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ABSTRACT

When applying deep learning models in real-world scenarios, active learning (AL)
strategies are crucial for identifying label candidates from a nearly infinite amount
of unlabeled data. In this context, robust out-of-distribution (OOD) detection
mechanisms are essential for handling data outside the target distribution of the
application. However, current works investigate both problems separately. In this
work, we introduce SISOM as the first unified solution for both AL and OOD
detection. By leveraging feature space distance metrics SISOM combines the
strengths of the currently independent tasks to solve both effectively. We conducted
extensive experiments showing the problems arising when migrating between both
tasks. In these evaluations SISOM underlined its effectiveness by achieving first
place in two of the widely used OpenOOD benchmarks and second place in the
remaining one. In AL, SISOM 1 outperforms others and delivers top-1 performance
in three benchmarks.

1 INTRODUCTION

Large-scale deep learning models encounter several data-centric challenges during training and
operation, particularly in real-world problems such as mobile robotic perception. On the one hand,
these models require vast amounts of data and labels for training, driven by the uncontrolled nature of
real-world tasks. On the other hand, even when trained with extensive data, these models can behave
unpredictably when encountering samples that deviate significantly from the training data, known as
out-of-distribution (OOD) data.

Active learning (AL) addresses the first limitation by guiding the selection of label candidates. In
the traditional pool-based AL scenario (Settles, 2010), models start with a small labeled training
set and can iteratively query data and its labels from an unlabeled data pool. The selection is
based on model metrics such as uncertainty, diversity, or latent space encoding. One AL cycle
concludes with the model being trained on the labeled subset, including the newly added samples.
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Figure 1: Real-world application life cycle com-
prising active learning in the training phase (left)
and out-of-distribution detection in the operation
phase (right).

The second challenge, dealing with unknown
data during operation, is typically addressed by
OOD detection. OOD detection distinguishes
between in-distribution (InD) data used for train-
ing the model and OOD samples, which differ
from the training distribution. Literature dif-
ferentiates between near-ODD and far-OOD,
which can be categorized by the type of dis-
tribution shifts occurring. Yang et al. (2022b) as-
sumes near-OOD as a pure covariate shift while
far-OOD often contains a semantic shift.

Over the whole life cycle of mobile robotic appli-
cations, which consists of training and operation
phases, both challenges occur. Fig. 1 illustrates such a life cycle with both tasks. Given an amount of
collected data, AL is applied for a label-efficient training, while OOD detection is employed to control

1SISOM will be published upon acceptance - for review https://tinyurl.com/sisom-iclr
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the operation state, which is necessary for real-world operation domains. Existing works address
these challenges separately, which can lead to diverging goals of AL and OOD methods. Additionally,
addressing these tasks separately introduces significant overhead, especially for deployment and
development like hyperparameter optimization or the training of auxliary models.

fOOD
Unlabeled
Labeled
nOOD

Figure 2: TSNE plot of unlabeled and
OOD data compared to labeled data for
CIFAR-10 as InD with 20% labeled, tiny
ImageNet as near-OOD and SVHN as
far-OOD.

From a method perspective similarities between AL and
OOD detection are even more evident, specifically both
methodologies utilize common metrics, such as uncer-
tainty, latent space distances, and energy. In addition, a
sample detected by such metrics can be, on the one hand,
a novel AL sample that is insufficiently represented by the
current training distribution. On the other hand, the sample
can pose a covariate shift in an OOD setting. Considering
both cases as depicted in Fig. 2 show an ambiguity and
overlap of both sample categories. This raises the question
if an examination of the ambiguity and relation between
the respective samples can provide valuable insights for
designing approaches for both tasks.

In our work, we examine the connection between both
tasks and design a novel approach by leveraging mu-
tual strengths providing an effective solution for both
tasks. Specifically, we employ enriched feature space dis-
tances based on neural coverage to propose Simultaneous
Informative Sampling and Outlier Mining (SISOM ), which create a symbiosis between AL and
OOD detection. By exploiting the ambiguity of both tasks, SISOM effectively archives top-1 perfor-
mance in most OOD benchmarks and, at the same time, surpasses existing AL methods with top-1
performance. With its joint approach, SISOM provides an efficient simplification for application life
cycles by eliminating an additional OOD detection design phase and avoiding conflicting design
goals. Additionally, SISOM provides a novel latent space analysis for post-training latent space
refinement and a first-of-its-kind self-balancing of uncertainty and diversity metrics.

In summary, our contributions are as follows:

• We explore the entanglement of AL and OOD detection.
• We propose Simultaneous Informative Sampling and Outlier Mining, a novel method

designed for both OOD detection and AL.
• We introduce a latent space analysis enabling an optimization loop for further post-training

latent space refinement and a self-balanced uncertainty diversity fusion.
• In extensive experiments, we demonstrate SISOM effectiveness in AL and OOD bench-

marks.

2 PRELIMINARIES

Active Learning: AL is a subfield of machine learning designed to reduce the number of required
labels by querying a set of new samples A of a query size q in a cyclic process. Let X represent
a set of samples and Y a set of labels. AL starts with an initially labeled pool L, containing data
samples with features x and corresponding label y, and an unlabeled pool U where only x is known.
However, y can be queried from a human oracle. We further assume that L and U are samples from
a distribution Ω. In each cycle, a model f is trained such that f : XL → YL. This model then
selects new samples from U based on a query strategy Q(x, f), which utilizes (intermediate) model
outputs. As a result, the newly annotated set A is added to the labeled pool Li+1 and removed from
the unlabeled pool Ui+1.

Out of Distribution Detection: Ancillary, OOD detection assumes a model f : XL → YL trained
on our training data {x, y} ∈ L which have been sampled from the distribution Ω. During evaluation
or inference, a model f encounters data samples x̃ from a distribution Θ and Ω, where Ω ∩Θ = ∅
and x̃ /∈ L. Data sampled from Ω are referred to as InD data, while samples from Θ are referred to
as OOD data. Based on the trained model f , a metric S is used to determine whether a sample x is
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sampled from Ω or Θ.

