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ABSTRACT

Options are widely used financial derivatives for risk management and corporate
operations. Option hedging aims to mitigate investment risks from asset price
fluctuations by buying and selling other financial products. Traditional hedging
strategies based on the Black-Scholes model face practical limitations due to the
assumptions of constant volatility and the neglect of transaction costs. Recently,
reinforcement learning(RL) has gained attention in the study of option hedging
strategies, but several challenges remain: current methods rely on real-time mar-
ket data (e.g., underlying asset prices, holdings, remaining option term) to de-
termine optimal positions, underutilizing the potential value of historical data;
existing approaches focus on the expected hedging cost, overlooking the compre-
hensive distribution of costs; In the aspect of training data generation, commonly
used single simulation methods perform well under specific conditions but strug-
gle to ensure the robustness of the model across diverse datasets. To address these
issues, we propose a novel distributional RL option hedging method that incorpo-
rates historical information. Historical states are included in the state variables,
with a gated recurrent unit (GRU) network layer extracting historical information.
This is then combined with current information from fully connected layers to
inform subsequent network layers, ensuring the agent considers both current and
historical market information when learning hedging strategies. The output of the
value network is set as a series of quantiles, with the Quantile Huber Loss func-
tion fitting their distribution to evaluate strategies based on distribution rather than
expected value. To diversify data sources, we use a combination of the Black-
Scholes model, the Binomial model, and the Heston model to simulate a large
volume of option data. Experimental results show that our method significantly
reduces hedging costs and demonstrates strong adaptability and practicality under
various market conditions.

1 INTRODUCTION

Options are tradable financial derivatives that grant the holder the right, but not the obligation, to
buy or sell a certain asset at a specified price at a future date. They play a significant role in risk
management and corporate operations(Xiao et al.,|2021). In options-related trading, option hedging
is one of the most closely watched issues(Mandelli et al., 2023)), primarily aimed at controlling
investment risk. Option hedging primarily refers to the process where the option seller takes certain
measures to reduce potential risks after earning a premium from selling the option. When the option
expires, if the buyer exercises the option, the seller must sell or buy the asset at the agreed price,
which may be unfavorable for the seller. To mitigate this potential risk, sellers often adopt option
hedging strategies, involving the buying or selling of other related financial instruments to offset the
risk caused by asset price fluctuations.

Traditional hedging strategies, such as delta hedging based on the Black-Scholes (BS) model(Black
& Scholes, |1973)), use delta values to obtain the optimal position of the underlying asset. However,
the assumptions of the BS model regarding constant volatility, continuous trading, and frictionless
markets do not hold in reality, as the volatility of the underlying asset is constantly changing and
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there are transaction costs and the inability to trade continuously in the actual market. Therefore,
such methods have significant limitations in practical applications.

To address the aforementioned issues, in recent years, using reinforcement learning(RL) methods
for option hedging has become a research hotspot. RL leverages large amounts of data and con-
tinuously interacts with the environment, allowing for the adjustment of hedging strategies based
on environmental feedback, which resolves the issue that traditional option hedging models cannot
fully reflect real market conditions(Hambly et al.| 2023).

In the design of option hedging based on RL, the underlying asset price, the holding of the underlying
asset, etc. are typically considered as the states, while the trading volume or change in the holding
of the underlying asset is treated as the action. The profit and loss(P&L) or changes in cash flow
during the option hedging process are considered as the reward. The basic framework is illustrated
in Figure E} In this process, the setting of state variables, the estimation of the value function, and
the collection of training data are three main issues.
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Figure 1: The basic framework of RL for option hedging

In terms of state variables, previous research has primarily focused on the current market information
(such as the price of the underlying asset, the holding of the underlying asset, and the time to
expiration when hedging). This means that the agent decides the optimal holding for hedging based
only on the current market information, as illustrated in the left of Figure 2] The hedging decision
at time ¢; is made based only on the state at s;; the hedging decision at time ¢5 is made based only
on the state at so, independent of the state at s, and so on. However, in actual hedging, considering
historical market information is also important. This means that at time ¢, the hedging decision
should take into account not only the market information at ¢, but also before ¢, and so forth.
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Figure 2: The left is previous decision-making process.The right is previous value network for option
hedging.

