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Abstract

We propose a neural network architecture that en-
ables non-parametric calibration and generation of
multivariate extreme value distributions (MEVs).
MEVs arise from Extreme Value Theory (EVT)
as the necessary class of models when extrapo-
lating a distributional fit over large spatial and
temporal scales based on data observed in inter-
mediate scales. In turn, EVT dictates that d-max-
decreasing, a stronger form of convexity, is an es-
sential shape constraint in the characterization of
MEVs. As far as we know, our proposed archi-
tecture provides the first class of non-parametric
estimators for MEVs that preserve these essential
shape constraints. We show that the architecture
approximates the dependence structure encoded by
MEVs at parametric rate. Moreover, we present a
new method for sampling high-dimensional MEVs
using a generative model. We demonstrate our
methodology on a wide range of experimental set-
tings, ranging from environmental sciences to fi-
nancial mathematics and verify that the structural
properties of MEVs are retained compared to ex-
isting methods.

1 INTRODUCTION

Modeling the occurrence of extreme events is an important
task in many disciplines such as medicine, environmental
science, engineering, and finance. For example, understand-
ing the probability of a patient having an adverse reaction to
medication or the distribution of economic shocks is critical
to mitigating the associated effects of these events [Dey and
Yan, 2016]. However, these events are rare in occurrence
and therefore are often difficult to characterize with tradi-
tional statistical tools. This has been the primary focus of
extreme value theory (EVT), which describes how to ex-

Figure 1: Equivalent representations of MEVs in dimen-
sion two, from dependent at the top row to independent at
the bottom row. Left column, samples from MEV; Middle
column, spectral representation; Right column, Pickands
dependence function. We propose methods for estimating
the Pickands function (section 2.1), recovering the spectral
density (section 2.2) and sampling MEVs (section 4).

trapolate the occurrence of rare events outside the range of
available data. In the one-dimensional case, EVT provides
remarkably simple models for the asymptotic distribution of
the maximum of an infinite number of independent and iden-
tically distributed (i.i.d.) random variables, which is due to
the celebrated Fisher-Tippet-Gnedenko theorem [Embrechts
et al., 1997]. These are known as the generalized extreme
value (GEV) distributions [de Haan and Ferreira, 2010].

Perhaps more relevant to practical use-cases is to consider
simultaneous extremes in the multi-dimensional scenario.
For example, how are extreme weather patterns related in
geographical areas or how do extremes of different finan-
cial instruments relate? Unlike the one-dimensional case,
multivariate extreme value (MEV) distributions generally
do not endow simple analytical forms of the underlying den-
sity. This leads to difficulties in performing inference tasks
using conventional methods. Instead, MEV distributions
are characterized by tail dependence functions embedded
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in extreme value copulas [Pickands, 1981, Gudendorf and
Segers, 2010].

BACKGROUND: EXTREME VALUE COPULAS

We start with a brief overview of multivariate EVT and
provide additional background material in Appendix A. Let
∆d−1 denote the unit d−dimensional simplex. Let Xi =

(X
(i)
1 , . . . , X

(i)
d ) ∈ Rd for i ∈ {1, . . . , n} be a sample of

i.i.d. random vectors with common continuous probability
distribution F , marginals F1, . . . , Fd and copula CF . The
copula CF : [0, 1]d → [0, 1] is a function that satisfies:

CF (u) = P [F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud] .

Let the vector of component-wise maxima be given
by: M (n) =

(
M

(n)
1 , . . . ,M

(n)
d

)
, where M

(n)
k =

maxi=1,...,n X
(i)
k for k ∈ {1, . . . , d}. Let Cn be the copula

of M̄ (n) given by: M̄ (n) =

(
M

(n)
1 −b

(n)
1

a
(n)
1

, . . . ,
M

(n)
d −b

(n)
d

a
(n)
d

)
,

where each component-wise maxima M
(n)
k is normalized

with sequences of real numbers a
(n)
k > 0 and b

(n)
k such

that the corresponding limiting marginal is non-degenerate.
Then the following property known as max-stability holds:

Cn(u1, . . . , ud) = CF (u
1/n
1 , . . . , u

1/n
d )n, ∀ u ∈ [0, 1]d.

We are interested in finding the limiting copula C of Cn as
n → ∞. The limiting copula is then called an extreme value
copula and we say that CF is in the maximum domain of
attraction of C, denoted as CF ∈ MDA(C). The limiting
extreme value copula C has the form [Segers, 2012]:

C(u) = exp

[(
d∑

k=1

log uk

)

A

(
log u1∑d
k=1 log uk

, . . . ,
log ud∑d
k=1 log uk

)]
,

(1)

where A is known as a Pickands dependence function that
defines the joint dependence of a MEV.

