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Abstract

Quadratic programming (QP) is the most widely
applied category of problems in nonlinear pro-
gramming. Many applications require real-
time/fast solutions, though not necessarily with
high precision. Existing methods either involve
matrix decomposition or use the preconditioned
conjugate gradient method. For relatively large
instances, these methods cannot achieve the real-
time requirement unless there is an effective pre-
conditioner. Recently, graph neural networks
(GNNs) opened new possibilities for QP. Some
promising empirical studies of applying GNNs for
QP tasks show that GNNs can capture key charac-
teristics of an optimization instance and provide
adaptive guidance accordingly to crucial config-
urations during the solving process, or directly
provide an approximate solution. However, the
theoretical understanding of GNNs in this context
remains limited. Specifically, it is unclear what
GNNs can and cannot achieve for QP tasks in the-
ory. This work addresses this gap in the context
of linearly constrained QP tasks. In the continu-
ous setting, we prove that message-passing GNNs
can universally represent fundamental properties
of convex quadratic programs, including feasi-
bility, optimal objective values, and optimal so-
lutions. In the more challenging mixed-integer
setting, while GNNs are not universal approxima-
tors, we identify a subclass of QP problems that
GNNs can reliably represent.
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1. Introduction
Quadratic programming (QP) is an important type of
optimization problem with applications (Vogelstein et al.,
2015; Markowitz, 1952; Rockafellar, 1987). It aims to
minimize a quadratic objective function while satisfying
specified constraints. When all the constraints are linear, we
call a QP problem a linearly constrained quadratic program
(LCQP). When they also involve quadratic inequalities, we
call the problem a quadratically constrained quadratic pro-
gram (QCQP). When some variables are restricted to inte-
gers, the problem becomes a mixed-integer QP. This study
focuses on LCQP and its mixed-integer variant, MI-LCQP.

In many applications, finding solutions quickly is prioritized
over perfect precision. For instance, ride-hailing platforms
like Uber or Lyft require quick driver-passenger matching to
reduce wait times, even without optimal solutions. Similarly,
financial trading algorithms must rapidly adjust portfolios
to market changes, prioritizing speed over optimality.

Unfortunately, existing methods for QP often rely on com-
putationally expensive techniques such as matrix decom-
position and the preconditioned conjugate gradient method
(PCG). For example, LU decomposition typically requires
O(n3) operations for a n× n matrix (Golub & Van Loan,
2013), though advanced algorithms can achieve lower com-
plexities. The PCG method requires O(n2) operations per
iteration, with slow convergence for ill-conditioned matri-
ces (Shewchuk, 1994). These challenges highlight the need
for novel approaches to meet real-time application demands.

Machine learning brings new chances to QP. Recent research
shows that deep neural networks (DNNs) can significantly
improve the efficiency when solving QP. Based on DNNs’
role, these studies can be categorized as: (Type I). DNNs
generate adaptive configurations for QP solvers, tailored
to specific QP instances, thereby accelerating the solving
process. (Bonami et al., 2018; 2022; Ichnowski et al., 2021;
Getzelman & Balaprakash, 2021; Jung et al., 2022; King
et al., 2024). This approach requires DNNs to capture in-
depth features of QP instances and provide customized guid-
ance to the solver. (Type II). DNNs replace or warm-start a
QP solver. Here, DNNs take in a QP and directly output an
approximate solution. These solutions can be used as final
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outputs or as initial guesses to accelerate QP solvers (Nowak
et al., 2017; Chen et al., 2018; Karg & Lucia, 2020; Wang
et al., 2020a;b; 2021; Qu et al., 2021; Gao et al., 2021; Bert-
simas & Stellato, 2022; Liu et al., 2022a; Sambharya et al.,
2023; Pei et al., 2023; Tan et al., 2024).

GNNs. Among the various types of DNNs, this paper fo-
cuses on graph neural networks (GNNs) (Scarselli et al.,
2008). By conceptualizing QPs as graphs (Figure 1), GNNs
can be applied and efficiently handle these tasks (Nowak
et al., 2017; Wang et al., 2020b; 2021; Qu et al., 2021; Gao
et al., 2021; Tan et al., 2024; Jung et al., 2022). For in-
stance, Wang et al. (2021) use GNNs to solve Lawler’s QAP
(Lawler, 1963), while Wang et al. (2019); Yu et al. (2020)
apply GNNs to Koopman-Beckmann’s QAP (Loiola et al.,
2007). They exploit key strengths of GNNs: adaptability to
varying graph sizes, allowing the same model applied to var-
ious QPs, and permutation invariance, ensuring consistent
outputs regardless of node order.

Expressive power. Despite their notable advantages, GNNs
face fundamental limitations. As Xu et al. (2019) pointed
out, GNNs’ expressive power is limited: they are not uni-
versal approximators for all graph-based functions. Here,
expressive power, a core concept in deep learning theory,
measures the existence of neural networks under a given
structure that can approximate (or represent) a broad class
of functions, and universal approximation guarantees that a
model can approximate any functions within its domain.

The contrast between the successful empirical applications
of GNNs and their theoretical limitations reveals a signif-
icant gap. However, in practice, GNNs do not need to
approximate all possible functions but only specific, mean-
ingful mappings relevant to QPs. This leads to the key
question motivating this work: Can GNNs, despite their lim-
itations for general graph-based mappings, exhibit sufficient
expressive power to predict the key properties of QPs?

To address this question, we focus on two types of func-
tions according to the nature of the application. For Type I
applications, we investigate whether GNNs can accurately
map a QP to its critical features, focusing on the feasibil-
ity and optimal objective value. For Type II, we explore
whether GNNs can map a QP to one of its optimal solutions.
Therefore, we ask:

Can GNNs accurately predict the feasibility, optimal

objective value, and an optimal solution of a QP?
(1)

The literature has explored the expressive powers of GNNs
on general graph tasks (Xu et al., 2019; Azizian & Lelarge,
2021; Geerts & Reutter, 2022; Zhang et al., 2023; Li &
Leskovec, 2022; Sato, 2020). However, significant gaps
remain in understanding how these results relate to QP. The
most relevant works Chen et al. (2023a;b) investigate the
expressive power of GNNs for (mixed-integer) linear pro-

grams (MILPs), but their analysis highly depends on the
linear structure and does not cover nonlinear programs like
QP. A concurrent study by Wu et al. (2024) investigates
GNN representations for quadratically constrained quadratic
programs (QCQPs) using a tripartite graph structure. While
both studies address convex LCQPs, the methodologies and
focus differ: Wu et al. (2024) consider general QCQPs,
including quadratic constraints, and use a tripartite graph
representation, whereas our work focuses on (MI-)LCQPs
with a bipartite graph construction. Our analysis also covers
mixed-integer settings and proposes an alternative approach
to handling quadratic constraints, yielding partially overlap-
ping but distinct results.

Contributions. As several studies have empirically shown
that incorporating GNNs can significantly enhance the per-
formance of QP solvers, this paper aims to theoretically an-
alyze the expressive power of GNNs in such tasks, identify
potential areas for improvement, and highlight key consider-
ations. Specifically, the contributions of this paper include:

• (GNN for LCQP). In the continuous setting, where
all variables are allowed to take fractional numbers,
we provide an affirmative answer to question (1) with
convexity and present a nonconvex counterexample.

• (GNN for MI-LCQP). In mixed-integer settings, where
some variables must be integers, we provide counterex-
amples showing that GNNs cannot universally solve
all tasks, giving a negative answer to question (1).

• Despite this limitation, we identify specific, precisely
defined subclasses of MI-LCQP where GNNs succeed.
Importantly, we also present criteria for determining
whether an MI-LCQP belongs to this subclass, which
can be efficiently verified numerically.

2. Preliminaries
We focus on linearly constrained quadratic programming
(LCQP), which is formulated as follows:

min
x∈Rn

1

2
x⊤Qx+ c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, (2)

where Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, l ∈
(R ∪ {−∞})n, u ∈ (R ∪ {+∞})n, and ◦ ∈ {≤,=,≥}m.
In this paper, we always assume that Q is symmetric.

Basic concepts of LCQPs. An x satisfying all constraints
of (2) is named a feasible solution. The set of all feasible
solutions, X =: {x ∈ Rn : Ax ◦ b, l ≤ x ≤ u}, is
referred to as the feasible set. The LCQP is feasible if this
set is non-empty; otherwise, it is infeasible. The value of
1
2x

⊤Qx + c⊤x is the objective value. Its infimum across
X is termed the optimal objective value. If this infimum is
−∞ (the objective value could indefinitely decrease), the
LCQP is named unbounded. A feasible and bounded LCQP
must yield an optimal solution (Eaves, 1971).
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w1 =
(c1, l1,+∞)

w2 =
(c2, l2,+∞)

w3 =
(c3,−∞, u3)

v1 =
(b1,≤)

v2 =
(b2,≥)

A11 A12 A22 A23

Q12
Q21

Q11 Q22 Q33

min c1 x1 + c2 x2 + c3 x3 + 1
2 [x1 x2 x3]

Q11 Q12

Q21 Q22

Q33

x1

x2

x3


s.t. x1 ≥ l1, x2 ≥ l2, x3 ≤ u3

A11 x1 +A12 x2 ≤ b1

A22 x2 +A23 x3 ≥ b2

Figure 1. LCQP and its graph representation: All the information from the LCQP is fully encoded within the node or edge attributes.

Graph representation. We present a graph structure,
termed the LCQP-graph, GLCQP = (V,W,A,Q,HV , HW ),
that encodes all the elements of a LCQP. The graph contains
two distinct types of nodes: Nodes in V = {1, 2, . . . ,m},
labeled as i, represent the i-th constraint and are called con-
straint nodes; Nodes in W = {1, 2, . . . , n}, labeled as j,
represent the j-th variable and are known as variable nodes.
An edge connects i ∈ V to j ∈ W if Aij is nonzero, with
Aij serving as the edge weight. Similarly, the edge between
nodes j, j′ ∈ W exists if Qjj′ ̸= 0, with Qjj′ as the edge
weight. Self loops (j = j′) are permitted. Attributes (or fea-
tures) vi = (bi, ◦i) are attached to the i-th constraint node
for i ∈ V . The collection of all such attributes is denoted
as HV = (v1, v2, . . . , vm). Attributes wj = (cj , ℓj , uj)
are attached to the j-th variable node for j ∈ W and their
collection is denoted as HW = (w1, w2, . . . , wn).

Such a representation, illustrated by Figure 1, is a fundamen-
tal and “minimal” approach in the sense that every entry in
(A, b, c,Q, l, u, ◦) is used exactly once. While this particular
representation is only detailed in Jung et al. (2022), it forms
the foundation of numerous related studies. For instance,
removing nodes in V and their associated edges reduces
the graph into the assignment graph used in graph matching
problems (Nowak et al., 2017; Wang et al., 2020b; 2021; Qu
et al., 2021; Gao et al., 2021; Tan et al., 2024). Removing
edges associated with Q simplifies the graph to a bipartite
structure and reduces LCQP to LP (Chen et al., 2023a; Fan
et al., 2023; Liu et al., 2024; Qian et al., 2024). By adding
an extra node feature, an approach detailed in Section 4,
this graph can also express mixed-integer programs (Gasse
et al., 2019; Chen et al., 2023b; Nair et al., 2020; Gupta
et al., 2020; Shen et al., 2021; Gupta et al., 2022; Khalil
et al., 2022; Paulus et al., 2022; Scavuzzo et al., 2022; Liu
et al., 2022b; Huang et al., 2023; Wang et al., 2024).

GNNs for LCQPs. Given the graph representation, we
present message-passing graph neural networks (hereafter
referred to simply as GNNs) for LCQPs. They take in an
LCQP-graph GLCQP (including the node and edge attributes)
and update node attributes sequentially across layers via a
message-passing mechanism. Initially, node attributes are
updated separately using embedding mappings fV

0 , fW
0 :

s0i = fV
0 (vi) for i ∈ V , and t0j = fW

0 (wj) for j ∈ W .

The architecture includes L standard message-passing lay-
ers where each layer (where 1 ≤ l ≤ L) updates node
attributes by locally aggregating neighbor information:

sli =fV
l

(
sl−1
i ,

∑
j∈NW

i

gWl (tl−1
j , Aij)

)
tlj =fW

l

(
tl−1
j ,

∑
i∈NV

j

gVl (sl−1
i , Aij),

∑
j′∈NW

j

gQl (tl−1
j′ , Qjj′)

)
where fV

l , fW
l , gVl , gWl , gQl are trainable local updates in

GNNs and NW
i = {j ∈ W : Aij ̸= 0}, N V

j = {j ∈ V :

Aij ̸= 0}, and NW
j = {j′ ∈ W : Qjj′ ̸= 0} are the sets of

neighbors. Finally, there are two types of output layers. For
applications where the GNN maps LCQP-graphs to a real
value, such as evaluating properties like feasibility of LCQP,
a graph-level output layer is employed that computes a
single real number encompassing the entire graph:

y = r1

(∑
i∈V

sLi ,
∑
j∈W

tLj

)
∈ R.

Alternatively, if the GNN is required to map the LCQP-
graph to a vector y ∈ Rn, assigning a real number to each
variable node as its output (as is typical in applications
where GNNs are used to predict solutions), then a node-
level output should be utilized:

yj = r2

(∑
i∈V

sLi ,
∑
j∈W

tLj , t
L
j

)
, for j ∈ W .

Here, r1 and r2 are trainable output functions. In our theo-
retical analysis, we assume all the mappings fV

l , fW
l (0 ≤

l ≤ L), gVl , fW
l , gQl (1 ≤ l ≤ L), and r1, r2 to be contin-

uous. In practice, these continuous mappings are usually
parameterized by multilayer perceptrons (MLPs) and their
parameters are learned from data.
Definition 2.1 (Space of LCQP-graphs). The set of all
LCQP-graphs, denoted as Gm,n

LCQP
1, comprises graphs with

m constraints and n variables, where Q is symmetric.
Definition 2.2 (Spaces of GNNs). The collection of all
GNNs, denoted as FLCQP for graph-level outputs (or FW

LCQP

1The space Gm,n
LCQP is equipped with the subspace topology

induced from the product space
{
(A, b, c,Q, l, u, ◦) : A ∈

Rm×n, b ∈ Rm, c ∈ Rn, Q ∈ Rn×n, l ∈ (R ∪ {−∞})n, u ∈
(R ∪ {+∞})n, ◦ ∈ {≤,=,≥}m

}
. All Euclidean spaces have

standard Eudlidean topologies, discrete spaces are equipped with
the discrete topology, and their unions are disjoint unions.
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for node-level outputs), consists of all GNNs constructed
using continuous mappings fV

l , fW
l (0 ≤ l ≤ L),

gVl , fW
l , gQl (1 ≤ l ≤ L), and r1 (or r2).

