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Abstract

In applied statistics and machine learning, the “gold standards” used for training are often
biased and almost always noisy. Dawid and Skene’s justifiably popular crowdsourcing
model adjusts for rater (coder, annotator) sensitivity and specificity, but fails to capture
distributional properties of rating data gathered for training, which in turn biases training.
In this study, we introduce a general purpose measurement-error model with which we can
infer consensus categories by adding item-level effects for difficulty, discriminativeness, and
guessability. We further show how to constrain the bimodal posterior of these models to
avoid (or if necessary, allow) adversarial raters. We validate our model’s goodness of fit
with posterior predictive checks, the Bayesian analogue of χ2 tests, and assess its predictive
accuracy using leave-one-out cross-validation. We illustrate our new model with two well-
studied data sets, binary rating data for caries in dental X-rays and implication in natural
language.

1 Introduction

Crowdsourcing is the process of soliciting ratings (labels, annotations, codes) from a group of respondents for
a set of items and combining them in a useful way for some task, such as training a neural network classifier
or a large language model.

The use of the term “crowdsourcing” is not meant to imply that the raters are untrained—the crowd may
be one of oncologists, lawyers, or professors. This note focuses on binary ratings, which arise in two-way
classification problems, such as whether a patient has a specific condition, whether an image contains a traffic
light, whether one consumer product is better than another, whether an action is ethical, or whether one
output of a large language model is more truthful than another.

We evaluate with two representative data sets, one for image recognition and one for natural language
processing. The first data set involves dental X-rays being rated as positive or negative for caries, a kind of
pre-cavity (Espeland & Handelman, 1989). There are thousands of X-rays, each of which is rated positive or
negative for caries (a pre-cavity) by the same five dentists. The dentists showed surprisingly little agreement
and consensus, especially in cases where at least one dentist rated the X-ray positive for caries. The dentists
also varied dramatically in the number of cases each rated as having caries, indicating rater-specific bias
toward positive or negative ratings. The second data set consists of pairs of sentences, which are rated
positive if the first entails the second. The second data set was collected through Amazon’s Mechanical
Turk and involves thousands of sentence pairs and dozens of raters, each of whom rated only a subset of the
items (Snow et al., 2008). Classification among dentists and natural language semantics are both challenging
classification tasks with subjectively defined boundaries, and thus it is not surprising that the rater agreement
level is low. The same kind of “bias” arises in rating data for human values as might be used to align a large
language model (Batchelder & Romney, 1988).

There are several tasks to which crowdsourcing models are applied, and for every one of them a rating model
improves performance over heuristic baselines. For example, rating models outperform majority voting for
category training and outperform indirect measurements like inter-annotator agreement statistics to measure
task difficulty (see, e.g., Artstein & Poesio (2008), Sabou et al. (2014), McHugh (2012)).
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Figure 1: Graphical sketch of the IRT-3PL model. Sizes: J number of annotators, K = 2 number of
categories, I number of items, N number of categories. Observed data: labels for rating, rater, and item.
Parameters: θ annotator accuracies/biases, π category prevalence, z true item category, β item difficulty, δ
item discrimination, λ item guessing.

Inferring a gold-standard data set. The first and foremost application of crowdsourcing is to generate a
“gold standard” data set, where a single category (or label) is assigned to each item. In terms of generating
representative data, it is best to sample data according to its probability (i.e., follow the generative model)
rather than to choose the “best” rating for each item according to some metric such as highest probability.
The second section of this paper shows that it is better for downstream accuracy to train with a probabilistic
corpus that retains information about rating uncertainty. In cases where it is impractical to use a probabilistic
corpus with weighted training, we show why it is far better to sample labels according to their posterior
probability in the rating model than to choose the “best” label. In particular, we will demonstrate that
majority voting schemes among raters are suboptimal compared to sampling, which is in turn dominated by
training with the probabilities (a kind of Rao-Blackwellization). If a classifier for the data is available, an
even better approach is to jointly train a classifier and rating model, as shown by Raykar et al. (2010).

Inferring population prevalence. The second most common application of crowdsourcing is to understand
the probability of positivity among items in the population represented by the crowdsourcing data. This is
particularly common in epidemiology, where the probability of positive outcomes is the prevalence of the
disease in the (sub)population (Albert & Dodd, 2004). It can also be used to analyze the prevalence of hate
speech on a social media site or bias in televised news, the prevalence of volcanoes on Venus, or the prevalence
of positive reviews for a restaurant.

