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ABSTRACT

Federated Learning has become a promising framework for preserving data pri-
vacy in collaborative training across decentralized data sources. However, the
presence of data heterogeneity remains a significant challenge, impacting both
the performance and efficiency of FL systems. To address this, we introduce
CS-pFedTM (Communication-Efficient and Similarity-based Personalized Fed-
erated Learning with Tsetlin Machine), a method that addresses this challenge
by jointly enforcing communication-aware resource allocation and heterogeneity-
driven personalization. CS-pFedTM enforces communication budget feasibility
through clause allocation and tailor personalization using clients’ parameters sim-
ilarity as a proxy for data heterogeneity. Experiments across multiple datasets
show that CS-pFedTM consistently outperforms state-of-the-art personalized FL
approaches, achieving at least 3.6× lower upload cost, 5.58× lower download
cost, and 1.17× higher runtime efficiency, while maintaining superior accuracy.

1 INTRODUCTION

Federated Learning (FL) enables clients to train models locally while only sharing parameters, pre-
serving privacy as sensitive data remain on individual devices (McMahan et al., 2016). Despite its
promise, FL still faces two major challenges: data heterogeneity across clients and communication
constraints, which bottleneck scalability in real-world systems (Khan et al., 2021).

Personalized FL addresses data heterogeneity by combining locally adapted models with shared
global knowledge. The central challenge in this lies in balancing effective personalization with
communication efficiency. Existing methods partially tackle this trade-off but often lack the ability
to provide adaptable, fine-grained personalization and flexible control over communication costs
(Shamsian et al., 2021; Gohari et al., 2024). Furthermore, most approaches rely on deep neural
networks (DNNs) (Asad et al., 2023; Lei et al., 2020), which incur high computational and memory
costs, limiting their practicality for resource-constrained edge devices (Almanifi et al., 2023; Khan
et al., 2021).

To overcome these limitations, we leverage the low-complexity Tsetlin Machine (TM), a rule-based
model based on finite-state automata and game theory, as an efficient alternative to DNNs (Lei et al.,
2020; 2021). We propose CS-pFedTM (Communication-Efficient, Similarity-based Personalized
FL with TM), which simultaneously addresses data heterogeneity and communication efficiency.
Our analysis reveals a strong correlation between TM clause parameters and the underlying FL data
distribution, motivating personalization based on data heterogeneity. Our method also accounts for
communication budgets when allocating clause contributions, and incorporates weight masking to
handle locally absent classes to optimize performance and efficiency. Our approach improves run-
time efficiency by at least 1.17×, respectively, while reducing upload communication by 3.6–886×
and download communication by 5.58−107× compared to state-of-the-art (SOTA) communication-
efficient personalized FL baselines.

In summary, our contributions are as follows:

• We introduce a novel TM-based personalization scheme in which each client trains both
a local and a global model, while communicating only the global model. To improve
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flexibility and efficiency, we incorporate class-specific weight masking and performance-
based client selection, all without requiring clients to share metadata.

• We show that the similarity between clients’ TM parameters reflects overall data hetero-
geneity, which we exploit to adaptively allocate local and global clauses. Higher hetero-
geneity leads to more local clauses to strengthen personalization, while lower heterogeneity
shifts the balance toward global clauses to reinforce shared knowledge.

• We proposed a a budget-constrained allocation mechanism that adjusts this allocation ac-
cording to communication limits, supporting efficient and adaptive personalization.

• Extensive experiments show that CS-pFedTM outperforms SOTA communication-efficient
personalized FL baselines while significantly reducing communication, storage, runtime,
and training latency.

2 RELATED WORK

In FL, data heterogeneity and communication efficiency are major challenges (Tan et al., 2023; Asad
et al., 2023). Strategies such as quantization (Mao et al., 2022; Reisizadeh et al., 2019; Hönig et al.,
2022), sparsification (Qiu et al., 2022; Rothchild et al., 2020), and network pruning (Jiang et al.,
2022; Li et al., 2021) reduce communication and computation. Alternative architectures such as
Binary Neural Networks (BNN) (Yang et al., 2021) and Tsetlin Machines (TM) (How et al., 2023)
further reduce the size and memory of the model, improving efficiency.

Beyond efficiency, substantial progress has been made in addressing data heterogeneity in FL (Imteaj
et al., 2022; Tan et al., 2023; Fallah et al., 2020). Multi-task learning (T. Dinh et al., 2020; Smith
et al., 2017) couples client-specific models with a global representation, meta-learning (Fallah et al.,
2020; Jiang et al., 2023) enables rapid local adaptation, clustering (Sattler et al., 2021) groups sim-
ilar clients, and knowledge distillation (Li & Wang, 2019) transfers knowledge via teacher–student
frameworks. Personalization via latent distribution modeling (Marfoq et al., 2022; Mclaughlin &
Su, 2024) explicitly captures data variability, balancing local flexibility and global generalization.

A complementary line of work simultaneously tackles personalization and communication effi-
ciency. Parameter decoupling methods such as LG-FedAvg, FedRep, FedBABU, FedPer, and Fed-
PAC (Liang et al., 2020; Collins et al., 2023; Oh et al., 2022; Arivazhagan et al., 2019; Xu et al.,
2023) separate client-specific and global components but remain coarse-grained and fixed. Fed-
Select (Tamirisa et al., 2024), inspired by the Lottery Ticket Hypothesis, discovers fine-grained
subnetworks via parameter masks, though fairness concerns arise since non-selected clients do not
benefit from aggregation. Similarly, sparsification-based personalization methods such as DisPFL
(Dai et al., 2022), a decentralized FL method, prune dynamically to exchange only active weights
between clients, and SpaFL (Kim et al., 2024) communicates only trainable thresholds, reducing
communication by two orders of magnitude. While effective, these approaches still impose struc-
tural constraints and do not adaptively allocate shared versus local parameters based on client het-
erogeneity.

TM-based FL methods such as FedTM (How et al., 2023) do not address data heterogeneity, while
the more recent Tsetlin-Personalized Federated Learning (TPFL) (Gohari et al., 2024) introduces
personalization through confidence-based clustering, aggregating clients within clusters that share
similar class-wise confidence profiles. Although TPFL incorporates a form of personalization, it
does not adaptively adjust the balance between local and global TM components, nor does it consider
communication constraints in the personalization process.

