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ABSTRACT

Large Language Models (LLM) have revolutionized Natural Language Processing
(NLP), improving state-of-the-art on many existing tasks and exhibiting emergent
capabilities. However, LLMs have not yet been successfully applied on semi-
structured document information extraction, which is at the core of many docu-
ment processing workflows and consists of extracting key entities from a visually
rich document (VRD) given a predefined target schema. The main obstacles to
LLM adoption in that task have been the absence of layout encoding within LLMs,
critical for a high quality extraction, and the lack of a grounding mechanism ensur-
ing the answer is not hallucinated. In this paper, we introduce Language Model-
based Document Information EXtraction and Localization (LMDX), a method-
ology to adapt arbitrary LLMs for document information extraction. LMDX can
do extraction of singular, repeated, and hierarchical entities, both with and with-
out training data, while providing grounding guarantees and localizing the entities
within the document. Finally, we apply LMDX to the PaLM 2-Small LLM and
evaluate it on VRDU and CORD benchmarks, setting a new state-of-the-art and
showing how LMDX enables the creation of high quality, data-efficient parsers.

1 INTRODUCTION

The recent advent of transformers (Vaswani et al., 2017) and self-supervised pretraining procedures
has led to significant progress in Visually Rich Document (VRD) Understanding. Within that field,
the task of document information extraction (IE), which consists of extracting key entities within a
semi-structured document (e.g. invoice, tax form, paystub, receipt, etc) given a predefined schema,
has received a lot of attention from industry and academia due to its importance and wide applicabil-
ity to intelligent document processing workflows. However, document information extraction still
remains challenging for current generation systems. In particular, information in semi-structured
forms is organized in complex layout across many possible templates, which requires understand-
ing of the document context, spatial alignment among the different segments of text, and tabular
arrangement of structured entities (e.g. line items on an invoice, deduction items on a paystub, etc.).
Content on the document can be printed or handwritten, with scanning artefacts like rotation and
contrast issues. Moreover, since some business automation workflows require certain level of ac-
curacy, they are often integrated with human-in-the-loop interactions for auditing and correction of
predictions, requiring knowing the precise location of extracted entities to make it a tractable task for
a human rater. Finally, since a quasi-infinite number of document types exist, and that organizations
have limited annotation resources, most parsers are built with very small amount of data.

From those complexities emerge the following desiderata of document information extraction sys-
tems: they should support high-quality extraction of singular, repeated, and hierarchical entities,
while localizing those entities in the document, and doing so with very low or no amount of training
data. So far, no publicly disclosed system has been able to address all of those desiderata.

Many current approaches divide the problem in two stages: a text recognition/serialization step,
usually achieved by an off-the-shelf Optical Character Recognition (OCR) service, followed by a
parsing step, which finds the relevant entity values from the recognized text. Since the text serializa-
tion is imperfect, much attention has been given to fusing the text and layout together in the parsing
step (Majumder et al., 2020; Garncarek et al., 2021; Hwang et al., 2021; Katti et al., 2018; Denk &
Reisswig, 2019). Hong et al. (2021) proposes to encode the relative 2D distances of text blocks in
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the attention of the transformer, and learning from unlabeled documents with an area-masking strat-
egy. Lee et al. (2022) proposes encoding the relative token positions with a graph neural network
with edges constructed from a beta-skeleton algorithm. It further frames information extraction as
a Named Entity Recognition (NER) task with an Inside-Outside-Begin (IOB) token tagging scheme
(Ramshaw & Marcus, 1995; Palm et al., 2017) which allows them to localize the entities. However,
IOB does not support extracting hierarchical entities, and is not robust to text serialization errors,
where an entity is broken in disjoint segments.

Since text and layout do not contain all the information in the document (e.g. table boundaries,
logos), leveraging the image modality has also been extensively explored (Xu et al., 2021; Lee et al.,
2023; Appalaraju et al., 2021; 2023; Zhang et al., 2022). Xu et al. (2020) uses a separate image
encoder before adding the output as feature to the token encodings, while Huang et al. (2022) jointly
models the page image patches alongside the tokens, using a word-patch alignment self-supervised
pretraining task to learn the connection between the modalities.

Other approaches treat extraction as a sequence generation problem. Powalski et al. (2021) adds an
auto-regressive decoder on top of a text-layout-image encoder, all initialized from T5 (Raffel et al.,
2020). Kim et al. (2022) foregoes the text recognition step completely, using a Vision Transformer
encoder with an auto-regressive decoder pretrained on a pseudo-OCR task on a large document
image corpora, and finetuned on the final extraction parse tree with Extensible Markup Language
(XML) tags for the target extraction schema. While this approach allows to predict hierarchical
entities, it does not allow localizing entities in the document.

None of the previously discussed approaches attempt to understand the semantics of the schema and
its entity types, and instead opt to encode the schema in the model weights through training, hence
requiring training data for unseen schemas and document types. QueryForm (Wang et al., 2023b)
utilizes a prompt encoding both the schema and entity types, allowing the model to do zero-shot
extraction. Likewise, Wei et al. (2023) inputs the raw entity types in the encoder itself, and uses a
scoring matrix to predict the link classes between document tokens and types, with great few-shot
performance. However, both approaches are not able to predict hierarchical entities.

In parallel, Large Language Models (OpenAI, 2023; Google et al., 2023; Hoffmann et al., 2022)
have revolutionized Natural Language Processing, showing the capabilities to solve a task with sim-
ply an instruction (Wei et al., 2022) or a few examples added to the prompt (Brown et al., 2020).
This paradigm opens the possibility of extracting entities with very little to no training data. Wang
et al. (2023a) transforms the NER task to a sequence generation task suitable for LLMs by incorpo-
rating special tokens in the sequence, marking the entity boundaries, and proposes a self-verification
strategy limiting the LLM hallucinations. However, this is applicable to text-only scenarios, with
hallucinations still a possibility.

This motivates us to introduce Language Model-based Document Information EXtraction and Lo-
calization (LMDX), a methodology for leveraging off-the-shelf LLMs for information extraction
and localization on semi-structured documents. Our contributions can be summarized as follows:

• We propose a prompt that enables LLMs to perform the document IE task on leaf and hi-
erarchical entities with precise localization, including without any training data, and using
only the simple text-in, text-out interface that all LLMs provide.

• We also propose a layout encoding scheme that communicate spatial information to the
LLM without any change to its architecture.

• We introduce a decoding algorithm transforming the LLM responses into extracted entities
and their bounding boxes on the document, while discarding all hallucination.

• We systematically evaluate the data efficiency of LMDX on multiple public benchmarks
and establish a new state-of-the-art on those by a wide margin, especially at low-data
regimes.

A comparison of LMDX characteristics and other popular document information extraction systems
can be found at Table 1.
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Table 1: Comparison of document information extraction systems.