Understanding and improving the coding standard. The third most common application of crowdsourc-
ing is to understand the coding standard, which is the rubric under which rating is carried out. Traditionally,
this has been measured through inter-annotator agreement. In contrast, rating models provide finer-grained
analysis of rater accuracy in terms of sensitivity and specificity, as well as the information gain expected from
a rating by a specific rater (Passonneau & Carpenter, 2014).

Understanding and improving raters. What is the mean sensitivity and specificity and how does it
vary among raters? Are sensitivity and specificity anticorrelated or correlated in the population? This
understanding can be fed back to the raters themselves for ongoing training. For example, American baseball
umpires have extensive feedback on how they call balls and strikes as measured against a very accurate
machine’s call, which has led to much higher accuracy and consistency among umpires Flannagan et al.
(2024). Understanding rater populations, such as those available through Mechanical Turk or Upwork, is
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important when managing raters for multiple crowdsourcing tasks. For example, it is straightforward with a
rating model to infer the proportion of spammers and the proportion of high quality raters. The number of
raters required for high quality joint ratings may also be assessed Passonneau & Carpenter (2014).

Understanding the items. A fifth task, which has received relatively little attention in the crowdsourcing
literature, is to understand the structure of the population of items. For example, which items are difficult to
rate and why? Which items simply have too little signal to be consistently rated? Which items live on the
boundary of the rating decision boundary and which live far away? Which items have high discrimination
and why? A discriminative item is one which cleanly separates high ability from low ability raters in their
ability to rate it correctly. Understanding the items is the primary focus of educational test design, where the
items are test questions and the raters are students. Test questions are selected for standardized tests like
the ACT (American College Testing) based on having high discrimination and a useful range of difficulties
(ACT, Inc., 2024).

1.1 Posterior predictive checks

We use posterior predictive checks (PPC) for goodness-of-fit testing (Gelman et al., 1996). They are the
Bayesian analogue of the χ2 goodness-of-fit tests widely employed in epidemiology (Albert & Dodd, 2004),
which test a “null” of the fitted model against the data to evaluate whether the data could have reasonably
been generated by the model (Formann, 2003). PPC works by probabilistically generating replicated data
sets based on the fitted model parameters, then comparing statistics obtained from the replicated data set to
the same statistic applied to the original data set. The posterior predictive distribution for replications yrep

of the original data set y given model parameters θ is defined by

p(yrep | y) = E [p(yrep | θ) | y] =
∫

p(yrep | θ) · p(θ | y) dθ.

If a model accurately represents the data, statistics (i.e., functions of data) should exhibit similar values
in both the original and replicated data sets. This can be evaluated using a Bayesian p-value-like statistic,
which is the probability that the test statistic s(·) in a replicated data set surpasses that in the original data,

Pr[s(yrep) ≥ s(y) | y] =
∫

I(s(yrep) ≥ s(y)) · p(yrep | y) dyrep.

Any choice of statistic guided by the quantities of interest in the model itself can be used. We will consider
recovering marginal vote counts for items and raters.

1.2 Leave-one-out cross-validation

We use an accurate approximation of leave-one-out cross-validation (LOO) for predictive accuracy (Vehtari
et al., 2017). LOO provides a fine-grained view of predictive performance, especially useful for model
comparison and refinement.

LOO estimates out-of-sample predictive fit by evaluating the model’s performance on each data point, leaving
out one observation at a time. This provides an accurate measure of how well the model generalizes to unseen
data. The expected log pointwise predictive density (elpdloo) is computed as

elpdloo =
n∑

i=1
log p(yi | y−i),

where p(yi | y−i) is the predictive density of observation yi, excluding the i-th observation. This involves
estimating

p(yi | y−i) =
∫

p(yi | θ) p(θ | y−i)dθ,

which can be calculated very efficiently using importance sampling given a single model fit (Vehtari et al.,
2017).
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2 Previous work

Rating models show up in multiple fields, including educational testing, from which the model variants
introduced here are derived (Lazarsfeld, 1950; Lord et al., 1968; Rasch, 1960). Rating models are widely used
in epidemiology, both for multiple diagnostic testing (Albert & Dodd, 2004) and extracting health status
information from patient records (Dawid & Skene, 1979). In sociology, rating models were independently
developed for cultural consensus theory (Batchelder & Romney, 1988; Romney et al., 1986). More recently,
they have become popular for providing human feedback for classification of images (Raykar et al., 2010;
Smyth et al., 1994); human ratings are the basis of massive data sets of millions of images and thousands of
classes like ImageNet (Deng et al., 2009). Rating models have long been popular for natural language tasks
(Passonneau & Carpenter, 2014; Snow et al., 2008).