3 BACKGROUND

3.1 TSETLIN MACHINE

TM is a machine learning algorithm that employs propositional logic to capture frequent patterns. It
operates using Tsetlin Automata (TA) arranged in teams, building discriminative conjunctive clauses
and utilizing a majority voting mechanism for final classification (Granmo, 2021).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.1.1 TSETLIN MACHINE STRUCTURE

The TM structure is based on a two-action TA, building upon reinforcement learning principles.

Consider an input vector of o propositional variables: x = {x1, . . . , xo} ∈ {0, 1}o. Along
with their negated counterparts, {¬x1, . . . ,¬xo}, the variables together form a literal set L =
{l1, . . . , l2o} = {x1, . . . , xo,¬x1, . . . ,¬xo}. The TM comprehends the structure of each conjunc-
tive clause (Cj(x)), indexed by j, by defining its literals through a team of 2o TAs. A conjunctive
clause is constructed by taking the AND operation of a subset Lj ⊆ L:

Cj(x) =
∧

lk∈Lj

lk.

With n clauses and 2o literals, we have 2o · n TAs. Each TA makes decisions on whether to exclude
or include the associated literal in the conjunctive clause.

3.1.2 TSETLIN MACHINE LEARNING MECHANISM

TM learning begins by converting training data into boolean form, enabling the creation of conjunc-
tive clauses from literals (input variables and their negations). For n clauses, n/2 positive clauses
identify class y = 1, and n/2 negative clauses identify class y = 0. Training occurs online, process-
ing one example (x, y) at a time.

Using (x, y), the TM adjusts its TAs via two feedback types, which decide whether input literals
should be included in clauses that vote for a class. Type I Feedback strengthens clauses correspond-
ing to the correct class, increasing the chance of outputting 1, while Type II Feedback suppresses
clauses that would cause false positives. Feedback is applied to a random subset of clauses, con-
trolled by hyperparameter T , so that the sum s(x) =

∑n/2
j=1 C

+
j (x)−

∑n
j=n/2+1 C

−
j (x), approach

−T for y = 0 or T for y = 1. The sum is clamped, and feedback probabilities are proportional to
the difference between the clamped sum, c(x) = clamp(s(x),−T, T ), and the target.

py(x) =

{
T+c(x)

2T , if y = 0
T−c(x)

2T , if y = 1
(1)

The randomized selection of clauses ensures diverse feedback distribution, preventing clustering
on specific patterns and fostering recognition across various sub-patterns. In essence, TM’s learn-
ing mechanism refines clause evaluations over successive training cycles, adapting to specific class
objectives and promoting effective pattern recognition.

Weighted TM: The introduction of weights entails assigning positive real-valued weights to in-
dividual clauses, facilitating a more concise representation of the clause collection. By adjusting
these weights, the influence of particular clauses can be altered, contributing to a real-valued overall
sum within the TM (Phoulady et al., 2020). The resulting overall sum, denoted as s(x), becomes a
real-valued quantity: s(x) =

∑n/2
j=1 w

+
j C

+
j (x)−

∑n
j=n/2+1 w

−
j C

−
j (x)

Multi-Class TM: For classification, the TM applies the unit step function to the sum (u(s(x))). If
the signed sum is negative, the TM outputs y = 0; otherwise, it outputs y = 1. In the multi-class
scenario, it adheres to a comparable operational pattern. Each class, denoted as m = 1, ...,M ,
possesses its own TA teams. Suppose the current observation (x, y) has y = k, the TA teams
affiliated with class k are trained as y = 1. Concurrently, a random class l ̸= k is selected and the
TA teams associated with class l are then trained as y = 0. In this scenario, the threshold function for
each output y is modified by utilizing the argmax operator to output the class m that corresponds
to the largest sum, sm(x) =

∑n/2
j=1 w

+,m
j C+,m

j (x) −
∑n

j=n/2+1 w
−,m
j C−,m

j (x), to determine the
final output of the TM:

ŷ = argmax
m=1...M

sm(x), (2)

Convolutional TM (CTM): Inspired by convolutional structures in DNNs, filters with spatial di-
mensions W ×W and Z binary layers are utilized. Each image, with dimensions X × Y and Z

3
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binary layers is modeled in TMs using an input vector x = {xk | k ∈ {0, 1}X×Y×Z}. In CTM,
clauses function as filters, each composed of X × Y × Z × 2 literals (Granmo et al., 2019).

In the CTM, the input vector represents an image patch, and an image contains B patches. There are
B literal inputs per clause. Each clause outputs B values per image (one value per patch) instead of a
single output for the TM. The output of a positive clause j on patch b is denoted as cbj . To consolidate
multiple outputs c1j , . . . , c

B
j of clause j into a single output cj , a logical OR operation is applied:

cj =
∨B

b=1 c
b
j . Training builds upon the learning process of TM, encompassing Type I and Type

II feedback. To determine which patch to use during clause updating, the CTM randomly selects a
single patch from those contributing to the clause evaluating to 1. The clause is then updated based
on this chosen patch.

TM Composites: TM Composites, as introduced in Granmo (2023), foster collaboration among
multiple independently trained TM models. Instead of utilizing the argmax operator as described
in Equation 2, to determine the class index m associated with the largest sum, TM composites
involve computing the class sums, smt (x), for each TM t, where t ∈ {1, 2, ..., r}. These class sums
are then normalized by dividing by the difference between the maximum and minimum class sums
in the input set, (αt = maxm(smt (x))−minm(smt (x))).

The final class output is determined by the maximum value of the sum of all r TMs, calculated as:

ŷ = argmax
m

(
r∑

t=1

1

αt
smt (x)

)
(3)

4 METHODOLOGY

Before presenting the full method, we first introduce our novel personalization scheme in CS-
pFedTM, which addresses limitations in TM-based FL approaches in handling data heterogeneity
(How et al., 2023). Building on this scheme, CS-pFedTM jointly adapts global and local clause allo-
cations based on client heterogeneity and communication constraints, achieving an optimal balance
between personalization and efficiency.

4.1 PERSONALIZATION

Our personalization strategy improves the adaptability of the local model to client-specific data while
leveraging global knowledge. Each client maintains two independent TMs: a local TM, trained ex-
clusively on its own data to capture client-specific patterns, and a global TM, also trained locally but
whose parameters are shared with the server. During each communication round, only the global TM
parameters are uploaded to the server; the server aggregates these updates and returns the updated
global model to clients.

