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ABSTRACT

Differentially private (DP) synthetic data, which closely resembles the original
private data while maintaining strong privacy guarantees, has become a key tool
for unlocking the value of private data without compromising privacy. Recently,
PRIVATE EVOLUTION (PE) has emerged as a promising method for generating
DP synthetic data. Unlike other training-based approaches, PE only requires ac-
cess to inference APIs from foundation models, enabling it to harness the power
of state-of-the-art models. However, a suitable foundation model for a specific
private data domain is not always available. In this paper, we discover that the
PE framework is sufficiently general to allow inference APIs beyond foundation
models. Specifically, we show that simulators—such as computer graphics-based
image synthesis tools—can also serve as effective APIs within the PE framework.
This insight greatly expands the applicability of PE, enabling the use of a wide va-
riety of domain-specific simulators for DP data synthesis. We explore the potential
of this approach, named SIM-PE, in the context of image synthesis. Across three
diverse simulators, SIM-PE performs well, improving the downstream classifica-
tion accuracy of PE by up to 3× and reducing the FID score by up to 80%. We
also show that simulators and foundation models can be easily leveraged together
within the PE framework to achieve further improvements.

1 INTRODUCTION

Leaking sensitive user information is a significant concern in data-driven applications. A common
solution is to generate differentially private (DP) (Dwork et al., 2006) synthetic data that closely
resembles the original while ensuring strict privacy guarantees. This DP synthetic data can serve as
a substitute for the original in various applications, such as model fine-tuning, statistical analysis,
and data sharing, while preserving user privacy.

PRIVATE EVOLUTION (PE) (Lin et al., 2023; Xie et al., 2024) has recently emerged as a promis-
ing method for generating DP synthetic data. PE starts by probing a foundation model to generate
random samples, then iteratively selects those most similar to the private data and uses the model
to generate more samples that resemble them. Unlike previous state-of-the-art approaches that re-
quire fine-tuning open-source models, PE relies solely on model inference. Therefore, PE can be
up to 66× faster than training-based methods (Xie et al., 2024). More importantly, this enables PE
to easily harness the cutting-edge foundation models like GPT-4 (OpenAI, 2023) and Stable Diffu-
sion (Rombach et al., 2022), achieving state-of-the-art performance across multiple image and text
benchmarks (Lin et al., 2023; Xie et al., 2024; Hou et al., 2024; Zou et al., 2025).

However, PE relies on foundation models suited to the private data domain, which may not always
be available. When the model’s distribution significantly differs from the private data, PE’s perfor-
mance lags far behind training-based methods (Gong et al., 2025).

To address this question, we note that in the traditional synthetic data field—where private data is
not involved—domain-specific, non-neural-network simulators remain widely used, especially in
domains where foundation models struggle. Examples include computer graphics-based simula-
tors for images, videos, and 3D data (e.g., Blender (Community, 2018) and Unreal (Epic Games)),
physics-based simulators for robotics data (e.g., Genesis (Authors, 2024)), and network simulators
for networking data (e.g., ns-2 (Issariyakul et al., 2009)). While these simulators have been suc-
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cessful, their applications in DP data synthesis remain underexplored. This is understandable, as
adapting these simulators to fit private data in a DP fashion requires non-trivial, case-by-case mod-
ifications. Our key insight is that PE only requires two APIs: RANDOM API that generates random
samples and VARIATION API that generates samples similar to the given one. These APIs do not
have to come from foundation models! Thus, we ask: Can PE use simulators in place of foundation
models? If viable, this approach could greatly expand PE’s capabilities and unlock the potential of
a wide range of domain-specific simulators for DP data synthesis.

In this paper, we explore this potential in the context of images. We consider two types of simulator
access: (1) The simulator is accessible. In this case, we define RANDOM API as using random
simulator parameters to render an image, and VARIATION API as slightly perturbing the simulator
parameters of the given image. (2) The simulator is not accessible—only its generated dataset
is released. This scenario is quite common (Wood et al., 2021; Bae et al., 2023), especially when
simulator assets are proprietary (Kar et al., 2019; Devaranjan et al., 2020). In this case, we define
RANDOM API as randomly selecting an image from the dataset, and VARIATION API as randomly
selecting a nearest neighbor of the given image. We demonstrate that the resulting algorithm, SIM-
PE, outperforms PE with foundation models. Our key contributions are:

• Insight: We identify that PE is not limited to foundation models, making it the first framework
capable of utilizing both state-of-the-art foundation models and simulators for DP data synthesis.

• Algorithm: We propose SIM-PE, an extension of PE using simulators, applicable in both sce-
narios where the simulator or the generated dataset is available. Additionally, we introduce the
use of both foundation models and simulators interchangeably during the data synthesis process,
allowing for the benefits of both to be leveraged through PE’s easy and standardized interface.

• Results: We demonstrate promising results with SIM-PE. For instance, on the MNIST dataset
with ϵ = 1, downstream classification accuracy increases to 89.1%, compared to 27.9% with
the original PE. Furthermore, combining foundation models with weak simulators results in
improved performance compared to using either one alone.