The only directly related previous work of which we are aware assumes items are a mixture of “easy” items on
which all annotators will agree and “hard” items on which they will struggle (Beigman Klebanov & Beigman,
2009). More recently, crowdsourced ratings of language model output are used as a fine-tuning step that
adjusts a foundational large language model like GPT-4, which is trained to complete text, into a chatbot like
ChatGPT that is (imperfectly) trained to be helpful, truthful, and harmless (Ouyang et al., 2022; Rafailov
et al., 2024).

3 Contributions
• The primary contribution of this work is the expansion of rating models to account for continuous item

variation in the form of difficulty, discriminability, and guessability that generalizes discrete easy/hard
distinctions. A space of models along five dimensions is considered and thoroughly evaluated using
two medium-sized rating data sets. Only models with item-level effects for difficulty and rater effects
distinguishing sensitivity and specificity pass the posterior predictive checks Gelman et al. (1996);
Rubin (1984). Posterior predictive checks are the Bayesian equivalent of χ2 goodness-of-fit tests in
regression, which test a “null” of the fitted model against the data to evaluate whether the data
could have reasonably been generated by the model Formann (2003).

• Left unconstrained, the parameters of rating models typically admit two modes: one in which
raters are cooperative, and another where prevalence is inverted and raters are adversarial. An
adversarial rater is one who consistently provides the wrong rating (i.e., they know the answer and
provide the wrong answer). This paper introduces a constraint that allows explicit control over
whether adversarial solutions are allowed in which sensitivity is less than one minus specificity. When
sensitivity is equal to one minus specificity, raters are pure noise, or “spam”. Passonneau & Carpenter
(2014) discuss the classification without providing a solution.

• A final contribution is replicable open-source implementations of these models in Stan (Carpenter
et al., 2017), which makes them easy to use in R, Python, or Julia.

4 A general crowdsourcing model rater item rating
1 1 0
1 1 1
15 52 1
...

...
...

Table 1: Rating data ta-
ble in which each row rep-
resents a rating by a rater
of an item.

This section presents the most general crowdsourcing model, then considers how
it may be simplified by removing features (i.e., an ablation study). Removing
features here amounts to pinning or tying parameters, such as assuming all raters
have the same accuracy or all items have the same difficulty.

4.1 The rating data

Consider a crowdsourcing problem for which there are I ∈ N items to rate and
J ∈ N raters. Long-form data accomodates the varying number of raters per
item and the varying number of items per rater. Let N ∈ N be the number of
ratings, with ratingn ∈ {0, 1}, each of which has a corresponding ratern ∈ {1, . . . , J} and item being rated
itemn ∈ {1, . . . , I}. As shown in Table 1, each row represents an annotation, with columns indicating indices
for the rater and item as well as the rating.

4



Under review as submission to TMLR

4.2 The generative model

The probabilistic models we provide are generative in the sense that they generate parameters θ describing
the process from the prior p(θ) and generate the observed labels y based on the parameters using the sampling
distribution p(y | θ) (equivalently, the likelihood when considered a function of θ). Bayesian inference enables
us to condition on observed data y to draw inferences about the parameters θ through the posterior, p(θ | y).
The generative model introduced here combines Dawid and Skene’s epidemiology model of rater sensitivity
and specificity with the item-response theory educational testing model of item difficulty, discrimination, and
guessing. The categories for the items are generated independently given the prevalence. The ratings for an
item are then generated conditionally based on the item’s category and the rater’s accuracy and bias; they
could also be conditioned on item-level predictors. In frequentist terms, this section presents a complete data
likelihood for the categories and rating data in which the latent categories are treated as “missing data” to
finesse the frequentists’ philosophical prohibition against random parameters.

Generating categories. For each item, let zi ∈ {0, 1} be its (unobserved/latent) category, with a 1
conventionally denoting “success” or a “positive” result. The complete data likelihood is complete in the
sense that it includes the latent category. Marginalizing out this category, the technical details and numerical
stability of which are deferred until later, leads to the ordinary likelihood function used in the model to avoid
challenging inference over discrete parameters. Let π ∈ (0, 1) be the parameter representing the prevalence of
positive outcomes. Categories are generated independently given the prevalence,

zi ∼ bernoulli(π).