In terms of value function, previous research has primarily focused on the expected value of hedging
costs (as shown in the right of Figure 2). While this approach of focusing solely on the expected
value of hedging costs provides an average view of hedging costs under a given strategy, it fails to
reflect the overall distribution of hedging costs. In practice, the distribution of hedging costs is cru-
cial for evaluating the effectiveness of a hedging strategy. Therefore, ignoring the cost distribution
when evaluating hedging strategies may increase the risk of strategy execution.
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Regarding data, RL methods necessitates extensive data. in practice, due to factors such as dif-
ferent issuance times and durations of options, the available option data is insufficient to meet this
requirement. As a result, research often uses finance parametric methods to generate data. However,
existing studies typically use a single method to generate data for training. Such approach can lead
to a classic problem in financial engineering: the model’s performance will primarily reflect accu-
racy on this type of simulated data, while performance may degrade when using other data(Lillicrap
et al.l[2019).

To solve the issues in option hedging based on RL mentioned above, we propose a new distributional
RL method based on historical information for option hedging. The main contributions includes:

(HIncorporating Historical Information into State Variables: Addressing the issue where past
research only considers current market information as the state, we include historical information
into the state. We introduce GRU and leverage its memory function to extract historical information.
The extracted historical information is then combined with the current information extracted by fully
connected layer and fed into subsequent network layers. This enables the agent to consider both
current and historical information when learning the option hedging strategy.

(2)Estimating the Distribution of Hedging Costs: Tackling the problem where past research
mainly focuses on the expected value of hedging costs, we employ a set of quantiles to estimate
the hedging costs in the value network instead of estimating the expected value. In other words, we
treat the output of the value network as a distribution and use quantile regression combined with the
Huber loss function to fit quantiles. This approach aims to estimate the distribution of hedging costs.

(3)Generating Simulated Data with Multiple Methods: To address the issue of using a single
method to generate simulated data in past research, we combine multiple option pricing methods to
generate simulated option data for training. By doing so, the agent is exposed to a richer variety of
samples during the learning process, enhancing its adaptability to different market conditions.

2 RELATED WORK

Halperin| (2020) was the first to apply RL to address dynamic option hedging. He proposed QLBS
model based on Q-Learning(Watkins| |[1989), which provides an effective method for option pricing
and hedging without the constraint of continuous time. However, this approach is only effective in
finite state and action space and still assumes frictionless markets. To avoid the curse of dimension-
ality, [Kolm & Ritter| (2019) used SARSA(Sutton & Barto} 2018) to consider nonlinear trading costs
in continuous state space, making agent effective for hedging in environments that more closely
resemble real markets. With the advancement of RL, Du et al.[(2020) applied more advanced algo-
rithms such as DQN(Mnih et al.||2013)) and PPO(Schulman et al.,|2017) for discrete option hedging,
also addressing the issue of integer stocks and incorporating strike prices as additional state vari-
ables. Furthermore, in their model training, the chosen strike prices were no longer fixed but rather
within a given range. This allowed the agent to train on a range of strike prices without retraining
for each specific strike price within that range. Although discretizing actions simplifies training pro-
cess, it also introduces significant errors. To address it,|Cao et al.|(2020) employed DDPG(Lillicrap
et al.,2019), which allows for continuous state and action spaces for option hedging, providing more
precise action outputs. They still used the current information as state variables. Additionally, they
used two value networks to estimate the expected value and its square of the hedging cost to calcu-
late the utility function. Their experiments under P&L and cash-flow showed the former was more
effective than the latter. In response to same problem, Mikkila| (2020) used TD3, and add moneyness
and implied volatility to state variables. Addtionally, they introduced sim-to-real method(training on
simulated data and testing on real data). Similarly,|Giurca & Borovkoval(2021)) also used sim-to-real
in DQN and DDPG. Both of them found that RL also outperformed traditional methods in actual
data. Due to the uncertainty in financial markets, |[Zheng et al.| (2023)) incorporated uncertainty into
DDPG to develop more robust hedging strategies. Their results showed that accounting for uncer-
tainty provided better solutions compared to |Cao et al|(2020). Similarly, to further align with real
market, Neagu et al.| (2024) integrated market shocks into the state space. Their findings indicated
that incorporating market shocks into the state space helps better adapt to the market environment.
Previous research on option hedging relied directly or indirectly used parametric models to generate
data for training, to address this issue, Mikkild & Kanniainen|(2023)) directly trained the model using
actual data. Their results indicate that training DRL models directly on real data performs better.
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Contrary to them, |Cannelli et al.| (2023)) solved this problem by using the more efficient CMAB algo-
rithm, but the data was still generated by GBM and BS models. In practice, effective option hedging
requires more than just current market conditions, historical market dynamics are crucial as well.
However, existing methods using RL often rely solely on current information, ignoring historical
data. Furthermore, when evaluating hedging strategies, it’s important to consider both the expected
hedging costs and the associated risks, but current methods tend to focus on the expected value of
costs while overlooking their distributional characteristics. Additionally, most research uses the BS
model for simulating option data, which lacks diversity and may result in strategies that perform
poorly on other types of data. Therefore, it is important to develop RL methods for option hedging
that incorporate historical information, cost distribution, and data diversity.