2 PRELIMINARIES AND MOTIVATION

2.1 PRELIMINARIES

Synthetic data refers to “fake” data generated by models or software for various applications, in-
cluding data augmentation, model training, and software testing (Lin, 2022). One approach involves
machine learning models, ranging from simple statistical models like Gaussian mixtures to more
advanced deep neural network-based generative models such as GANs (Goodfellow et al., 2020),
diffusion models (Sohl-Dickstein et al., 2015), and auto-regressive models (OpenAI, 2023; Liu et al.,
2024a). The other approach relies on simulators. In this paper, we broadly define simulators as
non-neural-network data synthesizers with hard-coded, interpretable logic. For example, given
network configurations, ns-2 (Issariyakul et al., 2009) can simulate a network and generate network
packets. Similarly, given 3D models and lighting configurations, Blender (Community, 2018) can
render images and videos of objects. These simulators are widely used across various domains, par-
ticularly in cases where the underlying data distribution is too complex for machine learning models
to learn effectively.

DP synthetic data requires the synthetic data to be close to a given private dataset, while hav-
ing a strict privacy guarantee called Differential Privacy (DP) (Dwork et al., 2006). Formally, a
mechanism M is (ϵ, δ)-DP if for any two neighboring datasets D and D′ (i.e., D′ has one extra
entry compared to D or vice versa) and for any set S of outputs ofM, we have P (M (D) ∈ S) ≤
eϵP (M (D′) ∈ S) + δ. Smaller ϵ and δ imply stronger privacy guarantees. Current state-of-the-art
DP image and text synthesis methods rely on machine learning models and typically require model
training (Lin et al., 2020a; Beaulieu-Jones et al., 2019; Dockhorn et al., 2022; Yin et al., 2022; Yu
et al., 2021; He et al., 2022; Li et al., 2021; Ghalebikesabi et al., 2023a; Yue et al., 2022; Jordon
et al., 2019; Harder et al., 2023; 2021b; Vinaroz et al., 2022; Cao et al., 2021).

PRIVATE EVOLUTION (PE) (Lin et al., 2023; Xie et al., 2024) is a recent training-free framework
for DP data synthesis. PE only requires inference access to the foundation models. Therefore,
unlike prior training-based methods, PE can leverage the state-of-the-art models even if they are
behind APIs (e.g., GPT-4) and is more computationally efficient. PE is versatile across data modal-
ities, as long as suitable foundation models are available with two functions: (1) RANDOM API
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that generates a random sample (e.g., a random bird image), and (2) VARIATION API that generates
slight modifications of the given sample (e.g., a similar bird image). PE works by first calling RAN-
DOM API to get an initial set of synthetic samples, and then iteratively refine this set by selecting the
closest ones to the private samples (in a DP manner) and calling VARIATION API to generate more of
such samples. The full PE algorithm from Lin et al. (2023) is attached in App. A for completeness.

2.2 MOTIVATION

While PE achieves state-of-the-art performance on several image and text benchmarks (Lin et al.,
2023; Xie et al., 2024), its performance significantly drops when there is a large distribution shift be-
tween the private data and the foundation model’s pre-trained data (Gong et al., 2025). For instance,
when using the MNIST dataset (LeCun, 1998) (handwritten digits) as the private data, training a
downstream digit classifier (10 classes) on DP synthetic data (with ϵ = 1) from PE—using a founda-
tion model pre-trained on ImageNet—yields an accuracy of only 27.9%. Since relevant foundation
models may not always be available for every domain, this limitation hinders PE’s applicability in
real-world scenarios. Extending PE to leverage simulators could significantly expand its potential
applications.

More broadly, as discussed in § 2.1, simulators cannot be substituted by foundation models in (non-
DP) data synthesis across many domains. Unfortunately, current state-of-the-art DP synthetic data
methods are deeply reliant on machine learning models (e.g., requiring model training) and cannot
be applied to simulators. By extending PE to work with simulators, we aim to unlock the potential
of simulators in DP data synthesis.

3 SIM-PE: PRIVATE EVOLUTION (PE) WITH SIMULATORS

3.1 OVERVIEW

In this paper, we focus on DP image generation. The beauty of the PRIVATE EVOLUTION framework
is that it isolates DP mechanism from data generation backend. In particular, any data generation
backend that supports RANDOM API and VARIATION API can be plugged into the framework and
transformed into a DP data synthesis algorithm. Therefore, our goal is to design RANDOM API
and VARIATION API for image simulators.

We notice that existing popular image simulators provide different levels of access. Some simula-
tors are open-sourced. Examples include KUBRIC (Greff et al., 2022), a Blender-based renderer
for multi-object images/videos; 3D TEAPOT (Lin et al., 2020b; Eastwood & Williams, 2018), an
OpenDR-based renderer for teapot images; and PYTHON-AVATAR (Escartı́n, 2021), a rule-based
generator for avatars. However, these renderers’ assets (e.g., 3D models) are often proprietary.
Therefore, many simulator works choose to release only the generated datasets without the
simulator code. Examples include the FACE SYNTHETICS (Wood et al., 2021) and the DIGIFACE-
1M (Bae et al., 2023) datasets, both generated using Blender-based renderers for human faces. In
§ 3.2 and 3.3, we discuss the design for simulators with code access and data access, respectively.

Moreover, since simulators and foundation models provide the same RANDOM API and VARIA-
TION API interfaces to PE, we can easily utilize both together in the data generation process. § 3.4
discusses the methedology.

Privacy analysis. Since we only modify RANDOM API and VARIATION API, the privacy guarantee
is exactly the same as Lin et al. (2023), and we skip it here.

