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Abstract
Orientation estimation is a fundamental task in
3D shape analysis which consists of estimating a
shape’s orientation axes: its side-, up-, and front-
axes. Using this data, one can rotate a shape into
canonical orientation, where its orientation axes
are aligned with the coordinate axes. Developing
an orientation algorithm that reliably estimates
complete orientations of general shapes remains
an open problem. We introduce a two-stage orien-
tation pipeline that achieves state of the art perfor-
mance on up-axis estimation and further demon-
strate its efficacy on full-orientation estimation,
where one seeks all three orientation axes. Unlike
previous work, we train and evaluate our method
on all of Shapenet rather than a subset of classes.
We motivate our engineering contributions by the-
ory describing fundamental obstacles to orienta-
tion estimation for rotationally-symmetric shapes,
and show how our method avoids these obstacles.

1. Introduction
Orientation estimation is a fundamental task in 3D shape
analysis which consists of estimating a shape’s orientation
axes: its side-, up-, and front-axes. Using this data, one
can rotate a shape into canonical orientation, in which the
shape’s orientation axes are aligned with the coordinate
axes. This task is especially important as a pre-processing
step in 3D deep learning, where deep networks are typically
trained on datasets of canonically oriented shapes but ap-
plied to arbitrarily-oriented shapes at inference time. While
data augmentation or equivariant and invariant architectures
may improve a model’s robustness to input rotations, these
techniques come at the cost of data efficiency and model
expressivity (Kuchnik & Smith, 2019; Kim et al., 2023). In
contrast, orientation estimation allows one to pre-process
shapes at inference time so that their orientation matches a
model’s training data.
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A shape’s orientation axes are not intrinsic geometric quan-
tities: They are determined by humans based on physical
and functional considerations. It is therefore difficult to
construct simple geometric algorithms for orientation es-
timation. However, given a large dataset of canonically
oriented shapes, one may pose orientation estimation as a
supervised learning problem. This task is challenging, and
developing an orientation pipeline that reliably estimates
complete orientations of general shapes remains an open
problem.

The naı̈ve deep learning approach is to train a model with
an L2 loss to directly predict a shape’s orientation from a
point cloud of surface samples. However, this strategy fails
for shapes with rotational symmetries, where the optimal
solution to the L2 regression problem is the Euclidean mean
(Moakher, 2002) of a shape’s orientations over all of its
symmetries. In contrast, works such as Poursaeed et al.
(2020) discretize the unit sphere into a set of fixed rotations
and train a classifier to predict a probability distribution
over these rotations, but find that this approach fails for any
sufficiently dense discretization of the unit sphere.

Our key insight is to divide orientation estimation into two
tractable sub-problems. In the first stage (the quotient orien-
ter), we solve a continuous regression problem to recover
a shape’s orientation up to octahedral symmetries. In the
second stage (the flipper), we solve a discrete classification
problem to predict one of 24 octahedral flips that returns
the first-stage output to canonical orientation. Octahedral
symmetries form a small set covering a substantial pro-
portion of the symmetries occurring in real-world shapes.
Consequently, quotienting our first-stage regression prob-
lem by octahedral symmetries prevents its predictions from
collapsing to averages, while also keeping the subsequent
classification problem tractable.

Using this strategy, our method accurately estimates a
shape’s orientation up to one of its symmetries, which suf-
fices for returning the shape to an upright and front-facing
pose. As we are unaware of prior work on this problem,
we also benchmark our pipeline’s performance on the well-
studied task of up-axis prediction, in which one seeks to
return a shape to an upright (but not necessarily front-facing)
pose, and find that our work achieves state-of-the-art per-
formance on this task. Unlike previous work, we train and
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(a) Rotated shape (b) Shape in canonical ori-
entation

Figure 1: Orientation estimation allows users to rotate ar-
bitrary shapes (a) into canonical orientation (b), in which
the shape’s orientation axes are aligned with the coordinate
axes.

evaluate our model on the entire Shapenet dataset rather than
a subset of classes. We further demonstrate its generaliza-
tion capabilities on Objaverse, a large dataset of real-world
3D models of varying quality.

A shape’s ground truth orientation may be ambiguous. This
challenge is especially salient for nearly-symmetric shapes,
where multiple orientations may yield nearly indistinguish-
able shapes. To resolve this issue, we use conformal pre-
diction to enable our flipper to output adaptive prediction
sets (Romano et al., 2020) whose size varies with the flipper
model’s uncertainty. For applications with a human in the
loop, this enables the end user to choose from a small set of
plausible candidate orientations, dramatically simplifying
the orientation estimation task while preserving user control
over the outputs.

Our contributions include the following: (1) we identify fun-
damental obstacles to orientation estimation and study the
conditions under which a naı̈ve regression-based approach
to orientation estimation fails; (2) we propose a two-stage
orientation estimation pipeline that sidesteps these obsta-
cles; (3) we train and test our model on Shapenet and show
that it achieves SOTA performance for up-axis prediction
and orientation estimation; (4) we use conformal prediction
to enable end users to resolve ambiguities in a shape’s orien-
tation; (5) we release our code and model weights to share
our work with the ML community.

2. Related Work
Classical methods. A simple method for orientation es-
timation is to compute a rotation that aligns a shape’s prin-
cipal axes with the coordinate axes; Kaye & Ivrissimtzis
(2015) propose a robust variant of this method for mesh
alignment. However, Kazhdan et al. (2003) find that PCA-
based orientation estimation is not robust to asymmetries.
Jin et al. (2012); Wang et al. (2014) propose unsupervised
methods that leverage low-rank priors on axis-aligned 2D
projections and third-order tensors, respectively, constructed
from input shapes. These priors are restrictive, and the re-
sulting orientation pipelines also fail on asymmetric shapes.

Another set of classical methods observe that as many man-
made objects are designed to stand on flat surfaces, their
up axis is normal to a supporting base. Motivated by this
observation, these methods attempt to identify a shape’s sup-
porting base rather than directly infer their up axis. Fu et al.
(2008) generate a set of candidate bases, extract geometric
features, and combine a random forest and SVM to predict a
natural base from the candidates. Lin & Tai (2012) simplify
a shape’s convex hull, cluster the resulting facets to obtain a
set of candidate bases, and compute a hand-designed score
to select the best base. Both of these methods rely heavily
on feature engineering and fail on shapes that do not have
natural supporting bases.