3 MODEL
3.1 DISTRIBUTIONAL REINFORCEMENT LEARNING BASED ON HISTORICAL INFORMATION

e State Y

(1)Underlying Asset Price
(2)Option maturity

(3)Option Strike

History State

Concatenate —l
[ /e ][ cru ] [ Fc ][ eru ]
T : T ——
| Concatenate | ‘ Concatenate |
i 1
[ 1 [ ]
i ¥
[ FC | \ FC |
: ¥ ¥
| Distriubtion1 | ‘ Distriubtion2 |
T T

Policy Network Update

Value Network

Update_______ Utility Function

Figure 3: DRL Framework based on Historical Information for Option Hedging

Quantile Huber Loss

Our model architecture is shown in Figure [3] When applying RL to option hedging, choosing the
appropriate state and action variables as well as the reward function is crucial for the agent to learn
option hedging. For illustrative purposes, some symbol definitions are shown in Table[T}

Table 1: Symbol Explanation

symbol explanation symbol explanation
St the underlying asset price at time ¢ 0t option price at time ¢
my option expiration time at time ¢ K strike
Dt holdings of the underlying asset at time ¢ | hstate; | historical state at time ¢

In the selection of state variables, firstly, the underlying asset price is closely related to the option.
If the underlying asset price continues to rise, the likelihood of the buyer exercising the option at
expiration will also continue to increase, which directly affects the performance of the option hedg-
ing strategy. Secondly, the holding of the underlying asset also affects the performance of the option
hedging strategy. Although the seller can hold a certain amount of the underlying asset to offset
the potential risk brought by the option during a price increase, holding too much of the underlying
asset will increase costs to a certain extent, while holding too little may result in insufficient hedg-
ing. Moreover, the time to expiration is also a crucial factor not to be neglected in option hedging.
Therefore, considering these three characteristics is our primary concern. Additionally, we believe
that in option hedging, it is essential to consider not only the current market conditions but also past
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market trends, as historical data provides valuable information for anticipating future market move-
ments. Consequently, we have also included historical states in the state variables of our model.In
summary, the state at time ¢ is represented as state;:

states = (8¢, My, P, hstatey) €))

In terms of selecting action variables, since we are focusing on reducing potential losses from selling
options by buying and selling the underlying asset, the action at time ¢ is represented as action,:

actiony = pry1 € [0,100] 2)

Using the example of the SSE 50ETF, where one option contract represents 10,000 units of the

underlying asset. action; = 0 indicates that the holdings of the underlying asset are 0, and
action; = 50 indicates that the holdings of the underlying asset are 5,000.

To simplify the calculation process, we set the risk-free rate to 0 and the transaction cost as a per-
centage of the transaction amount for the underlying asset. Based on these assumptions, the agent
mainly focuses on P&L during the option hedging process, which includes two components:

(1)P&L Due to the Underlying Asset. Given a certain amount of the underlying asset held, if the
price of the underlying asset rises, it results in gains, while if the price falls, it results in losses.
Additionally, trading the underlying asset incurs transaction costs. Thus, this part of P&L can be
calculated as(per is percentage of transaction costs to the trading volume of the underlying asset):

assety = py X (Sg41 — S¢) — per X |pip1 — Pl 3)

