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A whimsical scene where a llama, в массивных круглых солнечных очках, уверенно стоит на 
металлической палубе космического корабля. نوكلا سكعی امم ،ةعملا ةیضف ةعملب املالا رفاوح تحت دوجوملا حطسلا عملی 

. .ةنیفسلاب طیحی يذلا موجنلاب عصرملا Im Hintergrund erhebt sich die Erde groß, un remolino de océanos azules y nubes 
blancas, proporcionando un impresionante contraste con el diseño elegante y futurista de la nave espacial.

Figure 1: Generated image samples from LDGen. We present a composed prompt with each language in a different
color, along with the corresponding image that exhibits high aesthetic quality and text-image alignment.

Abstract

In this paper, we introduce LDGen, a novel001
method for integrating large language mod-002
els (LLMs) into existing text-to-image diffu-003
sion models while minimizing computational004
demands. Traditional text encoders, such as005
CLIP and T5, exhibit limitations in multilin-006
gual processing, hindering image generation007
across diverse languages. We address these008
challenges by leveraging the advanced capa-009
bilities of LLMs. Our approach employs a010
language representation strategy that applies011
hierarchical caption optimization and human012
instruction techniques to derive precise seman-013
tic information,. Subsequently, we incorpo-014
rate a lightweight adapter and a cross-modal015
refiner to facilitate efficient feature alignment016
and interaction between LLMs and image fea-017

tures. LDGen reduces training time and enables 018
zero-shot multilingual image generation. Ex- 019
perimental results indicate that our method sur- 020
passes baseline models in both prompt adher- 021
ence and image aesthetic quality, while seam- 022
lessly supporting multiple languages. 023

1 Introduction 024

Text-to-image (T2I) models aim to generate im- 025

ages from text descriptions. (Rombach et al., 2022; 026

Podell et al., 2023; Saharia et al., 2022; Bai et al., 027

2024; Nichol et al., 2022). Thus, natural language 028

descriptions serve as a critical bridge for conveying 029

user intent and generating visually appealing im- 030

ages that accurately capture the intended semantic 031

information. Despite the impressive performance 032

demonstrated by advanced text-to-image models, 033
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their reliance on text encoders such as CLIP (Rad-034

ford et al., 2021) and T5 (Raffel et al., 2020), which035

are primarily tailored for English, constrains their036

multilingual capabilities due to the linguistic limi-037

tations of training datasets.038

Recently, large language models (Bai et al.,039

2023; Liu et al., 2024a; Achiam et al., 2023; GLM040

et al., 2024; Dubey et al., 2024) have achieved041

notable success in the field of natural language pro-042

cessing. These models possess advanced language043

comprehension abilities, enabling them to deeply044

analyze prompts and provide rich, precise seman-045

tic guidance for image generation. Furthermore,046

many LLMs (Team et al., 2024; Bai et al., 2023;047

Achiam et al., 2023) are trained on multilingual048

corpora, granting them the ability to support mul-049

tiple languages. These advantages have motivated050

researchers to explore the use of LLMs in text-051

to-image generation tasks. However, some prior052

approaches (Xie et al., 2024; Ma et al., 2024) have053

attempted to directly replace text encoders with054

LLMs, leading to unstable training processes and055

significant challenges for researchers with limited056

computational resources. For instance, ELLA (Hu057

et al., 2024) and LLM4GEN (Liu et al., 2024c) seek058

to align LLMs with the CLIP model but require ex-059

tensive training data to adapt LLMs representations060

within diffusion models. These methods often treat061

LLMs features as mere text conditions, thereby062

failing to fully exploit the comprehensive language063

understanding capabilities of LLMs. As shown in064

Appendix A, directly employing LLMs for image065

descriptions can introduce unintended content, re-066

sulting in semantic biases and adversely affecting067

the output quality of diffusion models.068

To effectively address these challenges and in-069

tegrate large language models into existing text-070

to-image tasks under resource constraints, we071

propose LDGen. Our approach enables the ef-072

ficient incorporation of LLM into current diffu-073

sion models based on T5/CLIP text encoders with074

minimal computational demands. As shown in075

Fig. 2, we introduce a robust language repre-076

sentation strategy (LRS). By utilizing hierarchi-077

cal caption optimization and human instruction078

strategies, LRS fully harnesses the instruction-079

following, in-context learning, and reasoning ca-080

pabilities of LLM to accurately derive textual in-081

formation, thereby enhancing semantic alignment082

between text and image.083

Furthermore, inspired by recent advancements084

in alignment methods (Hu et al., 2024; Zhao et al.,085

2024; Tan et al., 2024), we employ a lightweight 086

adapter to align LLM features with T5-XXL, sub- 087

stantially reducing the training time required for 088

text-image alignment. Additionally, we introduce 089

a cross-modal refiner to improve text comprehen- 090

sion and facilitate interaction between LLM and 091

image features. After alignment, the LLM features 092

processed through this refiner exhibit enhanced 093

representational capability. Specifically, the cross- 094

modal refiner integrates self-attention layers, cross- 095

attention layers, and feed-forward neural networks. 096

By employing this method, LLM can be effec- 097

tively integrated into existing diffusion models with 098

minimal training. Moreover, the multilingual capa- 099

bilities of LLM are preserved, enabling zero-shot 100

multilingual image generation without the neces- 101

sity for training on multilingual text-image datasets. 102

Our experimental results demonstrate that by lever- 103

aging the intrinsic features of LLM alongside our 104

innovative modules, LDGen surpasses the prompt 105

comprehension performance of advanced baseline 106

models while seamlessly supporting multiple lan- 107

guages. As shown in Fig. 1, we present several 108

generated images. Our contributions can be sum- 109

marized as follows: 110

• We present LDGen, which efficiently inte- 111

grates LLM into existing text encoder-based 112

diffusion models and supports zero-shot mul- 113

tilingual text-to-image generation. 114

• We propose a language representation strategy 115

that leverages the capabilities of LLM through 116

hierarchical caption optimization and human 117

instruction strategies. 118

• We introduce LLM alignment and a cross- 119

modal refiner to achieve LLM feature align- 120

ment and enhance interaction between LLM 121

and image features, enhancing the semantic 122

consistency of conditions. 123

2 Related Work 124

Text-to-Image. Recently, denoising diffusion 125

probabilistic models (DDPM) (Ho et al., 2020) 126

have achieved breakthroughs in image synthesis. 127

By mapping the image pixels to a more compact 128

latent space where a denoising network is trained 129

to learn the reverse diffusion process, prominent 130

text-guided generation models have achieved im- 131

pressive results in terms of image quality and se- 132

mantic fidelity. Earlier methods (Rombach et al., 133

2022; Podell et al., 2023) based on the UNet have 134

been tremendously successful in various generative 135
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Reference Caption

"The image features a cityscape 
with a large, old, and colorful 
building situated on a hill. The 
building has a distinct red roof 
and a tall tower, which adds to 
its architectural charm. The 
city is surrounded by a forest, 
creating a picturesque and 
serene atmosphere. 

