proved.

Hence, the proof of Theorem 4 directly follows from the above Lemma 11. Moreover, we also show that
the (k, 2)-LWL is more expressive than the (k, 1)-LWL.
Proposition 13. Let k ≥ 2, then

(k, 2)-LWL @ (k, 1)-LWL.

Proof. As in Lemma 10, let G := C2(k+2) and H := C(k+2) ∪̇C(k+2). By Lemma 10, G and H are
not distinguished by the (k, 1)-LWL for k ≥ 2. We claim that the (k, 2)-LWL distinguishes G and H for
k = 2 already. Since (k, 2)-LWL is at least as powerful as (2, 2)-LWL, this yields the desired claim.

With respect to (2, 2)-LWL, observe that the (2, 2)-tuple graph T 2
2 (H) consists of four connected

components while the (2, 2)-tuple graph T 2
2 (G) consists of a single connected component. More precisely,
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there exist two connected components of T 2
2 (H) consisting only of 2-tuples containing two non-adjacent

nodes, not being in the same connected component of the graph H . Note that none of these 2-tuples is
adjacent to any 2-tuples in V (H)21. Moreover, there exists no such connected component in T 2

2 (G).
Moreover, note that the number of each neighbors of each 2-tuple of both graphs is exactly 4, excluding
self loops. Hence, the (2, 2)-LWL will distinguish the two graphs.

Moreover, the following result shows that increasing the parameter s results in higher expressivity.
Formally, we show that the (k, k)-LWL is strictly more expressive than the (k, 2)-LWL. Note that we use
vertex-colored graphs (rather than simple undirected graphs) in our proofs.

Theorem 14. Let k ≥ 2, then
(k, k)-LWL @ (k, 2)-LWL.

For the proof of Theorem 14, we modify the construction employed in (Morris et al., 2020b), Appendix
C.1.1., where they provide an infinite family of graphs (Gk, Hk), k in N, such that (a) k-WL does not
distinguish Gk and Hk, although (b) δ-k-LWL distinguishes Gk and Hk. Since our proof closely follows
theirs, let us recall some relevant definitions from their paper.

Construction of Gk and Hk. Let K denote the complete graph on k + 1 vertices (without any self-loops).
The vertices of K are indexed from 0 to k. Let E(v) denote the set of edges incident to v in K: clearly,
|E(v)| = k for all v in V (K). We call the elements of V (K) as base vertices, and the elements of E(K)
as base edges. Define the graph Gk as follows:

1. For the vertex set V (Gk), we add
(a) (v, S) for each v in V (K) and for each even subset S of E(v),
(b) two vertices e1, e0 for each edge e in E(K).

2. For the edge set E(Gk), we add
(a) an edge {e0, e1} for each e in E(K),
(b) an edge between (v, S) and e1 if v in e and e in S,
(c) an edge between (v, S) and e0 if v in e and e not in S,

For every v in K , the set of vertices of the form (v, S) is called the vertex-cloud for v. Similarly, for every
edge e in E(K), the set of vertices of the form {e0, e1} is called the edge-cloud for e.

Define a companion graph Hk, in a similar manner to Gk, with the following exception: in Step
1(a), for the vertex 0 in V (K), we choose all odd subsets of E(0). Counting vertices, we find that
|V (G)| = |V (H)| = (k + 1) · 2k−1 +

(
k
2

)
· 2. This finishes the construction of graphs G and H . We

set Gk := G and Hk := H .

Distance two cliques. A set S of vertices is said to form a distance-two-clique if the distance between any
two vertices in S is exactly two. The following results were shown in (Morris et al., 2020b).

Lemma 15 ((Morris et al., 2020b)). The following holds for graphs Gk and Hk defined above.

• There exists a distance-two-clique of size (k + 1) inside Gk.

• There does not exist a distance-two-clique of size (k + 1) inside Hk.

Hence, Gk and Hk are non-isomorphic.

Lemma 16 ((Morris et al., 2020b)). The δ-k-LWL distinguishes Gk and Hk. On the other hand, k-WL
does not distinguish Gk and Hk.

We are ready to present the proof of Theorem 14. The crux is to subdivide the edges in Gk and Hk

into sufficiently long paths. The local nature of the (k, 2)-LWL then ensures that a tuple considered by
(k, 2)-LWL actually accesses only a constant number ,in fact, just two, of original vertices of Gk and Hk.
As a result, it is not possible for the (k, 2)-LWL to aggregate the right “k-ary” information necessary for
distinguishing such graphs. We proceed with the details.