(2)P&L Due to the Option. If the option has not yet expired, changes in the option’s price can
result in P&L. The reward calculation for this section follows formula (). If the option expires and
the underlying asset price is above the strike price, the buyer will exercise the option, resulting in
a loss for the seller, additionally, if the seller still holds the underlying asset, trading this remaining
amount incurs transaction costs. The P&L calculation for this section follows formula (3).

optiony = 0y — 0441 4
option; = o — max(s; — K, 0) (5)
Based on the components outlined above, the total reward can be calculated as:

R, = asset; + option, (6)

3.2 HISTORICAL INFORMATION FUSION
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Figure 4: The Fusion of Current and Historical Figure 5: Decision-Making Process in Our
Information in our model Method

In the process of option hedging, it is crucial to focus not only on current market conditions but
also on historical market dynamics. Therefore, we hope that the agent can consider both current
and historical information during the learning process. Hence, we include not only the current
underlying asset price, holdings, and option expiration as state variables in the network input but
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also incorporate historical states. Additionally, we introduce a GRU(Chung et al.| [2014) to extract
historical sequence information, thereby providing the agent with a memory capability during the
process of learning option hedging. We choose GRU rather than LSTM because they have the similar
effect, but GRU has fewer parameters. Otherwise, What we need to emphasize that our method is
designed to better handle historical temporal data, enabling agent to leverage dependencies in time
series, is concerned with the same data. This is different from the experience replay buffer, which
reduces the correlation between different data by storing the data and then randomly sampling them
for model training. To implement this, the specific steps are as follows:

First, the data at time ¢ is input into a fully connected network layer to extract the current information.
The result of this extraction is denoted as X;:

ny = (stvmtapt) (7)
Where n; represents the input variables composed of the data at time ¢, W,, and b,, denote trainable
weights and bias vector in FC layer for current feature extraction.

Next, the historical data sequence at time ¢ is input into GRU to extract the historical information.
The result of this extraction is denoted as H;:

hstate, = (ng_g, ..., ny) )

zt = o(W, - [he—1,m4]) (10)

re = o(Wy - [hi—1,m4]) (11)

hy = tanh (W - [ry @ hy_1, 1) (12)
he =2 @y + (1= 2) ® hy (13)
Hy=[hi—i,. ., h] (14)

where hstate, represents the input variables which consist of the historical data sequence at time ¢,
and H; denotes the hidden state extracted by the GRU at time .

Finally, the extracted current information X; and historical information H; are combined to form
C; and fed into subsequent layers for further computation.

Cy = concat(Xy, Hy) (15)

Through the above methods, the intelligent agent no longer makes decisions based solely on current
market information when hedging, but also considers historical market information in the decision-
making process, thus achieving the goal of simultaneously considering both when hedging. As
shown in Figure[5] at time ¢3, the agent considers information from time ¢1, ¢2, and t3 when hedging.

3.3 DISTRIBUTION BASED ON QUANTILE REGRESSION

i

State
Historical Fusion
Distribution

A Set of Quantiles
Figure 6: Implementation Method of Distributional RL in Our Method

When evaluating option hedging strategies, it is not enough to only focus on the expected value of
hedging costs, as the effectiveness of the strategy depends not only on the expected value of hedging
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costs but also on some other important factors. Therefore, we hope that the value network can
consider the effectiveness of the strategy from a distribution perspective, so that the agent can not
only consider the overall situation, but also other information about the distribution, thus achieving
a more comprehensive evaluation of the strategy.

To this end, we set the output of the value network as a set of quantiles (as shown in Figure[6), treat
this set of quantiles as the distribution, and then fit these quantiles through quantile regression.To
meet the above requirements, we used the Quantile Huber loss function when fitting quantiles in the
value network, which is expressed as:

ki oy — § =1Ly, y'), ify <y’
lossz(y,y') = { 7 Loy, y), otherwise (16)
/ 3y —y)% ifly—y'| <k
L.(y,y') = (17

k(ly—y'|—3k), otherwise

At the same time, in the process of option hedging, in addition to considering hedging costs, risk
levels also need to be taken into account. The optimal strategy should balance both the average
and volatility of asset returns. Therefore, we adopted a common utility function in investment, the
mean-variance utility functionMarkowitz| (1952))(such as the formula @), as the objective function
in the strategy network, to maximize expected returns while reducing their volatility.