3.2 SIM-PE WITH SIMULATOR ACCESS

While different simulators have very different programming interfaces, most of them can be ab-
stracted in the same way. Given a set of p categorical parameters ξ1, . . . , ξp and q numeri-
cal parameters ϕ1, . . . , ϕq where ξi ∈ Ξi and ϕi ∈ Φi, the simulator S generates an image
S (ξ1, . . . , ξp, ϕ1, . . . , ϕq). For example, for face image renders (Wood et al., 2021; Bae et al.,
2023), ξis could be the ID of the 3D human face model and the ID of the hair style, and ϕis could
be the angle of the face and the strength of lighting.

For RANDOM API, we simply draw each parameter randomly from its corresponding feasible set.
Specifically, we define

RANDOM API = S (ξ1, . . . , ξp, ϕ1, . . . , ϕq) , (1)
where ξi ∼ Uniform (Ξi) and ϕi ∼ Uniform (Φi) .
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Here, Uniform (S) denotes drawing a sample uniformly at random from the set S.

For VARIATION API, we generate variations by perturbing the input image parameters. For numer-
ical parameters ϕi, we simply add noise. However, for categorical parameters ξi, where no natural
ordering exists among feasible values in Ξi, adding noise is not applicable. Instead, we re-draw the
parameter from the entire feasible set Ξi with a certain probability. Formally, it is defined as

VARIATION API (S (ξ1, . . . , ξp, ϕ1, . . . , ϕq)) = S
(
ξ′1, . . . , ξ

′
p, ϕ

′
1, . . . , ϕ

′
q

)
, (2)

where ϕ′
i ∼ Uniform ([ϕi − α, ϕi + α] ∩ Φi) and ξ′i =

{
Uniform (Ξi) , with probability β

ξi, with probability 1− β
.

Here, α and β control the degree of variation. At one extreme, when α = ∞ and β = 1, VARI-
ATION API completely discards the information of the input sample and reduces to RANDOM API.
Conversely, when α = β = 0, VARIATION API outputs the input sample unchanged.

3.3 SIM-PE WITH SIMULATOR-GENERATED DATA

Here, we assume that a dataset of m samples Ssim = {z1, . . . , zm} generated from the simulator is
already given. The goal is to pick Nsyn samples from them to construct the DP synthetic dataset
Ssyn. Before discussing our final solutions, we first discuss why two straightforward approaches do
not work well.

Baseline 1: Applying DP NN HISTOGRAM on Ssyn. One immediate solution is to apply
DP NN HISTOGRAM in PE (Alg. 2) by treating Ssim as the generated set S. In other words, each
private sample votes for its nearest neighbor in Ssim, and the final histogram, aggregating all votes,
is privatized with Gaussian noise. We then draw samples from Ssim according to the privatized
histogram (i.e., Line 8 in Alg. 1) to obtain Ssyn.

However, the size of the simulator-generated dataset (i.e., m) is typically very large (e.g., 1.2 million
in Bae et al. (2023)), and the total amount of added Gaussian noise grows with m. This means that
the resulting histogram suffers from a low signal-to-noise ratio, leading to poor fidelity in Ssyn.

Baseline 2: Applying DP NN HISTOGRAM on cluster centers of Ssyn. To improve the signal-to-
noise ratio of the histogram, one solution is to have private samples vote on the cluster centers of
Ssim instead of the raw samples. Specifically, we first cluster the samples in Ssim into Ncluster clusters
with centers {w1, . . . , wNcluster} and have private samples vote on these centers rather than individual
samples in Ssim.1 Since the number of bins in the histogram decreases from m to Ncluster, the signal-
to-noise ratio improves. Following the approach of the previous baseline, we then draw Nsyn cluster
centers (with replacement) based on the histogram and randomly select a sample from each chosen
cluster to construct the final Ssyn.

However, when the total number of samples m is large, each cluster may contain a diverse set of
samples, including those both close to and far from the private dataset. While DP voting on clusters
improves the accuracy of the DP histogram and helps select better clusters, there remains a risk of
drawing unsuitable samples from the chosen clusters.

Our approach. Our key insight is that the unavoidable trade-off between the accuracy of the DP
histogram and the precision of selection (clusters vs. individual samples) arises because private
samples are forced to consider all samples in Ssim—either directly in baseline 1 or indirectly through
cluster centers in baseline 2. However, this is not necessary. If we already know that a sample zi
is far from the private dataset, then its nearest neighbors in Ssim are also likely to be far from the
private dataset. Therefore, we can avoid wasting the privacy budget on evaluating such samples.

The iterative selection and refinement process in PE naturally aligns with this idea. For each sample
zi, we define its nearest neighbors in Ssim as qi1, . . . , q

i
m, sorted by closeness, where qi1 = zi is the

closest. We define RANDOM API as drawing a random sample from Ssim:

RANDOM API ∼ Uniform (Ssim) .