Deep learning-based methods. Motivated by the limita-
tions of classical approaches, several works use deep learn-
ing for orientation estimation. Liu et al. (2016) train two
neural networks on voxel representations of 3D shapes. A
first-stage network assigns each shape to one of C classes.
Based on this prediction, the shape is routed to one of C
second-stage networks that are independently trained to pre-
dict the up axis from voxel representations of shapes in their
respective classes. This method is unable to handle shapes
that lie outside the C classes on which the networks were
trained.

Pang et al. (2022) draw inspiration from classical methods
and train a segmentation network to predict points that be-
long to a shape’s supporting base. They fit a plane to the
predicted base points and output a normal vector to this
plane as the predicted up axis. This method represents the
current state of the art for orientation estimation, but strug-
gles to handle shapes without well-defined natural bases and
and only predicts a shape’s up axis. In contrast, our method
succeeds on general shapes and predicts a full rotation ma-
trix that returns a shape to canonical orientation.

Chen et al. (2021) use reinforcement learning to train a
model to gradually rotate a shape into upright orientation.
While this algorithm performs well, it is evaluated on few
classes and is costly to train. Kim et al. (2020) adopt a
similar perspective to Fu et al. (2008), but use ConvNets
to extract features for a random forest classifier that pre-
dicts a natural base. Poursaeed et al. (2020) use orientation
estimation as a pretext task to learn features for shape clas-
sification and keypoint prediction. They also investigate a
pure classification-based approach to orientation estimation
that discretizes the 3D rotation group into K rotations and
predicts a distribution over these rotations for an arbitrarily-
rotated input shape. They find that its performance decays
rapidly as K increases, reaching an accuracy as low as 1.6%
for K = 100 rotations.

We also highlight a related literature on canonical align-
ment. This literature includes works such as Kim et al.
(2023); Sajnani et al. (2022); Spezialetti et al. (2020); Zhou
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et al. (2022), which seek to map arbitrarily-rotated shapes to
a class-consistent pose, as well as Katzir et al. (2022); Sun
et al. (2021), which seek to learn pose-invariant represen-
tations of 3D shapes. These works only attempt to learn a
consistent orientation within each class, but this orientation
is not consistent across classes and is not generally aligned
with the coordinate axes. In contrast, we tackle the more
challenging task of inferring a canonical orientation that is
consistent across all objects.

More broadly, geometric deep learning studies general meth-
ods for exploiting symmetries in data by designing machine
learning models that are invariant or equivariant to certain
transformations. For instance, Kaba et al. (2023) proposes
using learned canonicalization functions to obtain equivari-
ant machine learning methods, and Puny et al. (2022) pro-
poses frame averaging to induce invariance or equivariance
in deep learning architectures. Our work may be viewed as
an efficient canonicalization method for the specific case of
3D shapes with rotational symmetries.

3. Method
In this section, we motivate and describe our orientation
pipeline. We first identify fundamental obstacles to orienta-
tion estimation and show that learning a shape’s orientation
with the L2 loss fails when the shape is rotationally sym-
metric. Motivated by these observations, we introduce our
two-stage orientation pipeline consisting of a quotient ori-
enter followed by a flipper. Our quotient orienter model
solves a regression problem to recover a shape’s orientation
up to octahedral symmetries, which commonly occur in
real-world shapes. The flipper then predicts one of 24 oc-
tahedral flips that returns the first-stage output to canonical
orientation. We finally use conformal prediction to enable
our flipper to output prediction sets whose size varies with
the model’s uncertainty. This allows end users to resolve
ambiguities in a shape’s orientation by choosing from a
small set of plausible candidate orientations.

3.1. Orientation estimation under rotational symmetries

In this section, we introduce the orientation estimation
problem and motivate our approach. Throughout these
preliminaries, we consider 3D shapes S ∈ S lying in
some space of arbitrary shape representations S. Orien-
tation estimation consists of learning an orienter function
f : S → SO(3) that maps a shape S ∈ S to a predicted
orientation Ω̂S ∈ SO(3), where SO(3) denotes the 3D
rotation group. An orientation is a rotation matrix ΩS as-
sociated with a shape S that is rotation-equivariant: If one
rotates S by R ∈ SO(3) to obtain RS, then ΩRS = RΩS .
We interpret the columns of ΩS = (ωx

S , ω
y
S , ω

z
S) as the side-

, up-, and front-axes of S, respectively, and say that S is
in canonical orientation if ΩS = I . If S is in canonical

orientation, then its side-, up-, and front-axes (which we
will jointly refer to as its orientation axes) are aligned with
the {x, y, z} coordinate axes, respectively. We depict a
canonically oriented shape S along with its orientation ΩS

in Figure 2.

Figure 2: A shape’s orientation ΩS is a rotation matrix
whose columns are the shape’s side-, up-, and front-axes
(plotted in yellow, magenta, cyan, resp).

A shape’s orientation axes are not intrinsic geometric quanti-
ties. Instead, they are determined by humans based on phys-
ical and functional considerations. For instance, a shape’s
up-axis may be determined by how a shape naturally lies
under gravity, whereas its front-axis may be determined by
the direction from which a human typically interacts with
it. It is therefore challenging to devise simple geometric
algorithms for orientation estimation.

However, there exist large datasets of shapes such as
Shapenet (Chang et al., 2015) that have been assigned a
canonical orientation by human annotators. Given a train-
ing set D of shapes S ∈ S paired with their ground truth
orientations ΩS (where ΩS ≡ I for datasets of canonically
oriented shapes), a natural strategy for orientation estima-
tion is to parametrize the orienter as a neural network fθ
and solve the following supervised learning problem:

min
fθ

E
R∼U(SO(3))
(S,ΩS)∈D

[
∥fθ(RS)−RΩS∥2F

]
, (1)

where U(SO(3)) is the uniform distribution over SO(3).

Many real-world shapes S possess at least one non-trivial
rotational symmetry R. This rotation leaves the shape un-
changed, so RS = S. However, since a shape’s orientation
is rotation-equivariant, ΩRS = RΩS ̸= ΩS , and the same
shape S will necessarily be associated with two distinct
orientations ΩS and RΩS . It follows that the ground truth
orienter map S 7→ ΩS of a rotationally-symmetric shape
is one-to-many and therefore not a function. We formally
state and prove this result in Proposition A.1, and depict an
instance of this phenomenon in Figure 3.

On the other hand, fθ is a function, which implies that
the solution to Equation 1 cannot be the true orienter map.
The following proposition shows that for single shapes with
rotational symmetries, the solution to Equation 1 is instead
Euclidean mean of the rotated orientations RQΩS across
all rotations Q in the symmetry group RS (Moakher, 2002).
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(a) Shape in canonical orienta-
tion

(b) Shape after 180◦ rotation
about the y-axis

Figure 3: Rotating a shape by one of its symmetries changes
its orientation while leaving the shape unchanged. Here,
the front axis (in cyan) and side axis (in yellow) are flipped
when the shape is rotated 180◦ about the y-axis.