Proof of Theorem 14. Observe that the (k, k)-LWL is the same as the δ-k-LWL. Hence, it suffices to
show an infinite family of graphs (Xk, Yk), k in N, such that (a) (k, 2)-LWL does not distinguish Xk and
Yk, although (b) δ-k-LWL distinguishes Xk and Yk.
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Let Xk be the graph obtained from the graph Gk as follows. First, for every base vertex v in V (K), every
vertex of V (Gk) in the vertex cloud for v receives a color Redv . Hence, vertex-clouds form color classes,
where each such class has a distinct color. Similarly, for every base edge e in E(K), every vertex of
V (Gk) in the edge cloud for e receives a color Bluee. Finally, let ∆ > 3k. Then, we replace every edge e
in Gk by a path of length ∆, such that every vertex on this path is colored with the color ({c, c′}), where
c and c′ are the colors of the endpoints of e in Gk. We call such path vertices auxiliary vertices. The graph
Yk is obtained from Hk by an identical construction.

First, we show that the (k, 2)-LWL does not distinguish graphs Xk and Yk. In fact, we show a stronger
statement: the (k, 2)-LWL does not even refine the initial coloring of graphs Xk and Yk. Indeed, let x be a
k-tuple in V (Xk)

k
2 . Let set(x) be the set of vertices present in x. Observe that (a) x induces at most two

connected components, and (b) the cardinality of set(x) ≤ k. There are three further possibilities, as
follows.

1. The tuple x induces exactly one component. Since ∆ > 3k, there is at most one vertex-cloud or
edge-cloud which intersects with set(x). Moreover, exactly one vertex in such a cloud belongs
to set(x). This holds because any two vertices in a cloud are at a distance greater than ∆ apart.
In this case, the local neighborhood of x used by (k, 2)-LWL depends solely on the atomic type
of x.

2. The tuple x induces two components C1 and C2 which are at distance at least 3 from each
other. Since ∆ > 3k, there is at most one vertex-cloud or edge-cloud which intersects with
either component. Moreover, exactly one vertex in such a cloud belongs to set(x). This holds
because any two vertices in a cloud are at a distance > ∆ apart. In this case as well, the local
neighbourhood of x used by (k, 2)-LWL depends solely on the atomic type of x.

3. The tuple x induces two components C1 and C2 which are at distance at most 2 from each other.
Since ∆ > 3k, one of these two components must consist entirely of auxiliary vertices. Hence,
again, the local neighbourhood of x used by (k, 2)-LWL depends solely on the atomic type of x.

Since in all these cases, the local neighborhood of a tuple depends only on its atomic type, it suffices to
verify that V (Xk)

k
2 and V (Yk)

k
2 have the same histogram of atomic types. This holds for the following

reason. The histogram of atomic types in the padded graphs Xk and Yk is equal if and only if the histogram
of atomic types in the original graphs Gk and Hk is equal. If V (Xk)

k
2 and V (Yk)

k
2 have a different

histogram of atomic types, then V (Gk)
k
2 and V (Hk)

k
2 also have a different histogram of atomic types.

This implies that k-WL distinguishes Gk and Hk in the very first round, which contradicts Lemma 16.
Hence, (k, 2)-LWL does not progress beyond the initial coloring and fails to distinguish Xk and Yk.

Next, we show that the δ-k-LWL distinguishes graphs Xk and Yk. Our proof closely follows the
corresponding proof in (Morris et al., 2020b). Instead of showing a discrepancy in the number of
distance-two-cliques, we instead use colored-distance-(2∆+ 1)-cliques defined as follows. Let S be a set
of vertices belonging to the vertex clouds. The set S is said to form a colored-distance-(2∆+ 1)-clique if
any two vertices in S are connected by a path of exactly 2∆+ 1 vertices, of which 2∆ are auxiliary
vertices and one vertex is a vertex from an edge-cloud. Analogous to their proof, it can be shown that (a)
there exists a colored-distance-(2∆+ 1)-clique of size (k + 1) inside Xk, and (b) there does not exist a
colored-distance-(2∆+1)-clique of size (k+1) inside Yk, and hence, (c) Xk and Yk are non-isomorphic.
Finally, we claim that the δ-k-LWL is powerful enough to detect colored-distance-(2∆+ 1)-cliques. The
proof is analogous to that of (Morris et al., 2020b). This yields that δ-k-LWL distinguishes graphs Xk and
Yk.