Since we only draw Nsyn samples (instead of m) from RANDOM API, the DP histogram on this
subset has a higher signal-to-noise ratio. In the following steps (Lines 6 to 8 in Alg. 1), samples

1Note that voting in Lin et al. (2023) is conducted in the image embedding space. Here, wis represent
cluster centers in the embedding space, and each private sample uses its image embedding to find the nearest
cluster center.
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far from the private dataset are removed, and we perform variations only on the remaining samples
according to:

VARIATION API (zi) = Uniform
({

qi1, . . . , q
i
γ

})
,

thus avoiding consideration of nearest neighbors of the removed samples (unless they are also nearest
neighbors of retained samples). Similar to α and β and in § 3.2, the parameter γ controls the degree
of variation. At one extreme, when γ = m, VARIATION API disregards the input sample and reduces
to RANDOM API. At the other extreme, when γ = 1, VARIATION API returns the input sample
unchanged.

Broader applications. The proposed algorithm can be applied to any public dataset beyond
simulator-generated data. In our experiments (§ 4), we focus on simulator-generated data, and we
leave the exploration of broader applications for future work.

3.4 SIM-PE WITH BOTH SIMULATORS AND FOUNDATION MODELS

As discussed in § 2.1, simulators and foundation models complement each other across different
data domains. Moreover, even within a single domain, they excel in different aspects. For example,
computer graphics-based face image generation frameworks (Bae et al., 2023; Wood et al., 2021) al-
low controlled diversity in race, lighting, and makeup while mitigating potential biases in foundation
models. However, the generated faces may appear less realistic than those produced by state-of-the-
art foundation models. Thus, combining the strengths of both methods for DP data synthesis is
highly appealing.

Fortunately, PE naturally supports this integration, as it only requires RANDOM API and VARIA-
TION API, which work the same for both foundation models and simulators. While there are many
ways to combine them, we explore a simple strategy: using simulators in the early PE iterations
to generate diverse seed samples, then switching to foundation models in later iterations to refine
details and enhance realism. As shown in § 4, this approach outperforms using either simulators or
foundation models alone.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND SIMULATORS

Datasets. Following prior work (Gong et al., 2025), we use two private datasets: (1) MNIST
(LeCun, 1998), where the image class labels are digits ‘0’-‘9’, and (2) CelebA (Liu et al., 2015),
where the image class labels are male and female. We aim at conditional generation for these
datasets (i.e., each generated image is associated with the class label).

Simulators. To demonstrate the general applicability of SIM-PE, we select three diverse simulators
with very different implementations.

(1) Text rendering program. Generating images with readable text using foundation models is
a known challenge (Betker et al., 2023). Simulators can address this gap, as generating images
with text through computer programs is straightforward. To illustrate this, we implement our own
text rendering program, treating MNIST as the private dataset. Specifically, we use the Python PIL
library to render digits as images. The categorical parameters include: (1) Font. We use Google
Fonts (Google, 2022), which offers 3589 fonts in total. (2) Text. The text consists of digits ‘0’ -
‘9’. The numerical parameters include: (1) Font size, ranging from 10 to 29. (2) Stroke width,
ranging from 0 to 2. (3) Digit rotation degree, ranging from −30◦ to 30◦. We set the feasible sets
of these parameters to be large enough so that the random samples differ significantly from MNIST
(see Fig. 1b).

(2) Computer graphics-based renderer for face images. Computer graphics-based rendering is
widely used in real-world applications such as game development, cartoons, and movie production.
This experiment aims to assess whether these advanced techniques can be adapted for DP synthetic
image generation via SIM-PE. We use CelebA as the private dataset and a Blender-based face image
renderer from Bae et al. (2023) as the API. Since the source code for their renderer is not publicly
available, we apply our data-based algorithm from § 3.3 on their released dataset of 1.2 million
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face images. It is important to note that this renderer may not necessarily represent the state-of-the-
art. As visualized in Fig. 3b, the generated faces exhibit various unnatural artifacts and appear less
realistic than images produced by state-of-the-art generative models (e.g., Rombach et al. (2022)).
Therefore, this experiment serves as a preliminary study, and the results could potentially improve
with more advanced rendering techniques.

(3) Rule-based avatar generator. We further investigate whether SIM-PE remains effective when
the simulator’s data significantly differs from the private dataset. We use CelebA as the private
dataset and a rule-based avatar generator (Escartı́n, 2021) as the API. This simulator has 16 categor-
ical parameters that control attributes of the avatar including eyes, noses, background colors, skin
colors, etc. As visualized in Fig. 4b, the generated avatars have a cartoon-like appearance and lack
fine-grained details. This contrasts sharply with CelebA images, which consist of real human faces.

Class label information from the simulators. For simulator 1, the target class label (i.e., the digit)
is fully controlled by one parameter. For simulators 2 and 3, the target class label (i.e., the gender)
is not directly controlled by any parameter, but could potentially be obtained by an external image
gender classifier. One benefit of using domain-specific simulators is that we can potentially use
the class label information to enhance data quality. To get a more comprehensive understanding of
SIM-PE, we consider two settings: (1) Class label information is unavailable (abbreviated as
“ClassUnavail”). We artificially make the problem more challenging by assuming that the class
label information is not available. Therefore, SIM-PE has to learn to synthesize images with the
correct class by itself. (2) Class label information is available (abbreviated as “ClassAvail”). On
MNIST, we further test how SIM-PE can be improved if the class label information is available. In
this case, the RANDOM API and VARIATION API (Eqs. (1) and (2)) are restricted to draw parameters
from the corresponding class (i.e., the digit is set to the target class).

