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Figure 1: The Project and Probe (PRO2) framework for adapting to different target distribu-
tions. (a) We first use a large source dataset to project pre-trained feature embeddings onto a set of
predictive features while enforcing orthogonality. (b) For a new target distribution, we learn a linear
layer on top of the projected features. This step adaptively chooses features in a data-efficient manner.

1 INTRODUCTION

Datasets often exhibit a spurious correlation, where a shortcut feature that is predictive on the training
data can be misleading on a shifted distribution of inputs, because it does not capture the underlying
causal relationships. However, identifying the true causal features can be notably difficult or simply
not possible in some scenarios. Furthermore, we argue that approximating only the causal features
may not always be the best approach: shortcut features can be useful in some situations. Prior
work has studied this in human decision making: non-causal mental shortcuts and heuristics can
sometimes be more effective than making a logical deduction from all available information (Tversky
& Kahneman, 1974; Simon et al., 1989; Gigerenzer & Gaissmaier, 2011). As an example, consider
an autonomous vehicle tasked with following a lane. While the ground-truth causal feature for lane
following is the road markings, the position of other cars in the lane, a “shortcut feature”, is also
predictive of the lane following task. In conditions where the causal feature is less informative (e.g.,
road markings not visible due to fog), it can be best to rely on other features (e.g., follow the car in
front). Therefore, in this work, we aim to extract a variety of potentially useful features and identify
which ones to use for a given situation.

Recent works have found that failures due to spurious correlations can be addressed at test time by re-
training a final linear head (Rosenfeld et al., 2022; Kirichenko et al., 2022; Mehta et al., 2022). These
methods demonstrate that such adaptation reliably improves performance with even a small amount
of additional target data. However, it is not clear whether linear probing is the most sample-efficient
way to adapt to new distributions, as the features may contain redundant or non-predictive/noisy
information. We highlight an important but underexplored insight for these adaptation methods: the
learned head should be able to extract the most suitable features for varied target distributions, which
may include both shortcut and robust features, and choose between them to best adapt to a particular
target distribution.

We propose PROJECT AND PROBE (PRO2), a simple, computationally efficient, and data-efficient
method for adapting to unknown target distributions. PRO2 first learns a projection of pre-trained
embedding vectors, which is optimized to extract a diverse set of features that are each predictive of
labels. More specifically, we first use a source dataset to project pre-trained feature embeddings onto
a set of predictive features while enforcing orthogonality to ensure that each projected dimension
holds information not present in other dimensions. We expect this learned feature space to compactly
contain a diverse set of predictive features while discarding non-predictive or redundant information.
PRO2 then learns a linear head to interpolate between the projected features. Both the linear projection
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and head require minimal computational overhead, making PRO2 a practical method for adapting to
new target distributions. Figure 1 shows a visual summary of PRO2.

To support our approach, we provide a theoretical analysis, which shows how the projection matrix
learned by PRO2 is optimal in an information-theoretic sense, resulting in better generalization in the
low-data regime due to a favorable bias-variance tradeoff. We conduct experiments on a variety of
distribution shift settings across 4 datasets. We find that standard linear probing is relatively inefficient
as an approach to adapting to target data, while PRO2 substantially improves sample efficiency in
this setting. Our results show that given limited target data, PRO2 is consistently competitive with
standard debiasing methods that attempt to directly learn a robust classifier, while outperforming
them by 5-15% on data distributions in which the shortcut feature is more useful.

2 ADAPTATION TO DISTRIBUTION SHIFT

We now describe our problem setting, where the goal is to adapt a model so as to provide an accurate
decision boundary under distribution shift given a limited amount of target distribution information.
We consider a source distribution pS(x, y) and multiple target distributions p1T (x, y), p

2
T (x, y), · · · .

The source dataset DS ∈ (X × Y)N is sampled from the source distribution pS . We evaluate
adaptation to each target distribution piT given a small set of labeled target data Di

T ∈ (X × Y)M ,
where M ≪ N so the model must learn from both the source and target data for best performance.
We measure the post-adaptation average accuracy of the model on a held-out target dataset from the
same distribution piT . We note that our setting differs from two settings studied in prior works; we
discuss these differences in Appendix B.

3 PROJECT AND PROBE

Algorithm 1 Project and Probe
Input: Source data DS , Target data DT ,
Backbone f : X → RD

Initialize Π : RD → Rd

for i in 1 . . . d do
Πi ← argminLS(Πi(f(x)), y)

subject to Πj ⊥ Πi for all j < i

Initialize g : Rd → Y
g ← argminLT (g(Π(f(x))), y)

We now describe PRO2, a framework for few-shot
adaptation to distribution shifts. PRO2 is composed
of two steps: (1) learn a projection Π that maps
pre-trained embeddings onto orthogonal directions,
and (2) learn a classifier g using projected embed-
dings. Before Step (1), we use a pre-trained back-
bone model f : X → RD to map the datapoints to
D-dimensional embeddings. This backbone model
extracts meaningful features from the raw inputs, re-
sulting in a low-dimensional embedding space, for ex-
ample 224×224×3 images to D = 1024-dimensional
embeddings.

Step 1: Project with source. Recall that we operate in the few-shot setting, where we may have
fewer target datapoints than even embedding dimensions (M < D). We would like to select a suitable
decision boundary by interpolating over a basis of decision boundaries, which is mathematically
identical to selecting a set of linear features. Thus, the question we must answer is: which set of
linear features of the D-dimensional feature space should we retain? First, it should be clear that the
features should form an orthogonal basis, as otherwise they will be redundant. Second, the features
should be discriminative, in the sense that they are sufficient to solve the desired prediction task.
Lastly, there should not be too many of them, since the more features we include (i.e., the larger
the rank of the basis we learn), the more samples we’ll need from the target domain to find the best
decision boundary in the corresponding set.

To learn a feature space that satisfies these desiderata, we parameterize a linear projection Π : RD →
Rd that maps the embeddings to a reduced space (d ≤ D). Specifically, we use the source data to
learn a complete orthonormal basis for the embedding space Π1,Π2, . . . ,Πd ∈ RD, by learning each
basis vector with the constraint that it is orthogonal to all vectors before it:

Πi = argminE(x,y)∼DS
L(Πi(f(x)), y) s.t. Πj ⊥ Πi for all j < i. (1)

Note that this induces a natural ranking among the basis vectors. This collection of orthogonal
vectors constitute the rows of our projection matrix Π. In our implementation, we do projected
gradient descent, enforcing orthogonality using QR decomposition on the projection matrix after
every gradient step. See Appendix F for pseudocode on this step. We find that it is particularly
beneficial to use a small d≪ D, even d = 1, in when adapting to small distribution shifts and use
larger d for more severe distribution shifts.
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Figure 2: Main results. We compare 4 different methods for learning features to adapt to a target
distribution: (1) Random Projection, (2) DFR Kirichenko et al. (2022), (3) Teney et al. (2021), and
(4) PRO2. We report the mean and standard error of target accuracy across 10 random seeds. PRO2 is
the best performing or tied for best performing method across all datasets and dataset size, while
also substantially outperforming Random Projection and DFR in the low-data regime on all settings.
PRO2 also outperforms Teney et al. (2021) on average on 3 of the 4 datasets particularly when given
more target data.