Definition 1 (Pickands dependence function). A function
A : ∆d−1 → [1/d, 1] is called a Pickands dependence
function if it satisfies the following properties:

1. A is homogeneous of order 1 and d-max-decreasing
where d is the dimension;

2. A satisfies maxk=1,...,d wk ≤ A(w) ≤ 1 for all w ∈
∆d−1.

3. A(ek) = 1 where ek is the kth canonical basis vector.

We give the functional definition of d-max-decreasing in
Appendix B1 and instead give the spectral correspondence
of A here.

Definition 2 (Spectral form of Pickands dependence func-
tion). For any Pickands dependence function A, there exists
a Borel measure (spectral measure) Λ on ∆d−1 satisfying∫
∆d−1

sk dΛ(s) = 1 for k ∈ {1, . . . , d} such that

A(w) =

∫
∆d−1

max
k=1,...,d

wksk dΛ(s), w ∈ ∆d−1. (2)

The equality
∫
∆d−1

sk dΛ(s) = 1 is only used as a con-
vention to standardize the margins, and is not essential in
maintaining the d-max decreasing property [Fougères et al.,
2013]. To provide some intuition on the aims of this pa-
per, Figure 1 illustrates the relationship between different
equivalent representations for a canonical parametric MEV –
the symmetric logistic distribution with dependence param-
eter α = 0.05 leaning towards complete dependence and
α = 0.999 leaning towards complete independence. The
proposed methods estimates the Pickands function (right
most column) and recovers the spectral measure (middle
column) which enables sampling MEVs (left most column).

Related Work. A number of techniques have been de-
veloped to estimate extreme value copulas from data. The
most relevant to the present work is that by Pickands [1981]
where a non-parametric estimator of the Pickands function
was first proposed. Following works such as Capéraà et al.
[1997] and Bücher et al. [2011] describe alternative takes
on estimating the dependence function. The above methods,
however, do not guarantee that the estimate completely sat-
isfy the conditions of a valid Pickands dependence function.
In Marcon et al. [2017], the authors consider a projection
of a nonparametric estimator to a convex function repre-
sented as a Bernstein polynomial. However, the number of
parameters required significantly increases with both the
amount of data and the dimensionality, making it difficult
for higher dimensional problems or problems with many
data points. Finally, a number of Pickands estimators were
compared and described in Vettori et al. [2018], and notably
none of the estimators reviewed satisfied all requirements of
the Pickands function in cases where d > 2. For additional
details, please refer to the review on extreme value copulas
in Gudendorf and Segers [2012]. A theoretical review of d-
max-decreasing functions and their applications to copulas
is given in Ressel [2019].

Our Contributions.

1. We present d-max-decreasing neural networks, an ar-

1Intuitively, d-max-decreasing describes a stronger form of
convexity needed to ensure that subsets of margins remain valid
MEVs. See Hofmann [2009, Theorem 5.2.2] and Ressel [2013,
Theorem 6] for further details.



chitecture constrained to represent Pickands depen-
dence functions of MEVs.

2. We prove that, in the limit, the proposed architecture
can approximate arbitrary Pickands functions.

3. We propose a generative neural network representation
of the spectral density of Pickands functions.

4. We propose an extension of the Pickands estimator to
train neural networks.

2 NEURAL REPRESENTATIONS OF
EXTREME VALUE DISTRIBUTIONS

Our main results propose two architectures for representing
MEVs: a deterministic method for representing the Pickands
dependence function, and a stochastic method for represent-
ing the spectral measure. While both represent equivalent
quantities, each is more suited for a particular task. The
deterministic representation is more suitable for estimating
exceedance probabilities whereas the spectral representation
is more suitable for sample generation.

2.1 D-MAX-DECREASING NEURAL NETWORKS

We are interested in finding a flexible parameterization of
A that enforces all the properties given in Definition 1. The
most difficult property to enforce is being d-max-decreasing.
To that end, we propose a new architecture inspired by
Maxout Networks [Goodfellow et al., 2013] and Input
Convex Neural Networks (ICNNs) [Amos et al., 2017].
The proposed architecture, dubbed d-max Neural Networks
(dMNNs), has additional restrictions to fulfill the conditions
of the Pickands dependence function.