4.1.2 METRICS AND EVALUATION PIPELINES

We follow the evaluation settings of DPImageBench (Gong et al., 2025), a recent benchmark for
DP image synthesis. Specifically, we use two metrics: (1) FID (Heusel et al., 2017) as a quality
metric and (2) the accuracy of downstream classifiers as a utility metric. Specifically, we use
the conditional version of PE (App. A), so that each generated images are associated with the class
labels (i.e., ‘0’-‘9’ digits in MNIST, male vs. female in CelebA). These class labels are the targets
for training the classifiers. We employ a strict train-validation-test split and account for the privacy
cost of classifier hyperparameter selection. Specifically, we divide the private dataset into disjoint
training and validation sets. We then run SIM-PE on the training set to generate synthetic data. Next,
we train three classifiers—ResNet (He et al., 2016), WideResNet (Zagoruyko & Komodakis, 2016),
and ResNeXt (Xie et al., 2017)—on the synthetic data and evaluate their accuracy on the validation
set. Since the validation set is part of the private data, we use the Report Noisy Max algorithm
(Dwork et al., 2014) to select the best classifier checkpoint across all epochs of all classifiers. Finally,
we report the accuracy of this classifier on the test set. This procedure ensures that the reported
accuracy is not inflated due to train-test overlap or DP violations in classifier hyperparameter tuning.

Following Gong et al. (2025), we set DP parameter δ = 1/(Npriv · logNpriv), where Npriv is the
number of samples in the private dataset, and ϵ = 1 or 10.

4.1.3 BASELINES

We compare SIM-PE with 12 state-of-the-art DP image synthesizers reported in Gong et al. (2025),
including DP-MERF (Harder et al., 2021a), DP-NTK (Yang et al., 2023), DP-Kernel (Jiang et al.,
2023), GS-WGAN (Chen et al., 2020), DP-GAN (Xie et al., 2018), DPDM (Dockhorn et al., 2023),
PDP-Diffusion (Ghalebikesabi et al., 2023b), DP-LDM (Liu et al., 2024b), DP-LoRA (Tsai et al.,
2024), PrivImage (Li et al., 2024), and PE with foundation models (Lin et al., 2023). Except for
PE, all other baselines require model training. For SIM-PE with simulator-generated data, we addi-
tionally compare it against the two baselines introduced in § 3.3.

It is important to note that this comparison is not intended to be entirely fair, as different
methods leverage different prior knowledge. For example, many of the baselines rely on pre-
trained foundation models or public datasets from similar distributions, whereas SIM-PE does not.
Conversely, SIM-PE utilizes simulators, which none of the baseline methods incorporate. Since
SIM-PE is the only approach that leverages simulators, it is more appropriate to consider it
as a new evaluation setting or benchmark. The results of other methods serve as a reference
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(a) Real (private) images (b) Simulator-generated (c) SIM-PE-generated (ϵ = 10)

Figure 1: The real and generated images on MNIST under the “ClassUnavail” setting. Each row
corresponds to one class. The simulator generates images that are very different from the real ones
and are from the incorrect classes. Starting from these bad images, SIM-PE can effectively guide
the generation of the simulator towards high-quality images with correct classes.

(a) Real (private) images (b) Simulator-generated (c) SIM-PE-generated (ϵ = 10)

Figure 2: The real and generated images on MNIST under the “ClassAvail” setting. Each row cor-
responds to one class. The simulator generates images that are very different from the real ones.
Starting from these bad images, SIM-PE can effectively guide the generation of the simulator to-
wards high-quality images that are more similar to real data.

Table 1: Accuracy and FID. The best between PE methods is in bold, and the best between all
methods is underlined. “Simulator” refers to samples from the simulator’s RANDOM API. Results
other than SIM-PE and Simulator are taken from Gong et al. (2025).

(a) Accuracy (%) of downstream classifiers.

Algorithm MNIST CelebA
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

DP-MERF 80.3 81.3 81.0 81.2
DP-NTK 50.0 91.3 61.2 64.2
DP-Kernel 94.0 93.6 83.0 83.7
GS-WGAN 72.4 75.3 61.4 61.5
DP-GAN 92.4 92.7 77.9 89.2
DPDM 89.2 97.7 74.5 91.8
PDP-Diffusion 94.5 97.4 89.4 94.0
DP-LDM (SD) 78.8 94.4 84.4 89.1
DP-LDM 44.2 95.5 85.8 92.4
DP-LoRA 82.2 97.1 87.0 92.0
PrivImage 94.0 97.8 90.8 92.0
Simulator 11.6 (ϵ = 0) 61.4 (ϵ = 0)
PE 27.9 32.7 70.5 74.2
SIM-PE (ours) 89.1 93.6 80.0 82.5

(b) FID of synthetic images.

Algorithm MNIST CelebA
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

DP-MERF 113.7 106.3 176.3 147.9
DP-NTK 382.1 69.2 350.4 227.8
DP-Kernel 33.7 38.9 140.3 128.8
GS-WGAN 57.0 47.7 611.8 290.0
DP-GAN 82.3 30.3 112.5 31.7
DPDM 36.1 4.4 153.99 28.8
PDP-Diffusion 8.9 3.8 17.1 8.1
DP-LDM (SD) 31.9 18.7 46.2 24.1
DP-LDM 155.2 99.1 124.1 40.4
DP-LoRA 112.8 95.4 53.3 32.2
PrivImage 7.6 2.3 11.4 11.3
Simulator 86.2 (ϵ = 0) 37.2 (ϵ = 0)
PE 48.8 45.3 23.4 22.0
SIM-PE (ours) 20.7 9.4 24.7 20.8

point to contextualize this new paradigm among state-of-the-art approaches and to highlight
directions for future research.

