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SIFTING THE SIGNAL FROM THE NOISE

Daniel A. Herrmann & Jacob VanDrunen

ABSTRACT

Signaling games are useful for understanding how language emerges. In the stan-
dard models the dynamics in some sense already knows what the signals are, even
if they do not yet have meaning. In this paper we develop a simple model we call
an attention game in which agents have to learn which feature in their environment
is the signal. We demonstrate that simple reinforcement learning agents can still
learn to coordinate in contexts in which (i) the agents do not already know what
the signal is and (ii) the other features in the agents’ environment are uncorrelated
with the signal. Furthermore, we show that, in the cases in which other features
are correlated with the signal, there is a surprising trade-off between learning to
pay attention to the signal and success in action. We show that the mutual infor-
mation between a signal and a feature plays a key role in governing the accuracy
and attention of the agent.

1 INTRODUCTION

Lewis-Skyrms signaling games are useful for understanding how language emerges (Lewis, 1969;
Skyrms, 2010). Nature presents some stimulus which yields a payoff if a particular action is taken
in response. The sender observes the stimulus, and sends some signal to the receiver. The receiver
in turn observes the signal and performs some action. If the action corresponds to the state of nature,
the agents receive the payoff. In Skyrms’s paradigm, what is of principal interest is whether agents
will converge to a strategy profile which maximizes information transfer when their dispositions are
subject to an adaptive process such as reinforcement learning.

For the case of 2-sender, 2-signal, 2-act (2 × 2 × 2) signaling games under simple reinforcement,1
Argiento et al. (2009) proved that convergence to an optimal signaling system is guaranteed in the
limit. This means that, in this simple context, agents will always learn a signaling system. This
learning procedure assumes that the receiver pays attention to the signal channel. But in the real
world, the receiver might not know what part of the act that the sender performs is meant to be the
signal. The collection of models we provide here addresses this problem: how might agents learn
which available stimulus is best to condition their actions on. This is a fundamental concern for the
theory of self-assembling games (Barrett & Skyrms 2017).

Our work draws inspiration from other models in the literature. Herrmann and Skyrms (forthcoming)
provide a model of the invention of conventions in which agents need to learn the properties on which
they condition their strategies. In the epistemic network game of Barrett et al. (2019), agents learn to
attend to other agents. Barrett (2020) gives a Lewis-Skyrms signaling game model in which agents
must learn to distinguish between a signal with an already-established meaning and an uncorrelated
feature of the world when deciding how to condition their actions.2

2 ATTENTION GAMES

Our attention games extend the Lewis-Skyrms signaling game. In the traditional 2 × 2 × 2 Lewis
signaling game, the receiver observes only whether one signal s or the other is sent. Since it is
1 This is a special case of a learning process commonly used in psychology and economics (Luce 1959;

Herrnstein 1970; Erev & Roth 1998). For an analysis of its relation to learning automata and Q-learning in the
context of signaling games, see (Catteeuw & Manderick 2014).
2 He calls this process of appropriating already-evolved signals as inputs to a game modular composition.

LaCroix (2020) gives a related model of modular composition in which agents learn to make use of the fixed
dispositions of other agents instead of learning them from scratch.
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assumed one and only one signal is sent given a state of nature σ, the two signals together partition
the receiver’s possible observations. However, in an attention game, the receiver may pay attention to
other partitions. Instead of simply observing the signal and then acting, the receiver instead receives
a feature vector, which is stochastically generated from the signal. A feature f is a random variable
with finite range, and a feature set is a set of features. A feature vector is a vector that specifies the
value each feature in the feature set takes in a given instance. We think of the values that a feature
can take as partitioning the possible observations of the receiver. The set of possible feature vectors
represents the possible observations that the receiver might make.

Instead of the receiver simply conditioning their act a on the value of the signal-feature, the receiver
first must choose which value of the feature vector to observe. Nature then determines the payoffs
as usual. An attention game differs from a signaling game by introducing on the receiver’s side the
choice to pay attention to different features, introducing the problem of distinguishing the signal
from the noise. In this paper we consider cases in which each feature is binary, so the codomain of
each fi is {0, 1}. We will always use f0 to denote the signal-feature.

The learning dynamics are constant across all models and are defined as follows. On round t, acts
in each of the subgames (sender S, attention A, receiver R) conditional on any observations σj , si,
or fk are determined probabilistically with Luce’s choice rule

pt(x) =
qt(x)∑
y q

t(y)
(1)

where pt(x) is the probability that the agent takes act x at time t. This is a function of the learned
weights of all the acts, where qt(y) is the weight of act y at time t.