Theorem 1 (d-max-decreasing Neural Architecture). Let
A

(m)
θ (w) be a function defined as:

A
(m)
θ (w)

:= max

(
max

k=1,...,d
wk, L

(m)(w) + (1− L(m)(e)Tw)

)
,

(3)

where

L(m)(w) =
1

nm

nm∑
j=1

(
ℓ(m) ◦ ℓ(m−1) ◦ · · · ◦ ℓ(1)(w)

)
j
,

ℓ(i)(h(i−1))j = max
k=1,...,ni−1

(
Θ

(i)
j,· ⊙ h(i−1)

)
k
,

h(i−1) = ℓ(i−1) ◦ · · · ◦ ℓ(1)(w),

L(e) = (L(e1), . . . , L(ed))
T ,

m is the number of layers, ni is the width of the ith layer,
Θ(i) ∈ Rni×ni−1

+ are the weights of the ith layer, constrained

to be all positive, and ei is the ith canonical basis vector. ⊙
denotes component-wise multiplication.

Then, A(m)
θ (w) is a d-max-decreasing function. Moreover,

A
(m)
θ (w) represents a valid Pickands dependence function.

Intuition of proof. The proof uses the idea that
Es[maxk=1,...,d(wksk)], s ∈ ∆d−1 is d-max-decreasing
and certain compositions of this function retain this property.
The full proof is given in Appendix C.1.

For notational convenience, we drop the (m) unless needed.
To get an intuition behind the structure of the architecture,
note that in the single layer case in the limit as n1 → ∞,
the weights θ correspond to samples of the spectral measure
in Definition 2 and the expectation is computed empirically.
While the proposed architecture is guaranteed to enforce
the properties of the Pickands function, and is thus d-max-
decreasing, we are also interested in seeing how well it can
approximate an arbitrary Pickands dependence function. We
present results in the following theorem:

Theorem 2 (Uniform Convergence). Suppose that θ are
samples from the true spectral measure and A is the true
Pickands function. The empirical process

Gn =
√
n
(
A

(1)
θ (w)−A(w)

)
converges to a zero mean Gaussian process as n → ∞
where A

(1)
θ is a single layer dMNN of width n.

Intuition of proof. We first establish pointwise convergence.
Then we show A is Lipschitz over a bounded set whose
covering number grows in accordance with functions that
are P−Donsker. The full proof is given in Appendix C.2.

The result in Theorem 2 has many implications on the prop-
erties of the proposed network since it, for example, allows
us to quantify the uncertainty associated with our function
estimates. Using the proposed architecture, we mitigate is-
sues faced by previous estimators, such as [Bücher et al.,
2011, Capéraà et al., 1997, Marcon et al., 2017], in enforcing
the d-max-decreasing property, inequalities, and endpoints
of the function.

2.2 A GENERATIVE MODEL FOR THE
SPECTRAL MEASURE

While the spectral measure can be computed from the
weights of the proposed dMNN, we propose an alternative
representation of the spectral measure using a generative
neural network. We model y ∼ Λ in (2) as the output of a
generative neural network G( · ;ϕ) ∈ Rd

+ with parameters
ϕ, i.e. y = G(z;ϕ) which maps input samples z ∼ pz to y,



where pz is a distribution that is easy to sample from (such
as a multivariate Gaussian distribution). This leads us to a
representation of A in terms of the generator:

AG(w) := Ey∼G

[
max

k=1,...,d
wkyk

]
, (4)

where E[yk] = 1. The expectation is taken empirically with
a large number of samples from G.

Remark 1. The function given by (4) satisfies all the neces-
sary conditions for a valid Pickands function.

Following Remark 1, we informally note that it follows from
the universal approximation theorem of neural networks
that if G is sufficiently expressive then (4) can represent an
arbitrary Pickands dependence function.

Use Cases of Each Representation. The difference be-
tween the representation given by the dMNN (3) and the
generative neural network (4) is: in the dMNN case the spec-
tral measure is modeled by a discrete number of elements
as dictated by the dMNN architecture, while in the genera-
tor case the implicit distribution of the spectral measure is
modeled. The dMNN is useful in representing probabilistic
quantities since it provides a deterministic representation of
the CDF and therefore it does not exhibit the variance of
the generative representation. On the other hand, the genera-
tive model is capable of simulating many realizations of the
MEV, particularly useful for sampling applications.

3 PARAMETER ESTIMATION

Fitting data to high dimensional copulas is often a difficult
task since the probability density function (PDF) is not
directly modeled. In general, specific parametric families
are used to make the process easier, such as in Archimedean
copulas. While it is theoretically possible to first obtain the
underlying PDF via differentiating the CDF and then fit
the dMNN with Maximum Likelihood Estimation (MLE),
the procedure is computationally complex, especially in
high dimensions. The main drawback of such a method
lies in the need to differentiate the d−variate CDF, since
nested differentiation with existing automatic differentiation
methods may result in numerical errors [Margossian, 2019].
Instead, we use specific properties of MEVs to transform
the parameter fitting procedure into MLE over univariate
random variables. We additionally present the analogs for
survival distributions in Appendix D.