4.2 SIM-PE WITH SIMULATOR ACCESS

In this section, we evaluate SIM-PE with a text rendering program on MNIST dataset. The results
are shown in Tables 1 and 2 and Figs. 1 and 2. The key takeaway messages are:
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(a) Real (private) images (b) Simulator-generated (c) SIM-PE-generated (ϵ = 10)

Figure 3: The real and generated images on CelebA. The top rows correspond to the “female” class,
and the bottom rows correspond to the “male” class. The simulator generates images with incorrect
classes. However, starting from these misclassified images, SIM-PE effectively selects those that
better match the correct class.

SIM-PE effectively guides the simulator to generate high-quality samples. As shown in Fig. 1b,
without any information from the private data or guidance from SIM-PE, the simulator initially pro-
duces poor-quality images with incorrect digit sizes, rotations, and stroke widths. These low-quality
samples serve as the starting point for SIM-PE (via RANDOM API). Through iterative refinement
and private data voting, SIM-PE gradually optimizes the simulator parameters, ultimately generat-
ing high-quality MNIST samples, as illustrated in Fig. 1c.

Quantitative results in Table 1 further support this. Without private data guidance, the simulator
naturally generates digits from incorrect classes, leading to a downstream classifier accuracy of
only 11.6%, close to random guessing. In contrast, SIM-PE significantly improves accuracy to
approximately 90%. Additionally, FID scores confirm that the images generated by SIM-PE more
closely resemble real data.

SIM-PE can significantly improve the performance of PE. The PE baseline (Lin et al., 2023)
uses a diffusion model pre-trained on ImageNet, which primarily contains natural object images
(e.g., plants, animals, cars). Since MNIST differs significantly from such data, PE, as a training-
free method, struggles to generate meaningful MNIST-like images. Most PE-generated images lack
recognizable digits (see Gong et al. (2025)), resulting in a classification accuracy of only ∼ 30%
(Table 1a). By leveraging a simulator better suited for this domain, SIM-PE achieves significantly
better results, tripling the classification accuracy and reducing the FID score by 80% at ϵ = 10.

SIM-PE achieves competitive results among state-of-the-art methods. When the foundation
model or public data differs significantly from the private data, training-based baselines can still
adapt the model to the private data distribution by updating its weights, whereas PE cannot. This
limitation accounts for the substantial performance gap between PE and other methods. Specifi-
cally, PE records the lowest classification accuracy among all 12 methods (Table 1a). By leveraging
domain-specific simulators, SIM-PE significantly narrows this gap, achieving classification accu-
racy within 5.4% and 4.2% of the best-performing method for ϵ = 1 and ϵ = 10, respectively.

Table 2: Accuracy (%) of classifiers trained on
synthetic images and FID of synthetic images on
MNIST under the “ClassAvail” setting. See Ta-
ble 1 for results under the “ClassUnavail” setting
for reference.

Algorithm FID ↓ Classification Acc. ↑
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

Simulator 86.0 (ϵ = 0) 92.2 (ϵ = 0)
SIM-PE 20.7 8.6 93.9 95.5

Class label information from the simulators
can be helpful. All the above experiments
are based on the ClassUnavail setting, where
the class label information from the simula-
tor is assumed to be unknown. However, one
key advantage of using simulators over founda-
tion models for generating synthetic data is that
simulators can provide various labels for free
(Wood et al., 2021; Bae et al., 2023). In our
case, for MNIST, the simulators provide infor-
mation on which digit the generated image rep-
resents. Following the approach in § 4.1.1, we utilize this label information, and the results are in
Table 2 and Fig. 2. We observe that with digit information, the simulator-generated data achieve sig-
nificantly higher classification accuracy (92.2%), although the FID remains low due to the generated
digits exhibiting incorrect characteristics (Fig. 2b). The fact that SIM-PE outperforms the simulator
in both FID and classification accuracy across all settings suggests that SIM-PE effectively incor-
porates private data information to enhance both data fidelity and utility, even when compared to
such a strong baseline. As expected, SIM-PE under ClassAvail matches or surpasses the results in
ClassUnavail across all settings, suggesting the usefulness of leveraging class label information.

4.3 SIM-PE WITH SIMULATOR-GENERATED DATA

In this section, we evaluate SIM-PE using a generated dataset from a computer graphics-based ren-
derer on the CelebA dataset. The results in Table 1 and Fig. 3 highlight the following key takeaways:
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(a) Real (private) images (b) Simulator-generated (c) SIM-PE-generated (ϵ = 10)

Figure 4: The real and generated images on CelebA. The simulator is a weak rule-based avatar
generator (Escartı́n, 2021) significantly different from the real dataset. The top rows correspond to
the “female” class, and the bottom rows correspond to the “male” class. The simulator generates
images with incorrect classes. SIM-PE tends to generate faces with long hair for the female class
and short hair for the male class (correctly), but the generated images have mode collapse issues.