Clients then combine the outputs of the local and global TMs using Equation 3, integrating local
adaptation and shared global knowledge. Furthermore, the class-specific weights of TMs allow
for further personalization through weight masking: weights corresponding to classes not observed
locally can be set to zero, enabling the model to quickly adapt to unseen classes. This design ensures
robust and flexible personalization in FL with heterogeneous data.

4.2 PROBLEM FORMULATION

While this personalization framework enables clients to adapt effectively to heterogeneous data, the
allocation of clauses between local and global components directly impacts both performance and
efficiency. Clients with more heterogeneous data benefit from a larger fraction of local clauses to
capture client-specific patterns, whereas clients with less heterogeneous data can rely more on global
clauses for shared knowledge Additionally, communication constraints impose upper limits on the
amount of information each client can share per round.

The challenge, therefore, is to determine the optimal allocation of local and global clauses that
maximizes performance while adhering to defined communication budgets, without requiring
clients to share explicit metadata about their data distributions. This motivates CS-pFedTM, our
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Figure 1: Effect of local clause fraction on performance. Peak performance shifts to higher fractions
with increasing heterogeneity and class count

communication-efficient personalization framework, which leverages the similarity of trained TM
parameters across clients to guide adaptive clause allocation.

4.2.1 EFFECT OF DATA HETEROGENEITY ON PERSONALIZATION

We first study fixed local-global splits to understand performance trends. As shown in Figure 1,
performance consistently degrades at both extremes: allocating nearly all clauses locally or globally
leads to suboptimal outcomes. Instead, peak performance emerges at intermediate allocations. For
highly heterogeneous clients, retaining more local clauses improves personalization, and similarly,
datasets with a larger number of classes also require a higher fraction of local clauses to reach
peak accuracy. This occurs because higher heterogeneity and increased number of classes enhances
the diversity of patterns each client must capture locally, making a larger fraction of local clauses
necessary to model client-specific distributions effectively.

This shows that no fixed allocation is optimal across all heterogeneity levels, motivating our adaptive
allocation mechanism that dynamically adjusts the local-to-global ratio based on heterogeneity.

4.2.2 EXPLORING THE CONNECTION BETWEEN TRAINED PARAMETERS AND
DISTRIBUTION DISTANCES

TMs are sensitive to data distributions due to stochastic clause updates and clauses corresponding to
underrepresented patterns tend to be reinforced less (Granmo, 2021). As a result, the learned clauses
encode the statistical properties of the training data. In FL, this implies that clients with heteroge-
neous data produces distinct TM parameters, naturally reflecting differences in local distributions.

We show that parameter similarity across clients inversely reflects data heterogeneity: Clients with
high data heterogeneity exhibit lower parameter similarity, while less heterogeneous clients yield
higher parameter similarity. Let W (qAqB) denote the Wasserstein distance between two data distri-
butions, and J (SA, SB) the Jaccard similarity between their trained TM parameters, which quanti-
fies the overlap of active clauses between models trained on the different distributions.

Corollary 1 (Inverse Relation Between Distribution Divergence and Clause Overlap) Let qA
and qB be two class distributions and SA, SB be the corresponding trained TM states (sets of
clauses). Then:

W (qA, qB) −→ smaller =⇒ J (SA, SB) −→ larger,

Thus, lower distributional divergence corresponds to higher parameter similarity.

Intuitively, when two clients have similar data distributions, the stochastic clause updates in each
TM are likely to reinforce the same clause. This alignment leads to a larger overlap, hence a higher
Jaccard similarity. A formal proof is provided in Appendix A.1.

Empirical results (Figure 2) show that the Jaccard similarity of clients’ learned parameters,
J (clients), is strongly positively correlated with the true label distribution similarity, J (true), and
strongly negatively correlated with the Wasserstein distance between client and true distributions,
W (true). This indicates that data heterogeneity can be reliably inferred from observable TM param-
eters (J (clients)), motivating similarity-driven clause allocation without accessing metadata.
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Figure 2: (a) Strong positive correlation and consistent trend between J (true) and J (clients). (b)
Relationship between W (true) and J (clients) shows strong negative correlation across datasets.

4.3 ALGORITHM OVERVIEW

CS-pFedTM begins with a reference round, in which clients train a tiny reference TM and upload
their parameters to the server. These reference parameters serve two key purposes. Firstly, they
enable the server to estimate the communication cost per clause and, given the communication bud-
get for downloading the global model, determine the minimum fraction of clauses that must remain
local. Secondly, they provide a basis for computing client parameter similarity, which serves as
a proxy for data heterogeneity. This similarity-driven measure is then used to set the local-global
clause allocation for the system: when the participating clients exhibit higher overall heterogeneity,
the scheme emphasizes more local clauses to improve personalization, whereas for lower hetero-
geneity, more global clauses are used for knowledge sharing. For subsequent rounds, clients are
randomly sampled as usual, but only the top-performing clients’ states (based on local performance)
are uploaded and used in global aggregation. This ensures that the global model incorporates the
most informative updates while maintaining fairness in client participation.

Based on the observed parameter similarity and communication budget, the server allocates local
and global clauses for each client accordingly. Algorithm 3 summarizes the full approach.

Algorithm 1 CS-pFedTM: Communication-Efficient and Similarity-based Personalized FL
with TM
Input: Total number of clients Nc, total communication rounds T , number of clauses per client
nclauses, communication budget τ
for round t = 0, 1, . . . , T do

Server randomly samples Nt clients, Ct
if t == 0 then

Clients train a tiny reference TM and upload state parameters
min frac← compute min frac
JSclients ← compute client similarity
local frac← exp

(
− ln(1/min frac) · JSclients

)
Assign local and global clauses:

nlocal = ⌊nclauses · local frac⌋, nglobal = nclauses − nlocal

for each client n ∈ Ct do
Client trains local model Ln, global model Gn

Ln, Gn ← mask weights(Ln),mask weights(Gn)
Client uploads global parameters Gn to the server

Gt ← aggregate global models
Server updates clients’ global TM with Gt

return Personalized TMs for each client: TMn ∈ {Gt, L
n}, combined using Equation 3
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4.3.1 COMMUNICATION-AWARE CLAUSE ALLOCATION

To address client heterogeneity under communication constraints, we introduce a communication-
aware allocation mechanism. Given a communication budget τ , which specifies the maximum num-
ber of megabytes that each client can communicate per round, we first use the reference TM to
estimate the per-clause communication footprint, including clause weights and states. This enables
us to translate the abstract budget τ into a concrete bound on the number of clauses that can be
shared globally without exceeding this budget.