Proposition 3.1. Let S ∈ S be a fixed shape which is
symmetric under a non-trivial group of rotations RS ⊆
SO(3). Let ΩS be the shape’s orientation, and suppose
f∗ : S → SO(3) solves the following regression problem:

min
f :S→SO(3)

E
R∼U(SO(3))

[
∥f(RS)−RΩS∥2F

]
, (2)

Then f∗(RS) = projSO(3)

[
1

|RS |
∑

Q∈RS
RQΩS

]
̸=

RΩS , where projSO(3) denotes the orthogonal projection
onto SO(3).

We prove this proposition in Appendix A.2. This problem
may be highly degenerate, even for shapes with a single non-
trivial symmetry. For example, consider the bench shape S
depicted in Figures 1, 2, 3. As shown in Figure 3, this shape
has two rotational symmetries: The identity rotation, and a
180◦ rotation about the y-axis. It is straightforward to show
that the solution f∗ to Equation 2 is non-unique and may be
any rotation about the y-axis, which we illustrate in Figure
4. (See Appendix A.3 for further details.) This demonstrates
that even a single non-trivial rotational symmetry leads to an
entire submanifold of solutions f∗(S) to Problem 2, which
substantiates the observations of Liu et al. (2016); Poursaeed
et al. (2020) that orientation estimation via L2 regression
typically performs poorly in practice.

Figure 4: The solution f∗(S) to Problem 2 evaluated at the
bench shape S may be any rotation about the y-axis.

3.2. A partial solution.

The previous section shows that orientation estimation via
L2 regression fails for rotationally-symmetric shapes, which

are common in practice. We now present a partial solution to
this problem. Suppose we know a finite group R̂ ⊇ RS that
contains a shape S’s rotational symmetries. We can then
quotient the L2 loss by R̂ to obtain the following problem:

min
f :S→SO(3)

E
R∼U(SO(3))
(S,ΩS)∈D

[
min
Q∈R̂

∥f(RS)−RQΩS∥2F
]
. (3)

This loss is small if f(RS) is close to the orientation RQΩS

of the rotated shape RQS for any Q ∈ R̂; Mehr et al. (2018)
use similar techniques to learn latent shape representations
that are invariant under a group of geometric transforma-
tions. Intuitively, whereas Equation 2 attempts to make f(S)
close to all QΩS , a minimizer of Equation 3 merely needs
to make f(S) close to any QΩS . Formally:

Proposition 3.2. Let S ∈ S be a fixed shape which is sym-
metric under a group of rotations RS ⊆ R̂ ⊆ SO(3). Let
ΩS be the shape’s orientation, and consider the following
quotient regression problem:

min
f :S→SO(3)

E
R∼U(SO(3))

[
min
Q∈R̂

∥f(RS)−RQΩS∥2F
]
, (4)

Then for any R ∈ SO(3), there exists a solution f∗ : S →
SO(3) of the form f∗(RS) = RQ∗ΩS for some Q∗ ∈ R̂.

We prove this proposition in Appendix A.4. In contrast to
naı̈ve L2 regression, quotient regression learns a function
that correctly orients rotationally-symmetric shapes up to a
rotation in the group R̂. While this is only a partial solution
to the orientation estimation problem, the remainder reduces
to a discrete classification problem: Predicting the rotation
Q∗ ∈ R̂ such that f∗(RS) = RQ∗ΩS . In the following
section, we will show how a solution to this problem allows
one to map RS to the canonically oriented shape S.

3.3. Recovering an orientation via classification.

By solving the quotient regression problem in Equation 3,
one can recover an arbitrarily-rotated shape RS’s orientation
up to a rotation Q∗ ∈ R̂. In this section, we propose training
a classifier to predict this rotation Q∗ given the solution
f∗(RS) = RQ∗ΩS to the quotient regression problem.
We now further assume that the shape S’s ground truth
orientation ΩS is the canonical orientation ΩS = I . We
show that even if S is symmetric under some group of
symmetries RS ⊆ R̂, the optimal classifier’s predictions
enable one to map RS to the canonically oriented shape S.

Predicting a rotation Q∗ ∈ R̂ from the output f∗(RS) =
RQ∗ of the quotient regression model is an |R̂|-class classi-
fication problem. While one may hope that composing the
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(a) Quotient regression
output

(b) Classifier outputs

Figure 5: The quotient regression problem 4 correctly ori-
ents an arbitrarily rotated shape RS up to a rotation in R̂.
The classification problem 5 then recovers the orientation
of RS up to one of its rotational symmetries, which suffices
for mapping RS to the canonically oriented shape S.

quotient regression model and the optimal classifier yields
a function that outputs correct orientations Ω̂RS = RΩS

regardless of its inputs’ symmetries, such a function cannot
exist for symmetric shapes. However, the following result
shows that this pipeline recovers the orientation of a shape
RS up to one of its rotational symmetries, which suffices
for mapping RS to S.

Proposition 3.3. Let S ∈ S be a fixed shape which is
symmetric under a group of rotations RS ⊆ R̂ ⊆ SO(3),
and suppose S is canonically oriented, so ΩS = I . Let
f∗ : S → SO(3) be a solution to Equation 3, so that
f∗(RS) = RQ∗ for some Q∗ ∈ R̂. Finally, suppose that
p∗ : S → ∆|R̂|−1 solves the following problem:

min
p:S→∆|R̂|−1

E
Q∼U(R̂)

[CE (p(QS), δQ)] , (5)

where U(R̂) denotes the uniform distribution on R̂, CE(·)
denotes the cross-entropy loss, and δQ ∈ ∆|R̂|−1 is a one-
hot vector centered at the index of Q ∈ R̂. Then for any R ∈
SO(3), p∗(f∗(RS)⊤RS) is the uniform distribution over{
(Q∗)⊤F : F ∈ RS

}
. For any (Q∗)⊤F in the support of

this distribution, ((Q∗)⊤F )⊤︸ ︷︷ ︸
second-stage prediction

f∗(RS)⊤︸ ︷︷ ︸
first-stage prediction

RS = S,

so using f∗ and p∗, one may recover S from the arbitrarily-
rotated shape RS.