Table 3: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
CelebA. The best results are highlighted in bold. Using a combination of both (weak) simulators
and foundation models outperforms using either one alone.

Algorithm FID ↓ Classification Acc. ↑
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

PE with foundation models 23.4 22.0 70.5 74.2
PE with weak simulators (i.e., SIM-PE) 101.4 99.5 62.6 63.2
PE with both 15.0 11.9 72.7 78.1

SIM-PE effectively selects samples that better match the correct classes. Without any infor-
mation from the private data, the simulator naturally generates images with incorrect class labels
(Fig. 3b). Consequently, a downstream gender classifier trained on simulator-generated data can at
best achieve a trivial accuracy 61.4%—on the test set, the majority class (female) constitutes 61.4%.
Building upon this noisy data, SIM-PE iteratively refines the sample selection. Ultimately, SIM-PE
selects samples that better align with the target classes (Fig. 3c), leading to an accuracy improvement
of up to 21.1% (Table 1a).

SIM-PE maintains the strong data quality of PE. As shown in Table 1b, SIM-PE and PE achieve
similar FID scores. Unlike in the MNIST experiments (§ 4.2), where SIM-PE significantly improved
over PE, the lack of substantial improvement on CelebA can be attributed to two factors. First, on
CelebA, PE with foundation models already ranks 3rd among all methods in terms of FID, leav-
ing little room for further gains. Second, in this experiment, SIM-PE is only provided with a fixed
dataset generated from the simulator. As seen in Fig. 3, the simulator-generated images exhibit no-
ticeable differences from real CelebA images, such as faces appearing larger. Since SIM-PE in this
setting can only select images without modifying them, it cannot correct such discrepancies. Having
access to simulator code, as in § 4.2, could potentially alleviate this issue, as SIM-PE could learn
to modify the parameters that control the face size. Another potential direction for improvement is
a hybrid approach that enables PE to leverage both foundation models and simulators, which we
explore preliminarily in the next section.

4.4 SIM-PE WITH BOTH SIMULATORS AND FOUNDATION MODELS

In this section, we first examine how SIM-PE performs with weak simulators. We again use the
CelebA dataset as the private data, but this time, we switch to a rule-based cartoon avatar generator
(Escartı́n, 2021) as the simulator. As shown in Fig. 4b, the avatars generated by the simulator differ
significantly from the real CelebA images.

SIM-PE with weak simulators still learns useful features. From Table 3, we observe that down-
stream classifiers trained on SIM-PE with weak simulators achieve poor classification accuracy.
However, two interesting results emerge: (1) Despite the significant difference between avatars and
real face images, SIM-PE still captures certain characteristics of the two classes correctly. Specif-
ically, SIM-PE tends to generate faces with long hair for the female class and short hair for the
male class (Fig. 4c). (2) Although the FID scores of SIM-PE are quite poor (Table 3), they still
outperform many baselines (Table 1b). This can be explained by the fact that, as shown in Gong
et al. (2025), when DP noise is high, the training of many baseline methods becomes unstable. This
results in images with noisy patterns, non-face images, or significant mode collapse, particularly for
DP-NTK, DP-Kernel, and GS-WGAN. In contrast, SIM-PE is training-free, and thus it avoids these
issues.
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Figure 5: SIM-PE’s FID and accuracy generally improve over the course of the PE iterations.

Table 4: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
CelebA. The best results are highlighted in bold. SIM-PE outperforms the baselines in most metrics.

Algorithm FID ↓ Classification Acc. ↑
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

DP NN HISTOGRAM on Ssyn 36.2 29.3 61.5 71.9
DP NN HISTOGRAM on cluster centers of Ssyn 26.4 18.3 74.7 77.7
SIM-PE 24.7 20.8 80.0 82.5

Next, we explore the feasibility of using PE with both foundation models and the weak avatar
simulator (§ 3.4). The results are shown in Table 3.

PE benefits from utilizing simulators and foundation models together. We observe that using
both simulators and foundation models yields the best results in terms of both FID and classification
accuracy. This result is intuitive: the foundation model, pre-trained on the diverse ImageNet dataset,
has a low probability of generating a face image through RANDOM API. While avatars are quite
different from CelebA, they retain the correct image layout, such as facial boundaries, eyes, nose,
etc. Using these avatars as seed samples for variation allows the foundation model to focus on
images closer to real faces, rather than random, unrelated patterns.

Unlike other state-of-the-art methods tied to a specific data synthesizer, this result suggests that PE is
a promising framework that can easily combine the strengths of multiple types of data synthesizers.

4.5 VALIDATING THE DESIGN OF SIM-PE

In this section, we provide more experiments to understand and validate the design of SIM-PE.
How does SIM-PE with simulator-generated data compare to other data selection algorithms?
In § 3.3, we discussed two simple alternative solutions for simulator data selection. The comparison
is shown in Table 4. As we can see, SIM-PE with iterative data selection outperforms the baselines
on most metrics, validating the intuition outlined in § 3.3. However, the clustering approach used in
the second baseline still has merit, as it results in a better FID for ϵ = 10. This idea is orthogonal
to the design of SIM-PE and could potentially be combined for further improvement. We leave this
exploration to future work.

How does SIM-PE’s performance evolve across PE iterations? Fig. 5 shows that both the FID
and the downstream classifier’s accuracy generally improve as PE progresses. This confirms that
PE’s iterative data refinement process is effective when combined with simulators.