……

……

The style of the image is black 
and white, which gives it a 
timeless and classic feel. The 
contrast between the black and 
white tones and the vibrant 
colors of the building and the 
surrounding landscape creates a 
visually striking composition.”

Refined Caption

Caption-01 
Average noun count: 4 

Caption-02 
Average noun count: 8  

Caption-03 
Average noun count: 21  

Caption-04 
Average noun count: 45 

Caption-05 
Average noun count: 118 

Caption-06 
Average noun count: 234  

“Describe the image based on the provided caption. 
If the caption is simple (less than 25 words), make 
the output as similar to the input as possible. 
Otherwise, if the caption is not simple (more than 25 
words), slightly refine it to better align with the 
style in which the user writes prompts.” 

Human Instruction

LRS
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Figure 2: Overview of LDGen. The dashed box shows our language representation strategy, with the bottom is our
LLM alignment and cross-modal refiner training process. The detailed design of the cross-modal refiner is shown in
the green box on the right.

tasks. With the success of the transformer architec-136

ture in various fields, diffusion transformer-based137

methods (Peebles and Xie, 2023; Gao et al., 2023)138

are notably developing. Techniques like FLUX139

(Labs, 2024) and SD3 (Esser et al., 2024) intro-140

duced the design of MMBlock to further align141

text and images during training. PixArt-α (Chen142

et al., 2023) explored efficient text-to-image train-143

ing schemes and achieved the first Transformer-144

based T2I model capable of generating high-quality145

images at 1024 resolution. Models like Lumina-146

T2X (Gao et al., 2024) and GenTron (Chen et al.,147

2024b) extended diffusion transformers from im-148

age generation to video generation. Playgroundv3149

(PG3) (Liu et al., 2024b) proposed a comprehensive150

VAE training, caption annotation, and evaluation151

strategy.152

Large Models in T2I. The text encoder plays a153

crucial role in the text-to-image task. In the initial154

LDM (Rombach et al., 2022), CLIP (Radford et al.,155

2021) was used as the text encoder, providing the156

diffusion model with text comprehension capabili-157

ties. Later, Imagen (Saharia et al., 2022) discovered158

that using a large language model with an encoder-159

only structure like T5 (Raffel et al., 2020) signif-160

icantly enhanced the model’s text understanding.161

Following this, several works (Chen et al., 2023,162

2024a; Sun et al., 2024; Betker et al., 2023; Esser163

et al., 2024) utilized the T5 series of models as text164

encoders during pre-training. Additionally, some165

other works (Liu et al., 2024c; Hu et al., 2024; Zhao166

et al., 2024; Tan et al., 2024), attempted to adapt167

the T5 and LLMs (Dubey et al., 2024) to the base 168

models pre-trained based on CLIP. Considering 169

the recent success of decoder-only large language 170

models, some works have sought to apply them 171

in image generation frameworks. PG3 (Liu et al., 172

2024b) focused on model structure, believing that 173

knowledge in LLMs spans all layers, thus replicat- 174

ing all Transformer blocks from the LLM. LiDiT 175

(Ma et al., 2024), from an application perspective, 176

designed an LLM-infused Diffuser framework to 177

fully exploit the capabilities of LLMs. Sana (Xie 178

et al., 2024), focusing on efficiency, directly used 179

the final layer of LLM features as text encoding 180

features. Kolors (Team, 2024) adapts LLMs for use 181

with SDXL by simply replacing the original CLIP 182

text encoder with ChatGLM. These efforts collec- 183

tively demonstrate that LLMs still hold significant 184

research potential in the field of image generation. 185

3 Method 186

3.1 Motivation 187

Text encoding is a pivotal component in text-to- 188

image models, significantly influencing the quality 189

of the generated images. As shown in Fig. 3, the 190

CLIP (Radford et al., 2021) and T5 (Raffel et al., 191

2020) series models currently dominate the field 192

of text encoders. However, the rapid advancement 193

of large language models (Achiam et al., 2023; 194

Team et al., 2024) is noteworthy. These models 195

employ autoregressive language modeling tech- 196

niques (Yang, 2019; Black et al., 2022) in unsuper- 197

vised learning. Through processing vast amounts of 198
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text data, they are beginning to exhibit remarkable199

reasoning and contextual understanding capabili-200

ties. They excel across a range of textual tasks. In201

particular, LLMs trained on multilingual corpora202

have demonstrated substantial promise in text-to-203

image generation tasks. Nonetheless, a critical204

challenge persists: many existing models rely on205

CLIP/T5 series text encoders, which are predom-206

inantly trained on English corpora and perform207

effectively. Transitioning to LLMs by replacing the208

existing text encoders and retraining these models209

from scratch would involve considerable resource210

expenditures. To address this issue, we employ211

LDGen, which seamlessly integrates LLMs into212

existing diffusion models based on T5/CLIP text213

encoders, utilizing only a small portion of the initial214

training resources. These new models not only out-215

perform the originals but also enable zero-shot text-216

to-image generation across multiple languages.217

3.2 Language Representation Strategy218

Based on the above analysis, while large language219

models offer substantial advantages, they still en-220

counter several significant challenges. As dialogue221

models, LLMs employing a decoder-only archi-222

tecture rely on autoregressive language modeling223

methods. These models learn linguistic patterns224

through unsupervised training on large-scale text225

datasets by predicting the subsequent word in a226

sequence. However, this characteristic often makes227

it difficult to control the model outputs, leading228

to producing a considerable amount of redundant229

information.230

We observe that both LiDiT (Ma et al., 2024)231

and Sana (Xie et al., 2024) utilize human instruc-232

tions to help LLMs produce more stable content.233

However, as shown in Fig. 4, these methods can234

conflict with the original captions. Incorrect human235

instructions may cause outputs to deviate from fac-236

tual accuracy and generate fabricated information,237

thereby disrupting text-image alignment and poten-238

tially decreasing the effectiveness of training.239

To address these challenges, we employ a hi-240

erarchical captioning strategy. This approach is241

complemented by extensive human instruction op-242

timization to achieve optimal language represen-243

tation and enhance semantic alignment between244

text and images. First, similar to PG3’s (Liu et al.,245

2024b) multi-level image description technique,246

we utilize the Internvl2-40B model (Chen et al.,247

2024d,c) to re-caption all image data. We gener-248

ate six captions of varying lengths, ranging from249

Figure 3: Distribution of text encoder and supported lan-
guages. English-based CLIP/T5 series models remain
the primary text encoders.