Step 2: Probe with target. After learning Π, we learn a classifier g : Rd → Y that maps projected
embeddings to target labels: g = argming E[L((g ◦ Π ◦ f)(x), y)]. Since the projection Π was
optimized to a diverse set of the most discriminative features for the source data, we expect the initial
projected features to be particularly predictive when the distribution shift is relatively small.

We summarize the overall structure of PRO2 in Algorithm 1. We further theoretically analyze the
properties of PRO2 in Appendix D, and empirically evaluate it on a variety of settings in Section 4.

4 EXPERIMENTS

In this section, we aim to empirically answer the following questions: (1) Can PRO2 identify a
feature-space basis for rapid adaptation, and how does it compare to other methods for extracting
features? (2) How does the dimensionality of the feature-space basis affect sample efficiency in
different distribution shift conditions? We provide additional empirical results and analyses, such
as showing that the adaptation performance of PRO2 improve with better pre-trained backbones, in
Appendix G. Details on pre-trained models and training details are in Appendix F.

4.1 EXPERIMENTAL SETUP

Datasets. We run experiments on four datasets with distribution shifts: 4-way Collages (Teney et al.,
2021), Waterbirds (Sagawa et al., 2020), CelebA (Liu et al., 2015), and Camelyon (Bandi et al.,
2018) datasets. Each of these datasets have a source distribution that we use for training and multiple
target distributions for evaluation. For all settings, we use the original source datasets, which each
contain thousands of datapoints. For target data, we subsample very small label-balanced datasets
for adaptation, with {2, 8, 32, 128} images per label. The remaining target distribution datapoints
are used for evaluation. Due to space constraints, we describe the different target distributions
in Appendix F.

Computational efficiency. Similarly to Mehta et al. (2022), we use feature embeddings from a
pre-trained backbone without fine-tuning. Our aim is to develop methods that can leverage pretrained
models out-of-the-box with minimal computational requirements: our training involves at most
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Figure 3: Projection dimensionality of PRO2 and severity of distribution shift. We vary the
dimensions d (y-axis) of PRO2 and report target accuracy after training on target datasets of different
size (x-axis) on our 4 datasets. Higher d was required to adapt to more severe shifts, while for milder
shifts, lower d sometimes results in higher accuracy, as can be seen in the Spurious distribution of
Waterbirds/CelebA.

two linear layers on top of cached feature vectors. For all comparisons, we hyperparameter tune
over three learning rates (0.1, 0.01, and 0.001) and three L2 regularization weights (0.1, 0.01,
0.001). In our main experiments in Section 4.2, we also sweep over six projection dimensions
(d = 1, 4, 16, 64, 256, 1024) and report results over 10 runs. As a demonstration of the computational
efficiency of PRO2, after caching pre-trained embeddings, we collectively ran all experiments in
Section 4.2, which is nearly 30, 000 runs due to hyperparameter tuning, within 24 hours using four
standard CPUs and no GPUs.

4.2 COMPARISON TO PRIOR PROJECTION METHODS

We investigate whether PRO2 can extract features that can facilitate adaptation to different distri-
bution shifts, and how it compares other feature extraction methods. We perform a comprehensive
experimental evaluation on the four datasets, comparing PRO2 against three other projection methods:
(1) Random Projection, (2) DFR Kirichenko et al. (2022), i.e., linear probing, and (3) Teney et al.
(2021), which learns diverse features by minimizing gradient similarity. Experiments in Figure 2
indicate that across all distributions and datasets, PRO2 significantly outperforms Random Projection
and DFR, especially in the low-data regime. In particular, these results show that linear probing,
the strategy adopted by several additional prior works by default Mehta et al. (2022); Izmailov et al.
(2022), is a suboptimal strategy for few-shot adaptation, likely because raw embeddings contain
redundant or non-informative information. Teney et al. (2021) is sufficient in some scenarios with
milder distribution shift, but fails given large datasets or severe distribution shifts. In contrast, PRO2

improves sample efficiency while remaining competitive across all settings. This indicates that the
feature diversity from the orthogonality constraint gives PRO2 better coverage of different features,
enabling better adaptation to severe distribution shifts given enough target data.

4.3 PROJECTION DIMENSION AND SHIFT SEVERITY

We investigate how the feature-space dimension d in PRO2 affects sample efficiency for different
degrees of distribution shift. Experiments in Figure 3 show that when the distribution shift is less
severe, such as the Spurious distributions on Waterbirds and CelebA, it is helpful to reduce the
number of features used. Fewer features suffice here because the top-ranked features from the source
data are also predictive on the target distribution. However, when the distribution shift is more
severe, such as the Minority distributions on Waterbirds and CelebA or Collages-Fashion MNIST
and Collages-CIFAR, it is helpful to increase the number of features used. These empirical results
are supported formally by our theoretical results in Appendix D, which show that the optimal number
of features to use increases with distribution shift severity.
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A ABSTRACT

Conventional approaches to robustness try to learn a model based on causal features. However,
identifying maximally robust or causal features may be difficult in some scenarios, and in others, non-
causal “shortcut” features may actually be more predictive. We propose a lightweight, sample-efficient
approach that learns a diverse set of features and adapts to a target distribution by interpolating these
features with a small target dataset. Our approach, PROJECT AND PROBE (PRO2), first learns a linear
projection that maps a pre-trained embedding onto orthogonal directions while being predictive of
labels in the source dataset. The goal of this step is to learn a variety of predictive features, so that
at least some of them remain useful after distribution shift. PRO2 then learns a linear classifier on
top of these projected features using a small target dataset. We theoretically show that PRO2 learns a
projection matrix that is optimal for classification in an information-theoretic sense, resulting in better
generalization due to a favorable bias-variance tradeoff. Our experiments on eight distribution shift
settings show that PRO2 improves performance by 5-15% when given limited target data compared to
prior methods such as standard linear probing.