Document Information Extraction Systems Hierarchical entity Entity localization Zero-shot support

FormNet(v2), LayoutLM(v2), Docformer, Glean, ... 7 3 7
QueryForm, PPN 7 3 3

Donut 3 7 7
LMDX (Ours) 3 3 3

2 METHODOLOGY

2.1 OVERVIEW

Overall, our pipeline is divided into five stages: OCR, chunking, prompt generation, LLM inference
and decoding, detailed in the following sections. An overview with a simple example can be found
in Figure 1, with the input and output of each stage showcased. In this example, the target schema
contains two leaf entity types retailer and subtotal, and one hierarchical entity type line_item, com-
posed of a product_id and a product_price.

OCR’ed Document 
(multi-page)

Document chunks 
( x N )

{
 "retailer":"",
 "line_item":[{
  "product_id":"",
  "product_price":""
 }],
 "subtotal":""
}

LLM Prompts
( x N )

Target Schema

<Document>
Apple Store xx|yy
...
D8050LLA xx|yy
...
</Document>
<Task>
{
  "retailer":"",
  "order_date":"",
  "line_item":[{
    "prd_number":"",
    "item_price":""
  }],
  "subtotal":""
}
</Task>
<Extraction>

<Document>
Apple Store 38|05
...
D8050LLA 25|43
...
</Document>
<Task>
{
 "retailer":"",
 "line_item":[{
  "product_id":"",
  "product_price":""
 }],
 "subtotal":""
}
</Task>
<Extraction>

LLM Completions
( x NK )

{
 "retailer":
  "Apple Store xx|yy",
 "order_date":
  "June 29, 2023 
xx|yy",

 "line_item":[{
  "prd_number":
   "D8050LL/A xx|yy",
  "item_price":
   "$499.00 72|58"
 }],
 "subtotal": 
  "$499.00 78|74"
}
</Extraction>

{
 "retailer":
  "Apple 38|05",
 "line_item":[{
  "product_id":
   "D8050LL/A 25|43",
  "product_price":
   "$100.00 72|43"
 }],
 "subtotal": null
}
</Extraction>

Final Extraction

{
 "retailer":{
  "value":"Apple",
  "location":{
   "page":0,
   "bbox":[18,04,47,08]
}},
 "line_item":[{
  "product_id":{
   "value":"D8050LL/A",
   "location":{
    "page":0, ...
   }},
  "product_price":{
   "value":"$100.00",
   "location":{
    "page":0, ...
   }},...],
 "subtotal":{
  "value":"$499.00",
  "location":{
   "page": 1,
   "bbox": [70,73,90,77]
  }},
}

Prompt
Generation

LLM 
Inference Decoding

Input: Red   Output: Green
Intermediate results: Grey     

Chunking

Figure 1: Overview of the LMDX methodology.

2.2 OPTICAL CHARACTER RECOGNITION

We first use an off-the-shelf OCR service on the document image to obtain words and lines segments,
along with their corresponding spatial position (bounding box) on the document. An example of
output from that stage on a sample document is given in Appendix A.6.

2.3 CHUNKING

While some LLMs support long context (hundreds of thousands of tokens), not all LLMs can fit
the entire document within its prompt. For those cases, the document is divided into document
chunks so that each is small enough to be processed by the LLM. To achieve this, we first divide
the document into individual pages, then we iteratively remove the last line segments (coming from
OCR) until the prompt containing this chunk is below the maximum input token length of the LLM.
Lastly, we group those removed lines as a new document page, and repeat the same logic until all
chunks are below the input token limit of the LLM. At the end of this optional stage, we have N
chunks. The decision to first divide the document by page stems from the observation that entities
rarely cross page boundaries, and as such this chunking scheme will have minimal impact on the
final extraction quality. The algorithm is described in pseudo-code in Appendix A.1.
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2.4 PROMPT GENERATION

The prompt generation stage takes in the N document chunks and creates a LLM prompt for each
of them. As seen in Figure 2, our prompt design contains the document representation, a description
of the task, and the target schema representation containing the entities to extract. XML-like tags
are used to define the start and end of each component.

<Document>
{DOCUMENT_REPRESENTATION}
</Document>
<Task>
{TASK_DESCRIPTION}
{SCHEMA_REPRESENTATION}
</Task>
<Extraction>

Figure 2: Structure of the LLM prompts.

Document Representation. The chunk content is represented in the prompt as the concatenation
of all its segment texts, suffixed with the coordinates of those segments in the following format:
< segment text > XX|Y Ysegment. Coordinate tokens are built by normalizing the segment’s X
and Y coordinates, and quantizing them in B buckets, assigning the index of that bucket as the token
for a coordinate.

This coordinate-as-tokens scheme allows us to communicate the layout modality to the LLM, with-
out any change to its architecture. There are many variation to that scheme: using OCR line versus
OCR words as segment, the granularity of the quantization, and the number of coordinates to use
per segment (e.g. [xcenter, ycenter] versus [xmin, ymin, xmax, ymax]). Appendix A.4 shows how those
variations affect the prompt token length. In all our experiments, we use line-level segments with 2
coordinates [xcenter, ycenter] and B = 100 quantization buckets.

Task Description. The task description is simply a short explanation of the task to accomplish. In
our experiments, we hard code it to the following: From the document, extract the text values and
tags of the following entities:.

Schema Representation. The schema is represented as a structured JSON object, where the keys
are the entity types to be extracted, and the values correspond to their occurrence (single or multiple)
and sub-entities (for hierarchical entities). For instance, {"foo": "", "bar": [{"baz": []}]} means that
the LLM should extract only a single entity of type foo and multiple hierarchical entities of type bar,
that could each hold multiple entities of type baz.

After this step, we have N prompts, one for each document chunk. A full example of a prompt on a
document can be found in Appendix A.6.

2.5 COMPLETION TARGETS

In this section, we describe the expected LLM completion format, which can be observed in Figure 1.
Like the schema, the completion is a JSON structured object with the keys being the entity types,
and values being the extracted information from the document chunk. JSON was chosen as a format
for the completion and schema since it supports hierarchical objects, is very token-efficient, and
usually present in LLMs training data mixtures. Note that the keys in the completion have the same
ordering, occurrence and class (hierarchical or leaf) as the entity types in the schema. The values of
leaf entities must follow a specific format:

< text on segment1 > XX|Y Ysegment1\n < text on segment2 > XX|Y Ysegment2\n ...

An entity can span multiple (potentially disjoint) OCR segments (lines or words). For each segment
of the entity, the value contains the entity text on that segment, along with the coordinate tokens of
that segment, which act as a segment identifier, allowing us to localize the entities and ground the
model prediction (e.g. making sure the extracted value is not a hallucination), as will be detailed in
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Section 2.7. Finally, missing entity types are completed by the model with null for singular types,
and [] for repeated types. Samples of completions can be found in Appendix A.6.

2.6 LLM INFERENCE

In this stage of the pipeline, we run inference on the LLM with the N prompts. For each prompt,
we sample K completions from the LLM (for a total of NK completions for the entire document)
using TopK sampling. This randomness in the sampling allows to do error correction (e.g. if a
response is not valid JSON, have hallucinated segment coordinate identifier, etc), and increase the
extraction quality as will be shown in further sections. Note that we still want the inference to be
fully deterministic so that LMDX’s extractions are the same across two identical documents. To do
so, we rely on pseudo-random sampling using a fixed seed.