Figure 4: The red words in Sana’s generated result
highlight elements that do not align with the image.
Providing incorrect instructions can change the original
caption, potentially creating inaccurate descriptions.

simple to detailed, to comprehensively capture the 250

image content. For detailed captioning prompts, 251

please refer to Appendix Fig. 8, HI-05. During 252

training, these hierarchical captions are randomly 253

sampled and input into the LLM. As shown in 254

Tab. 1, compared to original single-caption meth- 255

ods, LRS enables the model to more effectively 256

capture the hierarchical structure of language con- 257

cepts while maintaining a high CLIP score. 258

For these complex and varied-length hierarchi- 259

cal captions, we further refined human instructions 260

to ensure that the LLM’s outputs maintain a high 261

CLIP score and avoid generating non-existent infor- 262

mation. As shown in Tab. 1, the LLM surprisingly 263

enhances the CLIP scores of the original captions, 264

revealing that our language representation strat- 265

egy effectively extracts semantic information and 266

enhances text-to-image alignment during model 267

training. To support multilingual text-to-image gen- 268

eration, we evaluated several mainstream LLMs. 269

We selected Qwen (Yang et al., 2024) as our pre- 270

ferred model because it is one of the few trained 271

on multilingual corpora and exhibits exceptional 272

performance in text-related tasks. 273

3.3 LLM Alignment 274

For pre-trained diffusion models (Chen et al., 2023; 275

Podell et al., 2023), aligning the original text en- 276

coder with LLMs features using linear layers is 277

challenging. This is primarily due to the signif- 278
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Table 1: Human Instruction Comparison. Each entry has the CLIP-Score (Hessel et al., 2021) on the left and the
LongCLIP-Score (Zhang et al., 2024) on the right, with the average word number is in gray brackets (.). Original
refers to the initial caption. "HI" indicates outputs from various Human Instruction strategies. The highest scores
are highlighted in bold, while the second-highest scores are underlined. Scores that surpass the original captions are
marked with a gray background .

Original Ours No-HI HI-01 HI-02 HI-03 HI-04 HI-05
Caption-1 27.65/29.53 27.66 / 29.74 22.21/27.44 22.79/27.95 23.33/30.04 22.61/26.59 23.06/29.61 22.40/27.97

(4.48) (7.63) (204.29) (335.19) (87.52) (171.14) (254.19) (224.43)
Caption-2 29.65/31.49 29.66 / 31.63 22.89/28.35 23.76/30.31 24.47/31.78 23.32/28.89 24.07/31.25 23.41/29.93

(8.99) (11.67) (173.66) (307.68) (70.00) (172.76) (245.64) (214.01)
Caption-3 30.20/33.24 29.50/32.92 23.75/29.52 24.40/31.05 25.29/32.77 24.31/30.31 24.72/32.37 24.33/31.03

(21.71) (25.25) (183.91) (306.33) (80.78) (194.68) (226.49) (192.64)
Caption-4 27.53/34.64 27.13/33.76 24.56/30.03 24.67/31.49 25.33/33.35 24.63/30.42 25.01/33.25 24.89/32.19

(45.16) (46.96) (249.35) (329.49) (116.45) (253.19) (205.26) (167.07)
Caption-5 25.39/34.43 25.40 / 33.74 23.87/30.33 24.86/31.78 25.37/33.37 24.38/29.65 25.22/33.52 25.30/33.20

(118.06) (106.18) (304.45) (350.39) (183.10) (334.34) (205.27) (177.34)
Caption-6 25.42/34.65 25.48 /33.96 23.72/31.09 25.05/32.18 25.36/33.60 24.26/30.45 25.38/33.89 25.59/33.91

(118.06) (106.18) (304.45) (350.39) (183.10) (334.34) (205.27) (177.34)