We prove this proposition in Appendix A.5. The results in
this section show that unlike naı̈ve L2 regression, a two-
stage pipeline consisting of quotient regression followed
by discrete classification can successfully recover a shape’s
orientation up to its symmetries, provided one quotients the
L2 objective by a sufficiently large subgroup of SO(3). We
combine these results in the following section to implement
a state-of-the-art method for orientation estimation.

3.4. Implementation

Informed by our insights from Sections 3.2 and 3.3, we
now present our state-of-the-art method for orientation es-
timation. Our pipeline consists of two components. Our
first component, which we call the quotient orienter, is a
neural network trained to solve Problem 3. We quotient the
L2 objective by R̂ := O ⊆ SO(3), the octahedral group
containing the 24 rotational symmetries of a cube. This is
among the largest finite subgroups of SO(3) (only the cyclic
group Cn for n ≥ 48 and dihedral group Dn for n ≥ 4 can
contain more subgroups), and it includes many rotational
symmetries that commonly occur in real-world shapes.

Our second component, which we call the flipper, is a clas-
sifier trained to predict the rotation Q∗ ∈ R̂ from the output
f∗(RS) = RQ∗ of the quotient regression model. We il-
lustrate the output of each stage of this pipeline in Figure
5. As many shapes possess multiple plausible orientations,
we use conformal prediction to enable our flipper to output
adaptive prediction sets whose size varies with the flipper
model’s uncertainty. We provide further implementation
details below.

Quotient orienter. We parametrize our quotient orienter
by a DGCNN (Wang et al., 2019) operating on point clouds.
To ensure that our predicted orientations lie in SO(3), we
follow Brégier (2021) and map model outputs from R3×3

to SO(3) by solving the special orthogonal Procrustes prob-
lem. We train the quotient orienter on point clouds sampled
from the surfaces of meshes in Shapenet (Chang et al., 2015).
As these meshes are pre-aligned to lie in canonical orienta-
tion, we fix ΩS = I for all training shapes S. We provide
full architecture and training details in Appendix B.

In our experiments, we observe that our quotient orienter
yields accurate predictions for most input rotations R but
fails for a small subset of rotations. To handle this, we fol-
low Liu et al. (2016) and employ test-time augmentation
to improve our model’s predictions. This consists of (1)
randomly rotating the inputs RS by K random rotations
Rk ∼ U(SO(3)), k = 1, ...,K, (2) obtaining the quotient
orienter’s predictions fθ(RkRS) for each shape, (3) return-
ing these predictions to the original input’s orientation by
computing R⊤

k fθ(RkRS), and (4) outputting the prediction
R⊤

k∗fθ(Rk∗RS) with the smallest average quotient distance
to the remaining predictions.

Flipper. We also parametrize our flipper by a DGCNN op-
erating on point clouds. We train the flipper on point clouds
sampled from the surface of Shapenet meshes by solving
the |R̂|-class classification problem described in Section 3.3.
We draw rotations Q ∼ U(O) during training, and simulate
inaccuracies in our quotient orienter’s predictions by further
rotating the training shapes about a randomly drawn axis by
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an angle uniformly drawn from [0, 10] degrees. We provide
full architecture and training details in Appendix B.

We also employ test-time augmentation (TTA) to improve
our flipper model’s predictions. Similarly to the case with
the quotient orienter, we (1) randomly flip the inputs by K
random rotations Rk ∼ R̂ = O, (2) obtain the flipper’s
predictions for each shape, (3) return these predictions to
the original input’s orientation, and (4) output the plurality
prediction.

Adaptive prediction sets. Many real-world shapes have
several plausible canonical orientations, even when they lack
rotational symmetries. Furthermore, the flipper model may
map nearly-symmetric shapes with unique canonical orien-
tations to a uniform distribution over their near-symmetries
due to factors such as insufficiently dense point clouds or
the smoothness of the flipper function.

To mitigate this issue in pipelines with a human in the loop,
we enable our flipper model to output adaptive prediction
sets whose size varies with the flipper’s uncertainty (Ro-
mano et al., 2020). This method uses a small conformal cal-
ibration set drawn from the validation data to learn a thresh-
old parameter τ > 0 associated with a coverage probability
α ∈ (0, 1) that controls the size of the prediction sets. Given
the flipper model’s output probabilities pϕ(S) ∈ ∆|R̂|−1 for
some shape S, one sorts pϕ(S) in descending order and adds
elements of R̂ to the prediction set until their total mass in
pϕ(S) reaches τ . Intuitively, these sets will be small when
the flipper is confident in its prediction and assigns large
mass to the highest-probability classes. Conversely, the
sets will be large when the flipper is uncertain and assigns
similar mass to most classes.

4. Experiments
We now evaluate our method’s performance on orientation
estimation. We first follow the evaluation procedure in Pang
et al. (2022) and benchmark against their “Upright-Net,”
which represents the current state of the art for orientation
estimation. Upright-Net can only map shapes into upright
orientation, where a shape’s up-axis is aligned with the
y-axis; in contrast, our method recovers a full orientation
ΩS for each shape. We therefore follow this benchmark
with an evaluation of our method on the more challenging
task of full-orientation estimation. We incorporate adaptive
prediction sets at this stage and demonstrate that our method
reliably provides a plausible set of candidate orientations for
diverse shapes unseen during training. We train and evaluate
all models on Shapenet (Chang et al., 2015), as this is the
largest and most diverse dataset we are aware of containing
canonically oriented shapes. However, we report qualitative
results for our method’s out-of-distribution performance on
Objaverse in Appendix C.

(a) Angular error histograms
for Shapenet

(b) Angular error histograms
for ModelNet40

Figure 6: Comparison of angular errors between the esti-
mated and ground truth up-axis on the Shapenet validation
set (left) and on ModelNet40 (right). We plot the empirical
CDF of the angular errors of each model’s outputs. The
dashed lines indicate the 10◦ error threshold beyond which
a prediction is treated as incorrect. With test-time augmen-
tation (TTA), our algorithm’s error rate is 64.6% lower than
the prior state of the art.

4.1. Upright orientation estimation

We construct a random 90-10 train-test split of Shapenet,
draw 10k point samples from the surface of each mesh,
and train our quotient orienter and flipper on all classes in
the training split. We train our quotient orienter for 1919
epochs and our flipper for 3719 epochs, sampling 2k points
per point cloud at each iteration and fixing a learning rate
of 10−4. We also train Upright-Net with 2048 points per
cloud on the same data for 969 epochs at the same learning
rate, at which point the validation accuracy has plateaued.
We follow the annotation procedure in Pang et al. (2022) to
obtain ground truth segmentations of each point cloud into
supporting base points and non-base points.