3.1 FITTING THE DEPENDENCE FUNCTION

Let Fk denote the univariate marginal CDF (which can
be fitted using MLE as in Embrechts et al. [1997] or the
L-moments method of Hosking [1990]) of the kth nor-

malized component wise maxima M̄
(n)
k =

M
(n)
k −b

(n)
k

a
(n)
k

,

k ∈ {1, . . . , d}. In addition, let w = (w1, . . . , wd) ∈ ∆d−1.
We introduce the transformation on M̄

(n)
k :

M̃
(n)
k = − log(Fk(M̄

(n)
k )), ∀k ∈ {1, . . . , d}, (5)

Zw = min
k=1,...,d

M̃
(n)
k /wk. (6)

Then, we have: P [Zw > z] = e−zA(w) (for the full deriva-
tion, see Section 3 of Gudendorf and Segers [2012]). This
transformation casts the original multi-dimensional distri-
bution into the new variables Zw that are exponentially
distributed with rate parameter given by the Pickands depen-
dence function A(w). From this transformation, we can fit
the model Aθ(w) to samples Zw using MLE. This can be
done by training the model Aθ(w) with stochastic gradient
descent (SGD) to match the data points Zw as follows:

A⋆
θ(w) = argmin

θ
EZw

L(Zw;θ), (7)

where

L(Zw;θ) = Aθ(w)Zw − logAθ(w). (8)

Alternative losses could be considered by reformulating
the loss with respect to the estimators defined in Bücher
et al. [2011] and Capéraà et al. [1997]. We empirically
found that the MLE approach described in (7) provides the
best performance, and it follows naturally from the original
formulation of Pickands [1981]. The training procedure is
summarized in Algorithm 1.

Algorithm 1 Fitting the Pickands-dMNN to Data

1: Input:
{(

X
(i)
1 , . . . , X

(i)
d

)}N

i=1
, N = B × n samples

of i.i.d. random vectors where B is the number of blocks
of data and n is the size of each block.

2: Take component-wise maxima over each block:{(
M

(n,b)
1 , . . . ,M

(n,b)
d

)}B

b=1
where

M
(n,b)
k = max

i=(b−1)n+1,...,bn
X

(i)
k ,

for k ∈ {1, . . . , d} and b ∈ {1, . . . , B}.
3: Fit a GEV to each component-wise maxima

{M (n,b)
k }Bb=1, obtain {M̄ (n,b)

k }Bb=1, then estimate
marginals Fk for each k ∈ {1, . . . , d}.

4: Initialize the parameters θ ≥ 0 of the dMNN
Repeat:

5: Randomly sample a minibatch of training data
{M̄ (n,b)

k }b∈batch and uniformly sample w ∈ ∆d−1.
6: Transform samples according to Equations (5) and (6)

to obtain transformed samples {Zw,b}b∈batch.
7: Compute gradient ∇θ

∑
b∈batch L (Zw,b;θ).

8: Update θ with Adam [Kingma and Ba, 2014].
Until convergence
Output: A⋆

θ(w).



3.2 FITTING THE GENERATOR

Recall that we have an equivalent representation of A given
by AG in (4) where G(·;ϕ) is a function, with parameters
ϕ, of random variables. We fit the parameters ϕ of the
generator by solving the following optimization problem:

min
ϕ

EZwL(Zw;ϕ) + η ∥Ey[y]− 1d∥22 , (9)

with L now defined using the representation of AG in (4):

L(Zw;ϕ) = Ey[ max
k=1...d

ykwk]Zw − logEy[ max
k=1...d

ykwk],

where y = (y1, . . . , yd) = G(z;ϕ), y ∈ Rd
+ and z ∈ Rk ∼

pz with η > 0 as a regularization factor. Note that the second
expectation in (9) is only needed to enforce the margins. It
need not be strictly enforced, enforcing approximately only
results in minor changes in the tail index. The expectations
with respect to y in (9) are approximated using the sample
mean with samples from the generator.

To summarize the parameter estimation section, we bypass
the need to differentiate the CDF and use properties of
MEVs to estimate the parameters of the distribution from
data. Both representations of the Pickands function pre-
sented can be used with this technique.