From this bound, we compute min frac, the minimum fraction of clauses that must remain lo-
cal. This ensures that each client retains enough locally trained clauses that adhere to the com-
munication budget while still benefiting from global aggregation. By enforcing this budget-driven
lower bound, the mechanism prevents infeasible allocations, preserves fairness across heterogeneous
clients, and provides a stable foundation for similarity-driven personalization, which dynamically
allocates clauses according to data heterogeneity.

4.3.2 SIMILARITY-DRIVEN PERSONALIZATION

Within this communication limit, we further adapt clause allocation based on data heterogeneity. As
shown in Figure 1, higher heterogeneity (W (true)) favors larger local fractions. Since W (true) is
unobservable in FL, we approximate it with J (clients), the average similarity between clients’ TM
parameters. Empirical results reveal a strong inverse relationship between J (clients) and W (true):
as clients’ data distributions diverge further from the true distribution of the system, their parameters
become less similar.

We model this in a stable and bounded manner using a decreasing exponential function, which
naturally captures the diminishing effect of increasing similarity. When clients are very dissimilar
(high heterogeneity), the exponential term is large, resulting in a higher allocation of local clauses,
emphasizing personalization. Conversely, as clients become more similar (low heterogeneity), the
exponential term decreases rapidly, reducing the local fraction and favoring shared global knowl-
edge. This formulation ensures that even small differences in similarity among highly heterogeneous
clients produce meaningful increases in local clause allocation, while clients that are already similar
are quickly shifted toward increased global aggregation. Furthermore, by setting:

c = ln(1/min frac),

we guarantee exp(−c · J (clients)) ≥ min frac, ensuring that the allocation never falls below the
budget-driven minimum.

The local allocation threshold is therefore defined as:

local frac = exp
(
− c · J (clients))

The number of local and global clauses is then computed as

nlocal = ⌊nclauses · local frac⌋ , nglobal = nclauses − nlocal.

Hence, by directly linking clause allocation to the derived similarity measure, CS-pFedTM achieves
communication- and heterogeneity-aware personalization.

5 EXPERIMENTS

Benchmark Datasets: We performed experiments on five image datasets and an audio dataset
commonly featured in the FL literature: SVHN (Netzer et al., 2011), EMNIST (Cohen et al.,
2017), CIFAR-10, CIFAR-100 (Krizhevsky, 2009), Tiny-ImageNet (Le & Yang, 2015) and
SpeechCommands-12 (SC-12) (Warden, 2018).

Baseline Methods: To ensure a fair comparison, we evaluated several parameter-decoupling person-
alization approaches alongside CS-pFedTM. FedAvg serves as the standard FL benchmark (McMa-
han et al., 2016), while FedAvg++ adds local fine-tuning (Jiang et al., 2023). pFedFDA addresses
the bias-variance trade-off via generative classifiers and feature distribution adaptation (Mclaughlin
& Su, 2024). FedPAC aligns local and global feature representations using a regularization term (Xu

7
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Table 1: Accuracy (%) of the algorithms for the FL with data heterogeneity and CC - Communica-
tion Costs (Upload/Download) for all clients per communication round

SVHN EMNIST SC-12 CIFAR-10 CIFAR-100 Tiny-ImageNet Avg.
0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 Acc.

Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC
FedAvg 29.16±14.42 13/43 53.84±2.71 13/43 71.41±4.30 15/50 56.31±2.73 15/50 56.37±2.93 42/141 65.46±0.67 42/141 31.23±0.82 13/43 32.99 ±0.46 13/43 6.58±0.04 14/48 6.82±0.15 14/48 1.50±0.09 16/53 1.48±0.05 16/53 34.42

FedAvg++ 80.08±2.21 ” 71.05±3.50 ” 72.71±0.85 ” 74.54±0.32 ” 67.82±2.72 ” 66.35±4.03 ” 79.12±2.75 ” 67.41±2.33 ” 43.20±0.26 ” 34.57±0.91 ” 19.42±2.32 ” 14.79±2.40 ” 57.59
pFedFDA 81.28±2.77 ” 70.58±3.87 ” 95.73±0.14 ” 94.26±0.20 ” 90.57±0.62 ” 91.11±1.82 ” 85.60±1.71 ” 77.05±0.78 ” 47.03±1.25 ” 38.47±1.91 ” 28.03±0.89 ” 23.22±0.74 ” 68.58
FedPAC 83.03±2.06 ” 82.96±1.79 ” 95.77±0.50 14/46 94.28±0.17 14/46 86.67±4.27 ” 90.20±1.45 ” 85.28±1.37 ” 79.17±0.75 ” 45.46±0.60 ” 37.11±0.70 ” 28.60±0.36 13/43 21.59±0.32 13/43 69.18
FedRep 80.81±3.13 ” 81.33±2.53 ” 78.12±0.17 ” 78.18±0.32 ” 88.49±2.46 ” 82.91±3.10 ” 86.43±1.45 ” 79.48±1.23 ” 44.44±1.56 ” 38.01±1.53 ” 27.47±0.84 ” 20.77±0.57 ” 65.54
FedPer 83.27±2.00 ” 76.12±1.29 ” 94.37±1.00 ” 92.68±0.37 ” 90.82±0.48 ” 90.97±2.87 ” 83.76±1.63 ” 76.13±1.29 ” 43.02±0.54 ” 34.66±0.82 ” 26.27±0.44 ” 19.89±0.50 ” 67.66