G(x, f) =

{
InD if S(x; f) ≥ λ

OOD if S(x; f) < λ
(1)

OOD detection is further categorized into near- and far-OOD (Zhang et al., 2023). Far-OOD refers to
completely unrelated data, such as comparing MNIST (LeCun et al., 1998) to CIFAR-100 (Krizhevsky
et al., 2009), while CIFAR-10 (Krizhevsky et al., 2009) to CIFAR-100 would be considered as near-
OOD. OpenODD (Yang et al., 2022b) ranks near-OOD detection as more challenging.

3 RELATED WORK

Given the disentanglement of fields, we review the related work individually.

Active Learning: AL mainly considers the pool-based and stream-based scenario (Settles, 2010),
where data is either queried from a pool in a data center or a stream on the fly. For deep learning, the
majority of current research deals with pool-based AL (Ren et al., 2021). However, further scenarios
have been evaluated by Schmidt & Günnemann (2023) and Schmidt et al. (2024). Independent of the
scenarios, samples are selected either by prediction uncertainty, latent space diversity, or auxiliary
models. A majority of the uncertainty-based methods rely on sampling - like Monte Carlo Dropout
(Gal & Ghahramani, 2016) - or employ ensembles (Beluch et al., 2018; Lakshminarayanan et al.,
2017). To additionally ensure batch diversity Kirsch et al. (2019) used the joint mutual information.
The uncertainty concepts have been employed and further developed for major computer vision tasks,
including object detection (Feng et al., 2019; Schmidt et al., 2020), 3D object detection (Hekimoglu
et al., 2022; Park et al., 2023), and semantic segmentation (Huang et al., 2018). One of the few works
breaking the gap between both tasks (Shukla et al., 2022) modified an OOD detection method for pose
estimation. Mukhoti et al. (2023) proposed an uncertainty baseline based on spectral convolutions and
Gaussian mixture models, which shows effectiveness on AL and OOD detection compared to other
uncertainty approaches. In contrast, diversity-based approaches aim to select key samples to cover
the whole dataset. Sener & Savarese (2018) proposed to choose a CoreSet of the latent space using a
greedy optimization. Yehuda et al. (2022) selected samples having high coverage in a fixed radius for
low data regimes. Mishal & Weinshall (2024) extends the approach for more data regimes dynamic
strategy mixing. Ash et al. (2020) enriched the latent space dimensions to the dimensions of the
gradients and included uncertainty in this way. The concept of combining uncertainty with diversity
has been further refined for 3D object detection (Yang et al., 2022a; Luo et al., 2023). Liang et al.
(2022) combined different diversity metrics for the same task. In semantic segmentation, Surprise
Adequacy (Kim et al., 2020) has been employed to measure how surprising a model finds a new
instance. Besides the metric-based approach, the selection can also be made by auxiliary models
mimicking diversity and uncertainty. These approaches range from loss estimation (Yoo & Kweon,
2019), autoencoder-based approaches (Sinha et al., 2019; Zhang et al., 2020; Kim et al., 2021) and
graph models (Caramalau et al., 2021), to teacher-student approaches (Peng et al., 2021; Hekimoglu
et al., 2024).

Out-of-Distribution Detection: To facilitate a fair comparison and evaluation of OOD methods,
benchmarking frameworks like OpenOOD (Yang et al., 2022b; Zhang et al., 2023) have been intro-
duced, which categorizes the methods into preprocessing methods altering the training process and
postprocessing methods being applied after training. Preprocessing techniques include augmenting
training data like mixing (Zhang et al., 2018; Tokozume et al., 2018) different samples or applying
fractals to images (Hendrycks et al., 2022). Postprocessing approaches include techniques of ma-
nipulations on neurons and weights of the trained network, such as filtering for important neurons
(Ahn et al., 2023; Djurisic et al., 2022), or weights (Sun & Li, 2022), or clipping neuron values to
reduce OOD-induced noise (Sun et al., 2021). Logit-based approaches encompass the model output
to estimate uncertainties using temperature-scaling (Liang et al., 2018), modified entropy scores
(X. Liu, 2023), energy scores (Liu et al., 2020; Elflein et al., 2021) or ensembles (Arpit et al., 2022).
Other methods rely on distances in the feature space, such as the Mahalanobis distance between InD
and OOD samples (Lee et al., 2018), consider the gradients after a forwardpass (Liang et al., 2018;
Hsu et al., 2020; Huang et al., 2021; Schwinn et al., 2021), estimate densities (Charpentier et al.,
2020; 2022) or k nearest neighbor on latent space distances (Sun et al., 2022). A different branch
operates on the features directly and evaluates properties like the Norm (Yu et al., 2023) or performs
rank reductions via SVD (Song et al., 2022). NAC (Liu et al., 2024) combined gradient information
with a density approach, where a probability density function over InD samples is estimated.
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OpenSet Active Learning: The emerging field of OpenSet AL considers both tasks in one cycle,
assuming the AL pool is polluted by OOD samples. Existing approaches (Ning et al., 2022; Park et al.,
2022; Yang et al., 2023; Safaei et al., 2024) address both tasks with separate modules containing
auxiliary models. None of the works investigates the correlation of AL and OOD samples. As both
tasks are considered decouples with uncorrelated modules, this field is orthogonal to our examination
of correlation and entanglement. We believe that this field profits from the joint consideration of AL
and OOD samples as well as an examination of their ambiguity.

While various works exist in OOD and AL, both tasks are considered independent. Even in OpenSet
AL, the tasks are considered by independent method components. Some uncertainty methods are
evaluated on both tasks but limit their evaluation to the uncertainty domain. Current state-of-the-art
approaches are often specified for one task. In addition, the application life cycle consideration is
unexplored.