2.7 DECODING

In this stage, we parse the raw LLM completions into structured entities and their locations.

Conversion to structured entities. We begin by parsing each model completion as a JSON object.
Completions that fail to parse are discarded. For each key-value pair in the JSON object, we interpret
the key as the entity type and parse the value to get the entity text and bounding box (as detailed in
the next paragraph). Predicted entity types that are not in the schema are discarded. If the model
unexpectedly predicts multiple values for single-occurrence entity types, we use the most frequent
value as the final predicted value. Hierarchical JSON object are recursively parsed as hierarchical
entities in a similar manner. This algorithm is described in pseudo-code in Appendix A.3.

Entity Value Parsing. We expect the JSON value to include both text extractions and segment
identifiers for each predicted entity, as described in Section 2.5. We first parse the value into its
(segment text, segment identifier) pairs. For each pair, we look up the corresponding segment
in the original document using the segment identifier and verify that the extracted text is exactly
included on that segment. The entity is discarded if that verification fails, ensuring LMDX discards
all LLM hallucinations. Finally, once we have the entity location on all its segments, we get the
entity bounding box by computing the smallest bounding box encompassing all the OCR words
included in the entity. Entity values with any segments that fail to ground (invalid entity value
format, non-existent segment identifier, or non-matching segment text) in the original document are
discarded. The entity value parsing algorithm is described in pseudo-code in Appendix A.2, and
parsing errors rates are detailed in Appendix A.9.

Prediction Merging. We first merge the predicted entities for the same document chunk from the
K LLM completions through majority voting (Wang et al., 2022). For each entity type, we gather
the predicted entities, including empty predictions, across the K completions. The most common
prediction(s) are selected as the predicted value for that entity type. We then merge the predictions
among the N document chunks by concatenating them to obtain the document level predictions.

Prediction Merging for hierarchical entities. For hierarchical entities, we use the entire pre-
dicted tree value from a single LLM completion, as this method best preserves the parent-child
relationship predicted by the model. For each top-level hierarchical entity type, we perform major-
ity voting on all affiliated leaf, intermediate and top-level entity types among K completions as if
they are flattened. We then tally the votes with equal weight to determine which completion to use
for the prediction, and select the most common one for that hierarchical entity.

3 EVALUATION

We evaluate the methodology from section 2 on public benchmarks using the PaLM 2-Small LLM,
which we call LMDXPaLM 2-Small. Note that we use the small version of this LLM due to limited
accelerator resources, but larger versions could be used, likely leading to higher extraction quality.

Our training process is composed of two phases. In the first phase we finetune PaLM 2-Small on a
data mixture containing a variety of (document, schema, extraction) tuples. In particular, this data
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mixture contains the Payment dataset (Majumder et al., 2020), along with a diverse set of publicly
available PDF form templates obtained from government websites that we filled with synthetic data
using an internal tool, and annotated for schema and entities to extract. The goal of this phase is to
obtain a Base Entity Extractor model by training the model to interpret the semantics of the entity
types and extraction hierarchy specified in the schema, and find them within the document, along
with learning the extraction syntax. Hence, the variety of schemas and documents in this phase is of
utmost importance. This model is used for doing zero-shot extraction on a wide variety of document
types.

During the second phase, starting from the base entity extractor checkpoint from the previous phase,
we finetune the LLM on the target to specialize it to do high quality extraction on the target bench-
mark. At this stage, only the target benchmark data is included in the training mixture. Note that, for
zero-shot experiments, this second phase is skipped. Furthermore, no document or schema contained
in the base extraction training phase overlap with the documents and schemas used in the special-
ization training phase. For all training phases, we follow the input and target syntax described in
section 2.4 and 2.5.

3.1 PARAMETERS

For training, we finetune PaLM 2-Small using a batch size of 8, a dropout probability of 0.1 and
a learning rate of 10−6 with a standard cross-entropy loss. Once training is done, we select the
checkpoint with the lowest loss on the dev set, and report performance on the test set. For LLM
inference, we use a temperature of 0.5 and a TopK of 40, sampling 16 responses for each chunk
processed by the LLM, as described in section 2.6. Finally, for both training and inference, we use
an input token length of 6144 and output token length of 2048. We use line-level segments and only
two coordinates [xcenter, ycenter] with 100 quantization buckets to save on the number of input and
output tokens consumed by the coordinate-as-tokens scheme, as supported by Appendix A.4.

3.2 DATASETS

Visually Rich Document Understanding (VRDU). Wang et al. (2023c) introduces a public
benchmark for entity extraction from visually-rich documents that includes two datasets: Regis-
tration Form, containing 6 semantically rich entity types, and Ad-buy Form, containing 14 entity
types with one hierarchical line_item entity. For each dataset, VRDU proposes samples of 10, 50,
100 and 200 train documents to evaluate the data efficiency of models. It also offers different tasks
to evaluate the generalization powers of extraction systems: Single Template Learning (STL) where
train/test share the same single template, Unseen Template Learning (UTL) where train/test contain
disjoint sets of templates, and Mixed Template Learning (MTL) where train/test contain overlap-
ping sets of templates. For our experiments, we finetune LMDXPaLM 2-Small for 4000 steps on each
dataset, training data size, and task setup independently and report Micro-F1 through the provided
evaluation tool. We then compare LMDXPaLM 2-Small to its published state-of-the-art baselines.

Consolidated Receipt Dataset (CORD). Park et al. (2019) introduces a benchmark of Indonesian
receipts from shops and restaurants, with a target schema of 30 fine-grained entities, grouped into
menu, total and subtotal hierarchical entities. CORD1 does not provide a standard evaluation toolkit,
so we adopt the normalized Tree Edit Distance accuracy (n-TED) metric (Zhang & Shasha, 1989),
previously introduced by Kim et al. (2022) on that benchmark, since it is agnostic to the output
scheme used and considers the hierarchical entities as part of the metric. For our experiments, we
use the official 800train/100dev/100test split, but also sample the first D = 10/50/100/200
documents from the train split to assess the data efficiency of LMDX on this benchmark. For each
data setup, we finetune LMDX for 12000 steps. For comparison, we also train and evaluate state-of-
the-art baselines LayoutLMv3LARGE and Donut. Those baselines are detailed in Appendix A.8.

For all benchmarks. We use the publicly provided OCR for the LMDX model and base-
lines with text input, ensuring a fair comparison between them. Furthermore, we also compare
LMDXPaLM 2-Small to large model baselines on all benchmarks in the zero-shot (|D| = 0) setting:
GPT-3.5 that we prompt with the raw OCR and extraction instruction, and LLaVA-v1.5-13B that we

1https://huggingface.co/datasets/naver-clova-ix/cord-v1
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prompt with the document image and extraction instructions. Those baselines are fully detailed in
Appendix A.7. Unlike LMDX, those large model baselines do not localize their predictions.