The update rule for each process is

qt+1
A (fi) = qtA(fi) + πt

A(fi) (2)

qt+1
S,σj

(si) = qtS,σj
(si) + πt

S,σj
(si) (3)

qt+1
R,sj ,fk

(ai) = qtR,sj ,fk
(ai) + πt

R,sj ,fk
(ai) (4)

With initial weights q0i (x) = 1 for all x and i, and payoffs πt
i calculated by (where δ is the Kronecker

delta)

πt
i(x) =

{
δσtat if x chosen at t with observations specified in i

0 otherwise
(5)

This learning dynamics, due originally to Richard Herrnstein’s work on human and animal learning,
can be conceptualized as a simple process of drawing balls from urns. An agent begins with a set of
urns corresponding to possible observations. Urns begin with one ball of each color corresponding
to possible actions. On making an observation, the agent draws from the corresponding urn and per-
forms the act corresponding to the drawn ball. The agent then returns the ball to the urn and adds a
number of balls of the color proportional to the payoff received for performing the action. This algo-
rithm is not identical with the Q-learning algorithm commonly employed in reinforcement learning
literature, but is motivated in the philosophical literature by its connection to human learning (e.g.
in Erev & Roth (1998)) and to the evolutionary replicator dynamics (Beggs 2005).3

3 RESULTS

Uncorrelated Features We first consider a 2× 2× 2 attention game: each of two states of nature
obtains with probability 1

2 , and the sender and receiver each have two possible acts. We suppose
that the number of features is at least one, and all other fi for i ̸= 0 are determined randomly.4 We
show results for this game under varying parameters in Figure 1. In all versions, the game is set up

3 But see (Barrett & Zollman 2009) and (Catteeuw & Manderick 2014) for comparisons of simple reinforce-
ment learning and Q-learning in the context of signaling games.
4 The addition of the various features and the attention process means that we cannot apply the Argiento et al.

(2009) convergence results to the attention game. Thus, we simulate results which estimate the medium-run
performance of learning agents.
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so that one feature reflects the signal, and we vary the number of additional uncorrelated features
from 0 (a traditional 2× 2× 2 Lewis-Skyrms signaling game) up to 4, with 103 simulations of each
experimental condition. We find that the cumulative accuracy decreases significantly as the number
of non-signal features increases. To use another metric, after 106 plays with 0 non-signal features,
0.996 of the runs ended up with cumulative accuracy above a threshold of 0.75. With 4 non-signal
features, this happens on only 0.708 of the runs. Learning is still possible, but the addition of “noise”
in the form of uncorrelated features slows down the process.

Correlated Features We consider cases in which a single non-signal feature (which we call “the
feature” and denote with f ) now depends on the signal-feature, but not directly on the state of
nature. That is, the signal screens off any correlation between the feature and the state of nature. We
characterize this dependence with two parameters, α and β, where α = P (f = 1 | f0 = 1) and
β = P (f = 1 | f0 = 0). We will use “A” to denote the event f = 1, and s1 to denote the event
f0 = 1.

The experimental conditions now depend on α and β. We sample α at intervals of 0.02 on [0, 1],
and, for every value of α, we sample β at intervals of 0.02 on [0, α].5 We run 103 simulations of each
condition, with 104 plays per simulation. Results are given in Figure 2. As the difference between
α and β decreases, the accuracy of the learned signaling convention decreases correspondingly. On
the other hand, the probability that the receiver chooses the correct feature in the attention process
increases. This reveals a surprising trade-off. We might think that groups which tend more often
to pay attention to the signal-feature would be more successful at learning to perform the correct
action. This is the opposite of what we observe.6

We use mutual information in order to characterize the extent to which a non-signal feature and
a signal-feature are correlated.7 One subtle issue is that the mutual information depends on the
unconditional probabilities of the two random variables. In our context these change as the agents
learn up a signaling convention.8 However, as Figure 3 shows, simulation results show that the
mutual information is relatively constant over time. This is in part because P (s1 | σ1) and P (s1 |
σ0) sum to 1 both at the beginning of the learning process, and whenever P (s1 | σ1)+P (s1 | σ0) =
1, we can calculate the mutual information between the signal-feature and the feature as

I(f0; f) =

(
α log 2α

α+β + β log 2β
α+β + (1− α) log 2(1−α)

2−α−β + (1− β) log 2(1−β)
2−α−β

)
2

(6)

In Figure 4 we calculate this value for pairs of parameters, α, β ∈ [0, 1]. The resulting heat map
bears striking similarity to the two heat maps in Figure 2. When we test for the correlation between
mutual information and both accuracy and attention, we get almost perfect correlation, specifically
r = 0.991 between accuracy and mutual information, and 0.988 between attention and mutual in-
formation. We see that as the mutual information increases, mistakes in which the receiver pays
attention to the less informative feature become less costly. Thus overall accuracy increases. Con-
versely, as the mutual information increases, this also means that the non-signal feature is reinforced
more often in the attention process, which means that the receiver pays more attention to the less
informative feature.9

Correlated Features With No Signal-Feature Finally we investigate attention games in which
all features correlate to various degrees with an (unobservable) signal-feature. This attention game

5 No practical difference is made by switching the values of α and β, so no further conditions are needed.
6 One might worry about the cumulative accuracy not accurately reflecting the final outcome of learning.