Generating ratings. The rating from rater j for item i is generated conditionally given the category zi of
an item. For positive items (zi = 1), sensitivity (i.e., accuracy on positive items) is used, whereas for negative
items (zi = 0), specificity (i.e., accuracy on negative items) is used. Thus every rater j will have a sensitivity
and specificity αsens

j , αspec
j ∈ R on the log odds scale (e.g., logit−1(αsens

j ) is the sensitivity). If the sensitivity
is higher than the specificity there will be a bias toward 1 ratings, whereas if the specificity is higher than
the sensitivity, there is a bias toward 0 ratings. If the model only has sensitivity and specificity parameters
that vary by rater, it reduces to the diagnostic testing model of Dawid & Skene (1979). Fixing αsens = αspec

introduces an unbiasedness assumption whereby a rater has equal sensitivities and specificities.

The items are parameterized with a difficulty βi ∈ R on the log odds scale. This difficulty is subtracted from
the sensitivity (if zi = 1) or specificity (if zi = 0) as appropriate to give the raw log odds of a correct rating
(i.e., a rating matching the true category zi). Fixing βi = 0 introduces the (typically erroneous) assumption
that every item is equally difficult.

Each item is further parameterized with a positive-constrained discrimination parameter δi ∈ (0, ∞). This is
multiplied by the raw log odds to give a discrimination-adjusted log odds to give a probability of correctly
rating the item. With high discrimination, it is more likely a rater with ability greater than the difficulty will
get the correct answer and less likely that a rater with ability less than difficulty will get the correct answer.
For educational testing, high discrimination test questions are preferable, but for rating wild type data, low
discrimination items are common because of natural variations in the signal (e.g., natural language text or an
image). Fixing δi = 1 introduces the assumption that the items are equally discriminative.

The final parameter associated with an item is a guessability parameter λi ∈ (0, 1), giving the probability
that a rater can just “guess” the right answer. The probability that a rater assigns the correct rating will
thus be the combination of the probability of guessing correctly and otherwise getting the correct answer in
the usual way. Fixing λi = 0 introduces the assumption that the raters never guess an answer. Without a
guessing parameter, as difficulty goes to infinity, the probability a rater provides the correct label for an item
goes to zero. With guessing, the probability of a correct label is always at least the probability of guessing.

The Full model follows the item-response theory three-parameter logistic (IRT-3PL) model generalized with
sensitivity and specificity, where the probability that rater j assigns the correct rating to item i is given by

cn ∼ bernoulli
(
λi + (1 − λi) · logit−1(δi · (αk

j − βi))
)

, (1)
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where k = sens if zi = 1 and k = spec if zi = 0.

In order to convert to a distribution over ratings, the probability of a 1 outcome must be flipped when zi = 0
so that a 90% accurate rating results in a 90% chance of a 0 rating. Thus the rating is given by

yn ∼


Bernoulli (λi + (1 − λi)· logit−1 (δi · (αsens

j − βi)
)

) , if zi = 1,

Bernoulli (1 − (λi + (1 − λi)· logit−1 (δi · (αspec
j − βi)

)
) ) , if zi = 0.

(2)

The second case (zi = 0) reduces to the expression bernoulli
(
(1 − λi) ·

(
1 − logit−1(δi ·

(
αsens

j − βi

))))
.

Parameter priors We further complete the IRT-3PL model by weakly informative priors on the parameters,
which constrains the scale of the result, as recommended by Gabry et al. (2019) and Gelman et al. (2020),

π ∼ Beta(2, 2), αspec
j ∼ Normal(2, 2), αsens

j ∼ Normal(1, 2)
βi ∼ Normal(0, 1), δi ∼ LogNormal(0, 0.25), λi ∼ Beta(2, 2).

A graphical sketch of the IRT-3PL model is shown in Figure 1.

Spammy and adversarial raters. A spammy rater is one for whom the rating does not depend on the
item being rated, which arises when αsens = −αspec, so that logit−1(αsens) = 1 − logit−1(αspec) (Passonneau
& Carpenter, 2014). For example, a rater with 40% sensitivity and 60% specificity has a 40% chance of
returning a 1 rating no matter what the true category is.

An adversarial rater is one for which αsens < −αspec. We have restricted all models to enforce the constraint
that αsens > −αspec. In contrast, a rater with 60% sensitivity and 60% specificity provides informative
ratings, whereas one with 40% sensitivity and 40% specificity provides adversarial ratings which are equally
informative despite being more likely to be wrong than correct (Passonneau & Carpenter, 2014).