icant differences in the output feature spaces of279

T5/CLIP encoders and LLMs. As a result, directly280

modifying and training the existing model structure281

can lead to instability. To address this, we employ282

a two-step approach: first, we align the feature283

spaces, then fine-tune the model weights to adapt284

to the new feature space. This method significantly285

reduces training time.286

Specifically, we first multiply the LLM output by287

a small coefficient to match the numerical range of288

T5. This effectively speeds up the feature align-289

ment training. Next, similar to previous meth-290

ods (Tan et al., 2024), we design a three-layer291

encoder-decoder Transformer adapter to align the292

feature spaces of the T5 encoder and LLM output.293

During the adapter training, we utilize the follow-294

ing alignment loss functions: λ1∗Lcos+λ2∗LMSE.295

The cosine similarity loss aligns the feature space296

directions, and mean squared error (MSE) loss can297

further enhance alignment accuracy in terms of298

numerical range.299

By optimizing the alignment loss, we achieve300

a rough alignment between LLM and T5 output301

feature spaces. This allows us to quickly integrate302

the LLM into the pre-trained diffusion model, en-303

hancing its overall performance and adaptability.304

3.4 Cross-Modal Refiner305

To improve text comprehension and facilitate inter-306

action between LLM features and image features,307

we introduce a lightweight module called the cross-308

modal refiner. This module employs a sequence309

of components to optimize and refine LLM fea-310

ture representations, enabling efficient integration 311

of text and image features. As shown in Fig. 2, 312

it includes elements such as self-attention mech- 313

anisms, cross-attention mechanisms, feedforward 314

neural networks, residual connections, normaliza- 315

tion layers, and learnable scaling factors. 316

To enhance the interaction between image and 317

text features, the cross-attention layer serves as a 318

pivotal component of modal interaction. This layer 319

utilizes LLM features as queries, with latent im- 320

age features acting as keys and values, to facilitate 321

deep interaction between text and image elements. 322

This design enables the refinement and adjustment 323

of text features based on relevant image informa- 324

tion, thereby enhancing the model’s understanding 325

of cross-modal content. Learnable scaling factors 326

allow the model to gradually balance between orig- 327

inal and optimized features during training, ensur- 328

ing a seamless transition from pre-trained weights 329

to new LLM input features. This mechanism ef- 330

fectively integrates the original LLM’s robust se- 331

mantic understanding into the pre-trained models, 332

boosting overall performance. 333

The cross-modal refiner module preserves the 334

original LLM features and effectively integrates 335

image-related information to produce richer, se- 336

mantically aligned conditional representations. 337

This approach allows us to efficiently integrate the 338

LLM into existing diffusion models within rela- 339

tively short training times, providing highly seman- 340

tically aligned conditional information for text-to- 341

image generation tasks, significantly enhancing the 342

quality and relevance of generated results. 343
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... a small, white baby daikon 
radish with little green shoots 
on top, dressed in a pink
tutu. ... with tiny arms and 
legs, walking a brown dog on 
a red leash,  ...

Two multicolored butterflies ... 
gently balance atop a
tangerine in a bustling garden. 
The tangerine, with its glossy, 
dimpled texture, is situated 
on a wooden table,...

A vibrant watercolor mural 
depicting a group of foxes
playing jazz instruments 
adorns a large wall on a 
bustling city street. ..with 
pedestrians passing by and 
occasionally stopping to 
admire the artwork

a triangular yellow road sign 
with a black border and image 
of a dinosaur, ... it stands 
amidst... green grass, with a 
dense forest in the 
background. ...

A spacious room with a high 
ceiling, where a single, narrow 
beam of natural light streams 
down from a small skylight
above…. Mounted on the easel 
is a detailed Rembrandt-style 
painting, depicting the intricate 
features of a raccoon's face…

...cat ... next to a plush brown 
teddy bear which is seated on 
hardwood floor, ... They are 
positioned near a light-colored 
wall, with ... houseplant's 
green ... 

A sizable panda bear, ... with 
the lush greenery that lines 
the water's edge. .... the bear is 
holding a glistening, silver-
colored trout. The water flows 
around the bear's legs ...

Figure 5: Comparison of our method with recent enhancement generative models ELLA (Hu et al., 2024), baseline
Models SDXL (Podell et al., 2023) and PixArt-α (Chen et al., 2023). Our method achieves the best results in terms
of instruction adherence and visual appeal.

Table 2: Quantitative comparison results on DPG-Bench.
Note that we support multiple languages.

Method Param Multi-Ling DPG-Bench
SD1.5 (Rombach et al., 2022) 0.86B × 61.18

SDv2.1 (Rombach et al., 2022) 0.89B × 68.09

LlamaGen (Sun et al., 2024) 0.78B × 65.16

HART (Tang et al., 2024) 0.73B × 80.89

Sana (Xie et al., 2024) 0.60B ✓ 83.6

ELLA (Hu et al., 2024) 0.93B × 80.79

LLM4GEN(Liu et al., 2024c) 0.86B × 67.34

Pixart-α (Chen et al., 2023) 0.61B × 71.11

Ours 0.63B ✓ 80.57

SD3-Medium (Esser et al., 2024) 2.0B × 84.08

SDXL (Podell et al., 2023) 2.6B × 74.65

Janus (Wu et al., 2024) 1.3B × 79.68

Janus-Pro (Chen et al., 2025) 7B × 84.19

Emu-3 (Wang et al., 2024) 8.0B × 80.60

DALL-E 3 (Betker et al., 2023) − × 83.50

FLUX-Dev (Labs, 2024) 12.0B × 84.0

4 Experiments344

Model Details. Our method is based on the work345

of PixArt-α (Chen et al., 2023), which is a clas-346

sic diffusion transformer text-to-image model. It347

uses the T5-XXL text encoder (Raffel et al., 2020)348

and has demonstrated excellent performance. We349

use Qwen2.5-7B-Instruct (Yang et al., 2024) as350

the LLM and adopt the output features from the351

last layer, which has a dimension of 3584. The352

VAE remains consistent with PixArt-α (Chen et al., 353

2023). For the LLM feature alignment module, 354

we employ a 3-layer encoder-decoder transformer 355

structure, which includes linear layers to align the 356

LLM dimension of 3584 with the T5 dimension of 357

4096. The cross-modal refiner uses only one block. 358

Training Details. To reduce computational re- 359

sources, we’ve structured our training process into 360

several key stages. First, we train the LLM feature 361

alignment module using approximately 80 million 362

text entries from internal image descriptions, with 363

about 20% of this data being multilingual. Given 364

that T5-XXL (Raffel et al., 2020) doesn’t support 365

multiple languages, we align the multilingual fea- 366

tures from the LLM output with the English output 367

features of T5-XXL (Raffel et al., 2020). This ini- 368

tial phase consumes around 80 A100 GPU days. 369

Next, drawing inspiration from PixArt-α’s training 370

methodology, we adapt our model to 512 resolution 371

and fine-tune it using 24 million text-image pairs. 372

To minimize dataset-specific biases in training, we 373

maintain a data scale similar to PixArt-α’s (Chen 374

et al., 2023) original approach and incorporate vari- 375

ous datasets with overlapping ranges, such as Jour- 376

neyDB (Sun et al., 2023). In the final stage, we 377

continue training at a 1024 resolution, utilizing 14 378
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Figure 6: Multilingual qualitative visualization results. For each panel’s eight images, we generate them using eight
different languages but only display the prompt in one of the languages used. Note that LDGen uses only English
prompts during training but achieves zero-shot multilingual generation due to the capabilities of the LLM.

Table 3: We compare our method with baseline methods and fine-tuned baseline methods on DPG-Bench and
Geneval, demonstrating the effectiveness of our approach.