4 SAMPLING

While learning MEV distributions from data is important
for computing probabilities, it is also useful to simulate
possible scenarios by sampling from an estimated MEV
distribution. We introduce a sampling technique using the
proposed architectures to efficiently sample from arbitrary
MEVs. To the best of our knowledge, there are no general
sampling methods for arbitrary extreme value copula that
scale to high dimensions. This is because MEV sampling
algorithms assume knowledge of the spectral measure, and
do not consider sampling when given only the Pickands
function. It then becomes necessary to recover the spec-
tral measure from a given Pickands function or from data,
which we previously described two methods for doing so.
We additionally note that the traditional method of condi-
tional sampling for copulas is ineffective since it requires
both computing high order derivatives and using numerical
root-finding techniques. We base our sampling procedure
on algorithms for the infinite dimensional analogue of MEV
distributions known as max-stable processes [Dombry et al.,
2016]. Max-stable processes have the property that finite
dimensional marginals are MEVs and have a spectral repre-
sentation in terms of the spectral measure Λ for stationary
processes. This ultimately allows us to recast MEV sam-
pling in terms of prior work on sampling from max-stable
processes, where established methods exist.

4.1 MARGINS OF MAX-STABLE PROCESSES AS
MEV DISTRIBUTIONS

A stationary max-stable process has the form:

max
i≥1

ξiyi(x), x ∈ X ⊂ Rk (10)

where ξi is the ith realization of a Poisson point process
with intensity ξ−2dξ. yi is the ith sample from the spectral
measure. Additionally, E[y(x)] = 1, x ∈ X is generally
assumed to enforce unit Frechet margins. For a finite number
d of {xj}dj=1, this corresponds to a d-dimensional spectral
measure with the same properties as in Definition 2. The key
idea is to use the representation in (10) to sample from the
full MEV distribution with only knowledge of the spectral
measure. We use the algorithm mentioned in Hofert et al.
[2018, Algorithm 1] for sampling from the full distribution
given samples of the spectral measure. We give the details
of the algorithm in Appendix J Algorithm 4.

4.2 SAMPLING FROM THE DMNN

Suppose we fit a single layer dMNN using Algorithm 1
with weights given by θ ∈ Rw×d

+ where w is the width
of the network and d is the data dimension. Consider the
transformation θ̂i,j = θi,j/

∑d
j=1 θi,j where we transform

the weights of the network to the unit simplex ∆d−1, and
i, j refer to the row and column indices.

We then choose a number N and compute

max
i=1,...,N

ξiθ̂i+j , j ∼ rand({1, . . . , w −N})

where ξi is defined as per (10). While this method is effec-
tive in sampling, a possible issue is the finite number of
θ̂ dictated by the width w of the network. The generative
model on the other hand allows for unlimited generation of
samples of the spectral measure.

4.3 SAMPLING FROM THE GENERATIVE
MODEL

Suppose we fit a generative model G(z;ϕ) to data following
the optimization procedure in (9). Then sampling proceeds
similarly to the case with the dMNN except in this case we
do not use the weights of the network explicitly, but sample
from the model:

max
i=1,...,N

ξiyi where yi = G(zi;ϕ), zi ∼ p(z)

where the notation is maintained as above with p(z) defining
an easy to sample prior distribution.

As a final note regarding the sampling methods, one particu-
larly useful way of combining the methods is to first estimate
Aθ from data using an estimator such as the dMNN. Then,
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Figure 2: Qualitative comparison of 3d margins from learned
10d MEV for the commodities dataset. The dMNN retains
margins that are valid Pickands dependence function. The
other estimators are non-convex and outside the required
bounds. Contours plotted with solid lines. See additional
figures in Appendix I and E, Figures 14d to 17d.

fit the generator to Aθ by taking the mean squared error
(MSE) between the two representations, i.e.

min
ϕ

Ew∼Unif(∆d−1)(Aθ(w)−AG(w))2

+ η∥E[y]− 1d∥22.

This provides a simple way to recover the spectral density
of any given EVC and thus an effective way to sample from
arbitrary MEVs. We detail this algorithm in Appendix J
Algorithm 3.

5 RESULTS

In this section, we provide numerical results that com-
pare the estimation capabilities of the proposed dMNN-
based model with well-known estimators from the literature:
Pickands [Pickands, 1981], CFG [Capéraà et al., 1997], and
the estimator described in [Bücher et al., 2011] which we
refer to as BDV. These estimators are described in greater de-
tail in Appendix G. We start by evaluating the performance
for estimating survival probabilities on known parametric
models, followed by real data. We conclude with experi-
ments on sampling from a MEV, where we use the proposed
generative model for high dimensional data with different
dependence structures. To align with the results in Theo-
rem 2, for the experiments presented in this section, we
use a single layer dMNN with a width of 512. Additional
experiments with two different architectures are presented
in Appendix E. Code for experiments is available at2.

2https://github.com/alluly/dMNN
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Figure 3: MSE of survival probabilities for d = 2 with 100
samples for ASL (3a) and AASL (3b). Thresholds are above
the 75th percentile.