LG-FedAvg 84.20±1.96 0.67/1.0 78.95±1.01 0.67/1.0 75.80±0.52 4.2/6.4 75.69±0.08 4.2/6.4 79.42±2.62 0.41/0.62 76.72±1.64 0.41/0.62 84.22±1.60 0.67/1.0 75.56±0.52 0.67/1.0 37.88 ±1.02 6.7/10 29.07±0.74 6.7/10 22.62±1.26 13/20 15.54±0.33 13/20 61.30
FedSelect (0.3) 79.51±2.25 2.3/2.3 67.90±1.54 2.3/2.3 94.18±0.04 2.7/2.7 91.51±0.25 2.7/2.7 91.07±0.19 7.5/7.5 85.83±0.24 7.5/7.5 85.95±0.46 2.3/2.3 78.47±0.68 2.3/2.3 47.75±1.34 2.6/2.6 37.13±0.61 2.6/2.6 29.11±0.60 2.9/2.9 22.42±1.83 2.9/2.9 67.57
FedSelect (1.0) 79.45±1.86 7.7/7.7 68.88±1.74 7.7/7.7 94.55±0.48 8.9/8.9 91.78±0.10 8.9/8.9 91.16±0.16 25/25 85.85±0.17 25/25 86.37±0.72 7.7/7.7 78.81±0.93 7.7/7.7 47.76±0.45 8.6/8.6 36.04±0.13 8.6/8.6 30.02±0.74 9.6/9.6 22.45±1.26 9.6/9.6 67.76

TPFL 86.64±0.71 0.12/2.4 80.39±0.88 0.12/2.4 91.99±0.23 0.08/5.8 89.05±0.22 0.08/4.4 83.94±1.40 0.19/7.7 79.48±3.17 0.22/7.7 85.10±1.01 0.08/16 77.97±1.37 0.08/16 41.72±0.76 0.04/5.6 31.68±0.48 0.04/5.9 15.59±0.43 0.02/3.2 11.41±0.61 0.02/4.1 64.58
FedTM 55.58±1.13 0.33/12 59.02±3.77 0.33/12 62.94±1.87 1.4/48 69.44±1.87 1.4/48 62.33±0.27 1.2/35 62.37±0.21 1.2/35 37.86±1.90 0.37/15 39.62±0.31 0.37/15 4.37±0.06 1.3/46 4.52±0.57 1.3/46 3.67±0.06 1.4/53 3.43±0.26 1.4/53 38.76

CS-pFedTM 89.59±0.78 0.01/0.28 83.91±1.61 0.05/0.96 94.60±0.37 0.02/0.5 91.51±0.54 0.11/2.2 91.16±2.64 0.01/0.35 91.76±1.21 0.02/0.56 86.92±0.83 0.03/0.76 79.81±0.68 0.03/0.99 48.20±0.85 0.04/0.88 39.03±0.69 0.04/0.88 29.25±0.66 0.12/2.6 24.20±0.09 0.12/2.6 70.82

et al., 2023). FedRep and FedPer communicate only base layers, retraining classifier heads or the
full model for personalization (Collins et al., 2023; Arivazhagan et al., 2019). LG-FedAvg transmits
only the global classifier and linearly combines local and global layers (Liang et al., 2020). FedS-
elect personalizes subnetworks via selective masking but limits aggregation to participating clients,
leaving non-participating clients without updates (Tamirisa et al., 2024). We also include TM-based
FL methods. FedTM, which performs sample-based aggregation (How et al., 2023) and TPFL that
addresses heterogeneity via confidence-based clustering (Gohari et al., 2024).

FL Configuration: Following standard practice (Hsu et al., 2019; Jiang et al., 2023; Mclaughlin
& Su, 2024), we simulate heterogeneity using a Dirichlet partition with α ∈ {0.1, 0.05} and a 0.3
participation rate over 100 clients. Clients train for 1 local epoch per round, and results report the
best average personalized accuracy over 100 rounds (3 seeds). Following the original FedTM pa-
per (How et al., 2023), we train FedTM with 5 local epochs as its non-personalized aggregation
requires multiple steps to produce stable updates. Communication cost is measured as total up-
loaded/downloaded parameters per round. FedSelect is adapted to the cross-device setting with 0.3
client participation, with full participation also reported for consistency as in Tamirisa et al. (2024).

Model Configuration: We used a 2-layer CNN (Xu et al., 2023) for the image datasets and the CNN
from Zhang et al. (2018) for SC-12, trained with batch size 128 (Liang et al., 2020). FedTM and
CS-pFedTM use CTMs, while TPFL uses a Coalesced TM configured with the same total number of
clauses for fairness. CS-pFedTM’s download budget τ is set to match the most download-efficient
baseline, ensuring comparable communication conditions.

5.1 PERFORMANCE

CS-pFedTM achieves accuracy comparable to state-of-the-art personalized FL methods and delivers
the highest average performance across all heterogeneous settings (Table 1). It outperforms the
second-best method by an average of 1.64%, and surpasses TM-based FL FedTM and TPFL in all
settings by an average of 32.1% and 6.24% respectively. We also benchmarked CS-pFedTM against
sparsification-based personalization methods. As DisPFL is decentralized and SpaFL requires larger
CNNs for pruning, we report these results in Appendix C.1, where CS-pFedTM maintains superior
performance and efficiency.

5.2 COMMUNICATION COSTS

Communication costs are critical in FL, especially for edge devices with limited bandwidth (Asad
et al., 2023). Table 1 shows that CS-pFedTM achieves the lowest overall communication costs
among all evaluated methods. This reduction is primarily due to CS-pFedTM’s design, which up-
loads only global parameters guided by client heterogeneity and communication budgets, rather
than the full model, while the bit-based CTM representation additionally reduces memory require-
ments compared to full-precision CNNs (Lei et al., 2020). As a result, CS-pFedTM achieves 31.3×
and 45.8× lower upload and download costs than FedTM. On average, CS-pFedTM is 85.8×
more upload-efficient and 5.58× more download-efficient compared to LG-FedAvg, and 158× and
6× more efficient compared to FedSelect, while delivering superior model performance. FedTM
demonstrates lower upload costs compared to LG-FedAvg, yet remains less efficient in download
costs. Although FedPAC surpasses CS-pFedTM in terms of accuracy on the EMNIST dataset, CS-
pFedTM remains an average of 876× more upload-efficient and 106× more download-efficient.
Furthermore, CS-pFedTM reduces upload and download communication by 3.6× and 9.28× com-
pared to TPFL. These results show that CS-pFedTM offers the most communication-efficient solu-
tion, making it ideal for bandwidth-limited FL.
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5.3 MEMORY COSTS AND TRAINING LATENCY

Table 2: Average Memory Storage (MS) and Runtime Memory (RTM) in MB and Training Latency
(L) in seconds on each client