Table 1: Up-axis estimation accuracy for our pipeline trained
on Shapenet

Method Accuracy (↑)
Shapenet ModelNet40

Ours (with TTA) 89.2 % 77.7 %
Ours (without TTA) 85.3 % 72.3 %

Upright-Net (Pang et al., 2022) 69.5 % 62.3 %

We then follow the evaluation procedure in Pang et al.
(2022) to benchmark our method against their SOTA method
for upright orientation estimation. We randomly rotate
shapes S in the validation set, use our two-stage pipeline
and Upright-Net to estimate the up-axis ωy

RS of each ran-
domly rotated shape RS, and then measure the angular er-
ror arccos(⟨ω̂y

RS , ω
y
RS⟩) between the estimated and ground

truth up-axis. Our method’s estimated up-axis is the second
column of our estimated orientation matrix Ω̂RS .

In contrast, Upright-Net predicts a set of base points for RS,
fits a plane to these points, and returns this plane’s normal
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(a) Ours (b) Upright-Net

Figure 7: Comparison of oriented shapes recovered from
randomly rotated inputs using our algorithm (left) and
Upright-Net (right). Failures are rendered in red. Our algo-
rithm recovers correct upright and front-facing orientations
for most shapes, whereas Upright-Net cannot recover front-
facing orientations and fails over 2.8× as often at up-axis
prediction.

vector pointing towards the shape’s center of mass. This
method relies on a restrictive prior on the geometry of the
input shapes that does not hold for shapes which do not
naturally lie on a supporting base. We follow Pang et al.
(2022) and define our methods’ respective accuracies to be
the proportion of validation meshes whose angular error is
less than 10◦.

We depict the results of this benchmark in Table 1. Our
method improves on Upright-Net’s up-axis estimation
accuracy by nearly 20 percentage points, corresponding
to a 64.6% reduction in the error rate relative to the previous
state of the art. To provide a more comprehensive picture
of our respective models’ performance, we also report the
empirical CDF of angular errors for our model and Upright-
Net in the left panel of Figure 6. Our model primarily fails
by outputting orientations that are 90◦ or 180◦ away from
the correct orientation, which correspond to failures of the
flipper. In contrast, Upright-Net’s failures are more evenly
distributed across angular errors. Finally, we depict a grid
of non-cherry-picked outputs of our model and Upright-Net
in Figure 7 and highlight failure cases in red.

We quantitatively evaluate our model’s generalization by
performing the same experiment on ModelNet40 (Wu et al.,
2015). Both models’ performances deteriorate in this set-
ting, but our algorithm continues to substantially outperform
Upright-Net. Furthermore, the right panel of Figure 6 shows
that our model’s failures on ModelNet40 are more heavily
weighted towards flipper failures (where the angular error
is close to 90◦ and 180◦). In the following section, we will
show how a human in the loop can resolve these failures by
choosing from a small set of candidate flips, which substan-
tially improves our pipeline’s quantitative performance.

These results demonstrate that our method significantly im-

proves over the state of the art in up-axis estimation. In the
following section, we show that our method also success-
fully recovers the full orientation ΩRS of a rotated shape
up to its symmetries, a more challenging task than upright
orientation estimation. Using our estimated orientations, we
return a wide variety of shapes into canonical orientation.

4.2. Full-orientation estimation

We now evaluate our method’s performance on full-
orientation estimation, in which we use our model’s full
predicted orientation matrix Ω̂RS to transform an arbitrarily-
rotated shape RS to the canonically oriented shape S. We
draw shapes S from the Shapenet validation set and ran-
domly rotate them to obtain inputs RS to our pipeline. Be-
cause several orientation matrices may be associated with
a single canonically oriented shape when this shape has
rotational symmetries, we report the symmetric chamfer dis-
tance between our pipeline’s output shape and the ground
truth shape. Because this is a shape-to-shape metric, it
is insensitive to rotational symmetries: If RS = S, then
d(S, T ) = d(RS, T ), where d is the chamfer distance and
T is a reference shape.

To our knowledge, our algorithm is the first to solve this
task for generic shapes without requiring class information
at training time or at inference time. We therefore construct
two baselines using Upright-Net. As this algorithm only
predicts a shape’s up-axis (the second column of its orien-
tation matrix), we must augment Upright-Net’s predictions
with a front-axis and a side-axis. We generate a baseline
called “Upright-Net-Oracle” by augmenting Upright-Net’s
predicted up-axis with the shape’s ground truth front-axis,
and a second baseline called “Upright-Net-Random” by aug-
menting the predicted up-axis with a random vector that we
orthogonalize with respect to the up-axis. In both cases,
we obtain the side-axis by taking the cross product of the
respective up- and front-axes. “Upright-Net-Oracle” upper-
bounds the performance of a hypothetical orienter built on
Upright-Net, whereas “Upright-Net-Random” provides a
lower bound on such an orienter’s performance.

We benchmark our pipeline’s performance against each base-
line in Table 2, where we report the mean chamfer distance
between each model’s predicted shapes and the correspond-
ing ground truth shapes, which are in canonical orientation.
Our method achieves an 84% reduction in mean chamfer
distance between predicted and ground truth shapes rela-
tive to the oracle baseline, which augments Upright-Net’s
predicted up-axis with the shape’s ground truth front-axis.
In practice, one does not have access to this front-axis at
inference time, so this represents a loose upper bound on
the potential performance of a shape orientation algorithm
built upon Upright-Net’s predicted up-axes.

This empirically validates our Proposition 3.2 and demon-
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strates that our pipeline successfully recovers canonically
oriented shapes, even when symmetries preclude the orienter
map from being represented by a function. We further illus-
trate our pipeline’s performance in Figure 10 in Appendix
C, where we depict a large grid of shapes that have been
oriented by our pipeline. Even when our model’s outputs
disagree with the ground truth pose in Shapenet (we render
the corresponding meshes in red), the recovered shape is
often acceptable in practice.

Finally, in Figure 12 in Appendix C, we depict transformed
shapes obtained by applying our method to randomly-
rotated shapes from the Objaverse dataset (Deitke et al.,
2023). This dataset contains highly diverse meshes of vary-
ing quality and therefore serves as a useful test case for our
method’s performance on out-of-distribution shapes. (As
these shapes are not canonically oriented, we cannot train
on them or report meaningful error metrics.) Using our
orientation pipeline, one reliably recovers shapes that are
canonically oriented up to an octahedral flip. Our flipper has
greater difficulty handling out-of-distribution meshes, but
predicts an acceptable flip in many cases. We expect that
training our flipper on a larger dataset of oriented shapes
will further improve its generalization performance.