B COMPARISON TO PROBLEM SETTING IN EXISTING WORKS

Our setting differs from the setting studied in prior works on spurious correlations (Sagawa et al.,
2020), which train a model only on source data DS and evaluate the model’s performance on the
hardest target distribution (i.e., worst-group accuracy). This is also different from the setting used in
fine-tuning methods for zero-shot generalization (Wortsman et al., 2022; Kumar et al., 2022): such
methods fine-tune a pretrained model on source data DS and directly evaluate performance on target
data Di

T without any exposure to labeled target data. Compared to these zero-shot evaluation settings,
we argue that a small amount of target data may realistically be required to handle the arbitrary
distribution shifts that arise in the real world. Target data can be an effective point of leverage because
it can be available or easy to collect, and we find that even a small dataset can reveal a lot about what
features are effective in the target distribution. Our problem setting of adapting with target data has
been used in some recent works (Kirichenko et al., 2022; Rosenfeld et al., 2022; Izmailov et al., 2022;
Lee et al., 2022a), but we specifically focus on the setting in which we only have access to a very
small target dataset, i.e., M ≪ N .

C RELATED WORK

Robustness and zero-shot generalization. Many prior works aim to improve robustness to various
distribution shifts (Tzeng et al., 2014; Ganin et al., 2016; Arjovsky et al., 2019; Sagawa et al., 2020;
Nam et al., 2020; Creager et al., 2021; Liu et al., 2021; Zhang & Ré, 2022). Additionally, prior works
have studied how to adapt pre-trained features to a target distribution via fine-tuning Oquab et al.
(2014); Yosinski et al. (2014); Sharif Razavian et al. (2014). Such fine-tuning works typically frame
robustness to distribution shift as a zero-shot generalization problem Kornblith et al. (2018); Zhai
et al. (2019); Wortsman et al. (2022); Kumar et al. (2022), where the model is trained on source
and evaluated on target. Both of the above classes of approaches fundamentally cannot handle the
problem settings we consider, where a single function is insufficient for achieving good performance
on different distributions. In this paper, we evaluate on a variety of test distributions, some of which
are mutually exclusive, and it is therefore crucial to perform adaptation on the target distribution.

Adapting to distribution shifts. Recent works have proposed various methods for adapting models
at test time with some labeled target data Sun et al. (2020); Varsavsky et al. (2020); Iwasawa &
Matsuo (2021); Wang et al. (2020); Zhang et al. (2021); Gandelsman et al. (2022); Lee et al. (2022a).
In particular, given a feature embedding produced by a pretrained network with sufficient expressivity,
training a final linear head, also known as linear probing, suffices for adapting to datasets with
spurious correlations Kirichenko et al. (2022); Mehta et al. (2022); Izmailov et al. (2022) as well as
in the setting of domain generalization Rosenfeld et al. (2022). As detailed further in Section 2, we
specifically focus on scenarios in which we have very little target data (only 4 ∼ 256 datapoints). We
find that in this setting, training a final linear head in the default manner is not the most data-efficient
way to adapt. PRO2, which breaks this training down into 2 steps, is able to more effectively extract
useful features and interpolate between them for varying target distributions, leading to improved
sample efficiency with limited target data.

Learning diverse features for spurious datasets. Neural networks tend to be biased towards
learning simple functions that rely on shortcut features (Arpit et al., 2017; Gunasekar et al., 2018;
Shah et al., 2020; Geirhos et al., 2020; Pezeshki et al., 2021; Li et al., 2022; Lubana et al., 2022).
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Figure 4: Evaluation of PRO2 on shifted homoscedastic Gaussian data. (Left) The x- and
y-axes denote dimensionality of Ad and nullspace norm, respectively. Nullspace norm drops slowly
for more severe distribution shifts. (Right) For less severe distribution shifts (ID and Near OOD),
low-dimensional projections suffer from less bias, resulting in higher accuracy in the low-data regime.
For the Far OOD distribution, using all 20-dimensional features is best, as bias drops more slowly.

To better handle novel distributions, it is important to consider the entire set of functions that are
predictive on the training data (Fisher et al., 2019; Semenova et al., 2019; Xu et al., 2022). Recent
diversification methods discover such a set (Teney et al., 2022; Lee et al., 2022b; Pagliardini et al.,
2022). The latter two methods use additional assumptions such as unlabeled data and we find that
PRO2 outperforms the former in Section 4.

Compression & feature selection. In aiming to extract important features and discarding repetitive
information, PRO2 is related to work on compression May et al. (2019) and information bottle-
necks Tishby et al. (2000); Alemi et al. (2016). Our method is also closely related to methods that
learn projections such as principal component analysis (PCA) and linear discriminant analysis (LDA).
Beyond these representative methods, there is an immense body of work on feature selection (Dash &
Liu, 1997; Liu & Motoda, 2007; Chandrashekar & Sahin, 2014; Li et al., 2017) and dimensionality
reduction (Lee et al., 2007; Sorzano et al., 2014; Cunningham & Ghahramani, 2015). Among all
projection-based methods, LDA is the most related to ours, but it only learns the single most discrimi-
native direction. In Corollary 9, we show that PRO2 with dimensionality d = 1 provably recovers
the LDA direction in a shifted homoscedastic Gaussian model, and that using higher values of d is
critical in adapting to higher degrees of distribution shift. Generally, most methods (including LDA)
operate in the setting without distribution shift.

D ANALYSIS

In this section, we present a theoretical analysis of PRO2, aiming to understand how our proposed
orthogonal feature selection procedure can lead to sample-efficient adaptation under distribution
shifts. Intuitively, the more shift we can expect, the more features we should need to adapt to it,
which in turn requires more samples during adaptation (to fit the features accurately). However, the
choice of how we extract features influences the rate at which the sample complexity grows under
distribution shift: while large shifts may still require many features, if the features are prioritized
well, then smaller shifts might require only a very small number of features, and thus require fewer
samples.

In our analysis, we first show that PRO2 learns a projection matrix that is optimal in an information-
theoretic sense. We next show that using fewer features (d) leads to lower variance, which scales
as (O(

√
d/M)) given M target samples, but at a cost in bias, whichin some cases scales as

O(
√
1− (d/D) · KL(pS ||pT )) and grows with the amount of distributional shift between pS and

pT . In Appendix D.1, we first analyze the specific features learned by PRO2 with minimal distribu-
tional assumptions. Then, in Appendix D.2, we specialize these more general results to a shifted
homoscedastic Gaussian (SHOG) model, and demonstrate the bias-variance tradeoff empirically.
Additional theoretical results and proofs for the results in this section can be found in Appendix E.

D.1 BIAS-VARIANCE TRADEOFFS FOR GENERAL SHIFTS.

From the original D-dimensional feature representations given by our feature backbone f , we want
our learned linear projections Π : RD → Rd to retain as much information as possible that is relevant
in predicting the label y. In other words, we want to maximize the mutual information between the
projected features Π(x) and the labels y. We first formally characterize the solution found by the

10
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projection step in PRO2 as maximizing this mutual information amongst all rank d matrices with
orthogonal columns.