4.3 Marginal likelihood

The model generates latent discrete categories zi ∈ {0, 1} for each item. For both optimization and
sampling, it is convenient to marginalize the complete likelihood p(y, z | π, α, β, δ, λ) to the rating likelihood
p(y | π, α, β, δ, λ). The marginalization calculation is efficient because it is factored by data item. Letting
θ = π, α, β, δ, λ be the full set of continuous parameters, the trick is to rearrange the long-form data by item,
then marginalize out the discrete parameters, resulting in the likelihood.

p(y | θ) =
I∏

i=1

1∑
zi=0

p(zi | θ) ·
∏

n:itemn=i

p(yn | zi, θ). (3)

We start with the complete data likelihood for ratings y and latent categories z,

p(y, z | θ) =
I∏

i=1
p(zi | θ) ·

N∏
n=1

p(yn | z, θ) (4)

and then rearrange terms by item,

np(y, z | θ) =
I∏

i=i

(
p(zi | θ) ·

∏
n:itemn=i

p(yn | zi, θ)
)

. (5)

On a per item basis, the marginalization is tractable, yielding Equation 3. Computational inference requires
a log likelihood. The log marginal likelihood of the rating data is

log p(y | θ) = log
∏I

i=i

∑1
zi=0 p(zi | θ) ·

∏
n:itemn=i p(yn | zi, θ).

=
∑I

i=1 logSumExp1
zi=0

(
log p(zi | θ) +

∑
n:itemn=i log p(yn | zi, θ)

)
,

(6)
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where

logSumExpN
n=1 ℓn = log

N∑
n=1

exp(ℓn) (7)

is the numerically stable log-scale analogue of addition.

4.4 Model reductions
By tying or fixing parameters, the Full model may be reduced to define a wide range of natural submodels.
Six of these models correspond to item-response theory models of the one-, two-, and three-parameter logistic
variety, either with or without a sensitivity/specificity distinction. The model with varying rater sensitivity
and specificity and no item effects reduces to Dawid and Skene’s model. Other models, such as the model with
a single item effect and no rater effects have been studied in the epidemiology literature. Table 2 summarizes
the possible model reductions and gives them identifying tags.

Tag Reduction Description
A λi = 0 no guessing items
B δi = 1 equal discrimination items
C βi = 0 equal difficulty items
D αspec = αsens equal error raters
E αi = αj identical raters

Table 2: Orthogonal model reductions.

Tied sensitivity and specificity. First, we consider models which do not distinguish sensitivity and
specificity. Such models should be used when the categories are not intrinsically ordered (e.g., rating two
consumer brands for preference). All of these models other than the last (ABCDE) assumes raters have
varying accuracy.

Reductions Probability Correct Note
D λi + (1 − λi) · logit−1(δi · (αj − βi)) IRT 3PL

CD λi + (1 − λi) · logit−1(δi · αj)
BD λi + (1 − λi) · logit−1(αj − βi) IRT 2PL

BCD λi + (1 − λi) · logit−1(αj)
AD logit−1(δi · (αj − βi))

ACD logit−1(δi · αj)
ABD logit−1(αj − βi) IRT 1PL

ABCD logit−1(αj)
ABCDE logit−1(α)

(8)

Free sensitivity and specificity. The following models introduce separate parameters for sensitivity and
specificity rather than assuming they are the same. Only the last model (ABCE) does not distinguish rater
abilities.

Reductions Probability Correct Note
λi + (1 − λi) · logit−1(δi · (αk

j − βi)) IRT 3PL + sens/spec
C λi + (1 − λi) · logit−1(δi · αk

j )
BC λi + (1 − λi) · logit−1(αk

j )
A logit−1(δi · (αk

j − βi)) IRT 2PL + sens/spec
AC logit−1(δi · αk

j )
AB logit−1(αk

j − βi) IRT 1PL + sens/spec
ABC logit−1(αk

j ) Dawid/Skene
ABCE logit−1(αk)

(9)
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Figure 2: L2 norm of training error. The L2 norm of parameter estimation error, ||θ̂ − θ||2, for different
approaches to training with probabilities: (log odds) training a linear regression on the log odds, (max
prob) assigning the highest probability category, (noisy odds) add standard normal noise to the log odds
approach, (random) assign a random category according to the probability, (weighted) train a weighted
logistic regression. Estimates and variability are consistent between Bayesian posterior means with a normal
prior (left) or ridge-penalized maximum likelihood estimates (right). Regression is 32-dimensional, with
correlated inputs and 1024 training data points. Results show standard bar-and-whisker plots over 32 trials
with paired random x, β.

No rater effects. The last model, whihc is common in epidemiology (Albert & Dodd, 2004), includes item
effects without any rater effects.