Table 2: Full-orientation estimation performance on the
Shapenet validation set.

Method Mean chamfer distance (↓)
Upright-Net-Random 0.10801 ± 0.13824
Upright-Net-Oracle 0.05481 ± 0.13016

Ours (TTA) 0.00856 ± 0.0396
Ours (w/o TTA) 0.01107 ± 0.04342
Ours (with APS) 0.00208 ± 0.01407

Figure 8: Histogram of APS sizes with coverage probability
α = 0.3. The median APS contains 2 shapes, and 90% of
APSs contain at most 8 shapes.

Adaptive prediction sets. Many real-world shapes have
several plausible canonical orientations, even if they lack
rotational symmetries. In particular, while most real-world
shapes have a well-defined upright orientation, their front-
facing orientation is often ambiguous. In Section 3.4, we
proposed enabling a human in the loop to resolve these am-

biguities by having our orientation pipeline output adaptive
prediction sets (APSs), whose size varies with the flipper’s
uncertainty. We now incorporate this technique into our
evaluation. We learn a threshold parameter τ corresponding
to a coverage probability of α = 0.3, and at inference time
output a set of flips in descending order of probability under
the flipper’s output distribution until their total probability
mass reaches τ . Intuitively, this set will be small when the
flipper is confident in its prediction and large otherwise.

By applying each flip to the first-stage orienter’s output,
we obtain a shape orientation pipeline that outputs sets of
candidate shapes Ŝc given a single arbitrarily-rotated input
RS. To evaluate its performance, we compute the chamfer
distance between each candidate shape and the ground truth
shape, and take the minimum over these chamfer distances.
As one may trivially reduce the minimum chamfer distance
over an APS by outputting arbitrarily large sets, we report
a histogram of APS sizes in Figure 8 to demonstrate that
these sets are typically small.

We report our pipeline’s performance with adaptive predic-
tion sets in the last row of Table 2. Allowing our pipeline
to output an APS reduces the mean chamfer distance be-
tween the closest shape in this set to the ground truth by a
factor of 4 relative to Orient Anything without this feature.
Figure 8 shows that with our chosen coverage probability,
most APSs are small; the median APS size is 2, and 90%
of APSs have at most 8 shapes. This demonstrates that our
flipper typically assigns most of its probability mass to a
few octahedral symmetries, which often contain a rotation
that returns the shape to its canonical pose in Shapenet. In
Figure 11 in Appendix C, we also include a grid of meshes
in the prediction sets associated with 20 randomly-selected
validation shapes. These prediction sets typically consist of
a small collection of plausible shape orientations; by man-
ually inspecting them, a human in the loop may select the
orientation that is most suitable for their target application.

5. Conclusion
This work introduces a state-of-the-art method for 3D ori-
entation estimation. Whereas previous approaches can only
infer upright orientations for limited classes of shapes, our
method successfully recovers entire orientations for general
shapes. We show that naı̈ve regression-based approaches for
orientation estimation degenerate on rotationally-symmetric
shapes, which are common in practice, and develop a two-
stage orientation pipeline that avoids these obstacles. Our
pipeline first orients an arbitrarily rotated input shape up to
an octahedral symmetry, and then predicts the octahedral
symmetry that maps the first-stage output to the canoni-
cally oriented shape. We anticipate that this factorization
of geometric learning problems will be broadly applicable
throughout 3D deep learning for tackling problems that are
ill-posed due to the presence of symmetries.
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A. Additional results and proofs
A.1. The orienter map for symmetric shapes is not a function

Proposition A.1. Let S ∈ S be a fixed shape which is symmetric under a non-trivial group of rotations RS ⊆ SO(3), and
let ΩS be its orientation. Then there is no function f such that f(RS) = RΩS for all R ∈ SO(3).

Proof: Suppose f(RS) = RΩS for all R ∈ SO(3), and fix some non-identity rotation R ∈ RS under which S is
symmetric. Then RS = S, but f(RS) = RΩS ̸= ΩS = f(S), so f(RS) ̸= f(S) even though RS = S. Hence f must be
a one-to-many map and is therefore not a function. ■

A.2. Proposition 3.1

The key insight is that if f is a function, then f(RS) = f(R′S) for all R′ ∈ SO(3) such that RS = R′S. Equation 2 will
then drive the optimal f∗(RS) to the Euclidean mean (Moakher, 2002) of the rotation matrices R′ such that RS = R′S.
We begin by showing that these are precisely the matrices RQ for Q ∈ RS .

As RS is the group of symmetries of S, QS = S for all Q ∈ RS . Given some rotation R ∈ SO(3), left-multiplying by R
then yields RQS = RS for all Q ∈ RS . This relationship also holds in reverse: If RS = R′S for R,R′ ∈ SO(3), then
R′ = RQ for some Q ∈ RS . To see this, note that if RS = R′S, then S = R⊤R′S and hence R⊤R′ ∈ RS . Consequently,
R′ = R(R⊤R′) = RQ for Q := R⊤R′ ∈ RS . It follows that:

{R′ ∈ SO(3) : RS = R′S} = {RQ : Q ∈ RS} .

We can therefore write a solution to Equation 2 evaluated at RS as follows:

f∗(RS) = argmin
R∗∈SO(3)

E
R′∈SO(3):RS=R′S

[
∥R∗ −R′ΩS∥2F

]
= argmin

R∗∈SO(3)

E
RQ:Q∈RS

[
∥R∗ −RQΩS∥2F

]
= argmin

R∗∈SO(3)

E
Q∈U(RS)

[
∥R∗ −RQΩS∥2F

]
= argmin

R∗∈SO(3)

1

|RS |
∑

Q∈RS

∥R∗ −RQΩS∥2F .

This is the Euclidean mean of the matrices RQΩS as defined in Moakher (2002). Proposition 3.3 in the same reference states
that the solution to this problem is found by computing the arithmetic mean 1

|RS |
∑

Q∈RS
RQΩS and then orthogonally

projecting this onto SO(3). In particular,

f∗(RS) = projSO(3)

 1

|RS |
∑

Q∈RS

RQΩS

 ̸= RΩS .

Hence L2 regression fails to learn the orientation ΩS of a shape S ∈ S that possesses a non-trivial set of rotational
symmetries RS . ■

A.3. Non-uniqueness of solution to Problem 2

Consider the bench shape S depicted in Figures 1, 2, 3. As shown in Figure 3, this shape has two rotational symmetries:
The identity rotation, and a 180◦ rotation about the y-axis. One may represent these rotations by the matrices I and
Q := (−ex, ey,−ez), respectively, where ex, ey, ez are the standard basis vectors.