3.3 RESULTS

Table 2: Results of LMDXPaLM 2-Small on the different tasks and training data size setups |D| of
VRDU, with best performing model results in bold.

|D| Model
L

oc
al

iz
at

io
n Registration Form Ad-buy Form

Single Unseen Mixed Template Unseen Mixed Template

Micro-F1 Micro-F1 Micro-F1
Localization

Micro-F1 Micro-F1
Line Item F1 Localization

Accuracy (Hierarchical) Accuracy

0
LLaVA-v1.5-13B 7 5.29 5.05 5.00 N/A 0.38 0.34 0.00 N/A

GPT-3.5 7 67.23 67.49 63.86 N/A 29.84 30.05 7.65 N/A
LMDXPaLM 2-Small 3 73.81 74.94 71.65 93.21 39.33 39.74 21.21 88.18

10

FormNet 3 74.22 50.53 63.61 - 20.28 20.47 5.72 -
LayoutLM 3 65.91 25.54 36.41 98.71 19.92 20.20 6.95 92.60

LayoutLMv2 3 80.05 54.21 69.44 99.00 25.17 25.36 9.96 93.95
LayoutLMv3 3 72.51 21.17 60.72 99.20 10.01 10.16 5.92 90.68

LMDXPaLM 2-Small 3 90.88 86.87 87.72 99.75 54.82 54.35 39.35 94.51

50

FormNet 3 89.38 68.29 85.38 - 39.52 40.68 19.06 -
LayoutLM 3 86.21 55.86 80.15 99.69 38.42 39.76 19.50 95.24

LayoutLMv2 3 88.68 61.36 84.13 99.54 41.59 42.23 20.98 95.64
LayoutLMv3 3 87.24 47.85 81.36 99.39 38.43 39.49 19.53 95.28

LMDXPaLM 2-Small 3 93.06 88.43 91.42 99.87 75.70 75.08 65.42 98.28

100

FormNet 3 90.91 72.58 88.13 - 39.88 40.38 18.80 -
LayoutLM 3 88.70 63.68 86.02 99.63 41.46 42.38 21.26 95.09

LayoutLMv2 3 90.45 65.96 88.36 99.72 44.35 44.97 23.52 95.72
LayoutLMv3 3 89.23 57.69 87.32 99.72 41.54 42.63 22.08 95.88

LMDXPaLM 2-Small 3 93.97 89.70 92.41 99.92 75.99 78.05 69.77 98.69

200

FormNet 3 92.12 77.29 90.51 - 42.87 43.23 21.86 -
LayoutLM 3 90.47 70.47 87.94 99.69 44.18 44.66 23.90 95.38

LayoutLMv2 3 91.41 72.03 89.19 99.75 46.31 46.54 25.46 95.78
LayoutLMv3 3 90.89 62.58 89.77 99.67 44.43 45.16 24.51 95.95

LMDXPaLM 2-Small 3 93.97 90.22 92.78 99.87 78.42 79.82 72.09 98.65

Results for VRDU are presented in Table 2. For all data regimes and tasks, LMDXPaLM 2-Small
sets a new state-of-the-art by a wide margin. In particular, we find that LMDXPaLM 2-Small has
higher extraction quality than GPT-3.5 and LLaVA-v1.5-13B while also localizing its predictions.
LMDXPaLM 2-Small also exhibits similar extraction quality at zero-shot than baselines at 10-100 train
dataset size (for instance 39.74% Micro-F1 on Ad-Buy Form Mixed Template vs 40.68% for Form-
Net at 50 train documents, or 73.81% Micro-F1 on Registration Single Template vs 74.22% for
FormNet at 10 train documents). Moreover, LMDXPaLM 2-Small is much more data efficient than
the baselines: it is at 5.06% Micro-F1 of its peak performance at 10 training documents for Reg-
istration Form Mixed Template (87.72% vs 92.78% Micro-F1) while LayoutLMv2, the strongest
finetuned baseline, is within 19.75% of its peak performance (69.44% vs 89.19% Micro-F1). Lastly,
LMDXPaLM 2-Small generalizes better to unseen templates than finetuned baselines: on Registration
Form, LMDXPaLM 2-Small has a drop less than 5% Micro-F1 on Unseen Template compared to Single
Template across data regimes, while baselines (LayoutLMv2) sees a drop between 19% and 27%.

On CORD (results in Table 3), we observe similar trends, highlighting the generalization of the
results. At |D| = 10, LMDXPaLM 2-Small is 4.03% from its peak performance attained at |D| = 800,
versus 22.34% for the strongest baseline LayoutLMv3LARGE, showcasing LMDX’s data efficiency.

Performance on Hierarchical Entities. As seen on Ad-Buy Form Mixed in Table 2,
LMDXPaLM 2-Small has much higher Line Item F1 than the finetuned baselines for all data regimes. In
particular, LMDXPaLM 2-Small has similar line item grouping performance at zero-shot than the best
finetuned baseline at 200 train documents (21.21% versus 25.46% Line Item F1 respectively). With
all the training data, LMDXPaLM 2-Small scores a 72.09% F1 on line item, an absolute improvement
of 46.63% over the best baseline LayoutLMv2. Finally, LMDXPaLM 2-Small, which encode spatial
information, has much higher zero-shot Line Item F1 than large models baselines.

Localization Accuracy We compute the Localization Accuracy of LMDXPaLM 2-Small and all base-
lines that can localize entities using the formula: AccuracyLocalization = NE+L

NE
where NE+L is

the number of entities correctly extracted and localized, and NE is the number of entities correctly
extracted. This allows to evaluate the localization quality independently of the extraction quality.
Since LMDXPaLM 2-Small localizes at the line level, localization verification is done at the line-level
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as well, i.e. localization is considered correct if the prediction bounding box is covered by the
groundtruth line-level bounding box by more than 80%. We present the results in the Localization
Accuracy Columns in Table 2. Overall, LMDXPaLM 2-Small can localize its predictions reliably at the
line-level with the segment identifiers, with 88%-93% accuracy at zero-shot, and 98%-99% in fine-
tuned cases, which is slightly higher than LayoutLM/LayoutLMv2/LayoutLMv3/FormNet baselines
that can localize their predictions.

Table 3: LMDXPaLM 2-Small results on CORD. Normalized Tree Edit Distance Accuracy is reported.

Model Localization
n-TED Accuracy

|D| = 0 |D| = 10 |D| = 50 |D| = 100 |D| = 200 |D| = 800

LLaVA-v1.5-13B 7 4.78 - - - - -
GPT-3.5 7 58.25 - - - - -
Donut 7 0.00 33.01 75.44 82.17 84.49 90.23

LayoutLMv3LARGE 3 0.00 73.87 87.29 91.83 94.44 96.21
LMDXPaLM 2-Small 3 67.47 92.27 93.80 93.64 94.73 96.30

3.4 ABLATIONS

In this section, we ablate different facets of the LMDX methodology to highlight their relative
importance. The results can be found in Table 4 and are discussed below. For all ablations, we
evaluate on the VRDU Ad-Buy Form Mixed Template task, only changing the ablated facet.