Lactor = Maz[E(R) — risk x V(R)] (18)

Here, risk is the risk preference parameter, with a higher value indicating a greater aversion to risk.

Since the output of the value network is a set of quantiles, and the value network assists the strategy
network in learning strategies, we take the mean and standard deviation of the output quantiles as
the mean and standard deviation in the utility function, respectively. Finally, we obtain the objec-
tive function of the strategy network as a formula, which uses gradient rise to achieve the goal of
maximizing the expected value of returns while reducing the volatility of returns.

N

N N
1 . 1 ) 1 .
=M E T _ g E i § )2
Lactor - axr N P Ye risk * N —1 P (yc N P yc) (19)

Here, N is the number of quantiles and  is the i-th quantile of the value network output.

4 EXPERIMENTS

4.1 DATA

In the actual market, although there are options with the same strike price and expiration date, they
cannot be considered identical due to factors such as the time of issuance and different remaining
periods. This results in a relatively limited amount of data for options with specific strike prices
and expiration dates in practice. However, in RL, the process by which the agent learns an option
hedging strategy requires a large amount of data. Therefore, we are considering using financial
models to simulate a substantial amount of underlying asset data and option data.

For the underlying data, we use geometric Brownian motion to simulate its price. For option data,
if only one method is used, the option hedging strategy learned by the agent may exhibit superior
performance for the data generated by that method, but performance may decline for data generated
by other methods. Therefore, we use three methods to simulate option prices: the BS model(Black
& Scholes|, [1973), the BI model(Cox et al., [1979), and the Heston model(Hestonl 2015)). The data
generated by these three methods are then combined and provided to the agent for learning.

4.2 EXPERIMENTS

Considering the presence of transaction costs in actual trading, we set the transaction cost as a
proportional cost in the experiment, as 1% of the total transaction amount for each underlying asset
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trade. The evaluation metrics include Mean and Std of Return and Reward, and Percent, which
respectively represent the mean and standard deviation of the total hedging cost and daily hedging
cost for testing paths at the end of hedging, and the proportion of test paths that outperform delta
hedging using this method. We then used the results from the test paths to plot boxplots comparing
the performance of different hedging methods. Finally, we used Gaussian kernel density estimation
to show the P&L distributions under different methods, illustrating the characteristics of the P&L
distributions for each hedging method under the same market conditions.

4.2.1 COMPARATIVE EXPERIMENT

To illustrate the efficacy of our model for option hedging, we compared its test results with the BS-
delta hedging and the DDPGCao et al.|(2020). The performance of each model was evaluated using
the five aforementioned metrics, and the results are presented in Table 2| Additionally, boxplots
illustrating the performance of the three hedging strategies are presented in the left of Figure

Table 2: The evaluation of the metrics in comparative experiment.

Model Return Reward Percent
Mean Std Mean Std
BS-Delta -242.6 84.19 | -12.10 | 21.74
DDPGCao et al.| (2020) | -170.87 | 96.82 -8.54 | 2444 | 71.8%
ours -117.13 | 15426 | -5.90 | 32.31 | 77.4%

From Table [2] it can be observed that, in the cases we considered, compared to delta hedging, al-
though using RL to option hedging increases the standard deviation, it significantly reduces the
hedging costs. Additionally, though our model increases the standard deviation to some extent com-
pared to the DDPG model, it further reduces the hedging costs. However, we found that the RL
method is not superior to BS-delta hedging in all cases. Thus, we also compared the proportion
of hedging results from the DDPG model and our model that outperformed BS-delta hedging. The
results show that the proportion of paths outperforming BS-delta hedging is 71.8% for the DDPG
model and 77.4% for our model, indicating that our model better adapts to different market condi-
tions. Next, we used Gaussian kernel density estimation to analyze the P&L distributions for three
methods, as shown in the right of Figure[7] It is evident that in terms of profits, our method has a sig-
nificantly higher probability density compared to the other two methods, especially in the range of
returns from O to 200. Regarding losses, our method’s probability density is lower than the other two
methods in most cases, indicating that our method generally achieves higher profits and effectively
reduces losses.
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Figure 7: Boxplots and Probability density plot of hedging costs in comparative experiments

4.2.2 ABLATION EXPERIMENT

To verify the importance of considering historical information and focusing on cost distribution
when hedging, we also conducted ablation experiments, and the results are shown in Table [3| where
NoHist is the result without considering historical information, NoDist is the result of the value
network only considering the expected value of hedging costs, BS-Sim is the result of simulating
data only using BS model, and All is the result without melting any part.
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Table 3: The evaluation of the metrics in ablation experiment.