4 METHODOLOGY

To address both AL and OOD detection tasks in a unified method to simplify real-world applications,
we need to first understand the goals of these two tasks. AL aims to identify and select samples that
are beneficial for training and increase the models performance. These samples typically position
themselves between the existing clusters in the latent space or near the decision boundaries. OOD
detection targets the identification of data outside the training data and, therefore, outside the known
clusters in latent space. Given the definition of far- and near-OOD, near-ODD is closer to InD data
and located close to the decision boundaries and in between the existing clusters. Liu & Qin (2024)
recently showed that OOD is generally closer to the decision boundary than InD confirming this
hypothesis. Fig. 2 depicts this consideration showing the overlap of interesting unlabeled data and
(near-)OOD data.

To target these overlapping regions we design a method focusing on the latent space regions between
the clusters. To do so SISOM employs an enlarged feature space Coverage (1) and increases
expressiveness by weighting important neurons in a Feature Enhancement (2). Based on this feature
representation, we refine the AL selection and the InD and OOD border by using an inner-to-outer
class Distance Ratio (3), guiding it to unexplored and decision boundary regions. As feature space
distances are prone to poorly defined latent space representations, we introduce Feature Space
Analysis (4) providing a self-deciding fusion of our distance metric with an uncertainty-based energy
score. Optionally, our previous analysis enables us to optimize the Sigmoid Stepness (5), providing a
further refinement of the feature space representations from (2). An overview is depicted in Fig. 3.

(1) Coverage: We aim to identify the regions of the samples that are interesting and unexplored for
AL as well as OOD samples in latent space. To do so, we rely on an informative latent space covering
as much information as possible.

To increase the information gain we cover the full network and define the feature space representation
of an input sample x as a concatenation of the latent space of multiple layers hj in a set of selected
layers H in Eq. (2). This approach follows the procedures of neural coverage (Kim et al., 2019; Liu
et al., 2024) and is contrasting to most diversity-based AL approaches (Sener & Savarese, 2018; Ash
et al., 2020), which use a single layer.

z = h1(x)⊕ · · · ⊕ hj(x)⊕ · · · ⊕ hn(x) (2)

Given the feature space z, we further denote ZU as a set of feature space representations of unlabeled
samples from U, while ZL denotes the set of representations of all labeled samples L.

(2) Feature Enhancement: To enhance the expressiveness of our defined latent space we introduce a
weighting of individual layers. Prior research (Huang et al., 2021; Liu et al., 2024) have demonstrated
that the gradients of neurons with respect to the KL divergence of the model’s output and a uniform
distribution encapsulate valuable information for OOD detection.

We apply the technique to improve the features further and enrich these by representing the
individual contribution of each neuron i, denoted as gi. This gradient describes each neu-
ron’s contribution to the actual output being different from the uniform distribution. A low
value suggests that the neuron has little influence on the prediction of a given input sam-
ple. Conversely, if the value is high, the respective neuron is crucial for the decision process.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0

r

0

1

2

3

D
en

si
ty

InD

nOOD

fOOD

(a) SISOM

−0.25 0.00 0.25 0.50 0.75

r̂

0

5

10

15

D
en

si
ty

InD

nOOD

fOOD

(b) SISOMe

−0.5 0.0 0.5 1.0 1.5

r

0

1

2

3

4

D
en

si
ty

InD

nOOD

fOOD

(c) SISOM +OS

0 1 2

r

0

1

2

3

4

D
en

si
ty

InD

nOOD

fOOD

(d) SISOM +OS+RS

Figure 4: Density plots for SISOM with energy, Optimal Sigmoid Steepness (OS) and Reduced
Subset Selection (RS) on CIFAR-100 with near-OOD (nOOD) and far-OOD (fOOD) as defined in
OpenOOD.
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Figure 3: SISOM framework for OOD detection
and AL combined.

Thus, the gradient vector can be interpreted as
a saliency weighting for the activation values in
the feature space to support seprability. In detail,
we compute the gradient of the Kullback-Leibler
(KL) divergence between an uniform distribu-
tion u and the softmax output distribution f(x)
for an input x:

gi =
∂DKL(u||f(x))

∂zi
. (3)

We incorporate the calculated saliency to create
a weighted feature representation forming the
enhanced feature space with the sigmoid func-
tion σ:

z̃ = σ(z⊙ g). (4)
The resulting gradient-weighted feature repre-
sentation effectively prioritizes the most influ-
ential neurons for each input. This facilitates
the identification of inputs activating atypical
influence patterns, which is significant for AL
as well as OOD detection. A qualitative analysis
demonstrating the effect of the feature enrich-
ment is given in Appendix A.3.

(3) Distance Ratio: After we defined and enhanced our latent space we design our metric to identify
the respective samples. Contrasting to other works in the latent space domain for AL and OOD
detection (Sener & Savarese, 2018) which relay on simple distance metrics, we take inspiration from
complex distance metrics (Kim et al., 2019) for detecting adversarial examples.

We assume the location of important samples in between the existing clusters in latent space. While
samples closer to these clusters, like near-OOD or AL samples close to the decision boundary, are
more important, far-OOD samples and exotic AL samples should not be omitted. To identify samples
in these regions, we rely on a distance quotient between inner-class and outer-class distances.

The inner-class distance din is defined as the minimal feature space distance to a known sample of
the same class c as the predicted pseudo-class of the given sample. The outer-class distance dout
represents the minimal feature space distance to a known sample of a different class than the sample’s
pseudo-class.

din = min
z′∈ZL(c′=c)

||z̃− z̃′||2 (5) dout = min
z′∈ZL(c′ ̸=c)

||z̃− z̃′||2 (6)

The distance is computed on the gradient-enhanced feature space z̃ defined in Eq. (4) with z′

describing the nearest sample from the set of known samples ZL.

In many state-of-the-art works on AL, computationally expensive distance calculations are often
present (Sener & Savarese, 2018; Ash et al., 2020; Caramalau et al., 2021). To make our approach

5
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more efficient for AL and feasible for large-scale OOD detection tasks, we select a representative
subset T ⊂ ZL as a comparison set, thereby significantly reducing computational overhead. We
modify the Probcover (Yehuda et al., 2022) approach to select class-wise samples, maximizing
coverage within a sphere with a fixed radius in the feature space. The effect of this subset selection is
further investigated in Section 5.3.