Table 4: Ablations of Base Entity Extraction Training, Coordinate Tokens, and Sampling and their
relative effects on extraction quality. All ablations are done on VRDU Ad-Buy Mixed Template.

|D|
LMDXPaLM 2-Small Without Base EE Training Without Coordinate Tokens Without Sampling Strategy

Micro-F1 Micro-F1 ∆ (%) Micro-F1 ∆ (%) Micro-F1 ∆ (%)

0 39.74 0.00 -39.74 27.59 -12.15 39.53 -0.21
10 54.35 42.91 -11.44 39.37 -14.98 52.85 -1.50
50 75.08 66.51 -8.57 62.35 -12.73 73.88 -1.20
100 78.05 68.87 -9.18 65.14 -12.91 77.30 -0.75
200 79.82 72.25 -7.57 65.70 -14.12 78.43 -1.39

Effects of Base Entity Extraction Training. In this ablation, we remove the first stage training
on the varied data mixture and directly finetune on the VRDU target task. As seen on columns 3-4
of Table 4, ablating that training stage leads to significant drop in extraction quality in finetuned
scenarios and the complete loss of zero-shot extraction ability due to the model not respecting the
extraction format, hence failing decoding. As the train set size increases, the degraded performance
lessens from -11.44% to -7.57%, as the model learns the task and desired completion format.

Effects of Coordinate Tokens. In this ablation, we replace the coordinate tokens, which commu-
nicate the position of each line within the document, by the index of that line. This index still acts
as a unique identifier for the line segment (required for entity localization and grounding) but does
not communicate any position information. An example of a prompt with line index can be found
in Appendix A.6. As can be seen on columns 5-6 of Table 4, the coordinate tokens are substantially
important to the extraction quality, ranging from 12.15% to 14.98% absolute micro-F1 improvement
across the data regimes.

Effects of Sampling Strategy. In this ablation, we discard our strategy of sampling K = 16
completions per chunk, and instead sample a single response. As seen in columns 7-8 of Table 4, this
leads to a 0.21% to 1.5% drop in micro-F1. While overall minor for quality, the sampling strategy
also allows to correct extraction format mistakes (parsing error rates are given in Appendix A.9),
leading to a successful extraction on all documents within the benchmarks.

3.5 IN-CONTEXT LEARNING PERFORMANCE

In this section, we study how in-context learning (ICL) compares to finetuning for LMDXPaLM 2-Small.
To do so, we test two methodologies: Random, which randomly selects |D| documents and extrac-
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tions from the train set, and Nearest Neighbors, which uses similarity based on SentenceT5 em-
beddings2 (Ni et al., 2021) to retrieve |D| documents to add in the LLM context. The results on
CORD are shown in Table 5, where n-TED is reported. Overall, while both methods increase the
performance significantly, nearest neighbors has a clear advantage, matching the best random ICL
performance with only a single in-context example (87.73% versus 87.37% n-TED), and matching
the finetuned performance at |D| = 10 examples (92.82% versus 92.27% n-TED), as examples
from the same template are retrieved (see Appendix A.10 for example retrievals). Note that, beyond
|D| = 10 examples, the performance stops improving, as no more examples can fit in the context
window of PaLM 2-Small.

Table 5: In-Context Learning results on CORD with different retrieval methods.

ICL Method |D| = 0 |D| = 1 |D| = 3 |D| = 5 |D| = 10 |D| = 20

Random 67.47 74.96 84.88 86.47 87.26 87.37
Nearest Neighbors 67.47 87.73 90.98 92.28 92.82 92.75

3.6 ERROR ANALYSIS AND LIMITATIONS

In this section, we perform an error analysis on the test set to identify common error patterns of
LMDX. A very common error type we observe is caused by OCR lines grouping multiple seman-
tically different segments. We show two instance of those cases observed in LMDXPaLM 2-Small
on the VRDU Ad-Buy Form in Figure 3. In the first example, prediction for the entity
line_item/program_desc includes text from the previous column "Channel" along with the value in
the column "Description". From the OCR line bounding boxes, we can see that these two columns
are grouped as the same OCR line. In the second example, the model confuses between the adjacent
keys "Invoice Period" and "Flight Dates" and extracts invoice dates as flight dates. Similar to the
first example, OCR line bounding boxes show that the invoice dates and the key "Flight Dates" are
grouped together in the same line although they are semantically different. As LMDXPaLM 2-Small
uses only coarse line layout information ([xcenter, ycenter] with 100 quantization buckets), the model
fails in these cases, which is a current limitation of LMDX. We believe that incorporating the image
modality will help make LMDX more performant and robust to those OCR errors.

Example 1:
     line_item/program_desc
Groundtruth: 
      Local News 6a-630a
Prediction: 
     WJZ Local News 6a-630a

Groundtruth: 
     flight_from: 12/24/19
     flight_to: 12/30/19

Prediction: 
     flight_from: 11/25/19
     flight_to: 12/29/19

Example 2

Figure 3: Typical error pattern of LMDXPaLM 2-Small. In both examples, the detected OCR lines are
shown in red, the model predicted entities are shown in blue, and the groundtruth entities are shown
in green. In both cases, the detected OCR lines merge two semantically distinct segments, causing
the model to wrongly associate them in its predictions.

4 CONCLUSION

In this paper, we have introduced LMDX, a methodology that enables using LLMs for information
extraction on visually rich documents, setting a new state-of-the-art on public benchmarks VRDU
and CORD. LMDX is the first methodology to allow the extraction of singular, repeated and hier-
archical entities, while localizing the entities in the document. LMDX is data efficient, and even
allows high quality extraction at zero-shot on entirely new document types and schemas. Nonethe-
less, since it relies on a LLM, LMDX is more resource-intensive than previous approaches, and its
coordinate-as-tokens scheme requires long inputs and outputs. As future work, we will explore ap-
plying the methodology to open-source LLMs and adding the image modality to the system using
Large Vision-Language Models.

2https://www.kaggle.com/models/google/sentence-t5/frameworks/tensorFlow2/variations/st5-base
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5 REPRODUCIBILITY STATEMENT

In order to increase reproducibility, we’ve provided all details of the LMDX methodology. We’ve
included our LLM prompts and completions in Appendix A.6, along with all our algorithms for
chunking and decoding in Appendix A.1, A.2 and A.3. Furthermore, we’ve provided the exact tar-
get schemas used in our experiments in Appendix A.5. For CORD specifically, we’ve used a metric
with a public implementation (https://github.com/clovaai/donut/blob/master/
donut/util.py) and an easy to reproduce sampling strategy for the data-efficiency splits (first
D train documents). Finally, our baselines are publicly available (https://github.com/
microsoft/unilm/tree/master/layoutlmv3, https://github.com/clovaai/
donut) and thoroughly detailed in Appendix A.7 and A.8.
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A APPENDIX

A.1 CHUNKING ALGORITHM

Algorithm 1 Document Chunking
1: function CHUNK(D, L, F ) . D is a document containing multiple pages. L is token limit.
2: . F is a function that outputs prompt token length given some segments (e.g. lines).
3: C = φ . C is to record all produced chunks.
4: for i = 1 to |D.pages| do
5: S = D.pages[i].segments
6: while S 6= φ do
7: for j = |S| to 1 do . Start pruning from the end of the page.
8: if F (S[1 : j]) ≤ L then
9: C = C ∪ {S[1 : j]}