Definition 2.3 (Target mappings). We define:

• Feasibility mapping: Φfeas(GLCQP) = 1 if GLCQP is feasi-
ble and Φfeas(GLCQP) = 0 if it is infeasible.

• Optimal objective mapping: Φobj(GLCQP) ∈ R ∪
{±∞} computes the optimal objective value of GLCQP.
Φobj(GLCQP) = +∞ means the problem is infeasible and
Φobj(GLCQP) = −∞ means unboundedness.

• Optimal solution mapping: For a feasible and bounded
LCQP problem (i.e., Φobj(GLCQP) ∈ R), an optimal so-
lution exists though it might not be unique. However,
the optimal solution with the smallest ℓ2-norm must be
unique if Q ⪰ 0, i.e., Q is positive semi-definite, and we
define it as Φsol(GLCQP).

Given the definitions above, we can formally pose the ques-
tion in (1) as follows: Is there any F ∈ FLCQP that well
approximates Φfeas or Φobj? Similarly, is there any function
FW ∈ FW

LCQP that well approximates Φsol(GLCQP)?

3. Universal approximation for convex LCQPs
This section presents our main theoretical results for the
expressive power of GNNs for representing properties of
LCQPs. In particular, we show that for any convex LCQP
data distribution, there always is a GNN that can predict
LCQP properties, in the sense of universally approximating
target mappings in Definition 2.3, within a given error tol-
erance. Although it is known in the previous literature that
there exists some continuous function that cannot be approx-
imated by GNNs with arbitrarily small error, see e.g., Xu
et al. (2019); Azizian & Lelarge (2021); Geerts & Reutter
(2022), our results in this section indicate that approximat-
ing the target mappings of LCQPs do not suffer from this
limitation.

Assumption 3.1. P is a Borel regular probability measure
defined on the space of LCQP-graphs Gm,n

LCQP.

The assumption of Borel regularity is generally satisfied for
most data distributions in practice.

Theorem 3.2. For any P satisfying Assumption 3.1 and any
ϵ > 0, there exists F ∈ FLCQP such that IF (GLCQP)>

1
2

acts
as a classifier for LCQP-feasibility, with an error of up to ϵ:

P
[
IF (GLCQP)>

1
2
̸= Φfeas(GLCQP)

]
< ϵ,

where I· is the indicator function: IF (GLCQP)>
1
2

= 1 if
F (GLCQP) >

1
2 ; IF (GLCQP)>

1
2
= 0 otherwise.

This result suggests that a GNN is a universal classifier
for LCQP feasibility: for any data distribution of LCQPs
satisfying Assumption 3.1, there exists a GNN that can
classify LCQP feasibility with arbitrarily high accuracy.
This is a natural extension of the feasibility classification for

linear programs (Chen et al., 2023a), as feasibility is solely
determined by the constraints, independent of the objective
function, and all LCQP constraints are linear.

However, using GNNs to predict the optimal objective value
or an optimal solution is highly non-trivial due to the non-
linear term x⊤Qx. Fortunately, when restricting LCQPs to
convex cases, GNNs can universally represent the optimal
objective value and an optimal solution for these LCQPs.

Theorem 3.3. For any P satisfying Assumption 3.1 with
P[Q ⪰ 0] = 1 (Q is positive semidefinite almost surely),
and for any ϵ > 0, there exists F1 ∈ FLCQP such that

P
[
IF1(GLCQP)>

1
2
̸= IΦobj(GLCQP)∈R

]
< ϵ. (3)

Addtitionally, if P[Φobj(GLCQP) ∈ R] = 1, then for any
ϵ, δ > 0, there exists F2 ∈ FLCQP such that

P [|F2(GLCQP)− Φobj(GLCQP)| > δ] < ϵ. (4)

This theorem indicates that GNNs can approximate the opti-
mal objective value mapping Φobj very well in two senses:
(I) GNN can predict whether the optimal objective value is
a real number or ±∞, i.e., whether the LCQP problem is
feasible and bounded or not. (II) For a data distribution over
feasible and bounded LCQP problems, GNN can approxi-
mate the optimal objective. Finally, we prove that GNN can
approximate the optimal solution map Φsol.

Theorem 3.4. For any P satisfying Assumption 3.1 with
P[Q ⪰ 0] = P[Φobj(GLCQP) ∈ R] = 1, and for any ϵ, δ > 0,
there exists FW ∈ FW

LCQP such that
P [∥FW (GLCQP)− Φsol(GLCQP)∥ > δ] < ϵ.

The detailed proofs of Theorems 3.3 and 3.4 will be pre-
sented in Appendix A. We briefly describe the main idea
here. The Stone-Weierstrass theorem and its variants are a
powerful tool for proving universal-approximation-type re-
sults. Recall that the classic version of the Stone-Weierstrass
theorem states that under some assumptions, a function class
F can uniformly approximate every continuous function if
and only if it separates points, i.e., for any x ̸= x′, one
has F (x) ̸= F (x′) for some F ∈ F . Otherwise, we say x
and x′ are indistinguishable by any F ∈ F . Therefore, the
key component in the proof is to establish some separation
results in the sense that two LCQP-graphs with different
optimal objective values (or different optimal solutions with
the smallest ℓ2-norm) must be distinguished by some GNN
in the class FLCQP (or FW

LCQP). It is shown in Xu et al. (2019);
Azizian & Lelarge (2021); Geerts & Reutter (2022) that the
separation power2 of GNNs is equivalent to the Weisfeiler-
Lehman (WL) test (Weisfeiler & Leman, 1968), a classical
algorithm for the graph isomorphism problem. We show
that, any two LCQP-graphs that are indistinguishable by

2Given two sets of functions, F and F ′, both defined over
domain X , if F separating points x and x′ implies that F ′ also
separates x and x′ for any x, x′ ∈ X , then the separation power
of F ′ is considered to be stronger than or equal to that of F .
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min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x1 = 0,

x3 − x4 = 0, x4 − x5 = 0,

x5 − x6 = 0, x6 − x7 = 0, x7 − x3 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3,∀ j ∈ {1, 2, . . . , 7}.

(5)

v1

v2

v3

v4

v5

v6

v7

v8

w1

w2

w3

w4

w5

w6

w7

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x3 = 0, x3 − x1 = 0,

x4 − x5 = 0, x5 − x6 = 0,

x6 − x7 = 0, x7 − x4 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3,∀ j ∈ {1, 2, . . . , 7}.

(6)

v1

v2

v3

v4

v5

v6

v7

v8

w1

w2

w3

w4

w5

w6

w7

the WL test, or equivalently by all GNNs, even if they are not
isomorphic, they must have identical optimal objective value
and identical optimal solution with the smallest ℓ2-norm.

An illustrative example. We use the two LCQPs, (5)
and (6), each with 7 variables and 8 constraints, to illus-
trate our findings. All variable nodes share the attribute
wj = (1, 0, 3) for 1 ≤ j ≤ 7, which represents an objective
coefficient of cj = 1, lower bound lj = 0, upper bound
uj = 3. We refer to these nodes as “red nodes.” The first
seven constraint nodes vi (for 1 ≤ i ≤ 7) are assigned the
same attribute, vi = (0,=), which we label as “blue nodes”.
The eighth constraint node v8 is unique, with the attribute
v8 = (6,=), and is called the “brown node.” Any red node
is connected to a blue node with weight Aij = 1 (solid
lines), another blue node with weight Aij = −1 (dashed
lines), the brown node with weight Aij = 1 (green lines),
and all seven red nodes with Qjj′ = 1 (brown curves).

(Observation I). The two LCQPs are not equivalent, and
their graph representations are not isomorphic. Both LCQPs
are feasible and bounded, with identical optimal objective
values, as 1⊤x = 6 results in 1

2x
⊤11⊤x + 1⊤x = 24.

However, they are not equivalent because their solution sets
differ. Specifically, (3, 3, 0, 0, 0, 0, 0) is a solution to (5) but
not to (6), while (2, 2, 2, 0, 0, 0, 0) is a solution to (6) but
not to (5). Furthermore, their graph representations differ:
in the first graph, the 7 variables form two groups—one with
2 nodes and the other with 5—where nodes in each group
are connected cyclically. In the second graph, the variables
form two groups, but one with 3 nodes and the other with 4.

(Observation II). The two graphs cannot be distinguished
by any GNNs, even after multiple rounds of message pass-
ing. Initially, both graphs are indistinguishable as they share
identical node attributes: seven red nodes, seven blue nodes,
and one brown node. During message passing, each red
node receives identical updates due to symmetric connec-
tions: one blue node with weight Aij = 1, another with
Aij = −1, the brown node with Aij = 1, and all seven red
nodes with Qjj′ = 1. As a result, the red node’s attribute is
updated as (an informal but illustrative equation):

tlj = fw
l

(
red node, gVl (blue node, 1) + gVl (blue node,−1)

+gVl (brown node, 1), 7 · gQl (red node, 1)
)
.

After the update, all red nodes tlj(1 ≤ j ≤ 7) in both graphs
retain identical attributes and are still indistinguishable. The
same applies to the blue and brown nodes. Therefore, re-
gardless of how many message-passing rounds occur, both
graphs will still have seven red nodes, seven blue nodes,
and one brown node. This holds for any parameterized map-
pings used in GNNs (fV

l , fW
l , gVl , gWl , and gQl ), meaning

no GNN can differentiate between the two instances.

(Observation III). They share the common optimal solu-
tion with the smallest ℓ2-norm: ( 67 ,

6
7 ,

6
7 ,

6
7 ,

6
7 ,

6
7 ,

6
7 ), which

follows from 1⊤x = 6 and the Cauchy-Schwarz inequality.

Note that these observations are not mere coincidences; we
have established this conclusion in general for LCQPs (see
Definition A.1, Theorem A.2, and Theorem A.3).

Additionally, similar results can be extended to QCQPs
under certain assumptions, though it is beyond the main
focus of this paper. The details are deferred to Appendix E.

A nonconvex counterexample. At the end of this section,
we comment that Theorems 3.3 and 3.4 do not hold if the
convexity assumption (P[Q ⪰ 0] = 1) is removed. In
particular, consider a convex LCQP

min
1

2

(
x1 x2

)(1 0
0 1

)(
x1

x2

)
, s.t. − 1 ≤ x1, x2 ≤ 1,

and a nonconvex LCQP

min
1

2

(
x1 x2

)(0 1
1 0

)(
x1

x2

)
, s.t. − 1 ≤ x1, x2 ≤ 1.
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Following the aforementioned argument, one can verify
that these two LCQP instances are indistinguishable by any
GNNs. On the other hand, the first convex LCQP has an
optimal objective being 0 and the optimal solution being
(0, 0), while the second nonconvex LCQP has an optimal
objective being −1 and optimal solutions being (1,−1) and
(−1, 1). This indicates that the conclusions in Theorems 3.3
and 3.4 do not hold true for the data distribution that is sup-
ported on aforementioned instances with equal probability,
since a GNN making accurate prediction on one instance
must fail on the other.

4. The capacity of GNNs for MI-LCQPs
In this section, we turn to mixed-integer linearly constrained
quadratic program (MI-LCQP), which is almost the same
as LCQP (2) except that some entries of x are constrained
to be integers: xj ∈ Z, ∀ j ∈ I , where I ⊂ {1, 2, . . . , n}
collects the indices of all integer variables.

MI-LCQP-graph is modified from the LCQP-graph by
adding a new entry to the feature of each variable node
j ∈ W . The new feature is wj = (cj , lj , uj , δI(j)) where
δI(j) = 1 if j ∈ I and δI(j) = 0 otherwise. We use
Gm,n

MI-LCQP to denote the collection of all MI-LCQP-graphs.

GNNs for MI-LCQP-graphs are constructed using the
same framework as those for LCQP-graphs, differing only
in the input feature wj as defined above. We use FMI-LCQP
and FW

MI-LCQP to denote the GNN classes for MI-LCQP-
graphs with graph-level and node-level output, respectively.

Target mappings for MI-LCQPs also similar to those in
Definition 2.3. In particular, Φfeas and Φobj are defined as
in Definition 2.3, while the optimal solution mapping Φsol
can only be defined on a subset of the class of feasible and
bounded MI-LCQPs, as discussed in Appendix C.

4.1. GNNs cannot universally represent MI-LCQPs

In this subsection, we answer the question (1) for MI-LCQP.
When integer variables are introduced, the situation changes.
Particularly, we present some counter-examples illustrating
the fundamental limitation of GNNs in this context.
Proposition 4.1. There exist two MI-LCQP problems, with
one being feasible and the other being infeasible, such that
their graphs are indistinguishable by any GNN in FMI-CLQP.
Proposition 4.2. There exist two feasible MI-LCQP prob-
lems, with different optimal objective values, such that their
graphs are indistinguishable by any GNN in FMI-CLQP.
Proposition 4.3. There exist two feasible MI-LCQP prob-
lems with the same optimal objectives but disjoint optimal
solution sets, such that their graphs are indistinguishable
by any GNN in FW

MI-CLQP.
It is indicated that for some MI-LCQP data distribution, it
is impossible to train a GNN to predict MI-LCQP proper-
ties, regardless of the GNN’s size. Particularly, one can

choose the uniform distribution over pairs of instances satis-
fying Propositions 4.1, 4.2, and 4.3: any GNN making good
approximation on one instance must fail on the other.

The detailed proofs are provided in Appendix B. Here we
present a pair of MI-LCQPs that prove Proposition 4.3.