C.2 ASYMPTOTIC RUNNING TIME

In the following, we bound the asymptotic running time of the (k, s)-LWL. Due to Lemma 6, we can
upper-bound the running time of (k, s)-LWL for a given graph by upper-bounding the time to construct the
(k, s)-tuple graph and running the 1-WL variant of Equation (12) on top. Proposition 18 establishes an
upper bound on the asymptotic running time for constructing the (k, s)-tuple graph from a given graph.
Thereto, we assume a d-bounded degree graph G, for d ≥ 1, i.e., each node has at most d neighbors.
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To prove the proposition, we define (k, s)-multisets. Let G be a graph, k ≥ 1, and s ∈ [k], then the set of
(k, s)-multisets

S(G)ks = {{{v1, . . . , vk}} | v ∈ V (G)ks}

contains the set of multisets inducing subgraphs of G on at most k nodes with at most s components. The
following results upper-bounds the running time for the construction of S(G)ks .
Proposition 17. Let G be a d-bounded degree graph, k ≥ 2, and s in [k − 1]. Then Algorithm 1
computes Sks (G) in Õ(ns · kk−s(d+ 1)k−s)

Proof. Let T ′ be an element in S(G)c+1
s for c+ 1 ≤ k. By definition of S(G)cs and S(G)c+1

s , there
exists a c-element multiset T in S(G)cs such that T ′ = T ∪ {v} is in S(G)c+1

s for a node v in V (G).
Since s is fixed, v is either in the neighborhood δ(w) for w in T or v = w′ for w′ in T . Hence, lines 7 to
9 in Algorithm 1 generate S(G)c+1

s from S(G)cs. The set data structure R makes sure that the final
solution will not contain duplicates. The running time follows directly when using, e.g., a red–black tree,
to represent the set R.

Based on the above result, we can easily construct T ks (G) from Sks (G), implying the following result.
Proposition 18. Let G be a d-bounded degree graph, k ≥ 3, and s ∈ [k − 1]. Then we can compute
T ks (G) in Õ(ns · kk−s(d+ 1)k−s+1 · k! · k)

Proof. The running time follows directly from Proposition 17. That is, from Sks (G) we can generate
the set V ks (G) by generating all permutations of each element in the former. By iterating over each
resulting (k, s)-tuple and each component of such (k, s)-tuple, we can construct the needed adjacency
information.

Hence, unlike for k-WL, the running time of (k, s)-LWL does not depend on nk for an n-node graph and
is solely dictated by s, k, and the sparsity of the graph.

Algorithm 1 Generate (k, s)-multisets

Input: Graph G, k, s, and S(G)ss
Output: (k, s)-multiset S(G)ks

1: Let R be a empty set data structure
2: for M ∈ S(G)ss do
3: Let S be a queue data structure containing only (M, s)
4: while S not empty do
5: Pop (T, c) from queue S
6: if c+ 1 ≤ k then
7: for t ∈ T do
8: for u ∈ δ(t) ∪ {t} do
9: Add (T ∪ {u}, c+ 1) to S

10: else
11: Add T to R
12: return R

Moreover, observe that the upper bound given in Proposition 18, by leveraging Lemma 6, also upper-bounds
the asymptotic running time for one iteration of the (k, s)-LWL.

D SPEQNETS (EXTENDED)

The following result demonstrates the expressive power of (k, s)-SpeqNets, in terms of distinguishing
non-isomorphic graphs.
Theorem 19. Let (V,E, `) be a labeled graph, and let k ≥ 1 and s in [k]. Then for all t ≥ 0, there
exists a sequence of weights W(t) such that

Ck,st (v) = Ck,st (w) ⇐⇒ f (t)(v) = f (t)(w).

21



Submitted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Hence, the following holds for all k ≥ 1:

(k, s)-SpeqNet ≡ (k, s)-LWL.