10: S = S[j + 1 : |S|] . Continue to work on the rest of the segments.
11: Exit for loop
12: end if
13: end for
14: end while
15: end for
16: return C
17: end function

A.2 ENTITY VALUE PARSING ALGORITHM

Algorithm 2 Entity Value Parsing
1: function PARSEENTITYVALUE(D, E) . D is a document chunk.
2: . E is raw extraction results for one entity type parsed from one LLM sample.
3: G = φ . G is to record all parsed entity values.
4: R = Regex(“(\d\d\|\d\d)”) . R is a regex that captures the segment identifiers.
5: M = {“s.x|s.y” 7→ s|s ∈ D.segments} . M holds a mapping between segment id and segment.
6: for i = 1 to |E| do
7: W = φ . W is to hold all words for this entity.
8: P = R.split(E[i]) . P is expected to be interleaved text values and segment ids.
9: for j = 1 to |P |/2 do

10: if P [j ∗ 2] /∈M then
11: Go to next i . Segment ID is hallucinated. Grounding failure.
12: end if
13: S = M [P [j ∗ 2]] . Retrieve the stored segment from M with parsed segment ID.
14: T = P [j ∗ 2− 1] . T is to hold the predicted text.
15: if T not substring of S then
16: Go to next i . Grounding failure, skip the current entity.
17: end if
18: W = W ∪ (S ∩ T )
19: end for
20: G′.value =

⋃
w∈W w.text_value . G′ is to hold the entity to return.

21: G′.bounding_box = {min(b.x),min(b.y),max(b.x),max(b.y)}w∈W,b=w.bounding_box
22: G = G ∪ {G′}
23: end for
24: return G
25: end function
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A.3 DECODING ALGORITHM

Algorithm 3 Responses Decoding
1: function DECODEFORTYPE(J , T , D) . J is one or more JSON objects.
2: . T is an entity type.
3: . D is a document chunk.
4: E = φ . E is to record all parsed and grounded entities.
5: for j = 1 to |J | do
6: J ′ = J [j][T.type] . J ′ is to hold entities for T’s type before grounding.
7: if T.subtypes = φ then . T is leaf entity type.
8: E = E ∪ ParseEntityV alue(D, J ′)
9: else . T is hierarchical entity type.

10: E′.subtypes =
⋃

T ′∈T.subtypesDecodeForType(J
′, T ′, D) . E′ is hierarchical entity.

11: E = E ∪ {E′}
12: end if
13: end for
14: return E
15: end function
16:
17: function MAJORITYVOTING(T , E) . T is an entity type.
18: . E is a 2D vector of entities of type T from all LLM responses.
19: V = [0, 0, ..., 0] ∈ R|E| . V is to record all votes.
20: L = {T}
21: while L 6= φ do
22: T ′ = L[0]
23: E′ = φ
24: for j = 1 to |E| do
25: E′ = E′ ∪ {e|e ∈ E[j], e.type = T ′} . E′[j] holds entities with type T ′ from E[j].
26: end for
27: for i = 1 to |E′| - 1 do
28: for j = i+ 1 to |E′| do
29: if E′[i] = E′[j] then
30: V [i] = V [i] + 1
31: V [j] = V [j] + 1
32: end if
33: end for
34: end for
35: L = L[1 : |L|] . Remove T ′ and inject its sub-types for recursion.
36: L = L ∪ T ′.subtypes
37: end while
38: return E[argmax(V )] . Return the entity values with the highest votes.
39: end function
40:
41: function DECODEALLSAMPLES(S, T , D) . S is all LLM response samples on D.
42: . T is a list of entity types.
43: . D is a document chunk.
44: return

⋃
T ′∈T MajorityV oting(

⋃
S′∈S DecodeForType(ParseJson(S′), T ′, D))

45: end function

14



Under review as a conference paper at ICLR 2024

A.4 TOKEN LENGTH STATISTICS

Table 6 details the token length (50th and 99th percentiles) of the prompt and completion targets for
the train split of datasets used in our experiments. We select the line level segment, 2 coordinate
scheme, no JSON indentation so that all datasets fit within our 6144 prompt token length and 2048
output token length.

Table 6: Prompt and target token length of different coordinate-as-tokens schemes on VRDU and
CORD benchmarks, using the vocabulary of PaLM 2-S. We vary the number of coordinates and their
quantization buckets in the localization tags, the segment level (e.g. line versus word), chunking
style (e.g. page versus max input tokens) and JSON indentation in the schema and completion
targets.

VRDU Ad-Buy Form

# Coord. # Quant. Segment Chunking JSON Indent
Input Target

50th 99th 50th 99th

2 100 Line Page None 2377 3920 602 1916
2 100 Word Page None 3865 13978 718 2328
4 100 Line Page None 3329 5284 777 2473
2 1000 Line Page None 2687 4322 660 2095
2 100 Line Page 4 2417 3328 689 2234
2 100 Line 6144 tokens None 2377 3920 602 1916

VRDU Registration Form

# Coord. # Quant. Segment Chunking JSON Indent
Input Target

50th 99th 50th 99th

2 100 Line Page None 963 1578 79 147
2 100 Word Page None 3083 5196 101 349
4 100 Line Page None 1232 2017 91 177
2 1000 Line Page None 1052 1723 83 155
2 100 Line Page 4 977 1592 92 160
2 100 Line 6144 tokens None 963 1578 79 147

CORD

# Coord. # Quant. Segment Chunking JSON Indent
Input Target

50th 99th 50th 99th

2 100 Line Page None 342 869 355 1495
2 100 Word Page None 396 1067 375 1638
4 100 Line Page None 408 1139 422 1801
2 1000 Line Page None 364 959 376 1957
2 100 Line Page 4 411 938 474 1997
2 100 Line 6144 tokens None 342 869 355 1495
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A.5 SCHEMAS

In this section, we present the schemas used for the experiments of this paper. The schema for
VRDU Ad-Buy Form, VRDU Registration Form, and CORD can be found in Figure 4, Figure 5 and
Figure 6 respectively.

{
"advertiser": "",
"agency": "",
"contract_num": "",
"flight_from": "",
"flight_to": "",
"gross_amount": "",
"line_item": [

{
"channel": "",
"program_desc": "",
"program_end_date": "",
"program_start_date": "",
"sub_amount": ""

}
],
"product": "",
"property": "",
"tv_address": ""

}

Figure 4: VRDU Ad-Buy Form Schema.