Method
Param DPG-Bench (Hu et al., 2024) Geneval(Ghosh et al., 2023)

Global Entity Attri. Other Overall Single Obj. Two Obj. Counting Color Attri. Overall

Pixart-α (Chen et al., 2023) 0.61B 74.97 79.32 78.60 76.69 71.11 0.98 0.50 0.44 0.07 0.48
Pixart-α(fine-tuned) 0.61B 83.18 84.06 84.07 83.61 75.05 0.95 0.37 0.37 0.43 0.46
Ours 0.63B 85.88 87.83 85.21 87.85 80.57 0.88 0.55 0.35 0.42 0.51

million aesthetic data entries. The entire training379

process requires approximately 120 A100 GPU380

days. The count of GPU days excludes the time381

for T5, Qwen, and VAE feature extraction. LDGen382

takes only approximately 26% of the GPU days383

compared to PixArt-α.384

Evaluation Metrics. We evaluate our ap-385

proach using two publicly available benchmarks:386

Geneval (Ghosh et al., 2023) and DPG-Bench (Hu387

et al., 2024). Geneval is a challenging text-to-388

image generation benchmark designed to show-389

case a model’s comprehensive generative capabili-390

ties through detailed instance-level analysis. DPG-391

Bench, comprises 1,065 semantically dense long392

prompts, aimed at evaluating model performance393

in complex semantic alignment. These two datasets394

provide a comprehensive assessment of generative395

models from different perspectives.396

4.1 Performance Comparison and Analysis 397

We focus on evaluating the performance of our 398

method compared to the baseline model, PixArt- 399

α (Chen et al., 2023). As shown in Tab. 2 and 400

Tab. 3, we utilize two evaluation benchmarks, DPG- 401

Bench (Hu et al., 2024) and Geneval (Ghosh et al., 402

2023), to thoroughly assess image-text consistency. 403

Furthermore, we compare our results with ad- 404

vanced models such as the Stable Diffusion series 405

and enhancement methods like ELLA (Hu et al., 406

2024) and LLM4GEN (Liu et al., 2024c). Our 407

model not only surpasses these baseline models but 408

also achieves approximately a 13% performance 409

improvement on DPG-Bench compared to PixArt- 410

α, approaching the metrics of some larger-scale 411

models. For the Geneval results, we notice that 412

while single-object scores might decrease due to 413

the LLM’s data alignment scale being significantly 414
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smaller than the hundreds of millions of samples415

used for text encoder training, we see significant416

improvements in multiple aspects, such as color417

attributes, with the LLM’s use.418

Although we have made progress, there remains419

a gap when compared to state-of-the-art models420

such as HART (Tang et al., 2024) and Sana (Xie421

et al., 2024), which are trained from scratch with422

extensive resources and incorporate cutting-edge423

techniques. Nevertheless, our method achieves sig-424

nificant performance gains on the base model with425

relatively minimal overhead. Tab. 2 presents our426

evaluation scores across different languages. Even427

without using multilingual image-text pairs dur-428

ing training, our model achieves a score of 61.3429

in some common languages, nearly matching the430

61.2 of certain English-trained image generation431

models (like SD1.5 (Rombach et al., 2022)). As432

shown in Tab. 4, we conduct a multilingual genera-433

tion comparison with Sana and additionally support434

languages that are not supported by Sana.435

As shown in Fig. 5, we present visual com-436

parisons with other enhancement methods like437

ELLA (Hu et al., 2024) and LLM4GEN (Liu et al.,438

2024c), as well as the baseline PixArt-α. Our439

method exhibits significant improvements in both440

aesthetics and text alignment, attributed to the inte-441

gration of an LLM model with robust comprehen-442

sion capabilities. Even without employing multilin-443

gual image-text data during fine-tuning, our model444

can generate aesthetically pleasing, instruction-445

following images in multiple languages.446

As shown in Fig. 6, we present generation results447

in eight languages, displayed from top left to bot-448

tom right: German, Spanish, Portuguese, Russian,449

Italian, Korean, English, and Arabic. Although the450

model may not generate high-fidelity details across451

different languages, it is still capable of creating452

many common scenes and objects.453

4.2 Ablation Study454

In this section, we validate our language repre-455

sentation strategy, LLM alignment module, and456

cross-modal refiner. First, we conduct a detailed457

ablation analysis of our Human Instruction (HI) de-458

sign, with specific details provided in the appendix.459

Some captions’ length exceed CLIP’s evaluation460

capacity, but with LongCLIP (Zhang et al., 2024)461

supporting up to 248 tokens, we use the LongCLIP462

score as an additional metric. We randomly select463

5,000 samples from the training dataset for calcu-464

lating their CLIPScore (Hessel et al., 2021) and465

Table 4: Quantitative comparisons of multilingual gen-
eration results. We additionally support some languages
that are not supported by Sana.

Language Overall↑ Glob. Enti. Attr. Rela. Other
Korean (Sana) 10.6 20.3 21.3 20.1 20.5 23.7
Korean (Ours) 50.5 73.8 63.6 68.1 70.4 68.6

Arabic (Sana) 12.5 22.1 26.1 23.8 25.4 31.2
Arabic (Ours) 50.0 64.4 66.3 66.4 72.9 66.5

Russian (Sana) 42.2 57.5 57.2 56.6 59.7 62.2
Russian (Ours) 55.9 76.1 70.8 71.4 73.5 70.2

Spanish (Sana) 67.4 78.9 78.1 79.6 79.8 75.3
Spanish (Ours) 61.3 74.1 72.0 76.7 80.3 77.9

LongCLIP-Score. As shown in Tab. 1, our HI strat- 466

egy significantly enhances the CLIP scores of the 467

original captions, demonstrating that our language 468

representation strategy accurately extracts text em- 469

beddings and effectively improves text-image align- 470

ment during model training. 471

Although our training data size is similar to 472

PixArt-α, to eliminate the potential benefits of ex- 473

tra data, we fine-tune the original PixArt-α weights 474

using the T5-XXL (Raffel et al., 2020) with the 475

same training data. As shown in Tab. 3, our method 476

remains superior to this fine-tuned model, validat- 477

ing the effectiveness of our LLM alignment module 478

and cross-modal refiner. 479

5 Conclusion 480

This paper presents LDGen, which integrates 481

LLMs with diffusion models to enhance text-to- 482

image generation. By using the language represen- 483

tation strategy, LLM alignment module, and cross- 484

modal refiner, we improve semantic alignment be- 485

tween text and images, reduce training demands, 486

and enable zero-shot multilingual generation. Ex- 487

periments indicate the superiority of LDGen and 488

provide new insights into LLM-T2I tasks. 489

6 Limitations 490

Our work integrates LLM into diffusion models 491

with text encoders, enhancing text-image alignment 492

and enabling excellent zero-shot multilingual im- 493

age generation using limited resources. However, 494

our LLM alignment training data is smaller com- 495

pared to classic text encoders, potentially affecting 496

the understanding of complex prompts and align- 497

ment for certain concepts. Additionally, uneven 498

multilingual corpora distribution leads to varied 499

performance across languages. We plan to expand 500

training data in the future to address these issues. 501
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A Appendix736