Theorem 1 (Information in projected input). When the distributions p((x− E[x]) | y) are identical
for each y. the solution {Πi}di=1 returned by PRO2 maximizes the mutual information I(Ax; y) (and
a strict upper bound on it otherwise) among all D × d matrices A with orthogonal columns.

This theorem shows that the projection matrix Π learned by PRO2 is optimal in an information-
theoretic sense of retaining the most information about y, on the source distribution. This is in
line with the motivation for the orthogonality constraint, which was to minimize redundancy while
gathering different features that are each predictive of the label on source. Next, we analyze the
properties of Π on the target distribution to understand how the degree of distributional shift affects
sample efficiency during adaptation.

Probing on the target distribution. We first introduce some additional notation specific
to the target distribution. For some projection Π, let Πd denote the projection matrix for
span({Πi}di=1), i.e., Πd=[Π1, ..,Πd][Π1, ..,Πd]

⊤. Denote the target error for classifier w as
LT (w) ≜ EpT

l(⟨w,x⟩, y), and the bias incurred by probing over the projected features
span({Πi}di=1) as: bd ≜ minw′∈span({Πi}d

i=1)
LT (w

′) − minw∈W LT (w). We also de-
note the d-dimensional weight vector learned by PRO2 on the M projected target samples as:
ŵd ≜ minw∈span({Πi}d

i=1)
∥w∥2≤1

∑M
i=1 l(⟨w,x(i)⟩, y(i)).

We are now ready to bound the bias bd in Lemma 2, with a term that reduces to 0 as we add more
features d → D. The rate at which bd → 0 is controlled by the relationship of the optimal linear
classifier on target w∗

T with the projection matrix Πd learnt on the source data. When there is
no distribution shift, we know that for the projection Π1 returned by PRO2, Π1 ∝ w∗

T , and thus
(ID−Π1)w

∗
T = 0, i.e., the bias bd → 0 with just one direction. On the other hand if Πd is returned by

a random projection then bias bd decreases at rateO(
√

1− (d/D)) even when there is no distribution
shift. In simpler terms, the rate at which the bias reduces as we increase d is controlled by degree of
distribution shift, and how informative the source features (in Πd) remain under this shift.

Lemma 2 (bias induced by shift). For some w∗
T that is the Bayes optimal linear predictor on

distribution pT over the full feature space, and an L-Lipschitz smooth convex loss l, the bias
bd ≤ L · ∥(ID −Πd)w

∗
T ∥2. When Πd is a random rank d projection matrix with columns drawn

uniformly over the sphere Sd−1, then bd <∼ L
√
1− d

D · ∥w
∗
T ∥2.

In Theorem 3, we describe the full bias-variance tradeoff where we see that the variance term is
also controlled by the number of features d but unlike the bias is independent of the nature of shift
between source and the target.

Theorem 3 (bias-variance tradeoff). When the conditions in Lemma 2 hold and when ∥x∥∞ = O(1),
for B-bounded loss l, w.h.p. 1− δ, the excess risk for the solution ŵd of PRO2 that uses d features is
LT (ŵd)−minw∈W LT (w)

<∼ ∥(ID −Πd)w
∗
T ∥2 +

(√
d+B

√
log(1/δ)√

M

)
, (2)

where the first term controls the bias and the second controls the variance.

This result provides insights on what factors affect generalization when probing on target data. Tighter
compression of the original representation, i.e., using a smaller d, increases bias while decreasing
variance. The rate of bias increase is determined by the degree of distribution shift, where more
severe shifts correspond to a steeper increase in bias. The distribution shift has no effect on variance,
and variance can only be decreased by using a low-dimensional represent (at the cost of bias) or
learning from a larger dataset.

D.2 BIAS-VARIANCE TRADEOFF IN SHIFTED GAUSSIAN MODEL.

In this subsection, we consider a simplified setting of a shifted homoscedastic Gaussian (SHOG).
Within this model, we show that the more general statement in ?? 3 can be simplified further to
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provide a more intuitive relationship between the factors that affect generalization. Furthermore, we
empirically demonstrate the behavior predicted by our bounds on synthetic SHOG data.

Shifted homoscedastic Gaussian (SHOG) model of distribution shift. We model the source
distribution as a Bernoulli mixture model of data in which binary labels are balanced (y ∼ Bern(0.5))
and the class conditional distributions are homoscedastic multi-variate Gaussians:

x | y ∼ N (µy,ΣS) for y ∈ {0, 1},

where µ1, µ2 ∈ RD are mean vectors and ΣS ∈ RD×D is the shared covariance matrix. The target
distribution has the same label distribution and Gaussian means, but a different covariance matrix
given by ΣT . We study how the relation between the two covariance matrices ΣS ,ΣT can affect the
bias term bd when Πd is either returned by PRO2 or a random projection matrix with columns drawn
uniformly over the sphere Sd−1.

We specialize the more general bias-variance tradeoff result to a shifted homoscedastic Gaussian
(SHOG) model in Corollary 4, where we derive a simpler bound characterizing the tradeoff between
performance, the value of d, and the amount of distributional shift.
Corollary 4 (tradeoff under SHOG). Under our SHOG model of shift, and conditions for a random

projection Πd in Lemma 10, the target error LT (ŵd) <∼O
(√

1− d
D ·KL(pS ||pT )

)
+
√

d
M , when

∥ΣT ∥op = O(1).

In Figure 4, we plot the nullspace norm ∥ΣS∥op for different d in three target distributions of varying
distribution shift severity in the SHOG model. We see that the more severe shifts have a higher
norm, indicating that the OOD distributions suffer from high bias when d is low. Indeed, we see
that the ID distribution suffers from virtually no bias, making d = 1 achieve highest target accuracy
for all dataset sizes. In contrast, the Near OOD and Far OOD distributions suffer from high bias of
up to 40% accuracy, and higher projection dimension d is needed for adaptation, as predicted by
Corollary 4.

E PROOFS FOR APPENDIX D
We present proofs for our theoretical analysis in Appendix D along with some additional statements.
As in the main paper, we denote d as the dimensionality of the feature-space basis learned by PRO2,
D as the original dimension of the representations given by the feature backbone f , pS as the
source distribution, pT as a target distribution, N as the number of source datapoints, and M as
the number of target datapoints. We let Πd denote the projection matrix for span({Πi}di=1), i.e.,
Πd=[Π1, ..,Πd][Π1, ..,Πd]

⊤. If the target error for the feature w is LT (w) := EDT
l(⟨w,x⟩, y),

then the bias incurred by probing on the subspace Πd consisting of source features is:

bd := min
w′∈span({Πi}d

i=1)
LT (w

′) − min
w∈W

LT (w),

and we denote the feature-space basis of dimensionality d learned by PRO2 as follows:

ŵd ≜ min
w∈span({Πi}d

i=1)

M∑
i=1

l(⟨w,x(i)⟩, y(i)) (3)

Theorem 5 (Information in projected input, Theorem 1). When the distributions p((x− E[x]) | y)
are identical for each y. the solution {Πi}di=1 returned by PRO2 maximizes the mutual information
I(Ax; y) (and a strict upper bound on it otherwise) among all D × d matrices A with orthogonal
columns.