SVHN EMNIST CIFAR-10 CIFAR-100 SC-12 Tiny-ImageNet
MS RTM L MS RTM L MS RTM L MS RTM L MS RTM L MS RTM L

CNN 0.43 101 1.48 0.50 50.6 3.82 0.43 111 1.52 0.48 118 1.47 1.41 278 1.25 0.53 144 3.23
CoTM 0.02 22.5 2.92 0.06 71.5 17.1 0.06 41.6 2.44 0.05 28.2 3.36 0.06 8.6 5.37 0.05 57.3 10.6
CTM 0.12 22.1 0.70 0.48 47.6 3.50 0.15 31.8 0.63 0.46 25.7 1.24 0.35 10.8 0.78 0.53 42.5 2.45

We evaluated runtime memory and model storage for all TM variants. As shown in Table 2, CTMs
are significantly more efficient than CNNs, requiring 2.17× less storage and 7.16× lower runtime
memory. TPFL’s CoTM further reduces static model size by 7.76×, but this comes at the cost of
1.17× higher runtime memory and 4.48× higher latency. More importantly, at the FL system level,
CS-pFedTM achieves 6.24% higher accuracy while reducing upload and download communication
by 3.6× and 9.28×. Since communication and accuracy, not static model size, are the dominant
constraints in practical FL deployments (Khan et al., 2021), CS-pFedTM provides a strictly better
performance, communication and runtime. Despite TPFL’s smaller model footprint, CS-pFedTM is
therefore more suitable for resource-constrained, bandwidth-limited FL environments.

5.4 EFFECT OF HETEROGENEITY

To analyze heterogeneity, we varied the number of classes per client in CIFAR-10, with fewer classes
indicating higher heterogeneity. From Figure 3, CS-pFedTM achieves the largest gains under highly
heterogeneous settings, though its advantage slightly decreases as heterogeneity lowers. It consis-
tently outperforms communication-efficient baselines such as LG-FedAvg, TPFL and FedSelect.
Like CNN-based methods, stronger performance under lower heterogeneity often requires more
shared global parameters, a trend CS-pFedTM follows. For the higher budget setting, we constrained
CS-pFedTM’s communication to the maximum used by competing methods; even so, it incurs sig-
nificantly lower costs while closing the performance gap. Another factor partly explaining this gap
is that TMs are generally less robust than CNNs; however, CS-pFedTM remains the strongest TM-
based FL method across all heterogeneity levels, and recent advances in TM architectures such as
GraphTM indicate promising directions for further performance improvement (Granmo et al., 2025).

Figure 3: Performance of the algorithms on varying heterogeneity

6 CONCLUSIONS

We presented CS-pFedTM, an efficient personalized FL framework with TMs that jointly leverages
local and global models through a similarity-based clause allocation mechanism that adapts to het-
erogeneity and communication constraints. CS-pFedTM achieves substantial resource reductions,
at least 3.6× in upload, 5.58× in download, 1.17× in runtime memory, and 1.62× in training la-
tency, without compromising accuracy. By focusing on clause-level optimization, this work lays
the groundwork for future improvements such as weight optimization, adaptive mask learning, and
clause sparsification. Additionally, the observed link between parameter similarity and data distri-
bution provides insights for FL extensions, including resource-aware personalization and dynamic
clause adaptation to handle concept drift.
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A APPENDIX

A.1 PROOF OF RELATION BETWEEN WASSERSTEIN DISTANCE AND JACCARD SIMILARITY

Training in a Tsetlin Machine (TM) is stochastic because of:

• Random selection of clauses for updating, and
• Randomized rewards and penalties from Type I feedback.

This stochasticity makes the learned clause states highly sensitive to the underlying data distribution.
Motivated by this, we investigate how differences in data distributions across clients—quantified via
the Wasserstein distance—affect the similarity of their learned parameters, measured using Jaccard
similarity.

Definition 1 (1-Wasserstein Distance (Kolouri et al., 2017)) The 1-Wasserstein distance between
two distributions q1 and q2 over a metric space Z is

W (q1, q2) := inf
q∈Q(q1,q2)

∫
Z×Z

d(z1, z2) dq(z1, z2),

where d(·, ·) is a distance function and Q(q1, q2) denotes the set of couplings with marginals q1 and
q2.

Lemma 2 (Distributional Dissimilarity) Let q1, q2, q
′
2 be data distributions. If W (q1, q

′
2) >

W (q1, q2), then q′2 is more dissimilar to q1 than q2 is.

By the definition of the 1-Wasserstein distance and the principle of optimal transport (Kolouri et al.,
2017), a larger value indicates that, on average, it is “harder” to transport samples from q1 to q2.
Hence, if W (q1, q

′
2) > W (q1, q2), the distribution q′2 is more dissimilar to q1 than q2 is. Intuitively,

samples from q′2 are less likely to resemble samples from q1 compared to samples from q2.

Next, we define the similarity of parameters by

Definition 2 (Jaccard Similarity (Costa, 2021)) The Jaccard similarity between two sets of binary
vectors SA and SB is the size of the intersection divided by the size of the union of the sets:

J (SA, SB) =
|SA ∩ SB |
|SA ∪ SB |

.

To compare the states between two sets of clauses A and B:

• |SA∩SB |: represents the number of clauses that are active in both sets, (clauses that include
at least one literal in both)

• |SA ∪ SB |: represents the number of clauses that contain literals in either SA or SB .

The Jaccard similarity between two states, SA and SB , therefore measures the degree of overlap in
active clauses between the two states. Higher values indicate that the same clauses has at least an
include action in both states, reflecting the similarity in how feedback has shaped the clauses during
training.

Corollary 3 (Inverse Relation Between Distribution Divergence and Clause Overlap) Let qA
and qB be two class distributions and SA, SB be the corresponding trained TM states (sets of
clauses). Then:

W (qA, qB) −→ smaller =⇒ J (SA, SB) −→ larger,

Thus, lower distributional divergence corresponds to higher parameter similarity.

Training is done one sample at a time. Given a Multi-Class TM with M classes, when training an
input x from class y = k, the TA teams associated with class k will be trained to output y = 1 and
the other classes’ (y ̸= k) TA teams will be selected to train to output y = 0 on the training input

14
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x. The probability of selecting a TA team from class m ∈ {1, ...,M} for positive training can be
defined as qm where

∑M
m=1 qm = 1.