In the appendix, we provide a more comprehensive737

analysis of the main text, enriched with additional738

details to enhance understanding.739

In Fig. 7, we provide a detailed comparison be-740

tween our method and the baseline method, Pixart-741

α (Chen et al., 2023), which demonstrates weaker742

text comprehension capabilities. Our approach743

shows significant improvements in terms of aes-744

thetic quality and prompt adherence.745

In Fig 8, we perform an extensive comparison746

utilizing the Human Instruction with the Qwen2.5-747

7B-Instruct (Yang et al., 2024) of a large language748

model (LLM), consistent with the version applied749

in the main text. Our Human Instruction method 750

ensures that the LLM’s outputs not only sustain 751

a high CLIP score but also avoid generating non- 752

existent information. Furthermore, this method 753

enhances the accuracy of text embeddings, leading 754

to more reliable outcomes. 755

Fig. 9 displays more multilingual generation re- 756

sults. Although some images show slight deficien- 757

cies in adhering to the prompts, they still produce 758

outstanding results for many common scene. 759

Fig. 10 showcases images produced from multi- 760

ple perspectives, including color, theme, style, etc. 761

These varied perspectives effectively illustrate the 762

effectiveness and adaptability of LDGen, 763

A brown dog paddles through the clear blue water, its eyes focused ahead. In its 
mouth, it firmly holds a brightly colored Frisbee, seemingly proud of its retrieval. 
The sun reflects off the water's surface, creating a sparkling effect around the 
swimming canine.

A large, clear glass pitcher filled to the brim with golden beer, the frothy head 
spilling slightly over the edge. An elephant's trunk, textured and wrinkled, is 
playfully dipped into the pitcher, disrupting the liquid's surface. The pitcher sits on a 
wooden table, with a few scattered peanuts nearby, hinting at a bar-like setting.

An elderly woman with shoulder-length straight gray hair and round metal-
rimmed glasses sits comfortably in a plush armchair. She is wearing a lavender 
cardigan over a white blouse, and a silver necklace can be seen around her neck. In 
her lap rests an open hardcover book, and beside her, a small wooden side table 
holds a ceramic teacup and saucer.

A plump wombat, adorned in a crisp white panama hat and a vibrant floral 
Hawaiian shirt, lounges comfortably in a bright yellow beach chair. In its paws, it 
delicately holds a martini glass, the drink precariously balanced atop the keys of an 
open laptop resting on its lap. Behind the relaxed marsupial, the silhouettes of palm 
trees sway gently, their forms blurred into the tropical backdrop.

A slow-moving sloth, with shaggy brown fur and a relaxed expression, is seated 
in a bright red go-kart on a winding race track. In its three-toed claw, it clutches a 
ripe yellow banana, seemingly undisturbed by the race. Just a few meters behind 
the kart, a single banana peel lies on the asphalt track, a potential hazard for the 
other racers.

A majestic bird of prey with white breast and belly contrasted by brown wings is 
perched confidently on the sturdy branch of a leafy green tree. Its sharp gaze, 
highlighted by a striking yellow eye, reveals a sense of purpose as it holds a 
shimmering silver fish with dark spots in its firm beak. The tree, bathed in sunlight, 
provides a natural backdrop, accentuating the textures of the bird's feathers and 
the subtle sheen of the fish's scales.

Ours PixArt-𝜶

Figure 7: More comparisons with Pixart-α. Our method achieves better results in terms of prompt adherence and
visua appeal.
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Input Caption: A close-up photograph of a mother monkey and her two young offspring, likely Rhesus macaques, sitting on a rock with a lush green 
background. The mother monkey, positioned on the left, has a light brown fur coat with a slightly darker shade on her back and a lighter tone on her 
belly. Her fur appears smooth and well-groomed, and her body is angled slightly towards the camera, showing her profile. She has a calm and 
protective demeanor, with one of her arms extended to support the first baby monkey, which is sitting on the rock in front of her. The baby monkey, 
with a mix of brown and black fur, has large, expressive eyes and a curious expression, looking directly at the camera. Its fur is shorter and spikier, 
especially on the head, and it has a small, pink nose and mouth. The second baby monkey, slightly behind the first, is also looking at the camera, with its 
head turned to the side, showing a similar mix of brown and black fur and a playful, inquisitive look. The baby monkey's fur is also short and spiky, and it 
is nestled close to the mother, with one arm resting on the rock and the other on the mother's arm. The background is out of focus, featuring a natural, 
green environment with hints of sunlight filtering through the leaves, creating a soft, blurred effect that highlights the subjects in the foreground. The 
lighting is natural and bright, casting gentle shadows and giving the image a warm, serene atmosphere. The composition is centered, with the subjects 
occupying the lower half of the frame, emphasizing their connection and the nurturing relationship between the mother and her young."

Original
Caption

Output Caption: This description paints a vivid and heartwarming scene of a mother Rhesus macaque and her two young offspring. The detailed 
observation of the monkeys' physical features and expressions adds depth to the imagery, making it almost lifelike.
Here’s a summary of the key elements:
1. Setting: A close-up of a mother monkey and her two young offspring on a rock, with a lush green background.
2. Mother Monkey:

- Light brown fur coat with a darker back and lighter belly.
- Smooth, well-groomed fur.
- Calm and protective demeanor.
- Body angled slightly towards the camera, showing her profile.
- Supporting the first baby monkey with an extended arm.

3. First Baby Monkey:
- Mix of brown and black fur.
- Large, expressive eyes and a curious expression.
- Short, spiky fur, especially on the head.
- Small, pink nose and mouth.

4. Second Baby Monkey:
- Similar mix of brown and black fur.
- Playful, inquisitive look.
- Head turned to the side.
- Short, spiky fur.
- Nestled close to the mother, with one arm resting on the rock and the other on the mother's arm.

5. Background:
- Out of focus, featuring a natural, green environment.
- Hints of sunlight filtering through the leaves, creating a soft, blurred effect.