Our SISOM score r reflects the distance between each neuron’s weighted feature representation in the
latent space and the nearest sample of the predicted class relative to the closest distance to a sample
from a different class:

r =
din
dout

. (7)

An extended comparison of the different distance metrics and their ability to separate InD and OOD
is shown in Appendix A.3, while a SISOM is depicted in Fig. 4a.

For AL we select the q samples with the highest distance ratio r, with q being the AL query size:

A = argmaxqr(x) : x ∈ U. (8)

For OOD Detection, we map the distance ratios r to an interval [0; 1] with the strictly monotonically
decreasing function:

rOOD = 1− σ(r) + 1

2
. (9)

(4) Feature Space Analysis: Having a well-defined latent space is crucial for SISOM to attain
optimal performance. Furthermore, we hypothesize that techniques relying on feature space metrics
are more dependent on feature space separation than uncertainty-based methods. This dependency
is important for SISOM as it utilizes a quotient of feature space metrics. Nevertheless, obtaining a
well-defined and separable latent space may pose challenges in specific contexts and tasks.

To estimate the separability of feature space, we compute the average distance ratio ravg using Eq. (4)
and Eq. (7) for the known set as:

ravg =
1

|L|
∑
z̃∈L

din(z̃)

dout(z̃)
=

1

|L|
∑
z∈L

din(σ(z⊙ g))

dout(σ(z⊙ g))
. (10)

A lower ravg value indicates better separation of the samples in the enhanced feature space, implying
that samples of the same class are relatively closer together than samples of different classes. To
mitigate possible performance disparities of SISOM in difficult separable domains, we introduce a
novel self-deciding process for the sampling method, which utilizes the feature separation score ravg
as follows:

r̂i = min(ravg, 1) · Ei +max(1− ravg, 0) · ri. (11)

The so created r̂ combines our SISOM score from Eq. (7) with the uncertainty-based energy score
E(x) = − log

∑c
i=1 exp(f(x)i) based on the model’s output logits f(x).

Depending on whether ravg → 1 or ravg → 0, the created score r̂i relies more on either the energy
score or the distance ratio ri. If ravg → 1, indicating poorly separated classes, r̂i relies more on
the energy score. Conversely, if ravg → 0, suggesting a well-separated feature space, r̂i relies
more on the distance ratio. A density outline of our combined approach SISOMe is given in Fig. 4b.
Alternatively, one can replace ravg with a tuneable hyperparameter in Eq. (11).

(5) Sigmoid Steepness: Since Eq. (10) depends on the sigmoid function defined in Eq. (4), the
sigmoid function has a large influence on the enhanced feature space z̃. An additional hyperparameter
α can influence the sigmoid function’s steepness. As z is concatenated from different layers in Eq. (2),
the sigmoid can be applied to each layer j individually. This allows for a more nuanced control over
the influence of each neuron’s contribution to the final decision and so influences the separability of
the feature space. We define the sigmoid using the steepness parameter α as:

σj(x) =
1

1 + e−αjx
; {αj : hj ∈ z ∀j}. (12)

Relating to Eq. (4), the set α of steepness parameters of the sigmoid function for each layer hj ,
determines the degree of continuity or discreteness of the features within that layer. By applying a

6
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layerwise sigmoid, Eq. (4) is formulated as follows:

z̃ = σ1(h1(x)⊙ gi,1)⊕ · · · ⊕ σj(hj(x)⊙ gi,j)⊕ (13)
· · · ⊕ σn(hn(x)⊙ gi,n),

with gi,j =
∂DKL(u||f(x))

∂hj,i
; ∀j.

Following this consideration we can select α values which optimize the feature space separability
metric ravg from Eq. (10) by minimizing αopt = argminα ravg(α). Besides the quantitative
assessment of our Feature Space Analysis and Sigmoid Steepness in Section 5.3, the influence of the
Sigmoid Steepness is shown in Fig. 4c.

5 EXPERIMENTS

To evaluate our proposed method, we conducted a comprehensive assessment of SISOM on both
tasks AL and OOD detection individually. We consider compound tasks like Openset AL as out of
scope as existing works address the sub-task by individual components, while SISOM showcases
the ambiguity of both task sample characteristics. The experiments’ details, settings, and results
are presented in Section 5.1 and Section 5.2, respectively. We further conduct an ablation study
in Section 5.3. We utilized the standard pool-based AL scenario (Settles, 2010) for AL. For OOD
detection, we followed the widely used OpenOOD benchmarking framework (Yang et al., 2022b;
Zhang et al., 2023).

In the AL experiments, we compared our method against several baselines, including CoreSet (Sener
& Savarese, 2018), CoreGCN (Caramalau et al., 2021), Random, Badge (Ash et al., 2020), and
Loss Learning (Yoo & Kweon, 2019). Additionally, we adapted the NAC (Liu et al., 2024) method
from OOD detection to AL to assess the transferability from OOD to AL.

For OOD detection experiments, we employed the implementation provided by the OpenOOD
framework when available. We also followed the experimental setup and datasets for near- and
far-OOD detection. The baselines used for validation include NAC (Liu et al., 2024), Ash (Djurisic
et al., 2022), KNN (Sun et al., 2022), Odin (Hsu et al., 2020), ReAct (Sun et al., 2021), MSP
(Hendrycks & Gimpel, 2016), Energy (Liu et al., 2020), Dice (Sun & Li, 2022), RankFeat (Yu et al.,
2023), FeatureNorm (Song et al., 2022) and GEN (X. Liu, 2023). Moreover, we tested the CoreSet
(Sener & Savarese, 2018) AL method to verify the transferability from AL to OOD. Our focus was
on methods that use the cross-entropy training scheme to maintain a fair comparison and ensure
compatibility post-AL.