Pickands function Parameters

ASL(w) =
(∑d

k=1 w
1/α
k

)α

α ∈ (0, 1]

AASL(w) =
∑

b∈Pd

(∑
i∈b(λi,bwi)

1/αb

)αb αb ∈ (0, 1]
λi,b ∈ [0, 1]∑

i∈b λi,b = 1

Table 1: Parametric Pickands functions for the symmetric
ASL and asymmetric AASL logistic copulas and their valid
parameter ranges. Pd refers to the power set of {1, . . . , d}.
All functions are defined for domain w ∈ ∆d−1.

Synthetic data. We consider two canonical families of
extreme value distributions known as the symmetric logistic
(ASL) and the asymmetric logistic (AASL) families where
the underlying Pickands function is given by Gudendorf and
Segers [2010] listed in Table 1. α ∈ (0, 1] is the parame-
ter modeling the degree of dependence between variables
ranging from complete dependence (α = 0) to complete
independence (α = 1). Exact sampling from distributions of
this type are described in Stephenson [2003]. Note that for
both the symmetric and asymmetric copulas, the marginals
are distributed according to the standard Fréchet distribution.
We start by comparing the MSE of survival probabilities
for d = 2 where the true Pickands dependence function
is given by the symmetric or asymmetric model described
above for different degrees of dependence α. We compute
the exact values of the survival probability and consider sur-
vival probabilities associated with margins above the 75th
percentile. As shown in Figures 3a and 3b, the proposed
Pickands-dMNN estimator achieves the lowest MSE perfor-
mance for most degrees of dependence α for the symmetric
logistic model and all the degrees of the asymmetric logistic
model. The proposed method performs worse comparatively
in the full dependence case of the symmetric logistic (when
all components of the vector are the same) which we suspect
is due to difficulties in the optimization procedure of the
dMNN. We additionally showcase the ability of the pro-
posed method to model high dimensional extreme value
distributions. To do this, we train the Pickands-dMNN with
data for d = 256 with α ∈ {0.25, 0.50, 0.75, 1.0} and for
d = {256, 512, 728, 1024} with α = 0.5. Then, we com-

https://github.com/alluly/dMNN
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Figure 4: Comparison of ||Â(w)−A(w)||22 for different estimators Â for different dependence α = {0.25, 0.50, 0.75, 1.0}
with fixed d = 256 (4a, 4b) and for fixed α = 0.5 with different d = {256, 512, 728, 1024} (4c, 4d). The reference A(w)
are ASL (4a, 4c) and AASL (4b, 4d). Results are over 50 runs with 100 training samples for each run.

pute the MSE between the Pickands-dMNN and the true
Pickands function via Monte Carlo with 10,000 uniformly
sampled points in ∆d−1. The results are illustrated for vary-
ing α in Figures 4a and 4b and for α = 0.5 in Figures 4c
and 4d. While all hyperparameters were fixed at the be-
ginning and not fine-tuned, we note that performance may
improve if additional fine-tuning is performed using a vali-
dation set.
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Figure 5: Qualitative comparison of 10 out of 45 total 2d
margins from learned 10d MEV for the California Winds
dataset. The dMNN is the only method that retains margins
that are valid Pickands dependence functions. See additional
figures in Appendix I and E. Figures 14d - 17d.

Real data. We test the proposed estimator with real data
on extreme ozone levels (d = 4), wind gusts (d = 10), com-
modity prices (d = 10), cryptocurrencies to USD conver-
sion rates (d = 100), S&P 500 components with sufficient
history (d = 418), and county-level COVID-19 case counts
for California (d = 58), New York (d = 58) and North
Carolina (d = 100). We provide details for each dataset in
Appendix H. For environmental datasets, we compute the
maximum over the different sampling periods, while for the

financial data we compute the maximum drawdown. The
maximum drawdown is defined as the difference between
the minimum and maximum values over a time period nor-
malized by the maximum value. For the COVID-19 data,
we compute the change in case counts over different time
scales. All margins were fit with GEVs using the scipy
implementation, which computes the an, bn normalizing
constants.

The main challenge associated with real data is the lack
of a ground truth for comparison purposes. It is extremely
difficult to accurately compare different estimators on real
data because we can never observe the true distribution
of extremes. Since the purpose of EVT is to extrapolate
to the tails from observations not necessarily in the tails,
we consider extreme events on different time scales. If we
fit based on extreme observations on shorter time scales
and test on extreme observations on longer time scales, we
will obtain an estimate of how well the different methods
extrapolate to tail probabilities, since longer time scales will
have more extreme events.