Proof sketch. First, observe that the (k, s)-LWL can be simulated on an appropriate node- and edge-
labeled graph, see Lemma 6. Secondly, following the proof of (Morris et al., 2019, Theorem 2), there exists
a parameter matrix W (t)

2 such that we can injectively map each multiset in Equation (3), representing the
local j-neighbors for j in [k], to a d-dimensional vector. Moreover, we concatenate j to each such vector
to distinguish between different neighborhoods. Again, by (Morris et al., 2019, Theorem 2), there exists a
parameter matrix W (t)

1 such that we can injectively map the set of resulting k vectors to a unique vector
representation. Alternatively, one can concatenate the resulting k vectors and use a multi-layer perceptron
to learn a joint, lower-dimensional representation.

Note that it is not possible to come up with an architecture and weight assignments of fW1
mrg and fW2

agg , such
that it becomes more powerful than the (k, s)-LWL, see (Morris et al., 2019). However, all results from the
previous section can be lifted to the neural setting. Analogously to GNNs, the above architecture can
naturally handle continuous node and edge labels. By using the tools developed in (Azizian & Lelarge,
2020), it is straightforward to show that the above architecture is universal, i.e., it can approximate any
continuous, bounded, permutation-invariant function over graphs up to an arbitrarily small additive error.

D.1 NODE-, EDGE-, AND SUBGRAPH-LEVEL LEARNING TASKS

The above architecture computes representations for (k, s)-tuples, making it mostly suitable for graph-level
learning tasks, e.g., graph classification or regression. However, it is also possible to derive neural
architectures based on the (k, s)-LWL for node- and edge-level learning tasks, e.g., node or link prediction.
Given a graph G, to learn a node feature for node v, we can simply pool over the features learned for
(k, s)-tuples containing the node v as a component. That is, let t > 0, then we consider the multisets

mt(v)i = {{f (t−1)(t) | t ∈ V (G)ks and ti = v}} (14)

for i in [k]. Hence, to compute a vectorial representation of the node v, we compute a vectorial
representation of mt(v)i for i in [k], e.g., using a neural architecture for multi-sets, see (Wagstaff et al.,
2021), followed by learning a joint vectorial representation for the node v. Again, by (Azizian & Lelarge,
2020), it is straightforward to show that the above architecture is universal, i.e., it can approximate any
continuous, bounded, permutation-equivariant function over graphs up to an arbitrarily small additive error.
Note that the above approach can be directly generalized to learn subgraph representations on an arbitrary
number of vertices.

E DETAILS ON EXPERIMENTS

Datasets To compare the (k, s)-LWL-based kernels, we used the well-known graph classification
benchmark datasets from (Morris et al., 2020a), see Table 3 for dataset statistics and properties.5 To
compare the (k, s)-SpeqNet architecture to GNN baselines, we used the ALCHEMY (Chen et al., 2019a)
and the QM9 (Ramakrishnan et al., 2014; Wu et al., 2018) graph regression datasets, again see Table 1 for
dataset statistics and properties. Following Morris et al. (2020b), we opted for not using the 3D-coordinates
of the ALCHEMY dataset to solely show the benefits of the (sparse) higher-order structures concerning
graph structure and discrete labels. To investigate the performance of the architecture for node classification,
we used the WEBKB datasets (Pei et al., 2020), see Table 4 for dataset statistics and properties.

Kernels We implemented the (k, s)-LWL and (k, s)-LWL+ for k in {2, 3} and s in {1, 2}. We compared
our kernels to the Weisfeiler–Leman subtree kernel (1-WL) (Shervashidze et al., 2011), the Weisfeiler–
Leman Optimal Assignment kernel (WLOA) (Kriege et al., 2016), the graphlet kernel (GR) (Shervashidze
et al., 2009), and the shortest-path kernel (Borgwardt & Kriegel, 2005) (SP). Further, we implemented
the higher-order kernels δ-k-LWL, δ-k-LWL+, δ-k-WL, and k-WL kernel for k in {2, 3} as outlined
in (Morris et al., 2020b). All kernels were (re-)implemented in C++11. For the graphlet kernel, we counted
(labeled) connected subgraphs of size 3. We followed the evaluation guidelines outlined in (Morris et al.,
2020a).