5.1 ACTIVE LEARNING

We followed the most common AL benchmark settings and datasets, including the CIFAR-10
(Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and SVHN (Netzer et al., 2011)
datasets paired with a ResNet18 (He et al., 2016) model. We assessed the network’s performance
by measuring accuracy relative to the amount of data used. The plots include markers to indicate
the selection steps. As suggested by (Yoo & Kweon, 2019; Ash et al., 2020), we start with an initial
pool size of 1,000 labeled samples for CIFAR-10 and SVHN. In each AL cycle, the model can query
1,000 additional samples from an unlabeled pool, which are then labeled and added to the labeled
pool for the subsequent cycle. Due to the larger number of classes in CIFAR-100, we increased the
selection size to 5,000. Detailed parameters and settings are available in Appendix B.1.

In the CIFAR-10 benchmark depicted in Fig. 5a, SISOM exhibits swift progress and maintains
consistent performance from the outset. It consistently outperforms other methods, achieving the
highest performance differential in all selection cycles and is only eclipsed by SISOMe especially in
early cycles. Furthermore, as the sample size increases, our method maintains its superiority over
Learning Loss and CoreSet. NAC does not demonstrate superior performance compared to Random.

After examining SISOM in datasets with a limited number of classes, we examine the AL setup on
the larger CIFAR-100 dataset and report the results in Fig. 5b. In this setting, all methods are less
stable in its ranking compared to the other dataset, reflecting the increased difficulty of the dataset.
The complexity of the dataset requires more data for the model to perform effectively. While in the
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Figure 5: Comparison of different active learning methods on CIFAR-10, SVHN and CIFAR-100
with indicated standard errors.
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(b) Loss Learning
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(c) SISOM (ours)

Figure 6: T-SNE feature space comparison of Loss Learning, CoreSet and SISOM for SVHN on
cycle 1. SISOM effectively targets the areas in-between the clusters.

early stages, pure diversity-based methods are in the lead, SISOM gains velocity in the last selection
steps and achieves the highest performance difference only in the last step SISOMe is more effective.

Following the experiments on CIFAR-10 and CIFAR-100 we conducts experiments on SVHN and
report them in Appendix A.1.

In conclusion of the AL experiments, SISOM reached state-of-the-art performance and surpasses
other methods across all three datasets, demonstrating its viability for AL. While in the early stages,
SISOM falls behind other approaches for CIFAR-100, in following selection cycles with more training
data it outperforms them. We hypothesize that the early cycles had a poorly separated feature space,
causing this issue.

5.2 OUT-OF-DISTRIBUTION DETECTION

Following our evaluation of SISOM on classic AL benchmarks, we utilize the OpenOOD framework
to evaluate its performance on the OOD detection task. We stick to the recommended benchmarks
on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and ImageNet 1k
(Deng et al., 2009), and we provide evaluation values for both near- and far-OOD detection. The
assignment of datasets to near and far categories follows the framework’s suggestions and is reported
with additional settings in Appendix B.2. In addition, we benchmarked the life cycle setting in
Appendix A.2. The framework ranks methods based on their AUROC performance and provides
checkpoints for fair post-processor validation.

Firstly, we examine the performance on the CIFAR-10 benchmark and show the results in Ta-
ble 1a. SISOMe and SISOM achieve the highest AUROC score for near-OOD data, respectively.
SISOMe surpasses SISOM in all metrics. For far-OOD, SISOM ranks third after NAC, while SI-
SOMe secures the first place. This is noteworthy as NAC underperformed in the AL task, even when
compared to methods suffering from batch diversification, which underlines the non-triviality of
migrating between both tasks out of the box.
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Table 1: OOD benchmark for CIFAR-10, CIFAR-100 and ImageNet1k with Cross-Entropy training
setting and dataset according to OpenOOD sorted by Near-OOD performance.

(a) CIFAR-10

Post- OOD AUROC ID
processor Near-OOD Far-OOD Acc.

SISOMe 91.76 94.74 95.06
SISOM 91.40 94.50 95.06

NAC 90.93 94.60 95.06
KNN 90.64 92.96 95.06

CoreSet 90.34 92.85 95.06
GEN 88.20 91.35 95.06
MSP 88.03 90.73 95.06

Energy 87.58 91.21 95.06
ReAct 87.11 90.42 95.06

FeatureNorm 85.52 95.59 95.06
ODIN 82.87 87.96 95.06

RankFeat 79.46 75.87 95.06
KLM 79.19 82.68 95.06
DICE 78.34 84.23 95.06
ASH 75.27 78.49 95.06

(b) CIFAR-100

Post- OOD AUROC ID
processor Near-OOD Far-OOD Acc.

Gen 81.31 79.68 77.25
SISOMe 80.96 79.8 77.25
Energy 80.91 79.77 77.25
ReAct 80.77 80.39 77.25
MSP 80.27 77.76 77.25
KNN 80.18 82.4 77.25
ODIN 79.9 79.28 77.25

SISOM 79.42 77.91 77.25
DICE 79.38 80.01 77.25
ASH 78.2 80.58 77.25
KLM 76.56 76.24 77.25

CoreSet 75.69 79.53 77.25
NAC 72.00 86.56 77.25

RankFeat 61.88 67.10 77.25
FeatureNorm 47.87 80.99 77.25

(c) ImageNet 1k

Post- OOD AUROC ID
processor Near-OOD Far-OOD Acc.

SISOMe 78.59 89.04 76.18
ASH 78.17 95.74 76.18

ReAct 77.38 93.67 76.18
SISOM 77.33 88.01 76.18

GEN 76.85 89.76 76.18
KLM 76.64 87.6 76.18

Energy 76.03 89.50 76.18
MSP 76.02 85.23 76.18
ODIN 74.75 89.47 76.18
DICE 73.07 90.95 76.18
NAC 71.73 94.66 76.18
KNN 71.1 90.18 76.18

FeatureNorm 67.57 91.13 76.18
RankFeat 50.99 53.93 76.18
Coreset - - 76.18

In the OpenOOD CIFAR-100 benchmark Table 1b the best far-OOD method shows the worst near-
OOD performance, while for CIFAR-10, methods performed almost equally well on both near- and
far-OOD. SISOMe ranks as the second-best method for near-OOD and repeatedly beats the individual
metrics, SISOM and Energy. This is an interesting finding since, in contrast to CIFAR-10, energy
achieves better performance than SISOM among the individual metrics on CIFAR-100. This supports
our hypothesis that by considering the average ratio ravg as a proxy for feature space separation, we
obtain stronger performances in both well-separated and poorly-separated feature spaces.