Reductions Probability Correct
ABDE logit−1(−βi)

(10)

Redundant parameter models. The remaining thirteen models are redundant in the sense that fixing
their non-identifiability issues reduces to a model with a single item effect.

Reductions Probability Correct
E λi + (1 − λi) · logit−1(δi · (αk − βi))

DE λi + (1 − λi) · logit−1(δi · (α − βi))
CE λi + (1 − λi) · logit−1(δi · αk)

CDE λi + (1 − λi) · logit−1(δi · α)
BE λi + (1 − λi) · logit−1(αk − βi)

BDE λi + (1 − λi) · logit−1(α − βi)
BCE λi + (1 − λi) · logit−1(αk)

BCDE λi + (1 − λi) · logit−1(α)
AE logit−1(δi · (αk − βi))

ADE logit−1(δi · (α − βi))
ACE logit−1(δi · αk)

ACDE logit−1(δi · α)
ABE logit−1(αk − βi)

(11)

5 Training on probabilistic data

As part of their likelihood calculation, the rating models compute the probability that each item in the
rating set is either category 0 or category 1. It is far better to use this probabilistic information directly
when training a classifier than to collapse the uncertainty to either a 0 or 1 “gold standard” category. Using
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probabilities acts as a form of regularization—if an item has probability 0.6329, training will try to avoid
attenuated results for this item with probabilities near 1 or 0.

Consider a classification data set where for each data item n, there is a covariate (feature) vector xn ∈ RL

and a binary outcome yn ∈ {0, 1}. The standard logistic regression likelihood takes a parameter (coefficient,
weight) vector β ∈ RL with yn ∼ bernoulli

(
logit−1(xn · β)

)
.

Now suppose that we have fit a rating model and do not actually know yn but only have an estimate of
Pr[yn = 1]. The conventional strategy in machine-learning data curation is to take the “best” category, often
the result of a majority vote. More generally, majority voting is equivalent to taking the highest probability
category, yi = 1 if Pr[yi = 1] > 1

2 , in a rating model with equal rater accuracies and no item effects (i.e., the
model tagged ABCDE).

For the experiment, we generate a synthetic data set of covariates xi ∼ normal(0, Σ), where the positive
definite covariance matrix is defined by Σm,n = ρ|m−n|, with ρ = 0.9. The result is highly correlated predictors;
uncorrelated predictors show the same trend. We evaluate five approaches to estimation: (max prob) take yn

to be 1 if logit−1(xn · β) > 1
2 , (log odds) train a linear regression with outcome log xn · β, (noisy odds) log

odds with standard normal noise, logit−1(xn · β + ϵn), with ϵn ∼ normal(0, 1), (random) randomly generate
yn ∼ bernoulli

(
logit−1(xn · β)

)
according to its probability distribution, and (weighted) train a weighted

logistic regression with outcome 1 and weight logit−1(xn · β) and outcome 0 and weight 1 − logit−1(xn · β).

We provide both Bayesian (posterior mean) and frequentist (penalized maximum likelihood) estimates. For
the Bayesian setting, we use a standard normal prior βk ∼ normal(0, 1) and in the frequentist setting we use
ridge regression, with penalty function 1

2 · β⊤ · β to match the Bayesian prior. The resulting error norms in
estimating β are shown in Figure 2. The plot shows that training with the probabilities is much better than
taking the category with the highest probability. The best approach is training a linear regression based on
the log odds, with the noisy version of the same approach not far behind. Weighted training with logistic
regression is not quite as good. Randomly selecting a category according to the generative model is not as
good as using the weights directly, but it still dominates taking the “best” category.

6 Empirical evaluations and ablation studies
The posteriors of all 18 distinct models introduced above were sampled using Markov chain Monte Carlo
(MCMC) for two data sets. The first data set consists of 5 dentists rating each of roughly 4000 dental X-rays
for caries (a kind of pre-cavity) (Espeland & Handelman, 1989). The second is nearly 200 Mechanical Turkers,
each rating a subset of roughly 3000 pairs of sentences for entailment (Snow et al., 2008).

6.1 PPC and LOO performances

The models were coded in Stan (version 2.33) and fit with default sampling settings using CmdStanPy
(version 1.20). The default sampler is the multinomial no-U-turn sampler, an adaptive form of Hamiltonian
Monte Carlo (Betancourt, 2017; Hoffman et al., 2014) that adapts a diagonal mass matrix. The default
number of chains is four, and the default runs 1000 warmup iterations (for burn-in and adaptation) and 1000
sampling iterations. All sampling runs ended with split-R̂ values less than 1.01 for all parameters (prevalence,
rater parameters, and item parameters), indicating consistency with convergence to approximate stationarity
(Gelman et al., 2013).