5All datasets are publicly available at www.graphlearning.io.
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Neural architectures We used the GIN and GIN-ε architecture (Xu et al., 2019) as neural baselines.
For data with (continuous) edge features, we used a 2-layer MLP to map them to the same number
of components as the node features and combined them using summation (GINE and GINE-ε). For
the evaluation of the (k, s)-SpeqNet neural architectures, we implemented them using PYTORCH
GEOMETRIC (Fey & Lenssen, 2019), using a Python-wrapped C++11 preprocessing routine to compute the
computational graphs for the higher-order GNNs. We used the GIN-ε layer to express fW1

mrg and fW2
agg

of Equation (3). For the GNN baseline for the QM9 dataset, following (Gilmer et al., 2017), we used a
complete graph, computed pairwise `2 distances based on the 3D coordinates, and concatenated them to the
edge features. We note here that our intent is not the beat state-of-the-art, physical knowledge-incorporating
architectures, e.g., DimeNet (Klicpera et al., 2020) or Cormorant (Anderson et al., 2019), but to
solely show the benefits of the local, sparse higher-order architectures compared to the corresponding
(1-dimensional) GNN. For the (k, s)-SpeqNet architectures, in the case of the QM9 dataset, to compute
the initial features, for each (k, s)-tuple, we concatenated the node and edge features, computed pairwise
`2 distances based on the 3D coordinates, and a one-hot encoding of the (labeled) isomorphism type.
Finally, we used a 2-layer MLP to learn a joint, initial vectorial representation. For the node classification
experiments, we used mean pooling to implement Equation (14) and a standard GCN layer for all
experiments, including the (k, s)-SpeqNet architectures. Further, we used the architectures (SDRF)
outlined in (Topping et al., 2021) as baselines.

For the kernel experiments, we computed the (cosine) normalized Gram matrix for each kernel. We
computed the classification accuracies using the C-SVM implementation of LIBSVM (Chang & Lin,
2011), using 10-fold cross-validation. We repeated each 10-fold cross-validation ten times with different
random folds and report average accuracies and standard deviations.

Following the evaluation method proposed in (Morris et al., 2020a), the C-parameter was selected from
{10−3, 10−2, . . . , 102, 103} using a validation set sampled uniformly at random from the training fold
(using 10% of the training fold). Similarly, the numbers of iterations of the (k, s)-LWL, (k, s)-LWL+,
1-WL, WLOA, δ-k-LWL, δ-k-LWL+, and k-WL were selected from {0, . . . , 5} using the validation set.
Moreover, for the (k, s)-LWL+ and δ-k-LWL+, we only added the additional label function # on the last
iteration to prevent overfitting. We report computation times for the (k, s)-LWL, (k, s)-LWL+, WLOA,
δ-k-LWL, δ-k-LWL+, and k-WL with five refinement steps. All kernel experiments were conducted on a
workstation with 64GB of RAM using a single core. Moreover, we used the GNU C++ Compiler 7.4.0
with the flag -O2.

For comparing the kernel approaches to GNN baselines, we used 10-fold cross-validation and again used
the approach outlined in (Morris et al., 2020a). The number of components of the (hidden) node features in
{32, 64, 128} and the number of layers in {1, 2, 3, 4, 5} of the GIN and GIN-ε layer were again selected
using a validation set sampled uniformly at random from the training fold (using 10% of the training fold).
We used mean pooling to pool the learned node embeddings to a graph embedding and used a 2-layer MLP
for the final classification, using a dropout layer with p = 0.5 after the first layer of the MLP. We repeated
each 10-fold cross-validation ten times with different random folds and report the average accuracies and
standard deviations. Due to the different training methods, we do not provide computation times for the
GNN baselines.

For the larger molecular regression tasks, ALCHEMY and QM9, we closely followed the hyperparameters
found in (Chen et al., 2019a) and (Gilmer et al., 2017), respectively, for the GINE-ε layers. That is, we
used six layers with 64 (hidden) node features and a set2seq layer (Vinyals et al., 2016) for graph-level
pooling, followed by a 2-layer MLP for the joint regression of the twelve targets. We used the same
architecture details and hyperparameters for the (k, s)-SpeqNet. For the ALCHEMY, we used the subset
of 12 000 graphs as in (Morris et al., 2020b). For both datasets, we uniformly and at random sampled 80%
of the graphs for training, and 10% for validation and testing, respectively. Moreover, following (Chen
et al., 2019a; Gilmer et al., 2017), we normalized the targets of the training split to zero mean and unit
variance. We used a single model to predict all targets. Following (Klicpera et al., 2020, Appendix C), we
report mean standardized MAE and mean standardized logMAE. We repeated each experiment five times
and report average scores and standard deviations. We used the provided ten train, validation, and test splits
for the node classification datasets. All neural experiments were conducted on a workstation with one GPU
card with 32GB of GPU memory.