A counterexample. We modify the two LCQPs in (5) and
(6) into two MI-LCQPs by introducing integer constraints
on all variables: specifically, xj ∈ Z for i ∈ {1, · · · , 7}.
Consequently, the node attributes wj are updated to wj =
(1, 0, 3, 1), where the last entry, 1, indicates the integral
constraint δI(j) = 1. All other components of the graphs
remain unchanged, as described in Section 3. With this
modification, the node attributes wj remain identical for all
j ∈ W . Since all other graph components are unchanged,
the same argument from Section 3 applies: any GNNs can-
not distinguish the two MI-LCQPs.

However, the mixed-integer setting differs from the con-
tinuous one: the two problems no longer share the same
solution ( 67 ,

6
7 ,

6
7 ,

6
7 ,

6
7 ,

6
7 ,

6
7 ). Instead, they have disjoint op-

timal solution sets. The first instance has an unique feasible
(and thus optimal) solution (3, 3, 0, 0, 0, 0, 0), while in the
second instance, it is (2, 2, 2, 0, 0, 0, 0).

4.2. GNNs can represent particular types of MI-LCQPs

We have shown a fundamental limitation of GNNs to repre-
sent MI-LCQP in general. A natural question arise: Whether
we can identify a subset of GMI-LCQP on which it is possible
to train reliable GNNs. To address this, we need to gain
a better understanding for the separation power of GNNs,
or equivalently, of the WL test, according to the discussion
following Theorem 3.4. We state in Algorithm 1 the WL test
for MI-LCQP-graphs associated to FMI-LCQP or FW

MI-LCQP.

Algorithm 1 The WL test (Ref. to App. D for an example)

Require: G = (V,W,A,Q,HV , HW ), and iteration limit L.
1: Initialization: C0,V

i = hash(vi), and C0,W
j = hash(wj).

2: for l = 1, 2, · · · , L do
3: Cl,V

i = hash
(
Cl−1,V

i , {{(Cl−1,W
j , Aij)}}j∈NW

i

)
.

4: Cl,W
j = hash

(
Cl−1,W

j , {{(Cl−1,V
i , Aij)}}i∈NV

j
,

{{(Cl−1,W
j′ , Qjj′)}}j′∈NW

j

)
.

5: end for
6: return All vertex colors {{CL,V

i }}mi=0, {{CL,W
j }}nj=0.

Here, Cl,V
i and Cl,W

j are the colors of node i ∈ V and node
j ∈ W at the l-th iteration. The “hash” function is any
injective (collision-free) mapping, independent of i, j. In
practice, standard built-in hash functions can be used.

The WL test mimics GNNs’ iterative updates, replacing
learnable mappings with hash functions. While hash func-
tions cannot directly map a graph to desired outcomes, they
effectively distinguish nodes and differentiate graphs.

Initially, each vertex is labeled a color by a hash function

6
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according to its attributes (vi or wj). At the l-th iteration,
two vertices are of the same color if and only if at the
(l − 1)-th iteration, they have the same color and the same
information aggregation from neighbors. This is a color
refinement procedure. One can have a partition of the vertex
set V ∪W at each iteration based on vertices’ colors: two
vertices are classified in the same class if and only if they
are of the same color. Such a partition is strictly refined
in the first O(m + n) iterations and will remain stable or
unchanged afterward, see e.g., Berkholz et al. (2017).

Revisit the counterexample in Section 4.1: As analyzed
earlier, applying the WL test to the two MI-LCQPs results
in all variable nodes W having identical colors (red nodes),
meaning they belong to the same class in the WL test’s final
stable partition. Nodes in the same class of this partition
will always share identical attributes across all layers of any
GNNs, and vice versa, because the color refinement process
in Algorithm 1 mirrors GNNs’ update mechanisms. How-
ever, while the desired GNN output is (3, 3, 0, 0, 0, 0, 0),
GNNs cannot differentiate between these variables, result-
ing in outputs where y1 = · · · = y7. This contradiction is
the core reason for GNNs’ failure on these counterexamples.

To address this issue, we propose to: (I) Restrict the focus
to MI-LCQPs where each node in the graph representation
has a unique color (i.e., every class in the partition contains
exactly one node), ensuring GNNs can separate all nodes. or
(II) Allow partitions with classes containing multiple nodes
but impose additional conditions within each class to ensure
the desired output does not rely on distinguishing between
these nodes. Therefore, we define as follows.
Definition 4.4 (GNN-friendly MI-LCQPs). Consider a MI-
LCQP problem GMI-LCQP ∈ Gm,n

MI-LCQP and apply the WL
test to obtain the final stable partition (I,J ), where I =
{I1, I2, . . . , Is} partitions V = {1, 2, . . . ,m} and J =
{J1, J2, . . . , Jt} partitions W = {1, 2, . . . , n}. Then,
• GMI-LCQP is called “GNN-solvable” if t = n and |J1| =
|J2| = · · · = |Jn| = 1, i.e., all vertices in W have
different colors. We use Gm,n

solvable ⊂ Gm,n
MI-LCQP to denote

the collection of all GNN-solvable MI-LCQPs.

• GMI-LCQP is called “GNN-analyzable” if: (1) For any
p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}, Aij is constant
across all i ∈ Ip, j ∈ Jq . (2) For any q, q′ ∈ {1, 2, . . . , t},
Qjj′ is constant across j ∈ Jq, j

′ ∈ Jq′ . The set of all
such MI-LCQPs is denoted by Gm,n

analyzable ⊂ Gm,n
MI-LCQP.

GNN-solvability extends “unfoldability” in the context of
MILP (Chen et al., 2023b), and GNN-analyzability extends
“MP-tractability” (Chen et al., 2024). With such definitions,
we can establish GNNs’ expressive power for MI-LCQPs.
Assumption 4.5. P is a Borel regular probability measure
defined on the space of MI-LCQP-graphs Gm,n

MI-LCQP.
Theorem 4.6. For any P satisfying Assumption 4.5 and
P[GMI-LCQP ∈ Gm,n

analyzable] = 1, and for any ϵ > 0, there

exists F ∈ FMI-LCQP such that

P
[
IF (GMI-LCQP)>

1
2
̸= Φfeas(GMI-LCQP)

]
< ϵ, (7)

and there exists F1 ∈ FMI-LCQP such that

P
[
IF1(GMI-LCQP)>

1
2
̸= IΦobj(GMI-LCQP)∈R

]
< ϵ. (8)

Additionally, if P[Φobj(GMI-LCQP) ∈ R] = 1, for any ϵ, δ >
0, there exists F2 ∈ FMI-LCQP such that

P [|F2(GMI-LCQP)− Φobj(GMI-LCQP)| > δ] < ϵ. (9)

To extend these results to predicting optimal solutions, we
need to assume the MI-LCQPs have an optimal solution.
We denote Gm,n

sol as the set of MI-LCQPs with an optimal
solution. The assumption is expressed as GMI-LCQP ∈ Gm,n

sol .

Theorem 4.7. For any P satisfying Assumption 4.5 and
P[GMI-LCQP ∈ Gm,n

sol ∩ Gm,n
solvable] = 1, and for any ϵ, δ > 0,

there exists FW ∈ FW
MI-LCQP such that

P [∥FW (GMI-LCQP)− Φsol(GMI-LCQP)∥ > δ] < ϵ.

Theorems 4.6 and 4.7 indicate the subsets of MI-LCQPs
where GNNs can succeed: For GNN-analyzable MI-LCQPs,
GNNs can approximate their feasibility and optimal objec-
tive; For GNN-solvable ones, GNNs can approximate their
optimal solutions. Proofs are available in Appendix C.

4.3. Discussions of “friendly” MI-LCQPs

To better illustrate the practical implications of Theo-
rems 4.6 and 4.7, we make some discussions of GNN-
analyzability and GNN-solvability here.

Analyzability vs Solvability. While all GNN-solvable MI-
LCQPs must be GNN-analyzable, not all GNN-analyzable
problems are necessarily GNN-solvable. Related discus-
sions, proofs and examples are detailed in Appendix D.

Since solvability is a stronger condition than analyzability,
when a problem is GNN-solvable, GNNs can approximate
not only the optimal solution (Theorem 4.7) but also the
feasibility and the optimal objective (Theorem 4.6). In this
sense, learning the solution mapping is a stricter requirement
than learning the feasibility and optimal objective.

Frequency of friendly instances. In practice, the frequency
of GNN-analyzable and GNN-solvable instances largely de-
pends on the the level of symmetry in the dataset. Here, two
variables labeled with the same color by the WL test are said
to be symmetric. When there is symmetry in a MI-LCQP, it
becomes GNN-insolvable; and higher symmetry increases
the risk of being GNN-inanalyzable. Examples provided by
(5) and (6) admit strong symmetry across all variables, mak-
ing them neither GNN-analyzable nor GNN-solvable. Fortu-
nately, GNN-solvable and GNN-analyzable instances make
up the majority of the MI-LCQP set, under specific distribu-
tional assumptions (see e.g. Proposition D.3). This explains
the observed success of GNNs for QPs in the existing litera-
ture and addresses the gap between theoretical limitations
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(c) Fit Φobj for MI-LCQP
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(d) Fit Φsol for MI-LCQP

Figure 2. Relative errors when training GNNs to fit Φobj and Φsol for LCQP (2a-2b) and MI-LCQP (2c-2d) with various embedding sizes.
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Figure 3. Validation on a larger scale. The figures illustrate the relative errors for various combinations of embedding sizes and numbers
of training samples. We can achieve near zero errors when the GNN is large enough.

and empirical success discussed in Section 1. The dataset
used in Section 5 consists entirely of GNN-solvable and
GNN-analyzable instances. However, in some challenging,
artificially collected or created datasets, such as QPlib (Fu-
rini et al., 2019), it’s possible to be GNN-insolvable or even
GNN-inanalyzable (see in Appendix D.2 for details).

Numerical verification. While GNN-analyzability and
GNN-solvability depend on the dataset, they can be ef-
ficiently verified in practice. One may first apply Algo-
rithm 1, which requires at most O(m+ n) iterations. The
single-iteration complexity is bounded by the number of
edges in the graph (Shervashidze et al., 2011), which, in
our context, is the number of nonzeros in matrices A and
Q: nnz(A) + nnz(Q). Therefore, Algorithm 1’s complex-
ity is O((m + n) · (nnz(A) + nnz(Q))). Afterward, both
conditions can be directly verified using Definition 4.4.

Therefore, these criteria provide practitioners with a prac-
tical tool to evaluate datasets before applying GNNs. Ad-
ditionally, if challenges arise during GNN training on MI-
LCQPs, verifying them can help identify potential issues.

5. Numerical experiments
We present numerical experiments in this section.3

Numerical validation of GNNs’ expressive power. We
train GNNs to fit Φobj or Φsol for LCQP or MI-LCQP in-
stances.4 For both LCQP and MI-LCQP, we randomly gen-
erate 100 instances, each of which contains 10 constraints

3Codes are available at https://github.com/
liujl11git/GNN-QP.

4Since LCQP and MI-LCQP are linearly constrained, predict-
ing feasibility falls to the case of LP and MILP in Chen et al.
(2023a;b). Hence we omit the feasibility experiments.

and 50 variables. The generated MI-LCQPs are all GNN-
solvable and GNN-analyzable with probability one. Details
on the data generation and training schemes can be found
in Appendix G. We train four GNNs with four different
embedding sizes and record their relative errors5 averaged
on all instances during training. The results are reported
in Figure 2. We can see that GNNs can fit Φobj and Φsol
well for both LCQP and MI-LCQP. These results validate
Theorems 3.3,3.4,4.6 and 4.7. We also observe that a larger
embedding size increases the capacity of a GNN, resulting
in not only lower final errors but also faster convergence.

Validation on a larger scale. To further validate the theo-
rems, we expand the number of problem instances to 500
and 2,500. The results, reported in Figure 3, show that GNN
achieves near-zero fitting errors when it has a large enough
embedding size and thus enough capacity for approximation,
which directly validate Theorems 3.3,3.4,4.6 and 4.7.

Various types of LCQP. Besides the generic LCQP for-
mulation (2), we also extend the numerical experiments to
other types of optimization problems, namely portfolio op-
timization and support vector machine (SVM) following
Jung et al. (2022). The results are reported in Figure 4. We
can observe similar fitting behaviors as those in the generic
LCQP experiments where the expressive power of GNNs in-
crease as they become larger, evidenced by the fitting errors
decreasing to near zero when the embedding size increases.

Real dataset. To further examine the universal approxima-
tion results on more realistic QP problems. For LCQP, we
train GNNs on the Maros and Meszaros Problem Set (Maros

5The relative error of a GNN FW on a single problem instance
G is defined as ∥FW (G) − Φ(G)∥2/max(∥Φ(G)∥2, 1), where
Φ could be either Φobj or Φsol.
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(c) Fit Φobj for SVM
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Figure 4. Various types of LCQP: portfolio optimization and SVM optimization problems. The figures illustrate the best relative errors
achieved during training for various combinations of embedding sizes and numbers of training samples.
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Figure 5. Training errors on real datasets: Convex LCQP (5a-5b) and MI-LCQP (5c-5d).

Table 1. Average solving times (milliseconds) of GNN and OSQP.

Batch Size - 1 10 100 1,000

OSQP 4.48±3.62 - - - -
GNN - 53.62±16.72 5.37±1.87 0.504±0.142 0.089±0.002

& Mészáros, 1999), which contains 138 challenging convex
LCQPs. The results are shown in Figure 5. We observe that
while the broad range of numbers of instances in the Maros
Meszaros test set caused numerical difficulties for training,
GNNs can still be trained to fit the objectives and solutions
to some extent. And we can observe similar tendency as
in the synthesized experiments that the expressive power
increases as the model capacity enlarges when we increase
the embedding size. Details are deferred to Appendix G.

For MI-LCQP, we perform GNN training on 73 GNN-
solvable instances from QPLib (Furini et al., 2019) that pro-
vide the optimal solutions and objectives. We train GNNs
of embedding sizes 128, 256, and 512 to fit the objectives
and solutions. The training errors we achieved are shown in
Figures 5c-5d. GNNs can fit the objective values well and
demonstrate the ability to fit solutions. The results show the
model capacity improves as the model size increases.