Table 3 shows the posterior predictive p-values for all of the models on the caries and Mechanical Turk natural
language inference data using statistics for marginal positive votes per rater and per item. The posterior
predictive p-values assess the consistency between the observed data and the model-simulated ratings and
votes, providing a measure of the model’s fit. For the caries data, only three models pass the posterior
predictive checks, all of which are IRT models that include difficulty (AB) and optionally discrimination (A)
or guessing (Full). Notably, the widely used Dawid and Skene model (ABC) fails the posterior predictive
checks. Among these models, the Full model shows the best performance based on elpdloo.

For the Mechanical Turk rated entailment data, models A, AB, and ABC pass the posterior predictive checks
for raters, with model ABC having the highest elpdloo. None of the models look good for ratings p-values.
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Model Caries Mechanical Turker
Rater p-value Ratings p-value elpdloo Rater p-value Ratings p-value elpdloo

ABCDE < 0.001 < 0.001 -9604 < 0.001 < 0.001 -5488
ABCD < 0.001 < 0.001 -8797 < 0.001 < 0.001 -5544
ABCE < 0.001 0.019 -9594 < 0.001 0.011 -5464
ABDE < 0.001 < 0.001 -9773 < 0.001 < 0.001 -4738
ABC 0.462 < 0.001 -8749 0.021 0.002 -5084
ABD 0.074 < 0.001 -8211 < 0.001 < 0.001 -5563
ACD < 0.001 < 0.001 -8669 < 0.001 < 0.001 -5544
BCD < 0.001 < 0.001 -8759 < 0.001 < 0.001 -5546
AB 0.468 0.218 -8699 0.020 0.006 -5096
AC 0.405 < 0.001 -8743 0.002 0.004 -5086
AD 0.325 < 0.001 -8192 < 0.001 < 0.001 -5557
BC 0.102 0.001 -8721 < 0.001 < 0.001 -5127
BD < 0.001 < 0.001 -8446 < 0.001 < 0.001 -5571
CD < 0.001 < 0.001 -8724 < 0.001 < 0.001 -5544
A 0.046 0.289 -8696 0.020 0.003 -5102
C 0.014 0.001 -8722 < 0.001 < 0.001 -5123
D < 0.001 < 0.001 -8432 < 0.001 < 0.001 -5569
Full 0.120 0.010 -8678 < 0.001 < 0.001 -5123

Table 3: Posterior predictive p-values and leave-one-out cross-validation values across Caries and Mechanical
Turker datasets for 18 different models.

Mechanical Turker Caries

Figure 3: Distribution of positive votes per item comparing the baseline Dawid & Skene model (ABC) with
IRT models with difficulty (AB), discrimination (A), and guessing (Full) alongside actual data, demonstrating
the varying levels of dispersion captured by each model.

The main difference between the Caries and Turker data sets is that there are many more Turkers doing far
fewer ratings each, and there are more spammy raters among the Turkers.

6.2 Dawid and Skene’s posterior predictions underestimate dispersion

To demonstrate how posterior predictions underestimate dispersion, we compare Dawid and Skene’s baseline
(ABC) with three item-level models: difficulty (AB), plus discrimination (A), and plus guessing (Full) in
Amazon Turker data. The goodness-of-fit tests are similar, so in Figure 3, we plot the expected number
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of marginal positive votes for models A, AB, ABC, and Full along with the actual data. The Dawid and
Skene model (ABC) has an inflated number of middling positive votes compared to the data; in contrast the
Full model underestimates them. However, posterior predictive inference for models A (ability plus difficulty
plus discrimination) and AB (ability plus difficulty) more closely matches the actual data. This alignment
enhances the model’s ability to reflect true voter consensus, thereby producing a distribution of votes that
more accurately mirrors observed voting patterns. For the caries data, the story is similar. Models A, AB,
and Full closely match the actual data, while the Dawid and Skene model (ABC) again inflates the number
of middling positive votes compared to the real data.

7 Extensions

Including covariate information Parameterizing on the log odds scale makes it straightforward to add
features (i.e., covariates) in addition to the baseline random effects for items or raters. The simple models
presented here can be thought of as intercept-only versions of more general models.

Features for raters might include demographic information such as education, location, native language,
age, education level, whether they are an AI and which one, etc. Features for items can be used to inform
difficulty, discrimination and guessability. For example, a covariate might indicate the number of options in a
multiple choice test, the length of sentences used for inference, or the grade level of the textbook from which
the item was culled, when a person’s last dental checkup was, etc.