We also ran the same simulations with 103 non-learning plays at the end to determine a measure of the final
accuracy at the conclusion of the learning process. The results are comparable in all relevant ways.
7 See Skyrms (2010) for a discussion of the application of information theory to signaling games.
8 To see this, consider the first term of the sum, P (A, s1) log

P (A,s1)
P (A)P (s1)

. Notice that this depends on the
value P (A, s1), which we can rewrite as P (A | s1)(P (s1 | σ1)P (σ1) + P (s1 | σ0)P (σ0)) = α

2
(P (s1 |

σ1) + P (s1 | σ0)). The two conditional probabilities, P (s1 | σ1) and P (s1 | σ0), vary as the agents learn a
signaling system.
9 This provides evidence that the agents will learn to signal in the limit, which in turn implies by the results

given in (Beggs 2005) that the receiver will attend to the most informative feature in the limit.
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would be appropriate for modelling a situation in which the sender has only imperfect control over
what the receiver gets to observe. In the case with only one feature this corresponds to a noisy
signal-feature. In the case with multiple features, the receiver would have to learn which feature is
most informative, and pay attention to it. This is an important case; in the real world, agents will
never observe the signal of other agents with perfect fidelity.

In the case in which there is only one feature there is no attention process.10 We find that success
(Figure 5) tracks mutual information (r = 0.984). We consider further cases in which the number
of features ranges from two to five. To generate the α and β parameters for each feature, we use the
line segment (0.5, 0.5), (1, 0). For the case with n features, we divide this line segment into n + 1
sections, and take the coordinates of the dividing points as the values for α and β. This maximizes
the difference of the mutual information between each feature.

In the 2-feature condition, the mean cumulative accuracy was 0.766. For 3 features, 0.790. For 4,
0.797, and for 5, 0.806. The increasing accuracy observed in this experiment is due to the avail-
ability of more informative features as our partition of the line segment becomes finer. So, in the
2-feature case, the most informative feature is α = 0.83, β = 0.17, while in the 5-feature case,
it is α = 0.92, β = 0.08. The relative weight of each feature in the attention process tracks the
informativeness of the features (Figure 6), which accounts for the increase in accuracy.

Note that the behavior of the receiver in this model is suboptimal. The optimal behavior is rather
to always attend to the most informative feature. In the limit, we conjecture from the results of
Beggs (2005) on simple reinforcement learning that the receiver will learn the optimal behavior, as
it represents the strongly-dominant pure strategy. What we have shown, then, is that the medium-run
behavior of simple learners diverges significantly both from the optimal behavior and the behavior
which would be obtained in the limit of learning. It is worth noting as well that this suboptimal
behavior resembles probability matching, which is a phenomenon commonly observed in choice
experiments involving humans (Vulkan 2000). Icard (2018) shows that, when decision making is
costly, there is a connection between Luce’s choice rule (eq. 1) and probability matching.

4 CONCLUSION

We showed that learning still takes place (albeit more slowly) when there are multiple uncorrelated
features and one signal-feature. For correlated features we discovered a surprising trade-off between
accuracy and attending to the signal-feature. We showed that the mutual information of the feature
and the signal-feature is highly predictive of both accuracy and attention. Finally, we considered
cases in which the signal-feature was not one of the observable features. We showed that in the case
with only one feature, mutual information once again predicted the success of the agents. In the
case with multiple features of varying amounts of information, the receiver learns to pay attention
to more informative features.
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VISUAL APPENDIX
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Figure 1: Mean cumulative accuracy for different run lengths (each data point represents the mean
of 103 simulations). To emphasize the number of uncorrelated features i, we write 1 + i, with 1
representing the signal feature.
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Figure 2: Running accuracy (left) and probability of correct attention (right) for experiments with
one correlated feature. Heatmaps are mirrored from upper left to bottom right.
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Figure 3: Running mutual information between feature and signal for various degrees of correlation.
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Figure 4: Heatmap of mutual information, measured with intervals of 0.02 for α and β.
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Figure 5: Heatmap of running accuracy (average across 103 simulations run for 104 plays) for
experiments with no signal-feature and one correlated feature.
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Figure 6: Pie charts showing the proportion of attention given to different features when no signal-
feature is available. Lighter shading indicates a higher correlation of the feature (in terms of mutual
information) with the unobservable signal-feature.

8


	Introduction
	Attention Games
	Results
	Conclusion