Computation complexity. GNNs are superior over QP
solvers in terms of running time, especially when we fully
exploit parallel computing with GPU acceleration. To show
this, we measure the average running time using OSQP (Stel-
lato et al., 2020) and a trained GNN with different batch
sizes over the 1,000 synthetic LCQP problems generated
in the experiment above. We applied OSQP to solve all
instances to a relative error of 10−3, which is slightly less
accurate than the trained GNN (with an average relative er-
ror of 6.31×10−4). The average solving times and standard

deviations are shown in Table 1. The sufficiently acceler-
ated computation validates GNNs’ capacity as a real-time
QP solver or fast warm-start, numerically supporting the
rationality of our theoretical study of GNNs for QPs.

Generalization. Besides investigating GNNs’ expressive
capacity, we also explore their generalization ability and
observed positive results. As generalization is beyond this
work’s scope, the results are provided in Appendix G.

6. Conclusions and future directions
This paper establishes theoretical foundations for using
GNNs to represent the feasibility, optimal objective value,
and optimal solution of LCQPs and MI-LCQPs. We prove
GNNs can universally approximate these properties for
LCQPs and show this is in general not true for MI-LCQPs,
except for specific subclasses we identify. Future research
directions include studying the training dynamics, general-
ization behavior, and size requirements of GNNs. In particu-
lar, the algorithm-unrolling framework by Yang et al. (2024)
provides a way to estimate GNN sizes, as it explicitly defines
the number of parameters per layer, and prior work (e.g., (Li
et al., 2024)) shows algorithm-unrolling is a structured GNN.
These connections suggest that GNN complexity bounds for
(MI-)LCQPs may be derived from the algorithm-unrolling
literature. Another compelling direction for future work is
to unify LP, LCQP, QCQP, and extensions on higher-order
polynomial optimization via hypergraph GNNs.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Vogelstein, J. T., Conroy, J. M., Lyzinski, V., Podrazik,
L. J., Kratzer, S. G., Harley, E. T., Fishkind, D. E., Vogel-
stein, R. J., and Priebe, C. E. Fast approximate quadratic
programming for graph matching. PLOS one, 10(4):
e0121002, 2015.

Wang, H. P., Liu, J., Chen, X., Wang, X., Li, P., and Yin,
W. DIG-MILP: a deep instance generator for mixed-
integer linear programming with feasibility guarantee.
Transactions on Machine Learning Research, 2024.

Wang, R., Yan, J., and Yang, X. Learning combinatorial
embedding networks for deep graph matching. In Pro-
ceedings of the IEEE/CVF international conference on
computer vision, pp. 3056–3065, 2019.

Wang, R., Yan, J., and Yang, X. Combinatorial learning
of robust deep graph matching: an embedding based
approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(6):6984–7000, 2020a.

Wang, R., Yan, J., and Yang, X. Neural graph matching net-
work: Learning lawler’s quadratic assignment problem
with extension to hypergraph and multiple-graph match-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(9):5261–5279, 2021.

Wang, T., Liu, H., Li, Y., Jin, Y., Hou, X., and Ling, H.
Learning combinatorial solver for graph matching. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 7568–7577, 2020b.

Weisfeiler, B. and Leman, A. The reduction of a graph to
canonical form and the algebra which appears therein.
NTI, Series, 2(9):12–16, 1968.

Wu, C., Chen, Q., Wang, A., Ding, T., Sun, R., Yang, W.,
and Shi, Q. On representing convex quadratically con-
strained quadratic programs via graph neural networks.
arXiv preprint arXiv:2411.13805, 2024.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

Yang, L., Li, B., Ding, T., Wu, J., Wang, A., Wang, Y., Tang,
J., Sun, R., and Luo, X. An efficient unsupervised frame-
work for convex quadratic programs via deep unrolling.
arXiv preprint arXiv:2412.01051, 2024.

Yu, T., Wang, R., Yan, J., and Li, B. Learning deep graph
matching with channel-independent embedding and hun-
garian attention. In International Conference on Learning
Representations, 2020.

12

https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2


Expressive Power of GNNs for QP

Zhang, B., Fan, C., Liu, S., Huang, K., Zhao, X., Huang,
J., and Liu, Z. The expressive power of graph neural
networks: A survey. arXiv preprint arXiv:2308.08235,
2023.

13



Expressive Power of GNNs for QP

A. Proofs for Section 3
In this appendix, we present the proofs for theorems in Section 3. The proofs will based on Weisfeiler-Lehman (WL) test
and its separation power to distinguish LCQP problems with different properties (different feasibility, different optimal
objective, or different optimal solution with the smallest ℓ2 norm).

The Weisfeiler-Lehman (WL) test (Weisfeiler & Leman, 1968) is a classical algorithm for the graph isomorphism problem.
In particular, it implements color refinement on vertices by applying a hash function on the previous vertex color and
aggregation of colors from neighbors, and identifies two graphs as isomorphic if their final color multisets are the same. It
is worth noting that WL test may incorrectly identify two non-isomorphic graphs as isomorphic. We slightly modify the
standard WL test, see Algorithm 2.

Algorithm 2 The linear-form WL test

Require: A LCQP-graph G = (V,W,A,Q,HV , HW ) and iteration limit L > 0.
1: Initialize with C0,V

i = hash(vi) and C0,W
j = hash(wj).

2: for l = 1, 2, · · · , L do
3: Refine the colors

Cl,V
i = hash

Cl−1,V
i ,

n∑
j=1

Aijhash
(
Cl−1,W

j

) ,

Cl,W
j = hash

Cl−1,W
j ,

m∑
i=1

Aijhash
(
Cl−1,V

i

)
,

n∑
j′=1

Qjj′hash
(
Cl−1,W

j′

) .

4: end for
5: return The multisets containing all colors {{CL,V

i }}mi=0, {{C
L,W
j }}nj=0.

Please note that, Algorithm 2 is a special case of Algorithm 1 and, as such, has weaker separation power. However, it is
sufficient for distinguishing LCQPs with different key properties. Notably, proving universal approximation under a weaker
WL test leads to an even stronger conclusion: if a weaker WL test (or equivalently, a less powerful GNN) can separate
LCQPs, it automatically implies that these LCQPs can also be separated under a stronger WL test.

We define two equivalence relations as follows. Intuitively, LCQP-graphs in the same equivalence class will be identified as
isomorphic by WL test, though they may be actually non-isomorphic.

Definition A.1. For two LCQP-graphs GLCQP, ĜLCQP ∈ Gm,n
LCQP, let {{CL,V

i }}mi=0, {{C
L,W
j }}nj=0 and

{{ĈL,V
i }}mi=0, {{Ĉ

L,W
j }}nj=0 be color multisets output by Algorithm 2 on GLCQP and ĜLCQP.

1. We say GLCQP ∼ ĜLCQP if {{CL,V
i }}mi=0 = {{ĈL,V

i }}mi=0 and {{CL,W
j }}nj=0 = {{ĈL,W

j }}nj=0 hold for all L ∈ N and all
hash functions.

2. We say GLCQP
W∼ ĜLCQP if {{CL,V

i }}mi=0 = {{ĈL,V
i }}mi=0 and CL,W

j = ĈL,W
j , ∀ j ∈ {1, 2, . . . , n}, for all L ∈ N and

all hash functions.

Our main finding leading to the results in Section 3 is that, for LCQP-graphs in the same equivalence class, even if they are
non-isomorphic, their optimal objective values and optimal solutions must be the same (up to a permutation perhaps).

Theorem A.2. For any GLCQP, ĜLCQP ∈ Gm,n
LCQP with Q, Q̂ ⪰ 0, if GLCQP ∼ ĜLCQP, then Φobj(GLCQP) = Φobj(ĜLCQP).

Theorem A.3. For any GLCQP, ĜLCQP ∈ Gm,n
LCQP with Q, Q̂ ⪰ 0 that are feasible and bounded, if GLCQP ∼ ĜLCQP, then

there exists some permutation σW ∈ Sn such that Φsol(GLCQP) = σW (Φsol(ĜLCQP)). Furthermore, if GLCQP
W∼ ĜLCQP,

then Φsol(GLCQP) = Φsol(ĜLCQP).

We need the following lemma to prove Theorem A.2 and Theorem A.3.
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Lemma A.4. Suppose that M ∈ Rn×n is a symmetric and positive semidefinite matrix and that J = {J1, J2, . . . , Jt} is
a partition of {1, 2, . . . , n} satisfying that for any q, q′ ∈ {1, 2, . . . , t},

∑
j′∈Jq′

Mjj′ is a constant over j ∈ Jq. For any
x ∈ Rn, it holds that

1

2
x⊤Mx ≥ 1

2
x̂⊤Mx̂, (10)

where x̂ ∈ Rn is defined via x̂j = yq = 1
|Jq|

∑
j′∈Jq

xj′ for j ∈ Jq .

Proof. Fix x ∈ Rn and consider the problem

min
z∈Rn

1

2
z⊤Mz, s.t.

∑
j∈Jq

zj =
∑
j∈Jq

xj , q = 1, 2, . . . , t, (11)

which is a convex program. The Lagrangian is given by

L(z, λ) = 1

2
z⊤Mz −

t∑
q=1

λq

∑
j∈Jq

zj −
∑
j∈Jq

xj

 .

It can be computed that
∂

∂zj
L(z, λ) =

n∑
j′=1

Mjj′zj′ − λq, j ∈ Jq,

and
∂

∂λq
L(z, λ) =

∑
j∈Jq

xj −
∑
j∈Jq

zj ,

It is clear that
∂

∂λq
L(x̂, λ) =

∑
j∈Jq

xj −
∑
j∈Jq

x̂j = 0,

by the definition of x̂. Furthermore, consider any fixed q ∈ {1, 2, . . . , t} and we have for any j ∈ Jq that

∂

∂zj
L(x̂, λ) =

t∑
q′=1

yq′
∑

j′∈Jq′

Mjj′ − λq = 0,

if λq =
∑t

q′=1 yq′
∑

j′∈Jq′
Mjj′ that is independent in j ∈ q since

∑
j′∈Jq′

Mjj′ is constant over j ∈ Jq for any
q′ ∈ {1, 2, . . . , t}. Since the problem (11) is convex and the first-order optimality condition is satisfied at x̂, we can conclude
that x̂ is a minimizer of (11), which implies (10).

Proof of Theorem A.2. Let GLCQP and ĜLCQP be the LCQP-graphs associated to (2) and

min
x∈Rn

1

2
x⊤Q̂x+ ĉ⊤x, s.t. Âx ◦̂ b̂, l̂ ≤ x ≤ û, (12)

Suppose that there are no collisions of hash functions or their linear combinations when applying the WL test to GLCQP

and ĜLCQP and there are no strict color refinements in the L-th iteration. Since GLCQP ∼ ĜLCQP, after performing
some permutation, there exist I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} that are partitions of {1, 2, . . . ,m} and
{1, 2, . . . , n}, respectively, such that the followings hold:

• CL,V
i = CL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• ĈL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.
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• CL,W
j = CL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• CL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• ĈL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

Since there are no collisions, we have from the vertex color initialization that

• vi = (bi, ◦i) = v̂i = (b̂i, ◦̂i) and is constant over i ∈ Ip for any p ∈ {1, 2, . . . , s}.

• wj = (cj , lj , uj) = ŵj = (ĉj , l̂j , ûj) and is constant over j ∈ Jq for any q ∈ {1, 2, . . . , t}.

For any p ∈ {1, 2, . . . , s} and any i, i′ ∈ Ip, one has

CL,V
i = CL,V

i′ =⇒
∑
j∈W

Aijhash
(
CL−1,W

j

)
=

∑
j∈W

Ai′jhash
(
CL−1,W

j

)
=⇒

∑
j∈W

Aijhash
(
CL,W

j

)
=

∑
j∈W

Ai′jhash
(
CL,W

j

)
=⇒

∑
j∈Jq

Aij =
∑
j∈Jq

Ai′j , ∀ q ∈ {1, 2, . . . , t}.

One can obtain similar conclusions from CL,V
i = ĈL,V

i′ and ĈL,V
i = ĈL,V

i′ , and hence conclude that

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

j∈Jq
Aij =

∑
j∈Jq

Âij and is constant over i ∈ Ip.

Similarly, the followings also hold:

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

i∈Ip
Aij =

∑
i∈Ip

Âij and is constant over j ∈ Jq .

• For any q, q′ ∈ {1, 2, . . . , t},
∑

j′∈Jq′
Qjj′ =

∑
j′∈Jq′

Q̂jj′ and is constant over j ∈ Jq .

If GLCQP or (2) is infeasible, then Φobj(GLCQP) = +∞ and clearly Φobj(GLCQP) ≥ Φobj(ĜLCQP). If (2) is feasible, let
x ∈ Rn be any feasible solution to (2) and define x̂ ∈ Rn via x̂j = yq = 1

|Jq|
∑

j′∈Jq
xj′ for j ∈ Jq. By the proofs of

Lemma B.2 and Lemma B.3 in Chen et al. (2023a), we know that x̂ is a feasible solution to (12) and c⊤x = ĉ⊤x̂. In
addition, we have

1

2
x⊤Qx

(10)
≥ 1

2
x̂⊤Qx̂ =

1

2

t∑
q,q′=1

∑
j∈Jq

∑
j′∈Jq′

x̂jQjj′ x̂j′ =
1

2

t∑
q,q′=1

yqyq′
∑

j′∈Jq′

Qjj′

=
1

2

t∑
q,q′=1

yqyq′
∑

j′∈Jq′

Q̂jj′ =
1

2

t∑
q,q′=1

∑
j∈Jq

∑
j′∈Jq′

x̂jQ̂jj′ x̂j′ =
1

2
x̂⊤Q̂x̂,

which then implies that
1

2
x⊤Qx+ c⊤x ≥ 1

2
x̂⊤Q̂x̂+ ĉ⊤x̂,

and hence that Φobj(GLCQP) ≥ Φobj(ĜLCQP). Till now we have proved Φobj(GLCQP) ≥ Φobj(ĜLCQP) regardless of the
feasibility of GLCQP. The reverse direction Φobj(GLCQP) ≤ Φobj(ĜLCQP) is also true and we can conclude that Φobj(GLCQP) =

Φobj(ĜLCQP).