The third benchmark suggested by OpenOOD is ImageNet 1k, which contains more classes and
is a much larger dataset than the previous ones. In the results depicted in Table 1c, SISOMe and
SISOM achieved first and fourth-best scores on near-OOD, with SISOMe showing strong performance
for far-OOD. Interestingly, the NAC method, which was the second-best in CIFAR-10, ranks much
lower, and KNN, the third-best method in CIFAR-10, ranks last. Meanwhile, ASH, which ranks first
in this benchmark, is last in the CIFAR-10 benchmark.

To evaluate the life cycle perspective we conducted additional experiments using the AL models in
A.2.

Overall benchmarks, SISOMe is the only approach, being consistently under the top three ranks,
and even secured first place in two of them. Excluding SISOMe , SISOM achieved one top-three
ranking and one top-one ranking. Notably, our method performs relatively better on near-OOD data
than on far-OOD data. This is understandable, as the ratio between inner and outer class distance
is higher for data close to the training data distribution, while the quotient is lower for far-OOD.
Additionally, near-OOD is closer to the data of interest for AL selection. According to (Yang et al.,
2022b), near-OOD is considered the more challenging task and is more likely to occur in real-world
applications. Thus, higher performance on near-OOD may be preferred in practice.

5.3 ABLATIONS STUDIES

In an ablation study, we qualitatively examine the latent space assumptions for AL as well as the
effect of unsupervised feature space analysis and reduce labeled set T. A study of the individual
components of SISOM is given in Appendix A.3.

AL Latent Space: To validate the assumptions made in Section 4, we examine the configuration
of the latent space of our selection in the AL experiments. The objective of our method is to select
samples in the decision boundary region for the AL case. In Fig. 6, we compare CoreSet and Loss
Learning with SISOM . It can be observed that CoreSet, as intended, exhibits high diversity in
unseparated regions. The pseudo-uncertainty-based Loss Learning method is more concentrated in
its selection but fails to diversify the selection across all decision boundaries. In contrast, SISOM ,
as shown in Fig. 6c, focuses on the decision boundary while successfully covering the entire area
between the unseparated samples. This demonstrates the effectiveness of our method in addressing
the challenges of both AL and OOD detection.
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Optimal Sigmoid Steepness: In our feature space analysis in Section 4, we derived ravg in Eq. (10)
as a proxy for the feature space separability. Due to the distance concept of SISOM , we hypothesize
that it works better in well-separated feature spaces. To examine this, we conduct a random search
for different α sets and record the different ravg values. To reduce the search space, we follow the
premise postulated in Section 4 that generally, deeper layers require a steeper sigmoid curve, i.e., a
higher αj value due to the nature of the features captured within these layers.

After computing every ravg value for each combination of α, we select the αopt set that minimizes
ravg. Formally, this can be written as:

αopt = argmin
α

ravg(α)

In Table 2, an optimized set αopt is marked with OS. As it can be seen, a set with better feature
space separation leads to increased performance for CIFAR-100 and ImageNet, partly confirming
our hypothesis. In CIFAR-10 however, the original set of parameters yields the best results. One
explanation might be that, in CIFAR-10, the different classes are already well separated, such that
optimization on this separation yields no improvement and leads to an overfitting behavior.

Reduced Subset Selection: For larger datasets, distance-based approaches like CoreSet (Sener &
Savarese, 2018) or (Ash et al., 2020) suffer from huge computational efforts, which is problematic
for OOD detection, too. In Section 4, we suggested to use a reduced subset T of the comparison
set ZL, selecting class-wise samples with the most neighbors in a given radius. For each dataset,
we select a total of 10% of the samples for each class, drastically increasing inference speed. We
compare the effect of our reduced subset selection (RS) in Table 2 and highlight it qualitatively in
Fig. 4d. A comparison of the preprocessing steps for SISOM in Table 2 indicates that the AUROC
near-OOD score has improved for all datasets. It can be observed that preselection enhances feature
space separability based on the ravg column. This also strengthens our hypothesis from the previous
subsection. For ImageNet and CIFAR-100, the combination of feature analysis and preselection
results in the best performance, for CIFAR-10 the additional feature space analysis did not improve
the performance. By taking the low ravg into account, the chosen values could have reduced the space
too much, leading to an overfitting behavior. All parameters are given in Appendix B.3.

Table 2: Ablation Study on Optimal Sigmoid Steepness (OS) and Reduced Subset Selection (RS) on
Near OOD Benchmarks.

ImageNet CIFAR 100 CIFAR 10
Method AUROCn ravg AUROCn ravg AUROCn ravg

SISOM 77.21 0.270 75.93 0.33 91.33 0.26
SISOM ,OS 77.4 0.266 79.56 0.19 90.37 0.099
SISOM ,RS 77.33 0.249 76.07 0.31 91.40 0.24

SISOM ,OS,RS 77.37 0.245 79.69 0.18 90.54 0.086

6 CONCLUSION

We proposed SISOM , the first approach designed to solve OOD detection and AL jointly, providing
an effective simplification in real-world application life cycles by eliminating an OOD design phase
and avoiding conflicting goals of AL and OOD detection. By weighting latent space features with
KL divergence of the neuron activations and relating them to the latent space clusters of the different
classes SISOM achieves state-of-the-art performance in both tasks. In addition, SISOM provides
a novel feature space analysis scheme enabling a post-training feature space refinement as well as
a self-guided uncertainty and diversity fusion introduced as SISOMe . In the famous OpenOOD
benchmarks SISOM archives the top-1 performance in two of the three benchmarks and the second
place in the remaining one. For active learning, SISOM surpasses state-of-the-art approaches in three
different benchmarks. While current state-of-the-art approaches are highly specialized for either AL
or OOD detection, SISOM solves both tasks with the same approach. Underlined by these results,
SISOM effectively addresses real-world applications, like environment sensing, which usually suffers
from label costs during training and high unlabeled data availability as well as out-of-distribution
samples during inference.