Proof. We use an inductive argument on d. Consider the solution to

max
A∈BD×d

I(Ax; y).

If d = 1, then this returns the Bayes-optimal mean predictor, because the Bayes error for p(y | w⊤x)
is upper and lower bounded by Eq. 16 in Petridis & Perantonis (2004). If d ≥ 2,

max
A∈BD×d

I(Ax; y) = max
A′∈BD×(d−1)

I
(
A′x, v⊤x; y

)
,where v ∈ Null(A′), ∥v∥2 = 1.
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Decomposing the right expression, we have
I
(
Ax, v⊤x; y

)
= I (A′x; y)+I

(
v⊤x; y

)
−I(v⊤x;Bx)+I(v⊤x;Bx | y) = I (A′x; y)+I

(
v⊤x; y

)
,

because I(v⊤x;Bx) = I(v⊤x;Bx | y) due to the assumption that the mean-centered distributions
(x− E[x])|y are identical. Thus, we have for d− 1:

max
A

I(Ax; y) = max
A′∈BD×(d−1),v∈Null(A′)

I (A′x; y) + I
(
v⊤x; y

)
(4)

= max
A′∈BD×(d−1)

[
I (A′x; y) + max

v∈null(A′)
I
(
v⊤x; y

)]
. (5)

With an inductive argument, for d, we have:

max
A∈RD×d

I(Ax; y) = max
A′∈RD×(d−1)

I (A′x; y) + max
v∈Rn

I
(
v⊤
(
I −A′A′⊤

)
x; y
)
. (6)

Applying iteratively, we have
max

A∈RD×d
I(Ax; y) = max

v1∈Rn

(
v⊤1 x; y

)
+ max

v2∈Rn
I
(
v⊤2

(
I − v∗1v

∗
1
⊤
)
x; y
)

+ max
v3∈Rn

I
(
v⊤3

(
I − v∗2v

⋆
2
⊤
)(

I − v⋆1v
⋆
1
⊤
)
x; y
)
+ . . . ,

where v⋆1 , v
⋆
2 , . . . , v

∗
d denote the solutions to each subsequent max term, and assume each term

is unique. Now this sequence of solutions is the same as that returned by solving the following
optimization problem iteratively:

1. min∥v∥≤1 l(⟨v, x⟩, y)

2. Project data onto (I − vv⊤)x

3. Re-solve (1.) to get next v and so on.

Finally, we claim that solution returned by this iterative optimization is the same as that returned by
optimizing the projection of PRO2. Our objective

min
Π1...Πd,Πi⊥Πj(i ̸=j)

∑
i

l(Πix; y) = max
Π1...Πd

∑
i

I(Π;x; y)

= max
Πi

 max
Π2...Πd

I(Π1x; y) +

d∑
j=2

I(Πj(I −Π1Π
⊤
1 )x; y)


Then, again using Eq. (16) in Petridis & Perantonis (2004) connecting cross entropy loss to Bayes
error, the above is equivalent to (6), concluding our argument.

Lemma 6 (bias induced by shift, Lemma 2). For some w∗
T that is the Bayes optimal linear predictor

on distribution pT over the full feature space, and an L-Lipschitz smooth convex loss l, the bias
bd ≤ L · ∥(ID −Πd)w

∗
T ∥2. When Πd is a random rank d projection matrix with columns drawn

uniformly over the sphere Sd−1, then bd <∼ L
√
1− d

D · ∥w
∗
T ∥2.

Proof. Let l be L-Lipchitz, smooth, and convex. We have that the bias
bd = min

w∈span{Πi}d
i=1

El(⟨w, x⟩, y)− min
w∈W

El(⟨w, x⟩, y)

= min
w∈span{Πi}d

i=1

EDT
l(⟨w, x⟩, y)− min

w∈span{Πi}D
i=1

EDT
l(⟨w, x⟩, y)

= min
w∈span{Πi}d

i=1

EDT
l(⟨w, x⟩, y)− EDT

l (⟨w⋆
T , x⟩ , y) ,where w⋆

T = minw∈W El(⟨w, x⟩, y)

= min
w∈W

EDT
l
(〈
w,ΠdΠ

⊤
d x
〉
, y
)
− EDT

l (⟨w⋆
T , x⟩ , y)

≤ EDT
l
(〈
w∗

T ,ΠdΠ
⊤
d x
〉
, y
)
− EDT

l
(〈
w⋆

T ,ΠdΠ
⊤
d x+ (I −ΠdΠ

⊤
d x
〉
, y
)

= EDT
l
(〈
x,ΠdΠ

⊤
d w

⋆
T

〉
, y
)
− l
(〈(

I −ΠdΠ
⊤
d

)
w⋆

T +ΠdΠ
⊤
d w

⋆
T , x

〉
, y
)
. (7)
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Now let f = l(⟨·, x⟩, y). Then

f(a)− f(a+ b) ≤ −b⊤∇a+bf(a+ b),

and Eq. 7 is convex in its first argument. If

a = ΠdΠ
⊤
d W

⋆
T , a+ b =

(
I −ΠdΠ

⊤
d

)
w⋆

T +ΠdΠ
⊤
d w

⋆
T ,

then we have
Eq. (7) ≤

∥∥(I −ΠdΠ
⊤
d

)
w⋆

T

∥∥
2
∥∇l(·)∥2 .

∥∇l(·)∥2 ≤ L(Lipschitz) and also ∇l exists everywhere (because it is smooth). Thus,

Eq. (7) ≤ L
∥∥(I −ΠdΠ

⊤
d

)
ω⋆
T

∥∥
2
.

Let us consider a special case where Πd is a random projection matrix. Thus, ID −Πd is also a
random D− d projection matrix. Using standard high dimensional probability bounds for |(w∗

T )⊤u|
for random vectors u drawn uniformly from SD−1 (refer Ch.3 in Wainwright (2019)), we get that

|(w∗
T )⊤u| ∈ (

√
1/D ±

√
log(1/δ)/D)

with probability ≥ 1− δ.

Applying this result to random D − d projection L
∥∥(I −ΠdΠ

⊤
d

)
ω⋆
T

∥∥
2

we get:

bd <∼ L
√
1− (d/D)∥ω⋆

T ∥2
Now our proof is complete.