Proof of Theorem A.3. Under the same setting as in the proof of Theorem A.2, the results can be proved. We present the
proof here.
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Let x ∈ Rn be the optimal solution to (2) with the smallest ℓ2-norm, and let x̂ ∈ Rn be defined as in the proof of
Theorem A.2. By the arguments in the proof of Theorem A.2, x̂ is an optimal solution to (12). In particular, x̂ is also an
optimal solution to (2) since one can set (Â, b̂, ĉ, Q̂, l̂, û, ◦̂) = (A, b, c,Q, l, u, ◦). Therefore, by the minimality of ∥x∥2, we
have that

∥x∥2 ≤ ∥x̂∥2 =

t∑
q=1

∑
j∈Jq

x̂2
j =

t∑
q=1

|Jq|

 1

|Jq|
∑
j∈Jq

xj

2

≤
t∑

q=1

∑
j∈Jq

x2
j = ∥x∥2,

which implies that xj is a constant in j ∈ Jq and x = x̂. Thus, x is also an optimal solution to (12).

Let x′ ∈ Rn be the optimal solution to (12) with the smallest ℓ2-norm. Then ∥x′∥ ≤ ∥x̂∥ = ∥x∥ and the reverse direction
∥x∥ ≤ ∥x′∥ is also true, which implies that ∥x∥ = ∥x′∥. Therefore, we have x = x′ by the uniqueness of the optimal
solution with the smallest ℓ2-norm.

Noticing that the above arguments are made after permuting vertices in V and W , we can conclude that Φsol(GLCQP) =

σW (Φsol(ĜLCQP)) for some σW ∈ Sn. Additionally, if GLCQP
W∼ ĜLCQP, then there is no need to perform the permutation

on W and we have Φsol(GLCQP) = Φsol(ĜLCQP).

Corollary A.5. For any GLCQP ∈ Gm,n
LCQP that is feasible and bounded and any j, j′ ∈ {1, 2, . . . , n}, if CL,W

j = CL,W
j′ holds

for all L ∈ N+ and all hash functions, then Φsol(GLCQP)j = Φsol(GLCQP)j′ .

Proof. Let ĜLCQP be the LCQP-graph obtained from GLCQP by relabeling j as j′ and relabeling j′ as j. By Theorem A.3,
we have Φsol(GLCQP) = Φsol(ĜLCQP), which implies Φsol(GLCQP)j = Φsol(ĜLCQP)j = Φsol(GLCQP)j′ .

It is well-known from previous literature that the separation power of GNNs is equivalent to that of WL test and that GNNs
can universally approximate any continuous function whose separation is not stronger than that of WL test; see e.g. Chen
et al. (2023a); Xu et al. (2019); Azizian & Lelarge (2021); Geerts & Reutter (2022). We have established in Theorem A.2,
Theorem A.3, and Corollary A.5 that the separation power of Φobj and Φsol is upper bounded by the WL test (Algorithm 2)
that shares the same information aggregation mechanism as the GNNs in FLCQP and FW

LCQP. Theorem 3.3 and Theorem 3.4
will be proved following this idea.

Proof of Theorem 3.3. Theorem 3.3 can be proved based on Theorem A.2.

The separation power of GNNs is equivalent to that of the WL test, i.e., for any GLCQP, ĜLCQP ∈ Gm,n
LCQP with Q, Q̂ ⪰ 0,

GLCQP ∼ ĜLCQP ⇐⇒ F (GLCQP) = F (ĜLCQP), ∀ F ∈ FLCQP, (13)

which combined with Theorem A.2 leads to that

F (GLCQP) = F (ĜLCQP), ∀ F ∈ FLCQP =⇒ Φobj(GLCQP) = Φobj(ĜLCQP), (14)

indicating that the separation power of FLCQP is upper bounded by that of Φobj.

The indicator function IΦobj(·)∈R : Gm,n
LCQP → {0, 1} ⊂ R is measurable, i.e., Φ−1

obj (0) and Φ−1
obj (0) are both Lebesgue

measurable, and hence by Lusin’s theorem, there exists a compact and permutation-invariant subspace X ⊂ Gm,n
LCQP such that

P[Gm,n
LCQP\X] < ϵ and that IΦobj(·)∈R restricted on X is continuous. Therefore, by the Stone-Weierstrass theorem and (14),

we have that there exists F1 ∈ FLCQP satisfying

sup
GLCQP∈X

∣∣F1(GLCQP)− IΦobj(GLCQP)∈R
∣∣ < 1

2

Therefore, it holds that
P
[
IF1(GLCQP)>

1
2
̸= IΦobj(GLCQP)∈R

]
≤ P

[
Gm,n

LCQP\X
]
< ϵ,

which proves (3). Additionally, (4) can be proved by applying similar arguments to Φobj : Φ
−1
obj (R) → R, where Φ−1

obj (R) ⊂
Gm,n

LCQP is the collection of feasible and bounded GLCQP ∈ Gm,n
LCQP.
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Proof of Theorem 3.4. Theorem 3.4 can be proved based on Theorem A.3 and Corollary A.5.

In addition to (13), it can be proved that the separation powers of GNNs and the WL test are equivalent in the following
sense:

• For any GLCQP, ĜLCQP ∈ Gm,n
LCQP, GLCQP

W∼ ĜLCQP if and only if FW (GLCQP) = FW (ĜLCQP) for all FW ∈ FW
LCQP.

• For any GLCQP ∈ Gm,n
LCQP and any j, j′ ∈ W , CL,W

j = CL,W
j′ for any L ∈ N and any hash function if and only if

FW (GLCQP)j = FW (GLCQP)j′ for all FW ∈ FW
LCQP.

Therefore, with Theorem A.3 and Corollary A.5, the separation power of GNNs is upper bounded by that of Φsol in the
following sense that for any GLCQP, ĜLCQP ∈ Gm,n

LCQP with Q, Q̂ ⪰ 0 and any j, j′ ∈ W ,

• F (GLCQP) = F (ĜLCQP), ∀ F ∈ FLCQP implies Φsol(GLCQP) = σW (Φsol(ĜLCQP)) for some σW ∈ Sn.

• FW (GLCQP) = FW (ĜLCQP), ∀ FW ∈ FW
LCQP implies Φsol(GLCQP) = Φsol(ĜLCQP).

• FW (GLCQP)j = FW (GLCQP)j′ , ∀ FW ∈ FW
LCQP implies Φsol(GLCQP)j = Φsol(GLCQP)j′ .

The optimal solution mapping Φsol : Φ
−1
obj (R) → Rn is measurable, i.e., Φ−1

sol (A) is Lebesgue measurable for any Borel
measurable A ⊂ Rn, and hence by Lusin’s theorem, there exists a compact and permutation-invariant subspace X ⊂
Φ−1

obj (R) such that P[Φ−1
obj (R)\X] < ϵ and that Φsol restricted on X is continuous. Therefore, applying the generalized

Stone-Weierstrass theorem for equivariant functions (Azizian & Lelarge, 2021, Theorem 22), we know that there exists
FW ∈ FW

LCQP satisfying
sup

GLCQP∈X
∥FW (GLCQP)− Φsol(GLCQP)∥ < δ.

Therefore, it holds that
P [∥FW (GLCQP)− Φsol(GLCQP)∥ > δ] ≤ P

[
Φ−1

obj (R)\X
]
< ϵ,

which completes the proof.

B. Proofs for Section 4.1
The proof of Proposisition 4.1 is directly from Chen et al. (2023b) since adding a quadratic term in the objective function of
an MILP problem does not change the feasible region. However, Proposisitions 4.2 and 4.3 are not covered in Chen et al.
(2023b) and we present their proofs here.

Proof of Proposisition 4.2. As discussed in Section 4.1, we consider the following two examples whose optimal objective
values are 9

2 and 6, respectively.

min
x∈R6

1

2

6∑
i=1

x2
i +

6∑
i=1

xi,

s.t. x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x4 ≥ 1,

x4 + x5 ≥ 1, x5 + x6 ≥ 1, x6 + x1 ≥ 1,

xj ∈ {0, 1}, ∀ j ∈ {1, 2, . . . , 6}.

min
x∈R6

1

2

6∑
i=1

x2
i +

6∑
i=1

xi,

s.t. x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x1 ≥ 1,

x4 + x5 ≥ 1, x5 + x6 ≥ 1, x6 + x4 ≥ 1,

xj ∈ {0, 1}, ∀ j ∈ {1, 2, . . . , 6}.

v1

v2

v3

v4

v5

v6

w1

w2

w3

w4

w5

w6

v1

v2

v3

v4

v5

v6

w1

w2

w3

w4

w5

w6

18



Expressive Power of GNNs for QP

Denote GMI-LCQP and ĜMI-LCQP as the graph representations of the above two MI-LCQP problems. Let sli, t
l
j and ŝli, t̂

l
j be

the attributes at the l-th layer when apply a GNN F ∈ FMI-LCQP to GMI-LCQP and ĜMI-LCQP. We will prove by induction that
for any 0 ≤ l ≤ L, the followings hold:

(a) sli = ŝli and is constant over i ∈ {1, 2, . . . , 6}.

(b) tlj = t̂lj and is constant over j ∈ {1, 2, . . . , 6}.

It is clear that the conditions (a) and (b) are true for l = 0, since vi = v̂i = (1,≥) is constant in i ∈ {1, 2, . . . , 6}, and
wj = ŵj = (1, 0, 1, 1) is constant in j ∈ {1, 2, . . . , 6}. Now suppose that the conditions (a) and (b) are true for l− 1 where
1 ≤ l ≤ L. We denote that sl−1 = sl−1

i = s̄l−1
i , ∀ i ∈ {1, 2, . . . , 6} and tl−1 = tl−1

j = t̂l−1
j , ∀ j ∈ {1, 2, . . . , 6}. It can

be computed for any i ∈ {1, 2, . . . , 6} and j ∈ {1, 2, . . . , 6} that

sli = fV
l

sl−1
i ,

∑
j∈NW

i

gWl (tl−1
j , Aij)

 = fV
l

(
sl−1, 2gWl (tl−1, 1)

)
= ŝli,

tlj = fW
l

tl−1
j ,

∑
i∈NV

j

gVl (sl−1
i , Aij),

∑
j′∈NW

j

gQl (tl−1
j′ , Qjj′)


= fW

l

(
tl−1, 2gVl (sl−1, 1), gQl (tl−1, 1)

)
= t̂lj ,

which proves (a) and (b) for l. Thus, we can conclude that F (GMI-LCQP) = F (ĜMI-LCQP), ∀ F ∈ FMI-LCQP.

We also remark that, although the two MI-LCQP graphs with distinct optimal objective values presented above are
indistinguishable by GNNs considered in this paper, they can be distinguished by 3-hop GNNs (Feng et al., 2022; Chen
et al., 2025). Crucially, when we scale these examples to 10 variables and 10 constraints (one graph with 20 connected
nodes and the other with two 10-node components), 3-hop GNNs fail while 5-hop GNNs succeed, confirming that larger k
in k-hop GNNs reduces GNN-unfriendly cases, though they do not solve all MI-LCQPs.

Proof of Proposition 4.3. Consider the following two MI-LCQPs:

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x1 = 0,

x3 − x4 = 0, x4 − x5 = 0,

x5 − x6 = 0, x6 − x7 = 0, x7 − x3 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.

v1

v2

v3

v4
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v6
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w1
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w3

w4

w5

w6

w7

and

min
x∈R7

1

2
x⊤11⊤x+ 1⊤x,

s.t. x1 − x2 = 0, x2 − x3 = 0, x3 − x1 = 0,

x4 − x5 = 0, x5 − x6 = 0,

x6 − x7 = 0, x7 − x4 = 0,

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 6

0 ≤ xj ≤ 3, xj ∈ Z, ∀ j ∈ {1, 2, . . . , 7}.
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As we mentioned in Section 4.1, both problems are feasible with the same optimal objective value, but have disjoint optimal
solution sets.

On the other hand, it can be analyzed using the same argument as in the proof of Proposition 4.2 that for any 0 ≤ l ≤ L that

(a) sli = ŝli is constant over i ∈ {1, 2, . . . , 7}, and sl8 = ŝl8.

(b) tlj = t̂lj is constant over j ∈ {1, 2, . . . , 7}.

These two conditions guarantee that F (GMI-LCQP) = F (ĜMI-LCQP), ∀ F ∈ FMI-LCQP and FW (GMI-LCQP) =

FW (ĜMI-LCQP), ∀ FW ∈ FMI-LCQP.

C. Proofs for Section 4.2
This section collects the proofs of Theorems 4.6 and 4.7. Similar to the LCQP case, the proofs are also based on the WL test
(Algorithm 1) and its separation power to distinguish MI-LCQP problems with different properties. We define the separation
power of Algorithm 1 as follows.

Definition C.1. Let GMI-LCQP, ĜMI-LCQP ∈ Gm,n
MI-LCQP be two MI-LCQP-graphs and let {{CL,V

i }}mi=0, {{C
L,W
j }}nj=0 and

{{ĈL,V
i }}mi=0, {{Ĉ

L,W
j }}nj=0 be color multisets output by Algorithm 1 on GMI-LCQP and ĜMI-LCQP.

1. We say GMI-LCQP ∼ ĜMI-LCQP if {{CL,V
i }}mi=0 = {{ĈL,V

i }}mi=0 and {{CL,W
j }}nj=0 = {{ĈL,W

j }}nj=0 hold for all L ∈ N
and all hash functions.

2. We say GMI-LCQP
W∼ ĜMI-LCQP if {{CL,V

i }}mi=0 = {{ĈL,V
i }}mi=0 and CL,W

j = ĈL,W
j , ∀ j ∈ {1, 2, . . . , n}, for all L ∈ N

and all hash functions.

The key component in the proof is to show that for GNN-solvable/GNN-analyzable MI-LCQP problems, if they are
indistinguishable by the WL test, then they must share some common properties.

Theorem C.2. For two GNN-analyzable MI-LCQP-graphs GMI-LCQP, ĜMI-LCQP ∈ Gm,n
analyzable, if GMI-LCQP ∼ ĜMI-LCQP, then

Φfeas(GMI-LCQP) = Φfeas(ĜMI-LCQP) and Φobj(GMI-LCQP) = Φobj(ĜMI-LCQP).