In future work, we plan to combine the two tasks that are currently separated as independent steps.
Enabling continuous AL during inference while filtering out-of-distribution data can significantly
enhance the model’s performance after the initial selection phase.
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REPRODUCEABILTY STATEMENT

To ensure reproducibility, we conducted all experiments with the same fixed seeds, which are reported
in the training procedure in the appendix. We used the exact parameter setting of the OpenOOD
benchmark for the OOD experiments. Moreover, the code is released in the benchmark form with
available configurations.

ETHICS STATEMENT

With our research, we address the challenges of real-world and mobile (robotic) applications. While
the common usage of robots or real-world applications does not pose ethical concerns, these fields
pose the risk of misuse.
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Semantic-aware scene recognition. Pattern Recognition, 102, 2020. Publisher: Elsevier.

Yadan Luo, Zhuoxiao Chen, Zijian Wang, Xin Yu, Zi Huang, and Mahsa Baktashmotlagh. Exploring
active 3d object detection from a generalization perspective. In Proceedings of the International
Conference on Learning Representations (ICLR), 2023.

Inbal Mishal and Daphna Weinshall. Dcom: Active learning for all learners. Arvix, 7 2024.

Jishnu Mukhoti, Andreas Kirsch, Joost Van Amersfoort, Philip H S Torr, and Yarin Gal. Deep
deterministic uncertainty: A new simple baseline. In CVPR, 2023. Introduction of a novel
uncertainty method and tested them on AL, OOD.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In Proceedings of the International
Conference on Neural Information Processing Systems (NeurIPS) Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Kun-Peng Ning, Xun Zhao, Yu Li, and Sheng-Jun Huang. Active learning for open-set annotation. In
CVPR, 1 2022.

Dongmin Park, Yooju Shin, Jihwan Bang, Youngjun Lee, Hwanjun Song, and Jae-Gil Lee. Meta-
query-net: Resolving purity-informativeness dilemma in open-set active learning. In Neurips, 10
2022.

Younghyun Park, Wonjeong Choi, Soyeong Kim, Dong-Jun Han, and Jaekyun Moon. Active learning
for object detection with evidential deep learning and hierarchical uncertainty aggregation. In
Proceedings of the International Conference on Learning Representations (ICLR), 2023.

Fengchao Peng, Chao Wang, Jianzhuang Liu, Zhen Yang Noah, and Ark Lab. Active learning for
lane detection: A knowledge distillation approach. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM computing surveys (CSUR), 54(9):1–40,
2021.

Bardia Safaei, Vibashan VS, Celso M. de Melo, and Vishal M. Patel. Entropic open-set active
learning. In AAAI, 12 2024. URL http://arxiv.org/abs/2312.14126. Two differnent
entropies... ¡br/¿Closed Set Entropy is cal-¡br/¿culated based on the outputs of K class-aware binary
clas-¡br/¿sifiers (BC) trained on DL.¡br/¿Distance-based¡br/¿Entropy is utilized to prioritize the
selection of samples that¡br/¿stand apart from distributions of unknown classes¡br/¿¡br/¿Appling
Triplet Loss¡br/¿¡br/¿Related Work,¡br/¿OpenMax with an open class.
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A ADDITIONAL EXPERIMENTS

In this section, we present additional experiments for SISOM .

A.1 ACTIVE LEARNING - SVHN

Following the CIFAR experiments settings, we depict the results for the SVHN experiments in Fig. 7.
Similar to the CIFAR-10 results, our method maintained high performance, but the method differences
shrink with the easier the dataset. In the last cycle, SISOM reaches the highest performance, with
a margin over other methods. As for CIFAR-10, NAC did not perform well in the data selection.
Given that SVHN’s 10 classes are numbers, it is easier than the more diverse CIFAR-10 benchmark
dataset. This can be observed by an overall reduced performance gap between the methods compared
to CIFAR-10.

A.2 OUT-OF-DISTRIBUTION LIFE CYCLE

To evaluate the effectiveness of SISOM in a life cycle setting, we utilized the models after the
AL cycle for an OOD benchmark. In Table 3 we used the same setting as for the benchmark
CIFAR-10 experiments with the similar near- and far-OOD. It should be noted that while openOOD
is open to deploy different checkpoints, modifying the InD data access is more challenging and
remains unchanged. In Table 3 SISOMe archived the top performance, making it suitable for the full
application life cycle.
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Figure 7: Comparison of different active learning
methods on SVHN with indicated standard errors.

Table 3: OOD benchmark for CIFAR-10 using the
AL checkpoints of SISOM .

Postprocessor OOD AUROC ID
Near-OOD Far-OOD Acc.

SISOMe 86.84 88.39 89.73
ReAct 86.84 87.72 89.73
GEN 85.43 86.04 89.73
MSP 84.37 84.85 89.73
ASH 83.39 87.33 89.61
NAC 82.26 85.06 89.73

RankFeat 60.20 56.73 60.84

A.3 FEATURE SPACE ASSIGNMENTS

In this section, we highlight the influence of major components of our methods on the ability to
separate InD and OOD data. In Fig. 8, we display the influence of the KL divergence gradient with a
T-SNE analysis on CIFAR-10 (Krizhevsky et al., 2009) as InD and Tiny ImageNet (tin) (Le & Yang,
2015) as near-OOD. Without feature enhancement, the latent space is much harder to separate, and
tin is distributed all over the latent space as shown in Fig. 8a. In contrast, the latent space with KL
divergence enhances features, is much more separated, and has a clearer decision boundary to the
near classes as indicated in Fig. 8b.