Let cjk be the j-th clause for class k, with C total clauses per class. Let Lj
k denote the number of

literals included in the TA teams of cjk. During training of (x, y) with class label y:

• Type I feedback reinforces the TA teams of clauses corresponding to y = k are reinforced
to include literals matching the input, increasing the likelihood that the clause outputs 1:
∆Lj

k | y = k ≥ 0.
• Type II feedback guides the TAs in clauses of other classes y ̸= k to include zero-valued

literals or suppress active literals. This reduces the likelihood of false positives, effectively
decreasing the number of literals contributing to the clause output: ∆Lj

k | y ̸= k ≤ 0.

We define the change in the number of literals included in clause cjk as ∆Lj
k, which depends on

Equation 2 and the specific training sample. Let

δ+ := E[∆Lj
k | y = k] ≥ 0, δ− := E[−∆Lj

k | y ̸= k] ≥ 0,

represent the expected increase in literals for Type I feedback and the expected decrease in literals
for Type II feedback, respectively.

Then, for a data distribution q = {qk}Mm=1, the expected number of literals in clause cjk after training
is

E[Lj
k | qk] = qk δ+ + (1− qk) δ− (4)

= δ− + qk (δ+ − δ−), (5)

This expression captures the average effect of Type I and Type II feedback across the class distribu-
tion.

Let two datasets, A and B have distributions qA = {qAk }Mk=1 and qB = {qBk }Mk=1,

SA = {cjk : Lj,A
k ≥ 1,∀k ∈M, j ∈ C}, SB = {cjk : Lj,B

k ≥ 1,∀k ∈M, j ∈ C},
denote the sets of clauses that contain at least one include action, respectively.

We define indicator variables for literals present in clauses:

Ij,Xk := 1{Lj,X
k ≥ 1}, X ∈ {A,B}.

Thus, a clause cjk belongs to SX if and only if Ij,Xk = 1.

The size of the overlap between the two sets is the dot product of the indicator vectors:

|SA ∩ SB | =
M∑
k=1

C∑
j=1

Ij,Ak · Ij,Bk .

Taking expectations, we obtain

E[|SA ∩ SB |] =
M∑
k=1

C∑
j=1

E[Ij,Ak Ij,Bk ].

Since the TMA and TMB trained on qA and qB are independent, the expectation can be expressed
as:

E[|SA ∩ SB |] =
M∑
k=1

C∑
j=1

E[Ij,Ak ]E[Ij,Bk ].

15
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Since E[Ij,Xk ] = Pr(Ij,Xk = 1) = Pr(Lj,X
k ≥ 1), we get:

E[|SA ∩ SB |] =
M∑
k=1

C∑
j=1

Pr(Lj,A
k ≥ 1) · Pr(Lj,B

k ≥ 1).

Approximating them using normalized expected literal counts:

For the bounded random variable Lj,X
k ∈ [0, Lmax], we can bound Pr(Lj,X

k ≥ 1) using its expecta-
tion:

E[Lj,X
k ] = E[Lj,X

k | Lj,X
k ≥ 1] Pr(Lj,X

k ≥ 1) + E[Lj,X
k | Lj,X

k < 1] Pr(Lj,X
k < 1).

Since 0 ≤ Lj,X
k ≤ Lmax on the event {Lj,X

k ≥ 1}, we have

Pr(Lj,X
k ≥ 1) ≤ E[Lj,X

k ],

and similarly
E[Lj,X

k ] ≤ Lmax Pr(L
j,X
k ≥ 1),

which implies
E[Lj,X

k ]

Lmax
≤ Pr(Lj,X

k ≥ 1) ≤ E[Lj,X
k ].

Since the distribution of Lj,X
k is typically spread across [0, Lmax], its normalized expectation pro-

vides a tractable approximation:

Pr(Lj,X
k ≥ 1) ≈

E[Lj,X
k | qXk ]

Lmax
.

Substituting this approximation, the expected overlap becomes

E[|SA ∩ SB |] ≈
M∑
k=1

C∑
j=1

E[Lj
k|q

A
k ]

Lmax
· E[L

j
k|q

B
k ]

Lmax

Definition 3 (Arithmetic Mean-Geometric Mean Inequality (Xia et al., 1999)) For non-
negative numbers a1, a2, . . . , aM ,

a1 + a2 + · · ·+ aM
M

≥ M
√
a1a2 · · · aM ,

with equality if and only if a1 = a2 = · · · = aM .

Applying the AM–GM inequality gives

E[Lj
k | qAk ]

Lmax
·
E[Lj

k | qBk ]

Lmax
≤

 E[Lj
k|q

A
k ]

Lmax
+

E[Lj
k|q

B
k ]

Lmax

2

2

.

Hence, each product term is maximized when

E[Lj
k | q

A
k ] = E[Lj

k | q
B
k ].

Therefore, summing over all classes and clauses, the total expected overlap is maximized when the
two data distributions are aligned:

qAk = qBk ∀k ∈M.

Therefore, the expected clause overlap E[|SA ∩ SB |] is maximized when the class distributions
are identical W (qA, qB) → 0. Smaller distributional distance between qA and qB implies higher
expected Jaccard similarity of the clause-activity states; conversely, larger distributional divergence
generally reduces clause overlap.
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B EXPERIMENTAL DETAILS

B.1 DATASETS

We evaluated the different approaches on the SVHN (Netzer et al., 2011), Extended MNIST (EM-
NIST) (Cohen et al., 2017), CIFAR-10 , CIFAR-100 (Krizhevsky, 2009), SpeechCommands (War-
den, 2018) dataset and Tiny-ImageNet (Le & Yang, 2015). All datasets are downloaded and prepro-
cessed with PyTorch (Paszke et al., 2019).

• SVHN: This dataset is imbalanced and consists of digits and numbers captured in natural
scenes, presenting a more challenging real-world problem (Netzer et al., 2011).

• EMNIST: The extended version of MNIST which contains 814,255 characters with 62
unbalanced classes. Similar to BiFL (Yang et al., 2021; Marfoq et al., 2022), we only used
a subset of the entire dataset for training and testing.

• CIFAR-10: A real-world image dataset of 10 classes with 6000 images per class
(Krizhevsky, 2009).

• CIFAR-100: A real-world image dataset of 100 classes with 6000 images per class
(Krizhevsky, 2009).