Proposition 3.1 states that one solves the L2 regression problem 2 for the bench shape by computing the arithmetic mean of I
and Q and then orthogonally projecting this matrix onto SO(3). The arithmetic mean of I,Q is the matrix M := (0, ey, 0),
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and one computes its orthogonal projection onto SO(3) by solving a special Procrustes problem (Gower & Dijksterhuis,
2004):

min
R∈SO(3)

∥R−M∥2F (6)

The solution to this problem is non-unique for M := (0, ey, 0), and the minimum is attained by any rotation about the y-axis
(i.e. any rotation matrix whose second solumn is ey). This shows that even a single non-trivial rotational symmetry leads to
an entire submanifold of solutions f∗(S) to Problem 2.

A.4. Proposition 3.2

We begin by defining an equivalence relation over SO(3). Given two rotations R1, R2 ∈ SO(3), we call R1, R2 equivalent
and write R1 ∼ R2 if there exists some Q ∈ R̂ such that R2 = R1Q. We verify that this is an equivalence relation:

Reflexivity: I ∈ R̂ since R̂ is a group and R1 = R1I , so R1 ∼ R1.

Symmetry: Suppose R1 ∼ R2. Then R2 = R1Q for some Q ∈ R̂. As R̂ is a group, R⊤ = R−1 ∈ R̂ as well, and
R2Q

⊤ = R1, so R2 ∼ R1.

Transitivity: Suppose R1 ∼ R2 and R2 ∼ R3. Then there are Q,Q′ ∈ R̂ such that R2 = R1Q and R3 = R2Q
′. Hence

R3 = R2Q
′ = R1QQ′, and as R̂ is a group, QQ′ ∈ R̂. We conclude that R1 ∼ R3.

This confirms that ∼ is a valid equivalence relation. Using this equivalence relation, we partition SO(3) into equivalence
classes, choose a unique representative for each class, and use [R] ∈ SO(3)/ ∼ to denote the unique representative for the
equivalence class containing R ∈ SO(3). We then use this map to define a candidate solution to Equation 4 over the space
of rotated shapes {RS : R ∈ SO(3)} as f∗(RS) := [R]ΩS . We will first verify that this defines a valid function (i.e. that
f∗ is not one-to-many), and then show that it attains a loss value of 0 in Equation 4.

We first show that f∗ defines a valid function. To do so, we must show that if R1S = R2S, then f∗(R1S) = f∗(R2S). To
this end, suppose that R1S = R2S. Then S = R⊤

1 R2S, so Q := R⊤
1 R2 ∈ RS ⊆ R̂. It follows that R2 = R1R

⊤
1 R2 =

R1Q for some Q ∈ R̂, so R1 ∼ R2. Since R1 ∼ R2, [R1] = [R2] and so f∗(R1S) = [R1]ΩS = [R2]ΩS = f∗(R2S).
This shows that f∗ defines a valid function.

We now show that f∗ attains a loss value of 0 in Equation 4. For any R ∈ SO(3), we have:

min
Q∈R̂

∥f(RS)−RQΩS∥2F = min
Q∈R̂

∥[R]ΩS −RQΩS∥2F .

But clearly R ∼ [R], so there exists some Q∗ ∈ R̂ such that [R] = RQ∗. Hence

min
Q∈R̂

∥[R]ΩS −RQΩS∥2F = 0,

and as this reasoning holds for any R ∈ SO(3), it follows that

E
R∼U(SO(3))

[
min
Q∈R̂

∥f(RS)−RQΩs∥2F
]
= 0.

We conclude that f∗ is a minimizer of Equation 4. Furthermore, f∗(S) = [I]ΩS = Q∗ΩS for some Q∗ ∈ R̂, which
completes the proof of the proposition. ■

A.5. Proposition 3.3

If F ∈ RS , then FS = S, so QFS = QS for any other rotation Q ∈ SO(3) and {QFS : F ∈ RS} contains the
symmetries of the rotated shape QS. The optimal solution p∗ to Equation 5 maps a rotated shape QS (where Q ∈ R̂) to the
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empirical distribution of the targets Q ∈ R̂ conditional on a shape QS. But if QFS = QS for all F ∈ RS , then this is the
uniform distribution over the set {QF : F ∈ RS}.

Since f∗(RS) = RQ∗ for some Q∗ ∈ R̂, f∗(RS)⊤RS = (Q∗)⊤S, and applying the general result from above, we
conclude that p∗(f∗(RS)⊤RS) = p∗((Q∗)⊤S) is the uniform distribution over the set {(Q∗)⊤F : F ∈ RS}.

For any (Q∗)⊤F , one then computes ((Q∗)⊤F )⊤f∗(RS)⊤RS = F⊤S. But as RS is a group, F⊤ ∈ RS whenever F is,
so F⊤S = S and we conclude that ((Q∗)⊤F )⊤f∗(RS)⊤RS = S. ■

B. Implementation details
B.1. Quotient orienter

We parametrize our quotient orienter by a DGCNN and use the author’s Pytorch implementation (Wang et al., 2019) with
1024-dimensional embeddings, k = 20 neighbors for the EdgeConv layers, and a dropout probability of 0.5. Our DGCNN
outputs unstructured 3× 3 matrices, which we then project onto SO(3) by solving a special orthogonal Procrustes problem;
we use the roma package (Brégier, 2021) to efficiently compute this projection.

We train our quotient orienter on point clouds consisting of 10k surface samples from Shapenet meshes. We subsample 2k
points per training iteration and pass batches of 48 point clouds per iteration. We train the quotient orienter for 1919 epochs
at a learning rate of 10−4.

Test-time augmentation for the quotient orienter. Our use of TTA for the quotient orienter is motivated by the observation
that the quotient orienter succeeds on most rotations and fails on small subsets of rotations. Given an arbitrarily-oriented
input shape RS, we would like to mitigate the possibility that the shape is in an orientation for which the quotient orienter
fails. To do so, we apply K random rotations Rk to the input shape to obtain randomly re-rotated shapes RkRS. Because
the quotient orienter only fails on small subsets of rotations, we expect it to succeed on most of the RkRS and recover the
orientations of RkRS up to an octahedral symmetry.

Because we are interested in the orientation of RS rather than RkRS, we then need to apply the inverse of Rk to each
predicted orientation fθ(RkRS) to obtain a set of K predicted orientations R⊤

k fθ(RkRS). These will be correct orientations
of RS up to octahedral symmetries for each k where the quotient orienter succeeds.