Lemma 7 (generalization error). For an L-Lipshitz, B-bounded loss l, with probability ≥ 1− δ, ŵd

in equation 3 has generalization error <∼
√
d+B
√

log(1/δ)√
M

, when ∥x∥∞ = O(1).

Proof. For this proof, we use the following two statements.

Lemma 1 (Bartlett & Mendelson (2002)). For an L-Lipshitz B-bounded loss l, the generalization
error for predictor ŵd, contained in the class of l2 norm bounded linear predictorsW is bounded
with probability ≥ 1− δ:

l(⟨ŵd,x⟩, y) −
M∑
i=1

l(⟨w,Πdx
(i)⟩, y(i)) ≤ 2LRn(W) +B

√
log(1/δ)

2M

whereRn(W) is the empirical Rademacher complexity of l2 norm bounded linear predictors.

Lemma 2 (Rn(W) bound for linear functions Kakade et al. (2008)). LetW be a convex set inducing
the set of linear functions F(W) ≜ {⟨w,x⟩ : X 7→ R | w ∈ W} for some input space X , bounded
in norm ∥ · ∥ by some value R > 0. Now, if ∃ a mapping h : W 7→ R that is κ-strongly convex
with respect to the dual norm ∥ · ∥∗ and some subset W ′ ⊆ W takes bounded values of h(·) i.e.,
{h(w) ≤ K | w ∈ W ′} for some K > 0, then the empirical Rademacher complexity of the subset

W ′ given byRn(F(W ′)) ≤ R
√

2K
κn .

Let ∥ · ∥22 be the function h :W 7→ R in Lemma 2, and we know that ∥ · ∥22 is 2-strongly convex in l2
norm. Further, take the standard l2 norm as the norm over X . So, the dual norm ∥ · ∥∗ is also given by
l2 norm. Thus, κ = 2. We also know thatW is bounded in ∥ · ∥2 by 1, based on our setup definition.
Thus, K = 1.

Further, we note that ∥x∥∞ = O(1), thus apply Cauchy-Schwartz and using the fact that ∥Πd∥op =
1:

∥Πdx∥ ≤ ∥Πd∥op∥x∥2
∥x∥2 ≤

√
d∥x∥∞ <∼

√
d

Hence, R <∼
√
d. Plugging this in to Lemma 2 we get the empirical Rademacher complexity

RM (W) <∼
√
d/M , and plugging this into Lemma 1 yields the main result in Lemma 7.
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Theorem 8 (bias-variance tradeoff, Theorem 3). When the conditions in Lemma 2 hold and when
∥x∥∞ = O(1), for B-bounded loss l, w.h.p. 1− δ, the excess risk for the solution ŵd of PRO2 that
uses d features is LT (ŵd)−minw∈W LT (w)

<∼ ∥(ID −Πd)w
∗
T ∥2 +

(√
d+B

√
log(1/δ)√

M

)
, (8)

where the first term controls the bias and the second controls the variance.

Proof. The excess risk for ŵd is given by: LT (ŵd)−minw∈W LT (w).

LT (ŵd)− min
w∈W

LT (w)

= LT (ŵd)− min
w∈span{Πi}d

i=1

LT (w) + min
w∈span{Πi}d

i=1

LT (w)− min
w∈W

LT (w)(
min

w∈span{Πi}d
i=1

LT (w)− min
w∈W

LT (w)

)
+

(
LT (ŵd)− min

w∈span{Πi}d
i=1

LT (w)

)

<∼ ∥(ID −Πd)w
∗
T ∥2 +

(√
d+B

√
log(1/δ)√

M

)
where the first term is the bias (bounded using Lemma 2), and the second term is the generalization
error or the variance (bounded using Lemma 7).

Corollary 9. Under the SHOG model, Π1 recovers the linear discriminant analysis (LDA) solution,
i.e., Π1 = Σ−1(µ2 − µ1)/(∥Σ−1(µ2 − µ1)∥2).

Proof. Since LDA solution is Bayes optimal under the HOG model, it is exactly characterized
by the top eigen vector of Σ−1(µ2 − µ1)(µ2 − µ1)

⊤. Thus, the Bayes optimal solution on target
w∗

T ∝ Σ−1(µ2 − µ1), and since Π1 returns the Bayes optimal linear predictor, following Theorem 1,
the above corollary is proven.

Lemma 10 (bias under SHOG). When Πd is returned by PRO2, the bias bd term under our SHOG

is bd <∼ ∥(ID − vSv
⊤
S )vT ∥. Here, vS =

Σ−1
S µ

∥Σ−1
S µ∥2

and vT =
Σ−1

T µ

∥Σ−1
T µ∥2

. Further, when ∥ΣS∥op is

bounded, and Πd is a random rank d projection matrix, bd = O
(√

1− d
D ·KL(pS ||pT )

)
.

Proof. Since,

bd ≤ ∥(ID −Πd)w
∗
T ∥2 ≤ |(ID −Π1)w

∗
T ∥2.

From corollary 9, we know that Π1 is exactly the rank-1 projection matrix given by the direction
Σ−1

S (µ2 − µ1)/(∥Σ−1
S (µ2 − µ1)∥2). This gives us the first result for vS ,vT .

For the second result we rely on the convexity of KL divergence and KL divergence for multivariate
Gaussian distributions to get:

KL(pS ||pT ) = KL(p(y)pS(x | ry)||p(y)pT (x | ry))
≤ KL(pS(x | ry)||pT (x | ry))
= 0.5 · KL(N (µ1,ΣS)||N (µ1,ΣT )) + 0.5 · KL(N (µ2,ΣS)||N (µ2,ΣT ))

=
1

2
tr(Σ−1

T ΣS)−
D∑
i=1

log λS
i +

D∑
i=1

log λT
i −D (9)

Refer to Wainwright (2019) for the final step, where λS
i and λT

i are the eigen values of source target
covariances.

The final term in the above derivation is O(tr(Σ−1
T )) when ∥ΣS∥op = O(1).
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From Lemma 2 we know that under random projections onto d dimensions,

bd ≤ L ·
√
1− (d/D)∥w∗

T ∥ <∼ ·
√
1− (d/D)∥Σ−1

T (µ2 − µ1)∥ <∼ tr(Σ−1
T ) (10)

where we use Corollary 9. Thus from equation 10, equation 9, we get our desired bound:

bd <∼

(√
1− d

D
·KL(pS ||pT )

)

Corollary 11 (tradeoff under SHOG, Corollary 4). Under our SHOG model of shift, and conditions

for a random projection Πd in Lemma 10, the target error LT (ŵd) <∼O
(√

1− d
D ·KL(pS ||pT )

)
+√

d
M , when ∥ΣT ∥op = O(1).