6. Lighting:
- Natural and bright.
- Gentle shadows.
- Warm, serene atmosphere.

7. Composition:
- Centered, with the subjects occupying the lower half of the frame.
- Emphasizes the connection and nurturing relationship between the mother and her young.

No Human
Instruction

Output Caption: In this close-up photograph, the scene captures the tender interaction between a mother monkey and her two young offspring, likely 
Rhesus macaques, set against a lush green backdrop.

Color:
- Mother Monkey: Her fur is predominantly light brown, with a slightly darker shade on her back and a lighter tone on her belly. The background 
features a rich, vibrant green, with hints of sunlight filtering through, adding a soft, warm glow.
- Baby Monkeys: Both have a mix of brown and black fur, with the younger one having slightly more pronounced darker patches. Their fur is described 
as shorter and spikier, especially on the head, with a small, pink nose and mouth.

Shape:
- Mother Monkey: She is positioned on the left, with a smooth, well-groomed fur coat. Her body is slightly angled towards the camera, showing her 
profile, and she has a calm and protective demeanor.
- Baby Monkeys: They are both seated on the rock, with one (the first) sitting in front of the mother and the other (the second) behind the first, nestled 
close to the mother. Their heads are turned, showing a curious and playful expression.

Size:
- The mother monkey is larger than the baby monkeys, with the babies being smaller and closer in size to each other. The mother occupies a significant 
portion of the lower half of the frame, while the babies are positioned in front of her.

Texture:
- The mother's fur is described as smooth and well-groomed, suggesting a clean and healthy appearance. The babies' fur is shorter and spikier, 
indicating a younger age and perhaps a different grooming process.

Quantity:
- There are three monkeys in the image: one mother and two baby monkeys.

Human
Instruction-01
Describe the image by 
detailing the color, 
shape, size, texture, 
quantity, text, and 
spatial relationships of 
the objects.

Human Instruction-03
Given a user prompt, generate an "Enhanced prompt" 
that provides detailed visual descriptions suitable for 
image generation. Evaluate the level of detail in the 
user prompt.  If the prompt is simple, focus on adding 
specifics about colors, shapes, sizes, textures, and 
spatial relationships to create vivid and concrete scenes. 
The user prompt: 

Human Instruction-04
Describe the image by detailing the color, general, 
image type, text, position, relation, relative position, 
entity, entity size, entity shape, count, emotion, blur, 
image artifacts, proper noun (world knowledge), color 
palette, and color grading. Present this description in 
a complete paragraph.

Human Instruction-05
As an image description expert, generate a detailed description of the image, with the first sentence including all the noteworthy details of the image. The following 
detailed content description focuses on describing the content details of the image, and should be extremely specific and detailed. Make sure the description can reflect 
the following image elements:
Image style type (such as scene, photo, portrait, object close-up, promotional image, photography, animation scene, illustration, black and white stills, 3D art, indoor, 
outdoor, etc.). Detailed subject description, as specific as possible, including their name, shape, quantity, specific color, behavior, relative size, position relationship (such 
as left and right, up and down, front and back, etc.), object material (such as metal, wood, tile, etc.), texture (such as smooth, rough, wrinkled, creased, cracked, etc.) and 
lighting details (such as green neon, etc.). For human subjects, describe their facial details, accessories, clothing and other necessary information. For other subjects, have 
relevant world background knowledge, such as proper nouns (The Bund), names of artworks (Mona Lisa), TV shows (Star Wars), etc. The background and its relationship 
to the subject. Style information (such as animation, 3D, digital art, surrealism, digital, etc.). Composition and shooting information (such as low angle, wide angle, 
medium shot, long shot, bird's eye view, fisheye lens, top to bottom, looking up, etc.).

When constructing the description, strictly follow the following five principles:
1. Directly output extremely detailed and complete content, including all necessary information. The expression is smooth and natural, like a human describing the image.
2. Don't use "the image" or similar words.
3. No paragraph titles, tight descriptions, do not separate descriptions, do not mark paragraphs, no more than six paragraphs, but must be detailed and specific.
4. World knowledge needs to be clear before description. If it is not clear, do not describe it.
5. Text information, complete and detailed description.

Human Instruction-02
Describe the image based on the provided caption. If the 
caption is simple (less than 25 words), make the output as 
similar to the input as possible. Otherwise, if the caption is 
not simple (more than 25 words), slightly refine it to 
better align with the style in which the user writes 
prompts. 

Human Instruction-Ours
“Describe the image based on the provided caption. If the caption is simple (less than 25 words), make the output as similar to the input as possible. Otherwise, if the 
caption is not simple (more than 25 words), slightly refine it to better align with the style in which the user writes prompts.”

Figure 8: We provide detailed comparisons using human instructions ranging from simple to complex, comprehen-
sively evaluating the effectiveness of our method.
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Arabic: ةرھزلا هذھ زكرمتتو .ةنجلا رئاط ةرھزل ةایحلاب ةضبان ةیلاقترب تلاتب قوف سلجی عملا شیر ھل رظنلل تفلم دوسا رئاط ةمث 
 اجھو سمشلا قلِطُت ،ةیفلخلا يف .ةیلمرلا يضارلاا يف ةرثانتملا تاتابنلاو رابصلا عاونا فلتخم رشتنت ثیح ،ةلحاق ةیوارحص رظانم طسو ةدیرفلا

.ةدیعبلا ةجومتملا ةیلمرلا نابثكلا ىلع ائفاد

Russian: Современный номер с элегантным монитором с плоским экраном 
расположен прямо на низком деревянном столе, рядом с пышным серым диваном. 
Рядом с диваном, есть соответствующий стул, создавая уютный гостиный уголок. 
Стол, расположенный между стулом и диваном, поддерживает монитор и также 
находится в пределах досягаемости для сидящих. Над монитором висит 
современная лампа, дающая достаточно света и добавляющая изящность в 
установку. Рядом со стулом, диван представляет собой идеальное место для 
отдыха, сохраняя пространственную гармонию с остальной мебелью.

Korean: 널찍한 포장지 현관이 매달린 꽃바구니로 장식된 매력적인 백색의 시골집을 묘사한
그림 같은 그림.집은 푸르른 녹지를 배경으로 자갈이 깔린 오솔길이 반겨주는 앞 계단으로
이어진다.현관 난간은 복잡하게 설계되었고, 집의 창문은 전통적인 셔터를 자랑해 진기한의
미학을 더했다.