We compute the accuracy of the different estimators with re-
spect to the empirical estimate on held out data over longer
time scales. Specifically, we choose a series of quantiles
where we observe data and compute the difference between
the estimated survival probabilities and the empirical esti-
mate calculated from observed data. This is quantified as:
1

|Q|
∑

γ∈Q

[
1
B

∑B
b=1 1{Mn,b≥γ} − Pθ(Mn ≥ γ)

]2
, where

Mn,b =
(
M

(1)
n,b , . . . ,M

(d)
n,b

)
is the d−dimensional vector of

point-wise maxima (or point-wise maximum drawdown over
a period of interest), Pθ is the estimated survival probability,
and Q is a set of thresholds to consider. We choose Q to be
all quantiles such that the empirical probability is greater
than 0. This measures how well the proposed method can
extrapolate to greater extremes over longer time scales. The
results are presented in Table 2 and suggest that while most
estimators perform similarly, the proposed method most con-
sistently performs the best in terms of the evaluation metric.
We would like to emphasize that empirical evaluation on
real data is very challenging, and the high variances prevent



d Train/Test PICKANDS CFG BDV PROPOSED

Wind 10 day/week 4.48(18.6)×10
−4 4.15(15.1)×10

−4 4.10(16.3)×10
−4 4.37(17.5)×10

−4

Ozone 4 day/week 3.06(4.66)×10
−2 2.99(4.56)×10

−2 2.86(4.46)×10
−2 2.73(4.25)×10

−2

Commodities 10 week/month 4.34(5.82)×10
−3 4.33(5.71)×10

−3 1.60(1.96)×10
−3 1.56(2.21)×10

−3

S&P 500 418 week/month 3.02(21.2)×10
−3 3.02(21.1)×10

−3 6.28(35.2)×10
−3 2.41(22.2)×10

−3

Crypto 100 week/month 1.06(2.85)×10
−2 1.05(4.86)×10

−2 1.34(3.44)×10
−2 8.57(26.4)×10

−3

COVID (NC) 100 week/week 4.04(7.21)×10
−2 4.04(7.19)×10

−2 3 .83 (6 .51 )×10
−2 4.37(10.7)×10

−3

COVID (NY) 58 week/week 2.74(10.4)×10
−2 2.74(10.4)×10

−2 2 .25 (7 .75 )×10
−2 4.06(9.50)×10

−3

COVID (CA) 58 week/week 1 .17 (3 .98 )×10
−2 1.19(3.87)×10

−2 1 .17 (3 .85 )×10
−2 1.18(4.83)×10

−3

Table 2: MSE of different estimators in estimating maxima over longer time scales. Best and second best performances are
marked in bold and italic respectively.
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Figure 6: MSE of CFG estimate for 1000 samples and 1000
simplex points for d = 225 at various α ∈ (0, 1) (6a, 6b)
and for α = 0.5 at various d = {64, 128, 256, 784, 1024}
(6c, 6d). Data sampled from generative model (blue), dMNN
(orange), and ground truth (green), where the distributions
considered were ASL (6a) and AASL (6b). Both models were
trained with 1000 data points.

us from making meaningful statements on the efficacy of
any of the methods. However, from Figures 2d and 5d, we
see that our proposed estimator is the only one that satisfies
the necessary properties of the Pickands function, which
is the main purpose of the proposed method. Specifically,
if we consider the properties of convexity and bounds, the
proposed estimator is the only one that retains these. The
other estimators are not convex and achieve values greater
than 1, which leads to incorrect probabilities when consid-
ering conditional probabilities. Additional figures in Ap-
pendix I showcase this property on additional datasets and
Appendix E Figures 5 to 10 compares these for different
architectures. It is critical that these properties are satisfied
so that downstream tasks such as conditional probabilities
can be computed. From the state-of-the-art estimators, the

properties are not satisfied and thus the applicability of the
estimators is severely limited.

Conditional Prediction. One important task is comput-
ing the conditional survival probability of a random vari-
able. Suppose we have a d-dimensional EVC and we are
interested in computing the probability that the ith compo-
nent exceeds a threshold conditioned on some subset of the
other components, C ⊆ {1, . . . , d} /i. We can compute this
through the relation:

P(xi > Xi|∩j∈Cxj > Xj) =
P(xi > Xi,∩j∈Cxj > Xj)

P(∩j∈Cxj > Xj)
.