If item-level or rater-level covariates are available, they may be used to inform the parameters in the usual
way through a regression in the form of a generalized linear model (Gelman & Hill, 2007). For example,
suppose there are item-level covariates xi ∈ RK . With a parameter vector γ ∈ RK , the generative model for
the category of an item may be extended to a logistic regression, zi ∼ bernoulli

(
x⊤

i · γ
)

.

K-way categorical rating A natural extension is to K-way categorical ratings, such as classifying a
dog image by species, classifying an article in a newspaper by topic, rating a movie on a one to five scale,
classifying a doctor’s visit with an ICD-10 code, and so on. Most of the work on ratings has been in this
more general categorical setting. With more than two categories, sensitivity and specificity are replaced with
categorical responses based on the latent true category. Discrimination and guessing act the same way, but
difficulty must be replaced with a more general notion of a categorical item level effect, which may represent
either focused alternatives (e.g., a border collie is confusable with an Irish shepherd) or diffuse (e.g., can’t tell
what’s in the image).

Population-level models With enough raters, these models may also be extended hierarchically to make
population-level inferences about the distribution of rater abilities or item difficulties (Paun et al., 2018).
Several of the crowdsourcing tasks may be combined to select raters and items to rate online with active
learning, which is a form of reinforcement learning. With a hierarchical model, inference may be expanded to
new raters (Paun et al., 2018).

Ordered, count, and other data It is also straightforward to extend a rating model to ordered responses
such as Likert scales (Lakshminarayanan & Teh, 2013; Rogers et al., 2010; Shatkay et al., 2005), rank ordering
(Chen et al., 2013; Rafailov et al., 2024), counts (the “textbook” case of crowdsourcing is estimating the
number of jelly beans in a container (Surowiecki, 2005)), proportions/probabilities, distances, or pairs of real
numbers such as planetary locations (Smyth et al., 1994). All that needs to change is the response model and
the representation of the latent truth—the idea of getting noisy ratings and inferring a ground truth remains.
As an example, Smyth had raters mark images of Venus for volcano locations (Smyth et al., 1994). The true
location is represented as a latitude and longitude and rater responses can be multivariate normal centered
around the true, but unknown, location. For ordinal ratings, an ordinal logit model of the truth may be
used (Rogers et al., 2010). For comparisons, the Bradley-Terry model can be used (Bradley & Terry, 1952),
and for ranking, the Plackett-Luce generalization (Plackett, 1975; Luce, 1959), as used in direct preference
optimization for fine-tuning large language models (Rafailov et al., 2024).
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Joint estimation of a classifier When item-level covariates are available, Raykar et al. (2010) provide
an approach to jointly estimating the parameters of the rating model and the classifier. In essence, the
prevalence model is updated to a logistic regression classifier and the the classifier participates jointly in
rating along with the raters.

8 Conclusion

Until this work, models used for crowdsourcing categorical responses, such as that of Dawid & Skene (1979),
produced biased results. We demonstrated this bias through failed goodness-of-fit and LOO results. Dawid
and Skene’s model predicts too little inter-annotator agreement relative to the actual ratings observed in
the wild. By introducing item-level effects, the models presentted here are able to adjust for item difficulty,
discrimination, and guessability, resulting in better fits. The enhanced fits not only not only pass the
goodness-of-fit tests for both items and ratings, but also show improved performance based on LOO, providing
a more robust evaluation of predictive accuracy.

Dawid and Skene’s model has two modes, an adversarial and cooperative one. Adversarial solutions arise when
the majority of raters have below-chance accuracy. We showed how to parameterize the models to ensure
a cooperative solution. In crowdsourcing, it is more common to find random (aka “spammy”) annotators
than adversarial ones; constraining the models to a cooperative solution identifies the model, but should not
be used if the data contains a mix of adversarial and cooperative raters (Passonneau & Carpenter, 2014).
Dealing with majority adversarial raters is an open problem.

Models of annotation introduce significant improvements compared to the conventional approach of evaluating
inter-annotator agreement statistics such as Cohen’s κ; Paun et al. (2022) provide an overview. They may
also be used to diagnose rater biases, infer adjusted population prevalence, or select highly discriminative
items, and so on. We also showed how using uncertainty of the form generated by crowdsourcing models,
either as weights or to directly train or to sample, improves classifier training.

The bottom line is that most training efforts in machine learning are not making the most of their human
feedback and can be improved by applying the methods introduced here.
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