To compare training and testing times between the (2, 1)-SpeqNet, (2, 2)-SpeqNet, GINE-ε architectures,
we trained all three models on ALCHEMY (10K) and QM9 to convergence, divided by the number of
epochs, and calculated the ratio with respect to the average epoch computation time of the (2, 1)-SpeqNet
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(average computation time of dense or baseline layer divided by average computation time of the
(2, 1)-SpeqNet).

F ADDITIONAL EXPERIMENTAL RESULTS

A3 Kernels See Table 5. Clearly, for the same k and s < k, the (k, s)-LWL improves over the k-WL and
its (local) variants. For example, on the ENZYMES dataset, the (2, 1)-LWL is more than 20 times faster in
terms of computation times compared to the δ-2-LWL. The speed up is even more significant for the
non-local 2-WL. This speed-up factor increases more as k increases, e.g., the (3, 1)-LWL is more than
1 700 times faster compared to the 3-WL, whereas the (3, 2)-LWL is still more than 87 times faster, while
giving better accuracies. Similar speed-up factors can be observed over all datasets.
Neural architectures See Table 6. The (2, 1)-SpeqNet severely speeds up the computation time across
both datasets. Specifically, on the ALCHEMY dataset, the (2, 1)-SpeqNet is 1.3 times faster compared to
the (2, 2)-SpeqNet, while requiring twice the computation time of the GINE-ε but achieving a lower
MAE. More interestingly, on the QM9 dataset, the (2, 1)-SpeqNet is 3.4 times faster compared to the
(2, 2)-SpeqNet, while also being 1.3 times faster compared to the GINE-ε. The speed-up over GINE-ε is
most likely due to the latter considering the complete graph to compute all pairwise `2 distances, whereas
the (2, 1)-SpeqNet only considers connected node pairs.

Table 3: Dataset statistics and properties for graph-level prediction tasks, †—Continuous vertex labels
following Gilmer et al. (2017), the last three components encode 3D coordinates.

Dataset
Properties

Number of graphs Number of classes/targets ∅ Number of nodes ∅ Number of edges Node labels Edge labels

ENZYMES 600 6 32.6 62.1 3 7
IMDB-BINARY 1 000 2 19.8 96.5 7 7
IMDB-MULTI 1 500 3 13.0 65.9 7 7
MUTAG 188 2 17.9 19.8 3 7
NCI1 4 110 2 29.9 32.3 3 7
PTC FM 349 2 14.1 14.5 3 7
PROTEINS 1 113 2 39.1 72.8 3 7
REDDIT-BINARY 2 000 2 429.6 497.8 7 7

ALCHEMY 202 579 12 10.1 10.4 3 3
QM9 129 433 12 18.0 18.6 3(13+3D)† 3(4)

Table 4: Dataset statistics and properties for node-level prediction tasks.

Dataset
Properties

Number of nodes Number of edges Number of node features

CORNELL 183 295 1 703
TEXAS 183 309 1 703
WISCONSIN 251 490 1 703
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Table 5: Overall computation times for selected datasets in seconds (Number of iterations for WL-based
methods: 5), OOT—Computation did not finish within one day (24h), OOM—Out of memory.

Graph Kernel
Dataset

ENZYMES IMDB-BINARY NCI1 PROTEINS

1-WL <1 <1 2 <1

G
lo

ba
l 2-WL 183 71 893 14 755

3-WL 74 712 18 180 OOT OOM

δ-2-WL 294 89 1 469 14 620
δ-3-WL 64 486 17 464 OOT OOM

L
oc

al

δ-2-LWL 20 22 92 153
δ-2-LWL+ 22 23 103 177
δ-3-LWL 4 453 3 496 18 035 17 848
δ-3-LWL+ 4 973 3 748 20 644 OOM

(k
,s
)-

LW
L

(2, 1)-LWL 2 11 7 4
(2, 1)-LWL+ 2 12 7 5
(3, 1)-LWL 36 871 72 87
(3, 1)-LWL+ 39 1 064 82 100
(3, 2)-LWL 740 2153 1928 5128
(3, 2)-LWL+ 1097 2797 2837 6754

Table 6: Average speed-up ratios over all epochs (training and testing).

Method
Dataset

ALCHEMY (10K) QM9
GINE-ε 0.5 1.3
(2, 1)-SpeqNet 1.0 1.0
(2, 2)-SpeqNet 1.3 3.4
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