5 LIMITATIONS AND FUTURE WORK

In this paper, we demonstrate the potential of the PE framework for utilizing powerful simulators in
DP image synthesis. We believe that the exploration in this paper only scratches the surface of the
full potential of this idea. Further extensions include:

• The approach in § 3.3 can be extended beyond simulator-generated datasets, such as public web
data. This could potentially further enhance PE’s performance and enable its application in other
areas, such as pre-training data selection for private fine-tuning (Yu et al., 2023; Li et al., 2024).

• In this paper, we explore the potential of SIM-PE for images. However, in domains like net-
working and systems, foundation models are rarer and simulators are more prevalent. SIM-PE
could offer even greater potential in these domains.

• The results of SIM-PE for image synthesis are still outperformed by the best baseline. It would
be valuable to push the limits of the PE framework further, such as exploring more effective
ways to leverage both simulators and foundation models together.
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A PRIVATE EVOLUTION

Alg. 1 presents the PRIVATE EVOLUTION (PE) algorithm, reproduced from Lin et al. (2023). This
algorithm represents the conditional version of PE, where each generated image is associated with
a class label. It can be interpreted as running the unconditional version of PE separately for each
class.

Algorithm 1: PRIVATE EVOLUTION (PE)

Input: The set of private classes: C (C = {0} if for unconditional generation)
Private samples: Spriv = {(xi, yi)}

Npriv

i=1 , where xi is a sample and yi ∈ C is its label
Number of iterations: T
Number of generated samples: Nsyn (assuming Nsyn mod |C| = 0)
Noise multiplier for DP Nearest Neighbors Histogram: σ
Threshold for DP Nearest Neighbors Histogram: H

1 Ssyn ← ∅
2 for c ∈ C do
3 private samples← {xi|(xi, yi) ∈ Spriv and yi = c}
4 S1 ← RANDOM API (Nsyn/ |C|)
5 for t← 1, . . . , T do
6 histogramt ← DP NN HISTOGRAM (private samples, St, σ,H) // See

Alg. 2
7 Pt ← histogramt/sum(histogramt) // Pt is a distribution on St

8 S′
t ← draw Nsyn/|C| samples with replacement from Pt // S′

t is a multiset
9 St+1 ← VARIATION API (S′

t)

10 Ssyn ← Ssyn ∪ {(x, c)|x ∈ ST }
11 return Ssyn

Algorithm 2: DP Nearest Neighbors Histogram (DP NN HISTOGRAM)

Input : Private samples: Spriv

Generated samples: S = {zi}ni=1
Noise multiplier: σ
Threshold: H
Distance function: d (·, ·)

Output: DP nearest neighbors histogram on S

1 histogram← [0, . . . , 0]
2 for xpriv ∈ Spriv do
3 i = argminj∈[n] d (xpriv, zj)
4 histogram[i]← histogram[i] + 1

5 histogram← histogram+N (0, σIn) // Add noise to ensure DP
6 histogram← max (histogram−H, 0) // ‘max’, ‘-’ are element-wise
7 return histogram

B EXPERIMENTAL DETAILS

In this section, we provide more experimental details.

B.1 MNIST WITH TEXT RENDERING PROGRAM

Tables 5 and 6 show the list of the parameters and their associated feasible sets and variation degrees
in the MNIST with Text Rendering Program experiments. The total number of PE iterations is 4.
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Table 5: The configurations of the categorical parameters in MNIST with Text Rendering Program
experiments.

Categorical Parameter (ξ) Feasible Set (Ξ) Variation Degrees (β) across PE Iterations

Font 1 - 3589 0.8, 0.4, 0.2, 0.0
Text ‘0’ - ‘9’ 0, 0, 0, 0

Table 6: The configurations of the numerical parameters in MNIST with Text Rendering Program
experiments.

Numerical Parameter (ϕ) Feasible Set (Φ) Variation Degrees (α) across PE Iterations

Font size [10, 30] 5, 4, 3, 2
Font rotation [-30, 30] 9, 7, 5, 3
Stroke width [0, 2] 1, 1, 0, 0

B.2 CELEBA WITH GENERATED IMAGES FROM COMPUTER GRAPHICS-BASED RENDER

The variation degrees γ across PE iterations are [1000, 500, 200, 100, 50, 20]. The total number of
PE iterations is 6.

B.3 CELEBA WITH RULE-BASED AVATAR GENERATOR

The full list of the categorical parameters are

• Style
• Background color
• Top
• Hat color
• Eyebrows
• Eyes
• Nose
• Mouth
• Facial hair
• Skin color
• Hair color
• Facial hair color
• Accessory
• Clothing
• Clothing color
• Shirt graphic

These are taken from the input parameters to the library (Escartı́n, 2021). There is no numerical
parameter.

For the experiments with only the simulator, the variation degrees β across PE iterations are [0.8,
0.6, 0.4, 0.2, 0.1, 0.08, 0.06]. The total number of PE iterations is 7.

For the experiments with both foundation models and the simulator, we use a total of 5 PE iterations
so as to be consistent with the setting in Gong et al. (2025). For the RANDOM API and the first PE
iteration, we use the simulator (β = 0.8). For the next 4 PE iterations, we use the same foundation
model as in Lin et al. (2023) with variation degrees [96, 94, 92, 90].
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