Model Return Reward Percent
Mean Std Mean | Std
NoHist | -138.6 | 143.75 | -6.93 | 37.03 | 71.8%
NoDist | -147.74 | 163.85 | -7.39 | 4238 | 70.9%
BS-Sim | -127.13 | 130.31 | -6.36 | 30.05 | 76.5%
All -117.13 | 154.26 | -590 | 3231 | 77.4%

From Table EL it can be observed that when historical information is ignored, or cost distribution is
not considered, the average hedging cost significantly increases, and the proportion of hedging re-
sults better than delta hedging decreases. When only the BS model is used to generate data, although
the standard deviation decreases slightly, the average hedging cost increases, and the proportion of
results better than delta hedging also decreases. Next, the boxplots and the probability density plots
are shown in Fi gure@ It can be seen that when historical information is not considered, the cost dis-
tribution is ignored in value network evaluation strategies, or only the BS model is used to generate
simulation data, the average P&L decrease. Overall, the distribution shifts to the left to some extent,
indicating an increased probability of negative P&L and a decreased probability of positive P&L.
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Figure 8: Boxplots and Probability density plot of hedging costs in ablation experiments

In summary, considering historical information and evaluating the P&L distribution is indispensable
in option hedging. Moreover, when using RL methods for option hedging, generating option-related
simulation data using various methods can enhance the agent’s ability to adapt to market diversity.

4.3 RESULTS AND ANALYSIS

Figure 9: The change of moneyness for some SSE S0ETF options.

When analyzing the hedging effectiveness of our method, we randomly selected some SSE SOETF
options for experiments. These options included different strike prices and expiration dates. By
observing the changes in the moneyness of these options, we found that the options hedged more
effectively under our method compared to delta hedging were mainly in-the-money during their
validity period (as shown in the left of Figure [0). Conversely, the options that performed better
under delta hedging were mainly out-of-the-money during their validity period (as shown in the
right of Figure [0). To further analyze the hedging process, we selected three SSE 50ETF options
that were mostly in-the-money during their validity period to demonstrate the changes in cumulative
P&L. The cumulative P&L have three sources: option P&L, underlying asset P&L, and transaction
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costs. Additionally, we also displayed the changes in the underlying asset price, option price, and
delta of these options during their validity period.

The code for the first option contract is 10005257, with an initial underlying price of 2.647, a strike
price of 2.4, and a validity period of 36 days(including 26 trading days). Observing the hedging
results (Table [d) and the process (Figure [I0) under three methods, it was found that there were sig-
nificant losses at the beginning and end of the hedging period for all three methods. This is because
the underlying asset was not held before the hedging started. To mitigate the loss from selling the
option, a substantial cost was incurred at the beginning of the hedging period to purchase the under-
lying asset. At the end of the hedging period, the underlying price was above the strike price, leading
the buyer to exercise the option, resulting in significant losses for the seller. Additionally, as shown
in Table |4] the total P&L without considering transaction costs for three methods were 88.877,
92.000, and 92.305, respectively, indicating they all effectively hedged the option when transaction
costs were not considered. However, when transaction costs were taken into account, delta hedging
incurred higher transaction costs, while the two RL methods had similar hedging effectiveness, each
reducing by approximately 119, leading to lower total P&L.

The code for the second SSE SOETF option contract is 10004596, with an initial underlying price of
2.651, a strike price of 2.5, and a validity period of 55 days(including 35 trading days). According
to the hedging results for this option under three methods (Table[5), without considering transaction
costs, the total P&L obtained by three methods were -41.912, 390, and 410.688, respectively. Com-
pared to delta hedging, both RL methods achieved higher returns, with our method yielding slightly
higher profits. When transaction costs were taken into account, both RL methods significantly re-
duced transaction costs (by approximately 50%) compared to delta hedging. Consequently, the final
P&L were greatly improved, achieving results superior to delta hedging. From Figure[TT] it is noted
that both our method and DDPG method incurred more losses in the 9-17 day period when hedg-
ing this option. This could be due to the option being primarily out-of-the-money during this time,
resulting in two RL methods being less effective than delta hedging. However, as the underlying
asset’s price continued to rise later on, the RL methods achieved high returns, which offset most of
the losses incurred during that period, ultimately leading to a performance superior to delta hedging.