Proof. Direct application of the variance result in Lemma 7 and bias result in Lemma 10, using the
same technique used to prove Theorem 3.

F EXPERIMENTAL DETAILS

F.1 PYTORCH PSEUDOCODE FOR THE PROJECTION STEP OF PRO2

Below, we provide PyTorch pseudocode for the projection step of PRO2 for binary classification
datasets.

def learn_feature_space_basis(x, y, num_features):
projection = torch.nn.Linear(x.shape[1], num_features)
opt = torch.optim.AdamW(projection.parameters(), lr=0.01,

weight_decay=0.01)
max_steps = 100
for i in range(max_steps):

logits = projection(x)
loss = F.binary_cross_entropy_with_logits(logits, y, reduction="

none").mean()
opt.zero_grad()
loss.backward()
opt.step()
# Enforce orthogonality; we’re performing projected gradient

descent
Q, R = torch.linalg.qr(linear_model.weight.detach().T)
projection.weight.data = (Q * torch.diag(R)).T

feature_space = projection.weight.detach().T
return feature_space

F.2 ADDITIONAL DATASET DETAILS

• 4-Way Collages (Teney et al., 2021). This binary classification dataset consists of 4-way
collages of four images per datapoint, one from each of (1) CIFAR, (2) MNIST, (3) Fashion-
MNIST, and (4) SVHN. All four image features are completely correlated in the source
data, and we consider four target distributions, where only one of the image features are
predictive of the label in each target distribution.

• Waterbirds (Sagawa et al., 2020). This dataset tasks the model with classifying images of
birds as either a waterbird or landbird. The label is spurious correlated with the background
of the image, which is either water or land. There are 4,795 training samples, of which
95% of the data follows the spurious correlation. We use the original training set as the
source data and evaluate on 3 different target distributions constructed from the original test
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Figure 5: Visualization of bias and variance in the synthetic homoscedastic Gaussian experiment Fig-
ure 4. (Left) We approximate bias by the error at the largest target dataset size, and compare to the
nullspace norm. The two quantities have a roughly linear relationship. (Right) We approximate
variance by the difference between the error at each dataset size and the error at the largest. We report
the average across the three test distributions. Note on the left plot, ID is easily learned and so the
corresponding line is therefore clustered near (0, 0), as the nullspace norm and bias are both near 0.

dataset: (1) Minority, which contains the test data points that do not follow the spurious
correlation, (2) Spurious, containing the points that do, and (3) Balanced, which contains an
equal number of points from each of the 4 (bird, background) groups.

• CelebA (Liu et al., 2015). Similar to Waterbirds, we use the original training set as source
data and evaluate on (1) Minority, (2) Spurious, and (3) Balanced target distributions. In our
main experiments in Section 4, we use target distributions corresponding to the spurious
correlation typically used for evaluation (spurious attribute–gender with label–hair color).
Below, in Appendix G include additional results on 4 other variants following the settings
used in Lee et al. (2022b): (1) CelebA-1 uses slightly open mouth as the label and wearing
lipstick as the spurious attribute, (2) CelebA-2 uses attractive as the label and smiling as
the spurious attribute, (3) CelebA-3 uses wavy hair as the label and high cheekbones as the
spurious attribute, and finally (4) CelebA-4 uses heavy makeup as the label and big lips as
the spurious attribute.

• Camelyon17 (Bandi et al., 2018). This dataset is part of the WILDS benchmark Koh
et al. (2021) and contains medical images where variations in data collection from different
hospitals induce naturally occurring distribution shifts. We evaluate on 2 target distributions:
(1) ID-Test: a held out test set of images from the source distribution, and (2) OOD-Test:
the actual test distribution with a distribution shift due to evaluating data from a different
hospital.

Pre-trained models and additional training details. We extract penultimate embeddings of all
source and target datapoints from a pre-trained backbone. We preprocess all datapoints according
to the augmentation used during pre-training, and obtain feature embeddings with eval-mode batch
normalization. We cache all embeddings for a (backbone, dataset) pair to a single file and train our
linear models from the cached file. We use CLIP-ViT-L/16 Dosovitskiy et al. (2020) in our main
experiments, and additionally experiment with ResNet18 He et al. (2016), ResNet50, ResNet50-
SWaV Caron et al. (2020), CLIP-ViT-B/16 models in Appendix G.5. All pretrained models are
publicly available online. We train all models using the AdamW optimizer Loshchilov & Hutter
(2017) with weight decay 0.01. For all experiments, we perform early stopping with accuracy on
held-out target data and report mean and standard deviation across 10 runs.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ADDITIONAL VISUALIZATIONS FOR SYNTHETIC GAUSSIAN EXPERIMENT

In Figure 5, we approximate the bias and variance in the synthetic HOG experiment studied in Figure 4.
On the left, for each test distribution (ID, Near OOD, and Far OOD), we plot the relationship between
approximate bias (using error at the largest target dataset size) and nullspace norm and find that they
have a roughly linear relationship. Thus, this plot empirically supports the connection supported in
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Majority Groups Minority Groups

LB+L WB+W LB+W WB+L

Causal 93.6 (1.1) 95.1 (0.5) 90.3 (0.5) 94.3 (0.4)
Shortcut 96.5 (0.8) 98.0 (0.4) 38.3 (4.1) 91.2 (1.1)

Table 1: Different features can be best for different target distributions. We learn two linear classifiers
for Waterbirds based on the causal and shortcut features, respectively. We report average accuracy
within each group, and show standard deviation inside parentheses. LB and WB represent landbirds
and waterbirds, and L and W represent land and water backgrounds. While the causal feature achieves
higher worst-group accuracy, the shortcut feature achieves higher accuracy on the majority groups.

the theory between bias and the number of features used, as the nullspace norm decreases as the
dimension of the feature-space basis increases. On the right, Hence, we connect

G.2 ARE CAUSAL FEATURES ALWAYS BEST?

In this experiment, we aim to demonstrate how the different features that are predictive on source
data can perform differently on different target distributions. On the Waterbirds dataset, we learn
two linear classifiers on top of backbone embeddings. We learn an oracle feature by minimizing
worst-group loss (Group DRO, Sagawa et al. (2020)), and an oracle shortcut classifier by minimizing
average loss on the majority data. These are the same features used for Figure 6. In Table 1, as
expected, the causal feature achieves the best worst-group accuracy. However, we find that the
shortcut feature outperforms the causal feature on the two majority groups, indicating that this feature
would achieve higher performance in a distribution skewed towards majority groups. In particular,
such shortcut features are especially useful on certain distributions when fairness metrics do not
matter, e.g. like positions of cars. In other words, there is no one best feature, and different features
can be best for different target distributions. These observations motivate PRO2: it can be beneficial
to extract a diverse set of features that cover both causal and shortcut features, and adapt to different
target distributions by interpolating between these learned features.