Because we expect this to be the case for most k, we employ a voting scheme to select one of the candidate orientations
R⊤

k fθ(RkRS). In this step, we compute each candidate’s average quotient L2 loss with respect to every other candidate (i.e.
the loss in Problem 3), and choose the candidate which minimizes this measure. Because we expect the quotient orienter to
have succeeded for most of the RkRS, this average quotient loss will be small for most candidates and large for the few
outlier candidates on which the orienter failed. Choosing the candidate with the minimum average quotient loss with respect
to the other candidates filters out these outliers and makes it likelier that we output the correct orientation of RS up to an
octahedral symmetry.

B.2. Flipper

We parametrize our flipper by a DGCNN and use the author’s Pytorch implementation (Wang et al., 2019) with 1024-
dimensional embeddings, k = 20 neighbors for the EdgeConv layers, and a dropout probability of 0.5. Our flipper outputs
24-dimensional logits, as we quotient our first-stage regression problem by the octahedral group, which contains the 24
rotational symmetries of a cube.

We train our flipper on point clouds consisting of 10k surface samples from Shapenet meshes. We subsample 2k points
per training iteration and pass batches of 48 point clouds per iteration. We train the quotient orienter for 3719 epochs at a
learning rate of 10−4. We draw rotations Q ∈ U(O) during training, and simulate inaccuracies in our quotient orienter’s
predictions by further rotating the training shapes about a randomly drawn axis by an angle uniformly drawn from [0, 10]
degrees.

Test-time augmentation for the flipper. The TTA procedure for the flipper is similar to the quotient orienter’s TTA
procedure. We are given an input shape FS, which is correctly oriented up to an octahedral symmetry (a “flip”) F if the
quotient orienter succeeded. We apply K random flips Fk to the input shape to obtain randomly re-rotated shapes FkFS
and apply the flipper to each of these shapes. Similarly to the quotient orienter, if the flipper succeeds on some FkFS, it
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predicts FkF rather than the flip F we are actually interested in. We consequently left-multiply each prediction g(FkFS)
by F⊤

k , which maps each successful prediction g(FkFS) = FkF to the true flip F . Because we expect the flipper to have
succeeded on most inputs FkFS and failed on a minority of inputs, we again use a voting scheme to pick out the plurality
prediction. In this case, we simply return the most common flip among the set of F⊤

k g(FkFS).

B.3. Adaptive prediction sets

We implement adaptive prediction sets following the method in Angelopoulos et al. (2020) with their regularization parameter
λ set to 0. To calibrate our conformal flipper, we first draw a subset of the validation set (the calibration set), apply a random
octahedral flip Q ∼ U(O) to each calibration shape, and then pass each flipped shape QS through the trained flipper to
obtain class probabilities pϕ(QS) ∈ ∆23. The calibration score for a shape S is the sum of the model’s class probabilities
p(QS)i ranked in descending order, up to and including the true class i∗ corresponding to the ground truth flip Q. We fix a
confidence level 1− α and return the (1− α)-th quantile τ of the calibration scores for each shape in the calibration set. In
general, smaller values of 1− α lead to smaller values of τ , which ultimately results in smaller prediction sets at inference
time, whereas large values of 1− α lead to larger prediction sets at inference time but with stronger guarantees that these
sets include the true flip.

At inference time, we first obtain the flipper model’s output probabilities pϕ(S) ∈ ∆|R̂|−1 for some shape S, then sort pϕ(S)
in descending order and add elements of R̂ to the prediction set until their total mass in pϕ(S) reaches τ . Intuitively, these
sets will be small when the flipper is confident in its prediction and assigns large mass to the highest-probability classes.
Conversely, the sets will be large when the flipper is uncertain and assigns similar mass to most classes.

B.4. Motivation for test-time augmentation.

In practice, our trained orienter exhibits discontinuities at certain rotations. To demonstrate this, we perform an experiment
on a bench shape, which is symmetric under a 180 degree rotation about the y-axis. We rotate the bench around this axis in
increments of 1 degree and pass the resulting shape into our orienter for each rotation. We track two metrics throughout this
process:

• The quotient loss of our orienter’s prediction (i.e. the loss function from Problem 3, where we quotient the L2 loss by
the octahedral group). This measures the accuracy of our orienter’s predictions up to an octahedral symmetry.

• The chamfer distance between the shapes obtained by applying the orienter’s output to the rotated bench at subsequent
angles of rotation. This detects discontinuities in the orienter’s output.

We plot both of these metrics across the rotation angle in Figure 9. Our orienter exhibits several sharp discontinuities,
manifested as spikes in the chamfer distance plot. These discontinuities are associated with spikes in the quotient loss, which
are occasionally large. However, these spikes in the quotient loss are highly localized, and our orienter performs well for
the vast majority of rotations. These localized spikes motivate our use of TTA to improve our pipeline’s performance. We
provide implementation details for TTA in Appendices B.1 and B.2.

Figure 9: Our orienter exhibits several sharp discontinuities when rotating an input shape about a fixed axis (red curve).
These discontinuities are associated with localized spikes in the quotient loss (blue curve), which motivate our use of TTA to
improve our pipeline’s performance.
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C. Additional figures

Figure 10: A grid of our model’s outputs given randomly rotated, non-cherrypicked meshes from Shapenet. We render each
mesh whose chamfer distance with respect to the ground truth is below a predetermined success threshold in blue, and we
render the remainder in red. Our success threshold is the average chamfer distance between a shape randomly rotated by
10◦ and the original shape; we compute this average across 100 Shapenet validation meshes. Even when predicted shapes
do not agree with the ground truth orientation determined by the creators of Shapenet, their orientation is often acceptable in
practice.
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Figure 11: A grid of 20 adaptive prediction sets generated using our pipeline given randomly-rotated, non-cherrypicked
meshes from Shapenet. We render each mesh whose chamfer distance with respect to the ground truth is below a
predetermined success threshold in blue, and we render the remainder in red. Our success threshold is the average chamfer
distance between a shape randomly rotated by 10◦ and the original shape; we compute this average across 100 Shapenet
validation meshes. Our adaptive prediction sets are typically small and include reasonable orientations, which an end user
may choose between as needed for their target application.
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Figure 12: A grid of our model’s outputs given randomly rotated, non-cherrypicked meshes from Objaverse. Our quotient
regressor consistently succeeds on out of distribution meshes, as most of our pipeline’s outputs are correctly oriented up to
a cube flip. Our flipper has greater difficulty generalizing, but predicts an acceptable flip in many cases. We expect that
training on a larger and more diverse dataset of oriented shapes will improve our flipper’s generalization performance.
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