Proof. Let GMI-LCQP and ĜMI-LCQP be the MI-LCQP-graphs associated to

min
x∈Rn

1

2
x⊤Qx+ c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, xj ∈ Z, ∀ j ∈ I. (15)

and
min
x∈Rn

1

2
x⊤Q̂x+ ĉ⊤x, s.t. Âx ◦̂ b̂, l̂ ≤ x ≤ û, xj ∈ Z, ∀ j ∈ Î . (16)

Suppose that there are no collisions of hash functions or their linear combinations when applying the WL test to GMI-LCQP

and ĜMI-LCQP and there are no strict color refinements in the L-th iteration. Since GMI-LCQP ∼ ĜMI-LCQP and both of them
are GNN-analyzable, after performing some permutation, there exist I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} that
are partitions of {1, 2, . . . ,m} and {1, 2, . . . , n}, respectively, such that the followings hold:

• CL,V
i = CL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• ĈL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,W
j = CL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• CL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.
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• ĈL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

By similar analysis as in the proof of Theorem A.2, we have

(a) vi = v̂i and is constant over i ∈ Ip for any p ∈ {1, 2, . . . , s}.

(b) wj = ŵj and is constant over j ∈ Jq for any q ∈ {1, 2, . . . , t}.

(c) For any p ∈ {1, 2, . . . , s} and any q ∈ {1, 2, . . . , t}, {{Aij : j ∈ Jq}} = {{Âij : j ∈ Jq}} and is constant over i ∈ Ip.

(d) For any p ∈ {1, 2, . . . , s} and any q ∈ {1, 2, . . . , t}, {{Aij : i ∈ Ip}} = {{Âij : i ∈ Ip}} and is constant over j ∈ Jq .

(e) For any q, q′ ∈ {1, 2, . . . , t}, {{Qjj′ : j
′ ∈ Jq′}} = {{Q̂jj′ : j

′ ∈ Jq′}} and is constant over j ∈ Jq .

Note that GMI-LCQP and ĜMI-LCQP are both GNN-analyzable, i.e., all submatrices (Aij)i∈Ip,j∈Jq , (Âij)i∈Ip,j∈Jq ,
(Qjj′)j∈Jq,j′∈Jq′ , and (Q̂jj′)j∈Jq,j′∈Jq′ have identical entries. The above conditions (c)-(e) suggest that

(f) For any p ∈ {1, 2, . . . , s} and any q ∈ {1, 2, . . . , t}, Aij = Âij and is constant over i ∈ Ip, j ∈ Jq .

(g) For any q, q′ ∈ {1, 2, . . . , t}, Qjj′ = Q̂jj′ and is constant over j ∈ Jq, j
′ ∈ Jq′ .

Combining conditions (a), (b), (f), and (g), we can conclude that GMI-LCQP and ĜMI-LCQP are actually identical after applying
some permutation, i.e., they are isomorphic, which implies Φfeas(GMI-LCQP) = Φfeas(ĜMI-LCQP) and Φobj(GMI-LCQP) =

Φobj(ĜMI-LCQP).

MI-LCQP optimal solution mapping Φsol. Before stating the next result, we present the definition of the MI-LCQP optimal
solution mapping Φsol. Different from the LCQP setting, the optimal solution to an MI-LCQP problem may not exist even if
it is feasible and bounded, i.e., Φobj(GMI-LCQP) ∈ R. Thus, we have to work with Gm,n

sol ⊂ Φ−1
obj (R) ⊂ Gm,n

MI-LCQP where Gm,n
sol

is the collection of all MI-LCQP-graphs for which an optimal solution exists. For GMI-LCQP ∈ Gm,n
sol , it is possible that it

admits multiple optimal solution. Moreover, there may even exist multiple optimal solutions with the smallest ℓ2-norm due
to its non-convexity, which means that we cannot define the optimal solution mapping Φsol using the same approach as in
the LCQP case. If we further assume that GMI-LCQP ∈ Gm,n

sol is GNN-solvable, then using the same approach as in Chen
et al. (2023b, Appendix C), one can define a total ordering on the optimal solution set and hence define Φsol(GMI-LCQP) as
the minimal element in the optimal solution set, which is unique and permutation-equivariant, meaning that if one relabels
vertices of GMI-LCQP, then entries of Φsol(GMI-LCQP) are relabeled accordingly. In particular, since the WL test applied on
GMI-LCQP ∈ Gm,n

sol ∩Gm,n
solvable yields distinct vertex colors, one can uniquely find a permutation σ ∈ Sn that orders 1, 2, . . . , n

lexicographically. Then Φsol(GMI-LCQP) is defined as the vector x ∈ Rn so that (xσ(1), xσ(2), . . . , xσ(n)) is minimized in
the lexicographic sense among all optimal solutions of GMI-LCQP.

Theorem C.3. For any two MI-LCQP-graphs GMI-LCQP, ĜMI-LCQP ∈ Gm,n
sol ∩ Gm,n

solvable that are GNN-solvable with nonempty
optimal solution sets, if GMI-LCQP ∼ ĜMI-LCQP, then there exists some permutation σW ∈ Sn such that Φsol(GMI-LCQP) =

σW (Φsol(ĜMI-LCQP)). Furthermore, if GMI-LCQP
W∼ ĜMI-LCQP, then Φsol(GMI-LCQP) = Φsol(ĜMI-LCQP).

Proof. By Proposition D.1, GMI-LCQP and ĜMI-LCQP are also GNN-analyzable, and hence. If GMI-LCQP ∼ ĜMI-LCQP, then
they are isomorphic by the analysis in the proof of Theorem C.2, and hence, Φsol(GMI-LCQP) = σW (Φsol(ĜMI-LCQP)) for

some permutation σW ∈ Sn. If GMI-LCQP
W∼ ĜMI-LCQP, then the same analysis in the proof of Theorem C.2 applies and

these two graphs are identical after applying some permutation on V with the labeling in W unchanged, which guarantees
Φsol(GMI-LCQP) = Φsol(ĜMI-LCQP).

As discussed in the main test before Definition 4.4, for GNN-analyzable and GNN-solvable MI-LCQP instances, vertices
with essentially different properties will be distinguished by WL test or GNNs. For such GNN-friendly instances, GNNs
have provably strong expressive power. In fact, with Theorem C.2 and Theorem C.3, one can prove Theorem 4.6 and
Theorem 4.7, via a similar argument when we prove Theorems 3.3 and 3.4.
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Proof of Theorem 4.6. Theorem 4.6 can be proved based on Theorem C.2. We only present the proof of (7) since (8) and
(9) can be proved with almost the same lines.

The separation power of GNNs is equivalent to that of the WL test, i.e., for any GMI-LCQP, ĜMI-LCQP ∈ Gm,n
MI-LCQP,

GMI-LCQP ∼ ĜMI-LCQP ⇐⇒ F (GMI-LCQP) = F (ĜMI-LCQP), ∀ F ∈ FMI-LCQP, (17)

which combined with Theorem C.2 leads to that for GMI-LCQP, ĜMI-LCQP ∈ Gm,n
analyzable,

F (GMI-LCQP) = F (ĜMI-LCQP), ∀ F ∈ FMI-LCQP =⇒ Φfeas(GMI-LCQP) = Φfeas(ĜMI-LCQP), (18)

indicating that the separation power of FMI-LCQP is upper bounded by that of Φfeas on Gm,n
analyzable.

The function Φfeas : Gm,n
analyzable → {0, 1} ⊂ R is measurable, i.e., Φ−1

feas(0) and Φ−1
feas(0) are both Lebesgue measurable,

and hence by Lusin’s theorem, there exists a compact and permutation-invariant subspace X ⊂ Gm,n
analyzable such that

P[Gm,n
analyzable\X] < ϵ and that Φfeas restricted on X is continuous. Therefore, by the Stone-Weierstrass theorem and (18), we

have that there exists F ∈ FMI-LCQP satisfying

sup
GMI-LCQP∈X

|F (GMI-LCQP)− Φfeas(GMI-LCQP)| <
1

2

Therefore, it holds that
P
[
IF (GMI-LCQP)>

1
2
̸= Φfeas(GMI-LCQP)

]
≤ P

[
Gm,n

analyzable\X
]
< ϵ,

which proves (7).

Proof of Theorem 4.7. In addition to (17), it can be proved that the separation powers of GNNs and the WL test are
equivalent in the following sense:

• For any GMI-LCQP, ĜMI-LCQP ∈ Gm,n
MI-LCQP, GMI-LCQP

W∼ ĜMI-LCQP if and only if FW (GMI-LCQP) = FW (ĜMI-LCQP) for all
FW ∈ FW

MI-LCQP.

• For any GMI-LCQP ∈ Gm,n
MI-LCQP and any j, j′ ∈ W , CL,W

j = CL,W
j′ for any L ∈ N and any hash function if and only if

FW (GMI-LCQP)j = FW (GMI-LCQP)j′ for all FW ∈ FW
MI-LCQP.

Therefore, with Theorem C.3, the separation power of GNNs is upper bounded by that of Φsol on Gm,n
sol ∩ Gm,n

solvable in the
following sense: for any GMI-LCQP, ĜMI-LCQP ∈ Gm,n

sol ∩ Gm,n
solvable,

• F (GMI-LCQP) = F (ĜMI-LCQP), ∀ F ∈ FMI-LCQP implies Φsol(GMI-LCQP) = σW (Φsol(ĜMI-LCQP)) for some σW ∈ Sn.

• FW (GMI-LCQP) = FW (ĜMI-LCQP), ∀ FW ∈ FW
MI-LCQP implies Φsol(GMI-LCQP) = Φsol(ĜMI-LCQP).

• FW (GMI-LCQP)j = FW (GMI-LCQP)j′ , ∀ FW ∈ FW
LCQP implies j = j′ and hence Φsol(GMI-LCQP)j = Φsol(GMI-LCQP)j′ .

The optimal solution mapping Φsol : Gm,n
sol ∩ Gm,n

solvable → Rn is measurable, i.e., Φ−1
sol (A) is Lebesgue measurable for any

Borel measurable A ⊂ Rn, and hence by Lusin’s theorem, there exists a compact and permutation-invariant subspace
X ⊂ Gm,n

sol ∩ Gm,n
solvable such that P[Gm,n

sol ∩ Gm,n
solvable\X] < ϵ and that Φsol restricted on X is continuous. Therefore, applying

the generalized Stone-Weierstrass theorem for equivariant functions (Azizian & Lelarge, 2021, Theorem 22), we know that
there exists FW ∈ FW

MI-LCQP satisfying

sup
GMI-LCQP∈X

∥FW (GMI-LCQP)− Φsol(GMI-LCQP)∥ < δ.

Therefore, it holds that

P [∥FW (GMI-LCQP)− Φsol(GMI-LCQP)∥ > δ] ≤ P [Gm,n
sol ∩ Gm,n

solvable\X] < ϵ,

which completes the proof.
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Discussions on various GNN architectures: In our work we use the sum aggregation, and all results are still valid for the
weighted average aggregation. In particular, all our proofs (such as the proof of Theorem A.2) hold almost verbatimly for the
average aggregation. The attention aggregation (Veličković et al., 2017) has stronger separation power, which implies that
all universal approximation results still hold. Moreover, all the counter examples for MI-LCQPs work for every aggregation
approach, since the color refinement in Algorithm 1 is implemented on multisets, with separation power stronger than or
equal to all aggregations of neighboring information.

D. Characterization of GNN-analyzability and GNN-solvability
This section provides a detailed discussion of these conditions for MI-LCQP graphs, as defined in Section 4.3.

D.1. Relationship between GNN-analyzability and GNN-solvability

We first prove that GNN-solvability implies GNN-analyzability but they are not equivalent.

Proposition D.1. If GMI-LCQP ∈ Gm,n
MI-LCQP is GNN-solvable, then it is also GNN-analyzable.

Proof. Let (I,J ) be the final stable partition of V ∪ W generated by WL test on GMI-LCQP without collision, where
I = {I1, I2, . . . , Is} is a partition of V = {1, 2, . . . ,m} and J = {J1, J2, . . . , Jt} is a partition of W = {1, 2, . . . , n}.
Since we assume that GMI-LCQP is GNN-insolvable, we have t = n and |J1| = |J2| = · · · = |Jn| = 1. Then for any
q, q′ ∈ {1, 2, . . . , t}, the submatrix (Qjj′)j∈Jq,j′∈Jq′ is a 1× 1 matrix and hence has identical entries.

Consider any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t}. Suppose that the color positioning is stabilized at the L-th iteration of
WL test. Then for any i, i′ ∈ Ip, we have

CL,V
i = CL,V

i′

=⇒
{{

hash
(
CL−1,W

j , Aij

)
: j ∈ NW

i

}}
=

{{
hash

(
CL−1,W

j , Ai′j

)
: j ∈ NW

i

}}
=⇒ {{Aij : j ∈ Jq}} = {{Ai′j : j ∈ Jq}} ,

which implies that the submatrix (Aij)i∈Ip,j∈Jq has identical entries since |Jq| = 1. Therefore, GMI-LCQP is GNN-
analyzable.

Proposition D.2. There exist GNN-analyzable instances in Gm,n
MI-LCQP that are not GNN-solvable.

v1

v2

w1

w2

w3 Initialization l = 1 l = 2

The WL test (Algorithm 1)MI-LCQP-graph

min 1
2x

2
2 + x1 + x2 + x3

s.t. x1 + x3 ≤ 1

x1 − x2 + x3 ≤ 1

0 ≤ x1, x2, x3 ≤ 1

x1, x2, x3 ∈ Z

MI-LCQP problem

Figure 6. Example for proving Proposition D.2

Proof. Consider the example in Figure 6, for which the final stable partition is I = {{1}, {2}} and J = {{1, 3}, {2}}. It is
not GNN-solvable since the class {1, 3} in J has two elements. However, it is GNN-analyzable since A11 = A13 = 1 and
A21 = A23 = 1.

D.2. Frequency of GNN-analyzability and GNN-solvability

It can be proved that a generic MI-LCQP-graph in Gm,n
MI-LCQP is GNN-solvable almost surely under some mild conditions.