G.3 EMPIRICAL ANALYSIS OF PROJECTED FEATURE SPACE
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Figure 6: Nullspace norm on Waterbirds. We plot the nullspace norm (y-axis) of the shortcut
and causal features in the subspace spanned by the first d directions (x-axis) learned by PRO2 (solid
lines) or a random orthonormal basis (dotted lines). We find that compared to random, the first few
features learned by PRO2 are informative and therefore have lower nullspace norm. Additionally, by
enforcing orthogonality, the features learned eventually fully cover both types of features, with the
nullspace reducing to zero.
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Figure 7: We show the average cosine similarity between randomly chosen pairs of individual
features taken from features learned by the method PRO2-NC and PRO2 with causal and shortcut
features on the Waterbirds dataset. The error bars are the minimum and maximum cosine similarity
for pairs of features from the corresponding methods. In contrast to PRO2-NC, the features learned
by PRO2 have very little similarity with each other, although the max similarity between a features
learned by PRO2 and both the shortcut and causal features is still high, allowing PRO2 to cover a
more diverse range of features.

We begin by observing the empirical properties of the projected feature space learned during the
first projection phase of PRO2. The Waterbirds dataset consists of “spurious" groups where the
background type (land or water) correlates with the bird type (land or water), on which using a
shortcut feature that relies on background type will perform optimally, as well as “minority" groups
in which the correlation does not hold and requires a robust feature that focuses on the bird itself. On
this dataset, we first extract oracle shortcut and robust features by minimizing loss on spurious and
minority groups on target data, respectively. These two directions serve as proxies for the optimal
classifier on two different target distributions. In addition to PRO2, we also evaluate a random feature
extraction method, which simply samples a random orthonormal basis for the original RD embedding
space. We plot the nullspace norm of these two features in the subspace spanned by the first k
directions, for 1 ≤ k ≤ D = 1024 in Figure 6. As expected, we see that the earlier features learned
by PRO2 are more similar to the shortcut feature than the robust feature. Because the orthogonality
constraint forces the features to be different from each other, the nullspace norm reduces to zero at
the highest value k = 1024. This experiment shows that the basis learned by PRO2 contains both the
robust and shortcut features for this dataset, and that the robust and shortcut features emerge even for
very low-rank bases (i.e., for small values of d). In contrast, a random orthogonal basis only captures
these two predictive features when the rank is larger. This indicates that our orthogonal projection
approach quickly picks up on the most important directions in feature space, which in this case
correspond to the shortcut feature representing the background and the robust feature representing
the type of bird, as discussed in prior work (Sagawa et al., 2020).

G.4 FEATURE SIMILARITY

We also compare PRO2 and PRO2-NC to see how the orthogonality constraint effects feature diversity
In Figure 7, we plot the average cosine similarity between the shortcut and causal features with two
versions of PRO2: one with no constraints and one with orthogonality enforced. More specifically, for
each bar, we calculate the average cosine similarity between 200 randomly chosen features learned
by the method (either PRO2-NC or PRO2) with the causal and shortcut features learned above along
with another randomly chosen feature from the method (labeled “Within”). The error bars are the
minimum and maximum cosine similarity for a pair of features from the corresponding methods.
From this plot, we see that when orthogonality is not enforced, the features learned are not diverse:
with PRO2-NC, the “Within” column has high cosine similarity and very little variation, showing that
all features are very similar to each other, and they are all more similar to the shortcut feature than the
causal feature. Thus, interpolating between such features may struggle to adapt to target distributions
that require reliance on the causal feature. On the other hand, the features learned by PRO2 have
very little similarity with each other, although the max similarity between a features learned by PRO2
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Waterbirds CelebA

Figure 8: Different backbones. We show the accuracy of PRO2, where we use various pretrained
backbones, which are not fine-tuned. PRO2 is able to leverage improvements in the backbone with
minimal computational overhead.

Waterbirds CelebA Camelyon17 Collages

Figure 9: Importance of orthogonality. We show the adaptation accuracy of PRO2 compared to
PRO2-NC, a variant without orthogonality enforced, averaged across the varying target distributions
for each dataset.

and both the shortcut and causal features is still high. Thus, enforcing orthogonality is important for
learning diverse features that span both the shortcut and causal features.

G.5 USING VARIOUS PRETRAINED BACKBONES

Finally, as PRO2 relies on using a pre-trained backbone model that is not fine-tuned to initially extract
features, we study how different backbones affect performance. In Figure 8, we plot the accuracy of
PRO2 using 5 pre-trained backbone models that achieve a range of Image-Net accuracies. We find
that PRO2 improves significantly with better pre-trained backbones. These experiments demonstrate
the promise of the PRO2 framework. The quality of pre-trained feature extractors will continue to
improve with future datasets and architectures, and PRO2 leverages such pre-trained backbone models
for distribution-shift adaptation in a computationally efficient manner.

G.6 ABLATION ON THE IMPORTANCE OF ENFORCING ORTHOGONALITY

For the purposes of our empirical analysis, we additionally consider a simpler variant that optimizes
the projection matrix Π with No Constraint on orthogonality:

Πi =argminE(x,y)∼DS
L(Πi(f(x)), y). (PRO2-NC)
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CelebA-1 CelebA-2 CelebA-3 CelebA-4

Figure 10: Main results on CelebA variants. We compare 4 different methods for learning
features to adapt to a target distribution: (1) Random Projection, (2) DFR Kirichenko et al. (2022),
i.e. standard linear probing, (3) Teney et al. (2021), and (4) PRO2. We report target accuracies
after probing with different target dataset sizes; we report mean and standard deviation across 10
runs. Similar to the trends seen in Figure 2, PRO2 achieves high accuracy in the low-data regime,
substantially outperforming both random orthogonal projection and no projection in most target
distributions on all four datasets.

We compare PRO2 to PRO2-NC in Figure 9. While PRO2-NC is is sufficient in some scenarios with
milder distribution shift, where the shortcut feature continues to be informative, it fails to learn a
diverse set of predictive features and often only learns shortcut features, often failing on more severe
distribution shifts.

G.7 EVALUATION ON ADDITIONAL CELEBA VARIANTS

Finally, in Figure 10 we supplement our main results in Figure 2 with additional results from 4
additional variants of CelebA. The takeaways from these results line up with those from Figure 2.
In the few-shot adaptation problem setting, PRO2 is consistently the most effective, compared to
Random Projection, DFR Kirichenko et al. (2022), which uses standard linear probing, and Teney
et al. (2021).
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