For performance evaluation, we can cast this as a classi-
fication problem where we consider features Xj , j ∈ C
with a positive class associated if the combination of
{Xi, Xj}, j ∈ C appears in the held out data. Therefore
we only have examples of positive classes since all the ex-
amples in the held out data are realizations that did occur.
Since we cannot observe the examples that do not occur,
we must evaluate how well the method is performing based
on the examples that do. This classification problem with a
single class was studied in Lee and Liu [2003], where they
propose a metric that behaves similarly to the F1 score in
binary classification. This metric is defined as

r2

E[1{P(xi > Xi| ∩j∈C xj > Xj) ≥ 0.5}]
, (11)

where r = 1
N

∑N
k=1 1{P(x(k)

i > X
(k)
i | ∩j∈C x

(k)
j >

X
(k)
j ) ≥ 0.5} is the proportion of correctly classified exam-

ples on the held out data. The denominator is approximated
by taking an empirical average over the space [0, 1]|C|+1.
The score has a range of [0,∞) where larger values indicate
better performance. Table 3 presents the results of classifica-
tion on held out data for the COVID datasets where the top
5 most populous counties are used to predict the probability
of the 6th county having the change in case counts at or
greater than the observed value. We consider greater than
or equal to due to case counts often being underestimated
due to lack of testing. The results in Table 3 suggest that



the method is an effective tool for computing conditional
probabilities necessary for classification tasks.

NC NY CA

PICKANDS 8.31× 10−1 9.68× 10−1 8.46× 10−1

CFG 8.32× 10−1 9.69× 10−1 8.46× 10−1

BDV 8.10× 10−1 8.04× 10−1 7.50× 10−1

PROPOSED 9.79× 10−1 1.08× 100 1.10× 100

Table 3: Classification score (11) on held out COVID-19
data for different states conditioned on 5 counties. Higher is
better.

Sampling from the copula. Finally, to determine the ef-
ficacy of sampling from an arbitrary Pickands copula, we
consider two synthetic examples using the previously de-
scribed MEV distributions in Table 1. In this experiment,
we train the generator G( · ;ϕ) in (9) based on 1000 sam-
ples from the target distribution. We represent G( · ;ϕ) as
a 2 layer 256 width multi-layer perceptron with ReLU ac-
tivation functions and set η = 1. Since the Pickands func-
tion completely determines the dependency of the random
variables, we compare the CFG estimate of the Pickands
function from generated samples to the true Pickands func-
tion as a measure of sampling quality. We use the CFG
estimator due to its ubiquity in the literature and its highly
regarded status as a standard estimator for the Pickands
dependence function. The results for generating 225 di-
mensional samples with varying dependence α ∈ [0, 1] are
shown in Figures 6a and 6b. The figures suggest that the
generative model performs comparatively well for both dis-
tributions considered, with the worst performance occurring
in the nearly independent cases (α = 1). This is expected,
since independence implies a spectral measure with delta
functions on the corners of the simplex, which is difficult to
learn (see the bottom row of Figure 1 as an example). The
figures additionally suggest that sampling using the learned
weights of the dMNN has lower variance (since the spectral
measure in this is a finite discrete approximation) but does
not perform as well in sampling as the generative model.
The error of the CFG estimate for the proposed sampling
methods (blue and orange) and the exact sampling (green)
follow very similar trends in errors, suggesting that both
sampling methods are recovering the true spectral measure.

6 CONCLUDING REMARKS

We introduced a new neural network architecture for mod-
eling MEV distributions while enforcing all the properties
of the distribution. We additionally show that the architec-
ture can approximate any Pickands function, which allows
for precise representations of MEV distributions. Finally,
we present a generative model for recovering the spectral
representation. Numerical results are provided to empiri-
cally demonstrate the effectiveness of the methods in their

respective tasks. However, there are some limitations of the
proposed methods.

Limitations of Pickands-dMNNs and Generative Model.
The main challenge associated with modeling using dMNNs
are optimization and architectural choices. Choosing appro-
priate hyperparameters is a difficult and opaque task that
requires additional care. This is a case where non-parametric
methods are advantageous, at the cost of being unable to
guarantee the necessary properties of the function. In gen-
eral, we suggest using a wide architecture with single depth,
since this is the architecture that most of the theory builds
upon. Additional progress on understanding the training of
deep neural networks should improve the representational
capabilities of the dMNNs, given its theoretical potential to
approximate any Pickands functions to arbitrary precision.
Optimization of the generative model suffers from the same
issues. Furthermore, since the proposed method requires
training a neural network for estimation, the non-parametric
methods have a significant computational advantage. In
practice, this is not a major issue since these estimators are
generally fit once and the proposed method takes only a few
seconds on a GPU to fit.

Future Work. The proposed methods have possible appli-
cations in a variety of modeling situations. One possibility
is to extend the application on estimating conditional proba-
bilities of dMNN for other classification tasks, such as out
of distribution detection. Another is in using the spectral
measure for finding groups of variables that are extreme
simultaneously, such as in [Engelke and Ivanovs, 2021].
Finally, applications of extremes are important in under-
standing robustness properties of neural networks [Weng
et al., 2018], and the proposed work provides foundation for
high dimensional extensions.
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