Intuitively, if c ∈ Rn is randomly sampled from a continuous distribution with density, then almost surely it holds that
xj ̸= xj′ for any j ̸= j′, which implies that the vertices in W have different colors initially and always, if there are no
collisions of hash functions.
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Proposition D.3. Let P be a probability measure over GMI-LCQP such that the marginal distribution Pc of c ∈ Rn has density.
Then P[GMI-LCQP ∈ Gm,n

solvable] = 1.

Proof. Since the marginal distribution Pc has density, almost surely we have for any j ̸= j′ that

cj ̸= cj′ =⇒ C0,W
j ̸= C0,W

j′ =⇒ Cl,W
j ̸= Cl,W

j′ , ∀ l ≥ 0,

where we assumed that no collisions happen in hash functions. Therefore, any j, j′ ∈ W with j ̸= j′ are not the in same
class of the final stable partition (I,J ), which proves the GNN-solvability.

As a direct corollary of Proposition D.1 and Proposition D.3, a generic MI-LCQP-graph in Gm,n
MI-LCQP must also be GNN-

analyzable.

Corollary D.4. Let P be a probability measure over GMI-LCQP such that the marginal distribution Pc of c ∈ Rn has density.
Then P[GMI-LCQP ∈ Gm,n

analyzable] = 1.

Frequency of GNN-friendly instances in practice. While MI-LCQPs are almost surely GNN-solvable under some assump-
tion, however, in practice, particularly with manually designed instances (as opposed to randomly generated ones), hard
instances (GNN-insolvable, or even inanalyzable) does occur. We performed experiments on QPLIB (https://qplib.zib.de/).
In this dataset, 19 out of 96 binary-variable linear constraint instances are GNN-insolvable. Furthermore, when coefficients
are quantized (which increases the level of symmetry in the dataset), the ratio of GNN-insolvable instances increases. (shown
in the table below)

Quantization refers to rounding continuous or high-precision values to discrete levels. For example, rounding coefficients of
QP instances to the nearest integer reduces precision but can simplify analysis and potentially uncover additional properties.
In our study, we examine instances at different quantization step sizes (0.1, 0.5, and 1).

While GNN-insolvable instances are generally challenging for GNNs, a significant proportion of these hard instances
are GNN-analyzable. For example, with a quantization step size of 1 (rounding coefficients to integers), 36 out of 63
GNN-insolvable instances are GNN-analyzable. According to our theorems, GNNs can at least predict feasibility and
boundedness (objective value) for such instances. Detailed results are as follows:

Table 2. Frequency of GNN-analyzability and solvability
Original data set Step size 0.1 Step size 0.5 Step size 1

Total 96 96 96 96
GNN-insolvable 19 23 42 63
GNN-insolvable but analyzable 0 1 19 36

How to handle bad instances? If a dataset contains a significant proportion of GNN-insolvable or GNN-inanalyzable
instances (highly symmetric structures), we suggest two potential approaches: (I) Adding features: Introducing additional
features can differentiate nodes in symmetric graphs. For example, adding a random feature to nodes with identical attributes
ensures they are no longer symmetric (Sato et al., 2021). (II) Using higher-order GNNs: These models can distinguish
nodes that standard message-passing GNNs cannot, enhancing their expressive power (Morris et al., 2019). In particular,
we highlight the potential of k-hop GNNs (Feng et al., 2022), which have greater expressive power than message-passing
GNNs (MP-GNNs). In the proof of Proposition 4.2 (Appendix B), we construct MI-LCQP instances with different optimal
objective values that MP-GNNs cannot distinguish. However, 3-hop GNNs are able to distinguish them. When these
instances are scaled to graphs with 10 variables and 10 constraints (resulting in one 20-node connected graph vs. two disjoint
10-node graphs), 3-hop GNNs fail while 5-hop GNNs succeed. This observation is investigated in (Chen et al., 2025) on
general graphs and suggests that increasing k reduces the number of indistinguishable cases and may enhance solvability.

E. Extension to quadratically constrained quadratic programs
A general quadratically constrained quadratic programming (QCQP) is given by

min
x∈Rn

1

2
x⊤Qx+ c⊤x, s.t.

1

2
x⊤Pix+ a⊤i x ≤ bi, 1 ≤ i ≤ m, l ≤ x ≤ u, (19)
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where Q,Pi ∈ Rn×n are symmetric, c, ai ∈ Rn, bi ∈ R, l ∈ (R ∪ {−∞})n, and u ∈ (R ∪ {+∞})n. We denote
A =

[
a1 a2 · · · am

]⊤ ∈ Rm×n for consistent notation with (2).

E.1. Graph representation and GNNs for QCQPs

Graph representation for QCQPs The QCQP-graph for representing (19) is based on the LCQP-graph introduced
in Section 2. More specifically, The QCQP graph can be constructed by incorporating the information from P =
(P1, P2, . . . , Pm) into the LCQP graph:

• The multiset {{i, j, j′}} is viewed as a hyperedge with weight (Hi)jj′ for each i ∈ V and j, j′ ∈ W , where j = j′ is
allowed.

We use Gm,n
QCQP to denote the set of all QCQP-graphs with m constraints and n variables.

GNNs for solving QCQP Note GNNs on LCQP-graphs that iterate vertex features with message-passing mechanism,
which does not naturally adapt to the hyperedges in QCQP graphs. Thus, one idea is to add edge features for each pair
(i, j), i ∈ V, j ∈ W . We describe the GNN architecture for QCQP tasks in detail as follows.

The initial layer computes node features s0i , t
0
j and edge features e0ij via embedding:

• s0i = fV
0 (vi) for i ∈ V ,

• t0j = fW
0 (wj) for j ∈ W , and

• e0ij = fE
0 (Aij) for i ∈ V, j ∈ W .

The l-th message-passing layers (l = 1, 2, . . . , L) update the node features using neighbors’ information:

• sli = fV
l

(
sl−1
i ,

∑
j∈W gVl (tl−1

j , el−1
ij )

)
for i ∈ V ,

• tlj = fW
l

(
tl−1
j ,

∑
i∈V gWl (sl−1

i , el−1
ij ),

∑
j′∈W Qjj′g

Q
l (tl−1

j′ )
)

for j ∈ W , and

• elij = fE
l

(
el−1
ij ,

∑
j′∈W (Pi)jj′g

E
l (t

l−1
j′ )

)
for i ∈ V, j ∈ W .

Finally, there are two types of output layers. The graph-level output computes a single real number for the whole graph

• y = r1
(∑

i∈V sLi ,
∑

j∈W tLj
)
∈ R,

and the node-level output computes a vector y ∈ Rn with the j-th entry being

• yj = r2
(∑

i∈V sLi ,
∑

j∈W tLj , t
L
j

)
.

We use FQCQP (or FW
QCQP) to denote the collection of all message-passing GNNs with graph-level (or node-level) outputs

that are constructed by continuous fV
0 , fW

0 , fE
0 , fV

l , fW
l , fE

l , gVl , gWl , gEl , g
Q
l (1 ≤ l ≤ L), and r1 (or r2).

E.2. Universal Approximation of GNNs for QCQPs

For QCQPs, we still consider the three target mappings, i.e., the feasible mapping Φfeas : Gm,n
QCQP → {0, 1}, the optimal

objective value mapping Φobj : Gm,n
QCQP → R ∪ {±∞}, and the optimal solution mapping Φobj that computes the unique

optimal solution with the smallest ℓ2-norm of feasible and bounded QCQPs with Q,Pi ⪰ 0, i = 1, 2, . . . ,m. The main
results that GNNs can universally approximate these three target mappings are stated as follows.

Assumption E.1. P is a Borel regular probability measure on Gm,n
QCQP

6.
6The space Gm,n

QCQP is equipped with the subspace topology induced from the product space
{
(A, b, c,Q, P, l, u, ◦) : A ∈ Rm×n, b ∈

Rm, c ∈ Rn, Q ∈ Rn×n, P ∈ (Rn×n)m, l ∈ (R∪{−∞})n, u ∈ (R∪{+∞})n
}

, where all Euclidean spaces have standard Eudlidean
topologies, discrete spaces {−∞} and {+∞} have the discrete topologies, and all unions are disjoint unions.
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Theorem E.2. Let P be a probability measure satisfying Assumption E.1 and P[Q ⪰ 0] = P[Pi ⪰ 0] = 1, i = 1, 2, . . . ,m.
For any ϵ > 0, there exists F ∈ FMI-LCQP such that

P
[
IF (GQCQP)>

1
2
̸= Φfeas(GQCQP)

]
< ϵ.

Theorem E.3. Let P be a probability measure satisfying Assumption E.1 and P[Q ⪰ 0] = P[Pi ⪰ 0] = 1, i = 1, 2, . . . ,m.
For any ϵ > 0, there exists F1 ∈ FQCQP such that

P
[
IF1(GQCQP)>

1
2
̸= IΦobj(GQCQP)∈R

]
< ϵ.

Additionally, if P[Φobj(GQCQP) ∈ R] = 1, for any ϵ, δ > 0, there exists F2 ∈ FQCQP such that

P [|F2(GQCQP)− Φobj(GQCQP)| > δ] < ϵ.

Theorem E.4. Let P be a probability measure satisfying Assumption E.1 and P[Q ⪰ 0] = P[Pi ⪰ 0] = 1, i = 1, 2, . . . ,m.
For any ϵ, δ > 0, there exists FW ∈ FW

QCQP such that

P [∥FW (GQCQP)− Φsol(GQCQP)∥ > δ] < ϵ.

Similarly, the proofs of Theorem E.2, E.3, and E.4 are based on showing that the WL test associated with the GNN classes
FQCQP and FW

QCQP have sufficiently strong separation power to distinguish QCQP problems with different properties. We
will present and prove such separation results (Theorem E.5, Theorem E.6, and Corollary E.7) in the rest of this subsection,
and do not repeat the same arguments as described in the Proof of Theorem 3.3 and Theorem 3.4.

We state in Algorithm 3 the WL test for QCQPs. For QCQP-graphs GQCQP, ĜQCQP ∈ Gm,n
QCQP,

1. We say GQCQP ∼ ĜQCQP if {{CL,V
i }}mi=0 = {{ĈL,V

i }}mi=0 and {{CL,W
j }}nj=0 = {{ĈL,W

j }}nj=0 hold for all L ∈ N and all
hash functions.

2. We say GQCQP
W∼ ĜQCQP if {{CL,V

i }}mi=0 = {{ĈL,V
i }}mi=0 and CL,W

j = ĈL,W
j , ∀ j ∈ {1, 2, . . . , n}, for all L ∈ N and

all hash functions.

Algorithm 3 The WL test for QCQP-Graphs

Require: A QCQP-graph G = (V,W,A,Q, P,HV , HW ) and iteration limit L > 0.
1: Initialize with

C0,V
i = hash(vi), C

0,W
j = hash(wj), C

0,E
ij = hash(Aij).

2: for l = 1, 2, · · · , L do
3: Refine the color

Cl,V
i = hash

Cl−1,V
i ,

∑
j∈W

hash
(
Cl−1,W

j , Cl−1,E
ij

) ,

Cl,W
j = hash

Cl−1,W
j ,

∑
i∈V

hash
(
Cl−1,V

i , Cl−1,E
ij

)
,
∑
j′∈W

Qjj′hash(Cl−1,W
j′ )

 ,

Cl,E
ij = hash

Cl−1,E
ij ,

∑
j′∈W

(Pi)jj′hash(Cl−1,W
j′ )

 .

4: end for
5: return The multisets containing all vertex colors {{CL,V

i }}mi=0, {{C
L,W
j }}nj=0.

Theorem E.5. Given GQCQP, ĜQCQP ∈ Gm,n
QCQP with Q, Q̂, Pi, P̂i ⪰ 0 for all i ∈ {1, 2, . . . ,m}, if GQCQP ∼ ĜQCQP, then

Φfeas(GQCQP) = Φfeas(ĜQCQP) and Φobj(GQCQP) = Φobj(ĜQCQP).
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Proof. We only show the proof of Φobj(GQCQP) = Φobj(ĜQCQP) and Φfeas(GQCQP) = Φfeas(ĜQCQP) will be a direct corollary.

Let GQCQP and ĜQCQP be the QCQP-graph associated to (19) and

min
x∈Rn

1

2
x⊤Q̂x+ ĉ⊤x, s.t.

1

2
x⊤P̂ix+ â⊤i x ≤ b̂i, 1 ≤ i ≤ m, l̂ ≤ x ≤ û, (20)

Suppose that there are no collisions of hash functions or their linear combinations when applying the WL test to G and
Ĝ and there are no strict color refinements in the L-th iteration. Since G and Ĝ are indistinguishable by the WL test,
after performing some permutation, there exist I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} that are partitions of
{1, 2, . . . ,m} and {1, 2, . . . , n}, respectively, such that the followings hold:

• CL,V
i = CL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• ĈL,V
i = ĈL,V

i′ if and only if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

• CL,W
j = CL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• CL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

• ĈL,W
j = ĈL,W

j′ if and only if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

The followings hold by the same arguments as in the proof of Theorem A.2:

• bi = b̂i and is constant over i ∈ Ip, for any p ∈ {1, 2, . . . , s}.

• (cj , lj , uj) = (ĉj , l̂j , ûj) and is constant over j ∈ Jq for any q ∈ {1, 2, . . . , t}.

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

j∈Jq
Aij =

∑
j∈Jq

Âij and is constant over i ∈ Ip.

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

i∈Ip
Aij =

∑
i∈Ip

Âij and is constant over j ∈ Jq .

• For any q, q′ ∈ {1, 2, . . . , t},
∑

j′∈Jq′
Qjj′ =

∑
j′∈Jq′

Q̂jj′ and is constant over j ∈ Jq .