{
"file_date": "",
"foreign_principle_name": "",
"registrant_name": "",
"registration_num": "",
"signer_name": "",
"signer_title": ""

}

Figure 5: VRDU Registration Form Schema.
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{
"line_item": [ # menu

{
"discount_price": "", # menu.discountprice
"identifier": "", # menu.num
"name": "", # menu.nm
"other": "", # menu.etc
"quantity": "", # menu.qty
"sub_name": [], # menu.sub_nm
"sub_price": [], # menu.sub_price
"sub_quantity": [], # menu.sub_qty
"subtotal_price": "", # menu.itemsubtotal
"total_price": "", # menu.price
"unit_price": "" # menu.unitprice

}
],
"subtotal": { # subtotal

"discount_price": "", # subtotal.discount_price
"other": [], # subtotal.etc
"service_price": "", # subtotal.service_price
"subtotal_price": [], # subtotal.subtotal_price
"tax_price": [] # subtotal.tax_price

},
"total": { # total

"cash_price": [], # total.cashprice
"change_price": "", # total.changeprice
"credit_card_price": "", # total.creditcardprice
"emoney_price": "", # total.emoneyprice
"line_item_quantity_count": "", # total.menuqty_cnt
"line_item_type_count": "", # total.menutype_cnt
"other": "", # total.total_etc
"total_price": [] # total.total_price

}
}

Figure 6: CORD Schema. Note that the original entity types (shown as comments) have been
renamed to more semantically meaningful names.
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A.6 SAMPLE PROMPTS AND COMPLETIONS

In this section, we present example of LMDX prompts and completions from the LLM on the VRDU
Ad-Buy dataset to better showcase the format used. Figure 7 shows the original document with the
line bounding boxes from OCR, Figure 8 shows the corresponding prompt and completion on that
document with coordinate segment identifiers, and Figure 9 shows the same prompt and completion,
but with line index segment identifiers (used in ablation studies to showcase how the LLM can
interpret the layout).

Figure 7: Example document from VRDU Ad-Buy Form. The line bounding boxes detected by
OCR are shown in red.
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=============================== Prompt ===============================

<Document>
Print Date 02/28/20 14:21:20 75|02
Page 1 of 1 91|02
ORDER 49|04
WSIL 77|07
Orders 04|09
Order/Rev: 17|09
14086 29|09
HARRISBURG 78|09
PADUCAH 78|10
CAPE GIRARDEAU 78|12
Alt Order #: 17|11
Product Desc: 18|13
Mike Carr for Jackson Co States Atty 38|13
Estimate: 16|15
WSIL-TV 73|15
Flight Dates: 17|17
03/03/20 - 03/03/20 33|17
Primary AE: 57|17
David Cisco 73|17
Original Date/ Rev: 19|19
02/28/20/02/28/20 33|19
...
Start Date End Date Weekdays Spots/Week Rate Rating 31|66
Week: 03/02/20 03/08/20 -3-- 15|67
3 $200.00 0.00 47|67
Totals 79|69
3 87|69
$600.00 94|69
</Document>
<Task>
From the document, extract the text values and tags of the following
entities:
{"advertiser": "", "agency": "", "contract_num": "", "flight_from": "",
"flight_to": "", "gross_amount": "", "line_item": [{"channel": "",
"program_desc": "", "program_end_date": "", "program_start_date": "",
"sub_amount": ""}], "product": "", "property": "", "tv_address": ""}
</Task>
<Extraction>

============================= Completion =============================

{"advertiser": "Committee to Elect Mike Carr 37|36", "agency":
"Committee to Elect Mike Carr 37|24", "contract_num": "14086 29|09",
"flight_from": "03/03/20 33|17", "flight_to": "03/03/20 33|17",
"gross_amount": "$600.00 77|51", "line_item": [{"channel": "3 31|63",
"program_desc": "Tuesday Prime 31|63\nYour Voice Your Vote 29|64",
"program_end_date": "03/03/20 31|63", "program_start_date":
"03/03/20 31|63", "sub_amount": "$600.00 94|63"}], "product":
"Mike Carr for Jackson Co States Atty 38|13", "property": "WSIL 77|07",
"tv_address": null}
</Extraction>

Figure 8: VRDU Ad-Buy Form sample prompt and completion with 2 coordinates for segment
identifier. The document is truncated for easier visualization.
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=============================== Prompt ===============================

<Document>
Print Date 02/28/20 14:21:20 <0>
Page 1 of 1 <1>
ORDER <2>
WSIL <3>
Orders <4>
Order/Rev: <5>
14086 <6>
HARRISBURG <7>
PADUCAH <8>
CAPE GIRARDEAU <9>
Alt Order #: <10>
Product Desc: <11>
Mike Carr for Jackson Co States Atty <12>
Estimate: <13>
WSIL-TV <14>
Flight Dates: <15>
03/03/20 - 03/03/20 <16>
Primary AE: <17>
David Cisco <18>
Original Date/ Rev: <19>
02/28/20/02/28/20 <20>
...
Start Date End Date Weekdays Spots/Week Rate Rating <105>
Week: 03/02/20 03/08/20 -3-- <106>
3 $200.00 0.00 <107>
Totals <108>
3 <109>
$600.00 <110>
</Document>
<Task>
From the document, extract the text values and tags of the following
entities:
{"advertiser": "", "agency": "", "contract_num": "", "flight_from": "",
"flight_to": "", "gross_amount": "", "line_item": [{"channel": "",
"program_desc": "", "program_end_date": "", "program_start_date": "",
"sub_amount": ""}], "product": "", "property": "", "tv_address": ""}
</Task>
<Extraction>

============================= Completion =============================

{"advertiser": "Committee to Elect Mike Carr <44>", "agency":
"Committee to Elect Mike Carr <29>", "contract_num": "14086 <6>",
"flight_from": "03/03/20 <16>", "flight_to": "03/03/20 <16>",
"gross_amount": "$600.00 <84>", "line_item": [{"channel": "3 <102>",
"program_desc": "Tuesday Prime Other CM <102>", "program_end_date":
"03/03/20 <102>", "program_start_date": "03/03/20 <102>",
"sub_amount": "$600.00 <100>"}], "product": "Mike Carr for Jackson Co
States Atty <12>", "property": "WSIL-TV <14>", "tv_address": null}
</Extraction>

Figure 9: VRDU Ad-Buy Form sample prompt and completion with line index for segment identi-
fier, which does not communicate layout information. The document is truncated for easier visual-
ization.
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A.7 COMMON BASELINES DETAILS

We compare LMDX to other Large Model baselines on all benchmarks in the zero-shot context.
Those baselines are detailed below.

GPT-3.5 Baseline. We evaluate the zero-shot extraction ability of GPT-3.5, a strong LLM base-
line. To do so, we prompt it with the raw OCR text (no coordinate tokens or segment identifier like
for LMDX), and extraction instructions alongside the schema in JSON format. We then parse the
completions as JSON to get the predicted entities directly. Note that GPT-3.5’s predicted entities are
also not localized within the document. A sample prompt can be observed in Figure 10.

LLaVA-v1.5-13B Baseline. We evaluate the zero-shot extraction ability of LLaVA-v1.5-13B, a
strong vision-text large model. The prompt includes task description, instructions and target schema
represented in JSON format as text input and the document page as image input. We provide exam-
ples of valid JSON values in the task instructions. For each page of a test document, we infer the
extraction in a JSON format. We merge the individual page JSONs to obtain the final extraction for
a document. Overall, in the the zero-shot setting, we notice the JSON parse error rate of the LLM
completions is 10% which is higher than that of LMDX (as seen in the Appendix A.9). Along with
invalid JSON format, the model errors also include several OCR errors and hallucinations of entity
values. Note that LLaVA-v1.5-13B’s predicted entities are also not localized within the document.
A sample prompt can be observed in Figure 11.