In addition to the previously presented density plots, we show the inner and outer distance together
with the distance quotient of SISOM in Fig. 9 for CIFAR-10. Fig. 9a shows the inner class, indicating
small inner class distances leading to a good separability for the InD data. On the other hand, the
outer class distance in Fig. 9b provides a good separable peak for InD data, but a portion of InD
overlaps with OOD data. The combined distance quotient shows the increased separability of the
different InD and OOD sets as depicted in Fig. 9c.
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Figure 8: T-SNE comparison of the latent space for OOD detection with and without KL-Divergence
feature enrichment.
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Figure 9: Density plots for the inner class distance, outer class distance, and the distance quotient of
SISOM for CIFAR-10 with near-OOD (nOOD) and far-OOD (fOOD) as defined in OpenOOD..

B EXPERIMENTAL DETAILS

In this section, we provide experiment details to support the reproducibility of results by providing
the used parameters2.

B.1 ACTIVE LEARNING EXPERIMENTS

In active learning experiments, we used a ResNet18 (He et al., 2016) model, with the suggested
modifications of (Yoo & Kweon, 2019) presented in a CIFAR benchmark repository (kuangliu, 2021),
which replaced the kernel of the first convolution with a 3× 3 kernel. Additionally, we used an SGD
optimizer with a learning rate of 0.1 and multistep scheduling at 60, 120, and 160, decreasing the
learning rate by a factor of 10, which are reported benchmark parameters for CIFAR-100 (weiaicunzai,
2022). For SVHN and CIFAR-10 we used a learning rate of 0.025 and a cosine scheduler as suggested
by Yehuda et al. (2022). For the construction of the feature space, we used the layers after the 4
blocks of ResNet with the following sigmoid values:

• CIFAR-10
Adaptive Average Pooling Layer: 50,
Sequential Layer 3: 10,
Sequential Layer 2: 1,
Sequential Layer 1: 0.05.

• CIFAR-100/SVHN
Adaptive Average Pooling Layer: 1,

2Code will published upon acceptance, for review https://tinyurl.com/sisom-iclr
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Sequential Layer 3: 0.1,
Sequential Layer 2: 0.1,
Sequential Layer 1: 0.1

B.2 OUT-OF-DISTRIBUTION EXPERIMENTS

In the OOD experiments, we report the mean of the three different seeds employed in the standard
setting of the OpenOOD (Yang et al., 2022b) framework with ResNet18 for CIFAR-10 and CIFAR-
100. For Imagenet, we use the sole ResNet50 torchvision checkpoint provided in the standard
settings. We utilized the near- and far-OOD assignments suggested by the benchmark listed below.
We followed the official tables of OpenOOD’s benchmark and reported the mean without the standard
deviation. For the CIFAR-100 experiment, instead of using the automated ravg value to balance
between r and E from Eq. (11), we set ravg = 0.8 for SISOMe based on a hyperparameter study. In
the benchmark tables, we reported for SISOM the best values matching the best values of the ablation
study modifications. Furthermore, we follow the suggested sigmoid values (Liu et al., 2024) for
CIFAR-10 and ImageNet. For CIFAR-100, we choose values that minimize Eq. (10). A detailed
overview of the sigmoid values for the 4 blocks of ResNet18 and ResNet50 for all experiments is
provided below:

• CIFAR-10
Adaptive Average Pooling Layer: 100,
Sequential Layer 3: 1000,
Sequential Layer 2: 0.001,
Sequential Layer 1: 0.001

• CIFAR-100
Adaptive Average Pooling Layer: 1,
Sequential Layer 3: 0.1,
Sequential Layer 2: 0.1,
Sequential Layer 1: 0.1

• ImageNet:
Adaptive Average Pooling Layer: 3000,
Sequential Layer 3: 300,
Sequential Layer 2: 0.01,
Sequential Layer 1: 1

OOD dataset assignment:

• CIFAR-10
Near-OOD: CIFAR-100 (Krizhevsky et al., 2009), Tiny ImageNet (Le & Yang, 2015)
Far-OOD: MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), Textures (Cimpoi et al.,
2014), Places365 (López-Cifuentes et al., 2020)

• CIFAR-100
Near-OOD: CIFAR-10 (Krizhevsky et al., 2009), Tiny ImageNet (Le & Yang, 2015)
Far-OOD: MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), Textures (Cimpoi et al.,
2014), Places365 (López-Cifuentes et al., 2020)

• ImageNet
Near-OOD: SSB-hard (Vaze et al., 2021), NINCO (Bitterwolf et al., 2023)
Far-OOD: iNaturalist (Van Horn et al., 2018), Textures (Cimpoi et al., 2014), OpenImage-O
(Wang et al., 2022)

B.3 ABLATION STUDY

In this section, we highlight the relevant parameters for the ablation study experiments on SISOM .
Namely, we examine the Optimal Sigmoid Steepness (OS) and the Reduced Subset Selection (RS)
shown in Tab. 4. In the experiments conducted with RS, a representative subset size of 10% relative
to the original training set was used across all experiments. Additionally, the specific distance radius
used for the class-wise ProbCover (Yehuda et al., 2022) implementation on CIFAR-10, CIFAR-100,
and ImageNet is provided in Table 4. For SISOM + RS without OS, the suggested sigmoid values
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Table 4: Parameters for the Ablation Study, Probcover Radius for RS and Search Space of Optimal
Sigmoid Steepness.

Dataset ProbCover Radius Layer Sigmoid Search Values

CIFAR-10 0.75

AdaptiveAvgPool2d-1 100, 1000
Sequential-3 1, 10, 1000
Sequential-2 0.001, 0.1, 1
Sequential-1 0.001, 0.1, 1

CIFAR-100 5.0

AdaptiveAvgPool2d-1 1, 50, 100
Sequential-3 0.1, 10, 100
Sequential-2 0.1, 1
Sequential-1 0.005, 0.1

ImageNet 10.0

AdaptiveAvgPool2d-1 10, 100, 3000
Sequential-3 1, 10, 300
Sequential-2 0.1, 1
Sequential-1 0.1, 1

(Liu et al., 2024) emphasized in Appendix B.2 were used. For the OS modification, the search space
for the optimal sigmoid parameters is presented in Table 4. The parameters fulfilling the minimization
of Eq. (10) are highlighted in bold.
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