The code for the third SSE SO0ETF option contract is 10003801, with an initial underlying price of
3.247, a strike price of 2.9, and a validity period of 169 days(including 111 trading days). According
to the hedging results for this option under three methods (Table[6), without considering transaction
costs, total P&L obtained by three methods were 271.882, 750.000, and 3274.05, respectively. Com-
pared to delta hedging, both RL methods increased returns, with our method achieving significantly
higher profits. Observing the changes in the underlying P&L during the hedging process for this
option (Figure[I2) and costs were taken into account, both RL methods significantly reduced trans-
action costs compared to delta hedging. Although our method had higher transaction costs than the
DDPG method, the losses on the underlying assets were much smaller than those with the DDPG
method, ultimately resulting in better performance than both delta hedging and DDPG hedging.

Based on above analysis, we believe that our approach is expected to lower costs and achieve more
positive returns for in-the-money options, surpassing delta hedging. Yet, for out-of-the-money op-
tions, it’s less effective than delta hedging. In such cases, we recommend alternative hedging strate-
gies.

5 CONCLUSION

This paper proposes a new distributional reinforcement learning method based on historical infor-
mation for option hedging. First, the historical state is included in the state variable, and the GRU
is used to extract historical information, which is combined with the current information extracted
from the full connection layer and then provided to the subsequent network layer for learning, to en-
sure that the agent can consider both current and historical market information when learning option
hedging; Secondly, we set the output of the value network as a set of quantiles, and use Quantile
Huber Loss function to fit the distribution of its evaluation, to evaluate the advantages and disadvan-
tages of the strategy from the distribution rather than the expected value; Then, in order to make the
data sources of agents diverse in the process of learning strategies, we use BS model, BI model and
Heston model to simulate a large number of option data. Finally, the experimental results show that
this method can significantly reduce hedging costs.
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A APPENDIX
A.1 SSE 50ETF-10005257
Table 4: The hedging results for SSE SOETF option-10005257
Model Option P&L | Underlying P&L Cost Total P&L
delta -283.123 645.717 | -556.840
DDPG(Cao et al.,[2020) 372.000 -280.000 526.600 | -434.600
ours -279.695 526.603 | -434.298
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Figure 10: The hedging results for SSE SOETF-10005257. The first figure displays the changes of
accumulated P&L for the underlying assets, accumulated P&L for the options and the cumulative

transaction costs under delta-hedging, DDPG model(Cao et al., [2020) and our model. The second
figure illustrates the changes of the underlying asset prices, option prices, and delta values for three
options throughout its validity periods.
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A.2 SSE 50ETF-10004596

Profit and Loss

Table 5: The hedging results for SSE SOETF option-10004596

o o
. . o (=]
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o
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o
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0.0

Model Option P&L | Underlying P&L Cost Total P&L
delta -1191.912 1043.721 | -1085.633
DDPG(Cao et al.,|2020) 1150.000 -760.000 522.600 -132.600
ours -739.312 530.889 -120.200
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Figure 11: The hedging results for SSE S0ETF-10004596. The first figure displays the changes of
accumulated P&L for the underlying assets, accumulated P&L for the options and the cumulative
transaction costs under delta-hedging, DDPG model(Cao et al., and our model. The second
figure illustrates the changes of the underlying asset prices, option prices, and delta values for three
options throughout its validity periods.
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A.3 SSE S50ETF-1003801

Table 6: The hedging results for SSE S0ETF option-10003801

Model Option P&L | Underlying P&L Cost Total P&L
delta -3968.118 1918.169 | -1646.287
DDPG(Cao et al.,|[2020) 4240.000 -3490.000 614.500 135.500
ours -965.950 893.316 2380.734
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Figure 12: The hedging results for SSE 50ETF-10003801. The first figure displays the changes of
accumulated P&L for the underlying assets, accumulated P&L for the options and the cumulative
transaction costs under delta-hedging, DDPG model(Cao et al, and our model. The second
figure illustrates the changes of the underlying asset prices, option prices, and delta values for three
options throughout its validity periods.
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