${RAW_OCR_TEXT}

Given the document, extract the text value of the entities included in
the schema in json format.
- The extraction must respect the JSON schema.
- Only extract entities specified in the schema. Do not skip any
entity types.
- The values must only include text found in the document.
- Use null or [] for missing entity types.
- Do not indent the json you produce.
- Examples of valid string value format: "$ 1234.50", "John Do", null.
- Examples of valid list value format: ["$ 1234.50", "John Do"], [].

Schema: {"file_date": "", "foreign_principle_name": "",
"registrant_name": "", "registration_num": "", "signer_name": "",
"signer_title": ""}
```json

Figure 10: Sample prompt for GPT-3.5 baseline for VRDU Registration Form.

21



Under review as a conference paper at ICLR 2024

${DOCUMENT_IMAGE}

Given the document, extract the text value of the entities included in
the schema in json format.
- The extraction must respect the JSON schema.
- Only extract entities specified in the schema. Do not skip any

entity types.
- The values must only include text found in the document.
- Use null or [] for missing entity types.
- Do not indent the json you produce.
- Examples of valid string value format: "$ 1234.50", "John Do", null.
- Examples of valid list value format: ["$ 1234.50", "John Do"], [].

Schema: {"file_date": "", "foreign_principle_name": "",
"registrant_name": "", "registration_num": "", "signer_name": "",
"signer_title": ""}
```json

Figure 11: Sample prompt for LLaVA-v1.5-13B baseline for VRDU Registration Form.
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A.8 CORD BASELINES DETAILS

LayoutLMv3LARGE Baseline. We follow the released implementation3 for the
LayoutLMv3LARGE model and the training protocol described in Huang et al. (2022) as
closely as possible. In particular, we train the model for 80 epochs for each experiment on CORD
(namely, 10, 50, 100, 200, and 800-document training sets), on the IOB tags of the leaf entities. One
difference in our training is that, due to computational resource constraints, we use batch_size = 8
and learning_rate = 2 · 10−5.

As the LayoutLMv3 model can only extract leaf entities, we design and heavily optimize a heuristic
algorithm to group the leaf entities into hierarchical entities menu, subtotal and total. The best
heuristics we could find are as follows:

• For the subtotal and total hierarchical entity types, since they appear only once per doc-
ument, we group all their extracted sub-entities under a single subtotal and total entity,
respectively.

• For menu hierarchical entity type, we observe that those entities usually occur multiple
times on a document, and each menu has at most one nm, num, unitprice, cnt, discount-
price, price, itemsubtotal, etc sub-entities and potentially multiple sub_nm, sub_price and
sub_cnt sub-entities. We also notice that the sub-entities aligned horizontally overwhelm-
ingly belong to the same menu entity, and a menu entity can sometimes span over two or
more consecutive horizontal lines. To leverage those observations, we perform a two-step
grouping process for menu entities. First, we merge the extracted leaf sub-entities into hor-
izontal groups, where a threshold of 0.5 on the intersection-over-union of the Y-axis was
used for the determination of horizontal alignment. Second, we further merge the consec-
utive horizontal groups into menu entities, if and only if the horizontal groups do not have
type duplication in any of the nm, num, unitprice, cnt, discountprice, price, itemsubtotal,
and etc sub-entities (namely, those sub-entities only show up in at most one of the con-
secutive horizontal groups to be merged). We allow duplication of sub_nm, sub_price and
sub_cnt sub-entity types. After those two steps, we obtain the final menu entities.

Donut Baseline. We follow Donut released implementation4 for the Donut benchmarking results
on CORD. We use the default training configuration for all experiments on CORD (namely, 10,
50, 100, 200, and 800-document training sets), with the following difference: we reduce batch size
from 8 to 4 due to computational resource constraints, and increase the number of train epochs from
30 to 60. For each experiment, checkpoint with the lowest loss on the dev set is selected and we
report performance on test set. Normalized Tree Edit Distance accuracy scores produced by Donut
evaluation code are reported (similar to all our other models).

3https://github.com/microsoft/unilm/tree/master/layoutlmv3
4https://github.com/clovaai/donut

23



Under review as a conference paper at ICLR 2024

A.9 COMPLETION PARSING ERROR RATES

In this section, we report the various completion parsing error types and their occurrence rates.

Invalid JSON Formatting. This error refers to cases for which Python’s
json.loads(completion) fails on a LLM’s completion. As observed in Table 7, the
JSON parsing error rate is below 0.3% in all training settings.

Invalid Entity Value Format. This error refers to cases where the leaf entity value does not follow
the expected "<text-segment-1> XX|YY <text-segment-2> XX|YY" format. As observed in Table 7,
the Invalid Entity Value Format Rate is below 0.05% in all training settings.

Hallucination / Entity Text Not Found. This error refers to cases where the segment identifier
is valid, but the entity text does not appear on the predicted segment (hallucination). As observed
in Table 7, the Entity Text Not Found error rate is below 0.6% in all training settings. As part
of LMDX methodology, we discard any prediction whose text does not appear on the specified
segment, ensuring we discard all hallucination.

Note that those numbers are computed at the completion level. Since multiple completions are
sampled for each document chunk, the sampling scheme allows for correcting those errors and no
document in the benchmarks fail extraction.

Table 7: Breakdown of parsing error rates from LMDXPaLM 2-Small responses on VRDU Ad-Buy
Mixed and CORD datasets.

|D| Dataset Invalid JSON Invalid Entity Value Format Entity Text Not Found

0 Ad-buy Form 0.18% 0.04% 0.59%
CORD 0.00% 0.00% 0.00%

10 Ad-buy Form 0.27% 0.04% 0.44%
CORD 0.00% 0.00% 0.00%

50 Ad-buy Form 0.24% 0.00% 0.17%
CORD 0.06% 0.00% 0.00%

100 Ad-buy Form 0.24% 0.00% 0.13%
CORD 0.00% 0.03% 0.00%

200 Ad-buy Form 0.25% 0.00% 0.09%
CORD 0.00% 0.00% 0.00%
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A.10 IN-CONTEXT LEARNING WITH NEAREST NEIGHBORS

In our study, nearest neighbors leads to a significant quality gain over randomly selecting exam-
plars. In this section, we explore why that is the case in the context of VRD information extraction.
Figures 12, 13 and 14 show typical retrievals using sentenceT5 embeddings on the OCR text for
similarity. Unsurprisingly, nearest neighbors works well as it retrieves examplars from the same
template as the target document, i.e. from the same merchant in the case of CORD documents (store
and restaurant receipts). As those examples share the same layout, same boilerplate text, and same
entities, it makes it a lot easier for the model to understand the correct extraction pattern.

Figure 12: Nearest Neighbors on CORD, Example 1, retrieving examplars from the same merchant.

Figure 13: Nearest Neighbors on CORD, Example 2, retrieving examplars from the same merchant.

Figure 14: Nearest Neighbors on CORD, Example 3, retrieving examplars from the same merchant.
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