German: Eine höchst komplexe und dynamische städtelandschaft spiegelt eine
mischung aus moebius' fantasischem design und dem genauen animalischen stil
des neuen meeres wider. Neonfarben leuchteten auf den straßen und spiegelten
sich hinter dem Regen auf dem glatten weg. Die hohen wolkenkratzern und 
glänzendes fenster brechen in den sternenhimmel ein, denn die kunst gab auch
weiterhin großartige aufmerksamkeit und lob.

French: Deux femmes élégamment habillées, ornées de robes Renaissance 
complexes aux manches bouffantes et riches broderies, tiennent un 
smartphone élégant et moderne pour capturer un selfie. Leur tenue comporte
des teintes profondes de rouge et d’or, contrastant avec le lustre
métallique du téléphone. Elles se trouvent dans une pièce aux éléments
architecturaux classiques, dont une grande fenêtre qui les baignera de 
lumière naturelle.

English: A vibrant red bus is parked on a bustling city street, its size 
overshadowing the adjacent white van. The street is lined with a mix of 
small shops and residential buildings, each with their own unique facades. 
The vehicles are positioned parallel to the curb, with the bus's 
destination sign clearly visible above its windshield.

Italian: Una bella scatola da regalo avvolta in carta d’argento
scintillante e fissata con un nastro rosso brillante, posizionata a 
sinistra di un lussuoso albero di natale verde ornato da luci scintillanti
e ornamenti dorati. L’albero si trova su una gonna morbida bianca che
contrasta con il pavimento di legno scuro, e sparpagliata intorno sono
regali più piccoli che si aggiungono alla scena festiva.

Spanish: Una mujer mayor con el pelo gris rechasta los hombros y gafas
redondas de color metal se sienta cómodamente en un sillde felpa. Ella 
lleva una chaquede de lavansobre una blublanca, y un collar de plata se 
puede ver alrededor de su cuello. En su regazo descansa un libro abierto
de tapa dura, y a su lado, una pequeña mesa de madera sostiene una taza de 
té y un platillo de cerámica.

Figure 9: More multilingual qualitative visualization results. For each panel’s eight images, we generate them using
eight different languages but only display the prompt in one of the languages used.
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A whimsical scene at the beach where a 
pineapple, complete with its spiky green leaves, 
is balanced atop a vibrant blue wave as if it 
were surfing. The pineapple's textured, golden-
brown skin glistens with droplets of ocean 
water. In the background, the sandy shore is 
dotted with colorful beach umbrellas and 
sunbathers enjoying the sunny day.",

A young woman with freckles wearing a straw hat, 
standing in a golden wheat field.

A detailed photograph captures the intricate 
features of a pharaoh statue adorned with 
unconventional accessories. The statue is 
wearing steampunk glasses that have intricate 
bronze gears and round, reflective lenses. It is 
also dressed in a stark white t-shirt that 
contrasts with a dark, textured leather jacket 
draped over its shoulders …… The background is a 
simple, unobtrusive blur, drawing all attention 
to the anachronistic ensemble of the pharaoh.

dreamlike digital art captures a vibrant, 
kaleidoscopic lion in a lush rainforest.

4k dslr image of a lemur wearing a red magician 
hat and a blue coat performing magic tricks 
with cards in a garden.

car made out of vegetables. Astronaut in a jungle, cold color palette, 
muted colors, detailed, 8k

A photo of detailed pen and ink drawing of a 
massive complex alien space ship above a farm in 
the middle of nowhere

A vibrant yellow banana-shaped couch sits in a 
cozy living room, its curve cradling a pile of 
colorful cushions. on the wooden floor, a 
patterned rug adds a touch of eclectic charm, 
and a potted plant sits in the corner, reaching 
towards the sunlight filtering through the 
window.

A focused individual with a blue denim jacket 
is strumming an electric guitar amidst the 
quietude of a library. Surrounded by towering 
wooden bookshelves filled with an array of 
books, he is seated on a simple chair with a 
burgundy cushion. His guitar, a sleek black 
instrument with silvery strings, catches the 
light from the overhead lamps as he creates a 
melody in this uncommon setting.

A stylish woman walks down a Tokyo street filled 
with warm glowing neon and animated city signage. 
She wears a black leather jacket, a long red 
dress, and black boots, and carries a black purse. 
She wears sunglasses and red lipstick. She walks 
confidently and casually. The street is damp and 
reflective, creating a mirror effect of the 
colorful lights. Many pedestrians walk about

In the renowned portrait, the subject, known 
as the Girl with a Pearl Earring, is actually 
adorned with a pearl drop earring rather than 
a golden hoop. The soft texture of her pale 
skin contrasts with the dark, liquid-like 
background, while her blue and gold turban 
adds a touch of vibrant color to the 
composition. Light gently caresses her face, 
highlighting the luminescent pearl that 
gracefully hangs from her earlobe.

A surreal image capturing an astronaut in a 
white space suit, mounted on a chestnut brown 
horse amidst the dense greenery of a forest. 
The horse stands at the edge of a tranquil 
river, its surface adorned with floating 
water lilies. Sunlight filters through the 
canopy, casting dappled shadows on the scene.

A digital illustration of a girl features her with 
vibrant rainbow-colored hair that cascades smoothly 
down her shoulders. She has two spiraling unicorn 
horns emerging from her forehead, adding a 
fantastical element to the portrait. Fresh, vivid 
colors blend seamlessly in gradients across the 
composition, showcasing a high level of detail and 
skill. The image is in sharp focus, with rim 
lighting that highlights the contours of her face 
and creates a sense of depth against the softly 
blurred background.

In the art piece, a realistically depicted young 
girl with flowing blonde hair gazes intently 
into the distance, her eyes reflecting the 
vibrant hues of a spring forest. The verdant 
greens and soft pastels of the budding trees are 
captured in subtle brushstrokes, giving the 
scene a serene and tranquil atmosphere. The 
minimalist composition focuses on the girl's 
expression of wonder and the lush woodland 
background, while the texture of the oil paint 
adds depth and richness to the canvas.

A striking an origami pig sits atop the vibrant 
orange petals of a Bird of Paradise flower. The 
unique flower is positioned in the midst of an 
arid desert landscape, with various cacti and 
sparse vegetation dotting the sandy ground. In the 
background, the sun casts a warm glow on the 
distant rolling dunes.

Figure 10: More samples generated from LDGen.
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