Fix p ∈ {1, 2, . . . , s} and q, q′ ∈ {1, 2, . . . , t}. For any j, j′ ∈ Jq , we have

CL,W
j = CL,W

j′

=⇒
∑
i∈V

hash
(
CL−1,V

i , CL−1,E
ij

)
=

∑
i∈V

hash
(
CL−1,V

i , CL−1,E
ij′

)
=⇒

{{
CL,E

ij : i ∈ Ip

}}
=

{{
CL,E

ij′ : i ∈ Ip

}}
=⇒


 ∑

j′′∈W

(Pi)jj′′hash(CL−1,W
j′′ ) : i ∈ Ip




=


 ∑

j′′∈W

(Pi)j′j′′hash(CL−1,W
j′′ ) : i ∈ Ip




=⇒


 ∑

j′′∈Jq′

(Pi)jj′′ : i ∈ Ip


 =


 ∑

j′′∈Jq′

(Pi)j′j′′ : i ∈ Ip




=⇒
∑

j′′∈Jq′

∑
i∈Ip

(Pi)jj′′ =
∑

j′′∈Jq′

∑
i∈Ip

(Pi)j′j′′ .
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One can do a similar analysis for CL,W
j = ĈL,W

j′ and ĈL,W
j = ĈL,W

j′ where j, j′ ∈ Jq . This concludes that∑
j′∈Jq′

∑
i∈Ip

(Pi)jj′ =
∑

j′∈Jq′

∑
i∈Ip

(P̂i)jj′

is constant over j ∈ Jq .

Let x ∈ Rn be any feasible solution to (19) and define x̂ ∈ Rn via x̂j = yq = 1
|Jq|

∑
j′∈Jq

xj′ for j ∈ Jq. For any
p ∈ {1, 2, . . . , s}, it follows from

1

2
x⊤Pix+ a⊤i x ≤ bi, i ∈ Ip,

and Lemma A.4 that

1

Ip

∑
i∈Ip

b̂i =
1

Ip

∑
i∈Ip

bi ≥
1

2
x⊤

 1

|Ip|
∑
i∈Ip

Pi

x+

 1

Ip

∑
i∈Ip

ai

⊤

x

≥1

2
x̂⊤

 1

|Ip|
∑
i∈Ip

Pi

 x̂+

 1

Ip

∑
i∈Ip

ai

⊤

x̂ =
1

2
x̂⊤

 1

|Ip|
∑
i∈Ip

P̂i

 x̂+

 1

Ip

∑
i∈Ip

âi

⊤

x̂.

Note that for any i, i′ ∈ Ip and any q, q′ ∈ {1, 2, . . . , t}, we have

ĈL,V
i = ĈL,V

i′

=⇒
∑
j∈W

hash
(
ĈL−1,W

j , ĈL−1,E
ij

)
=

∑
j∈W

hash
(
ĈL−1,W

j , ĈL−1,E
i′j

)
=⇒

{{
ĈL,E

ij : j ∈ Jq

}}
=

{{
ĈL,E

i′j : j ∈ Jq

}}
=⇒


 ∑

j′∈W

(P̂i)jj′hash(ĈL−1,W
j′ ) : j ∈ Jq




=


 ∑

j′∈W

(P̂i′)jj′hash(ĈL−1,W
j′ ) : j ∈ Jq




=⇒


 ∑

j′∈Jq′

(P̂i)jj′ : j ∈ Jq


 =


 ∑

j′∈Jq′

(P̂i′)jj′ : j ∈ Jq




=⇒
∑
j∈Jq

∑
j′∈Jq′

(P̂i)jj′ =
∑
j∈Jq

∑
j′∈Jq′

(P̂i′)jj′ .

Therefore, it holds that

1

2
x̂⊤

 1

|Ip|
∑
i′∈Ip

P̂i′

 x̂ =
1

2
x̂⊤P̂ix̂, ∀ i ∈ Ip,

and hence that
1

2
x̂⊤Pix̂+ â⊤i x ≤ b̂i, ∀ i ∈ Ip.

We thus know that x̂ is a feasible solution to (12). In addition, we have

1

2
x⊤Qx+ c⊤x ≥ 1

2
x̂⊤Qx̂+ c⊤x̂ =

1

2
x̂⊤Q̂x̂+ ĉ⊤x̂,

which implies that Φobj(GQCQP) ≥ Φobj(ĜQCQP). The reverse direction Φobj(GQCQP) ≤ Φobj(ĜQCQP) is also true and we
can conclude that Φobj(GQCQP) = Φobj(ĜQCQP).
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Theorem E.6. For any GQCQP, ĜQCQP ∈ Gm,n
QCQP with Q, Q̂, Pi, P̂i ⪰ 0, i ∈ {1, 2, . . . ,m} that are feasible and bounded, if

GQCQP ∼ ĜQCQP, then there exists some permutation σW ∈ Sn such that Φsol(GQCQP) = σW (Φsol(ĜQCQP)). Furthermore,

if GQCQP
W∼ ĜQCQP, then Φsol(GQCQP) = Φsol(ĜQCQP).

Proof. Based on Theorem E.5, Theorem E.6 can be proved by the same arguments as in the proof of Lemma B.4 and
Corollary B.7 in Chen et al. (2023a), which is included in the proof of Theorem A.2.

Corollary E.7. For any GQCQP ∈ Gm,n
QCQP that is feasible and bounded and any j, j′ ∈ {1, 2, . . . , n}, if CL,W

j = CL,W
j′

holds for all L ∈ N+ and all hash functions, then Φsol(GQCQP)j = Φsol(GQCQP)j′ .

Proof. Let ĜQCQP be the QCQP-graph obtained from GQCQP by relabeling j as j′ and relabeling j′ as j. By Theorem E.6,
we have Φsol(GQCQP) = Φsol(ĜQCQP), which implies Φsol(GQCQP)j = Φsol(ĜQCQP)j = Φsol(GQCQP)j′ .

F. Potential extension to polynomial optimization
Beyond QCQPs, the hyperedge-based approach may extend to more complex settings such as polynomial optimization.
We outline a high-level idea: consider a monomial term Fj1,j2,...,jkxj1xj2 · · ·xjk in a polynomial objective or constraint.
If the term appears in the objective, we model it as a hyperedge {{wj1 , wj2 , . . . , wjk}}; if it appears in the i-th constraint,
we model it as {{vi, wj1 , wj2 , . . . , wjk}}. We conjecture that GNNs operating on such hypergraphs can approximate key
properties of convex polynomial optimization. As supporting evidence, our QCQP analysis in Appendix E shows that
second-order hypergraph GNNs already achieve universal approximation for core properties, suggesting promise for broader
generalizations.

G. Implementation details and additional numerical results
In this section, we explain how we formulate the optimization problems used in the numerical experiments and how to
randomly generate problem instances. We mainly follow the settings of OSQP (Stellato et al., 2020) with slight modifications.

G.1. Random LCQP and MI-LCQP instance generation

Generic LCQP and MI-LCQP generation. For all instances generated and used in our numerical experiments, we set
m = 10 and n = 50, which means each instance contains 10 constraints and 50 variables. The sampling schemes of problem
components are described below.

• Matrix Q in the objective function. We sample sparse, symmetric and positive semidefinite Q using the
make_sparse_spd_matrix function provided by the scikit-learn Python package, which imposes sparsity
on the Cholesky factor. We set the alpha value to 0.95 so that there will be around 10% non-zero elements in the
resulting Q matrix.

• The coefficients c in the objective function: cj ∼ N (0, 0.12).

• The non-zero elements in the coefficient matrix: Aij ∼ N (0, 1). The coefficient matrix A contains 100 non-zero
elements. The positions are sampled randomly.

• The right hand side b of the linear constraints: bi ∼ N (0, 1).

• The constraint types ◦. We first sample equality constraints following the Bernoulli distribution Bernoulli(0.3). Then
other constraints takes the type ≤. Note that this is equivalent to sampling ≤ and ≥ constraints separately with equal
probability, because the elements in A and b are sampled from symmetric distributions.

• The lower and upper bounds of variables: lj , uj ∼ N (0, 102). We swap their values if lj > uj after sampling.

• (MI-LCQP only) The variable types are randomly sampled. Each type (continuous or integer) occurs with equal
probability.
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After instance generation is done, we collect labels, i.e., the optimal objective function values and optimal solutions, using
one of the commercial solvers.

LCQP instance generation for generalization experiments. In this setting, we only sample different coefficients c for
different LCQP instances. We sample other components only once, i.e., Q, A, b, l, u and ◦ in (2), and keep them constant
and shared by all instances. We also slightly adjust the distributions from which these components are sampled as described
below.

• Matrix Q. We follow the same sampling scheme as above.

• The coefficients c in the objective function: cj ∼ N (0, 1/n).

• The non-zero elements in the coefficient matrix: Aij ∼ N (0, 1/n). The coefficient matrix A contains 100 non-zero
elements. The positions are sampled randomly.

• The right hand side b of the linear constraints: bi ∼ N (0, 1/n).

• The constraint types ◦. We follow the same sampling scheme as above.

• The lower and upper bounds of variables: lj , uj ∼ N (0, 1). We swap their values if lj > uj after sampling.

For the generalization experiments, we first generate 25,000 LCQP instances for training, and then take the first
100/500/25,00/5,000/10,000 instances to form the smaller training sets. This ensures that the smaller training sets are subsets
of the larger sets. The test set contains 1,000 instances that are generated separately.

Portfolio optimization formulation and instance generation. The portfolio optimization problems are formulated as
below.

min
x,y

1

2
x⊤Dx+

1

2
y⊤y − µ⊤x (21)

s.t. y = Fx, 1⊤x = 1, x ≥ 0

Here x ∈ Rs and y ∈ Rt are the optimization variables, D ∈ Rs×s is a diagonal matrix with non-negative diagonal elements,
F ∈ Rt×s is the factor modeling matrix. We generate portfolio optimization instances following the scheme below.

• We set s = 50 and t = 5, resulting in LCQP instances with m = 6 constraints and n = 55 variables.

• The diagonal elements of D are independently sampled from uniform distribution: Dii ∼ U(0,
√
t). D is then used to

form the matrix Q =

(
D

It

)
.

• The coefficients µ in the objective function: µj ∼ N (0, 1).

• The non-zero elements in the factor modeling matrix F : Fij ∼ N (0, 1). The coefficient matrix F contains 25 non-zero
elements. The positions are sampled randomly.

SVM optimization formulation and instance generation. The support vector machine optimization problems are
formulated as below.

min
x,t

1

2
x⊤x+ λ1⊤t (22)

s.t. t ≥ diag(y)Dx+ 1, t ≥ 0

Here x ∈ Rs and t ∈ Rt are the optimization variables, D ∈ Rt×s is the data matrix, y ∈ Rt is the binary label vector, and
λ is a hyperparameter which we set to 1/2. We generate SVM optimization instances following the scheme below.

• We set s = 5 and t = 50.

• The non-zero elements in the data matrix D: Dij ∼ N (−0.1, 0.1) for i ≤ t/2; Dij ∼ N (0.1, 0.1) otherwise. The
coefficient matrix D contains 100 non-zero elements. The positions are sampled randomly.

• The binary label vector y: yi = −1 for i ≤ t/2; yi = 1 otherwise.
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Figure 7. Training and test errors when training GNNs with an embedding size of 512 on different numbers of LCQP problem instances to
fit Φobj and Φsol.

G.2. Details of GNN implementation

We implement GNN with Python 3.9 and TensorFlow 2.16.1 (Abadi et al., 2016). Our implementation is built by extending
the GNN implementation in Gasse et al. (2019).7 The embedding mappings fV

0 , fW
0 are parameterized as linear layers

followed by a non-linear activation function; {fV
l , fW

l , gVl , gWl , gQl }Ll=1 and the output mappings r1, r2 are parameterized
as 2-layer multi-layer perceptrons (MLPs) with respective learnable parameters. The parameters of all linear layers are
initialized as orthogonal matrices. We use ReLU as the activation function.

In our experiments, we train GNNs with embedding sizes of 64, 128, 256, 512 and 1,024. We show in Table 3 the number of
learnable parameters in the resulting network with each embedding size.

Table 3. Number of learnable parameters in GNN with different embedding sizes.

Embedding size Number of parameters

64 112,320
128 445,824
256 1,776,384
512 7,091,712

1,024 30,436,352

G.3. Details of GNN training

We adopt Adam (Kingma & Ba, 2014) to optimize the learnable parameters during training. We use an initial learning rate
of 5× 10−4 for all networks. We set the batch size to 2,500 or the size of the training set, whichever is the smaller. In each
mini-batch, we combine the graphs into one large graph to accelerate training. All experiments are conducted on a single
NVIDIA Tesla V100 GPU.

We use mean squared relative error as the loss function, which is defined as

LG(FW ) = EG∼G

[
∥FW (G)− Φ(G)∥22
max(∥Φ(G)∥, 1)2

]
, (23)

where FW is the GNN, G is a mini-batch sampled from the whole training set, G is a problem instance in the mini-batch G,
and Φ(G) is the label of instance G. During training, we monitor the average training error in each epoch. If the training
loss does not improve for 50 epochs, we will half the learning rate and reset the parameters of the GNN to those that yield
the lowest training error so far. We observe that this helps to stabilize the training process significantly and can also improve
the final loss achieved.

7See https://github.com/ds4dm/learn2branch.
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G.4. Generalization results on LCQP

Figure 7 shows the variations of training and test errors when training GNNs of an embedding size of 512 on different
numbers of LCQP problem instances. We observe similar trends for both prediction tasks, that the generalization gap
decreases and the generalization ability improves as more instances are used for training. This result implies the potential of
applying trained GNNs to solve QP problems that are unseen during training but are sampled from the same distribution, as
long as enough training instances are accessible and the instance distribution is specific enough (in contrast to the generic
instances used in experiments of Figure 2 and 3).

G.5. Details for on Maros-Meszaros test set

To show the fitting ability of GNNs on more realistic QP problems, we train GNNs on the Maros and Meszaros Convex
Quadratic Programming Test Problem Set (Maros & Mészáros, 1999), which contains 138 quadratic programs that are
designed to be challenging. We apply equilibrium scaling to each problem and also scale the objective function so that the Q
matrix will not contain too large elements. We collect the optimal solutions and objective values of the test instances using an
open-sourced QP solver called PIQP (Schwan et al., 2023), which is benchmarked to achieve best performances on the Maros
Meszaros test set among many other solvers (Caron et al., 2024). PIQP solves 136 problem instances successfully, which
are then used to train four GNNs with embedding size of 64, 128, 256, 512. The training protocol follows the experiments
using synthesized QP instances in Section 5.
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