• SpeechCommands-12 (SC-12): A dataset containing 10 spoken keywords (’Yes’, ’No’,
’Left’, ’Right’, ’Up’, ’Down’, ’Stop’, ’Go’, ’On’, ’Off’) with the remaining 20 keywords
labelled as ’silence’ and ’unknown’ (Warden, 2018).

• Tiny-ImageNet: A dataset containing 100000 real-world images of 200 classes, downsized
to 64×64 colored images (Le & Yang, 2015).

For the SpeechCommands-12 dataset, we preprocessed each audio clip and extracted 40x49 MFCC
features as defined in (Zhang et al., 2018) for the DNN-based algorithms while we extracted 13x29
MFCC features as defined in (Lei et al., 2021) for the TM-based algorithms.

B.2 LIBARIES AND MACHINE

To evaluate the average run-time memory usage and training latency, these were estimated by con-
tainerizing the PyPi memory-profiler package in Docker using 2 CPUs.

B.2.1 BASELINE MODELS CONFIGURATION

In configuring all baseline models, we performed parameter tuning to optimize their performance.
specifically, for the learning rate if not defined in the original paper, we explored these values: [0.01,
0.05, 0.1].

B.3 CS-PFEDTM MODEL CONFIGURATION

To meet the booleanized input requirements essential for TMs, we implemented distinct pre-
processing steps for each of our datasets. For the EMNIST dataset, we encoded the data by set-
ting pixel values larger than 40 to 1, and values below or equal to 40 to 0. For the SVHN dataset,
we binarized the data using an adaptive Gaussian thresholding procedure with a window size of 11
and a threshold value of 2 (Granmo et al., 2019). For the CIFAR-10 dataset, we booleanized using
3x3 color thermometer encoding and for the CIFAR-100 and Tiny-ImageNet, we booleanized using
2x2 color thermometer encoding(Granmo, 2023). Across all datasets, we utilized the CTM, adjust-
ing parameters such as the number of clauses, feedback threshold, learning sensitivity, and patch
dimension. We set δ = 0.5 for AverageCW to average the local weights.

C ADDITIONAL RESULTS

C.1 COMPARISON WITH SPARSIFICATION METHODS

Sparsification can also be leveraged as a form of personalization by selectively pruning model com-
ponents based on their importance to each client. We compare our method with DisPFL (Dai et al.,
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Table 3: CS-pFedTM model configuration
SVHN EMNIST CIFAR-10 CIFAR-100 SC-12 Tiny-ImageNet

Dir(0.05) Local Clauses 293 193 190 103 792 57
Global Clauses 7 2 10 2 8 3

Dir(0.1) Local Clauses 276 186 187 103 787 57
Global Clauses 24 9 13 2 13 3

Feedback Threshold 500 100 150 1000 200 2000
Learning Sensitivity 7.5 5 5 5 5 1.5
Patch Dimensions (5,5) (10,10) (3,3) (2,2) (10,10) (2,2)

2022) and SpaFL Kim et al. (2024), two communication-efficient personalized FL approaches that
uses sparsification.

Since DisPFL is a decentralized FL method, we focus on the average per-round communication cost
per client when sharing parameters with neighbors, and compare it with the per-client communica-
tion cost of our approach. We utilized the same CNN models as defined in Section 5.

Table 4: Performance of DisPFL (n), where n is the number of neighbours vs CS-pFedTM and CC
- Average CC per client per round for SVHN, EMNIST, and SC-12

SVHN EMNIST SC-12
Dir(0.05) Dir(0.1) Dir(0.05) Dir(0.1) Dir(0.05) Dir(0.1)
Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC

DisPFL (n=30) 77.08±2.17 6.46 65.09±2.24 6.46 90.90±0.32 7.43 88.44±0.41 7.43 84.34±0.22 21.2 76.54±0.98 21.2
DisPFL (n=10) 75.96±1.93 2.15 60.18±1.92 2.15 90.15±0.38 2.48 88.89±0.42 2.48 82.10±0.18 7.05 76.54±0.35 7.05
DisPFL (n=5) 76.35±2.01 1.08 61.36±1.85 1.08 91.15±0.42 1.24 89.90±0.45 1.24 81.91±0.11 2.38 72.30±0.28 2.38
CS-pFedTM 89.59±0.78 0.01 83.91±1.61 0.05 94.60±0.37 0.02 91.51±0.54 0.11 91.16±2.64 0.01 91.76±1.21 0.02

Table 5: Performance of DisPFL (n), where n is the number of neighbours vs CS-pFedTM and CC
- Average CC per client per round for CIFAR-10, CIFAR-100, and Tiny-ImageNet

CIFAR-10 CIFAR-100 Tiny-ImageNet
Dir(0.05) Dir(0.1) Dir(0.05) Dir(0.1) Dir(0.05) Dir(0.1)
Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC

DisPFL (n=30) 82.26±1.12 6.5 74.57±1.04 6.5 30.52±1.30 7.14 23.38±0.42 7.14 22.55±0.43 7.93 17.09±0.62 7.93
DisPFL (n=10) 82.10±0.93 2.17 71.94±1.01 2.17 30.10±0.82 2.38 23.22±0.79 2.38 21.03±0.66 2.64 15.69±0.59 2.64
DisPFL (n=5) 81.41±0.93 1.08 73.15±0.94 1.41 30.46±0.79 1.19 21.82±0.33 1.19 19.10±0.46 1.32 14.79±0.47 1.32
CS-pFedTM 86.92±0.83 0.03 79.81±0.68 0.3 48.20±0.85 0.04 39.03±0.69 0.04 29.25±0.66 0.1 24.20±0.09 0.1

Although decentralized FL methods avoid the server communication bottleneck, they become more
communication-intensive when n > 1 since each client must exchange updates with multiple
neighbors per round. In contrast, centralized FL requires only one upload and one download per
client. Our results show that CS-pFedTM consistently outperforms DisPFL across all settings, while
also achieving significantly lower per-round communication costs. Nevertheless, one advantage of
DisPFL is that the number of neighbors can be predefined, offering flexibility in network topology
design. However, this comes at the expense of a trade-off as seen in Table 4 and Table 5, where
increasing the number of neighbors may improve information mixing but could lead to higher com-
munication overhead and potentially affect model performance.

To further reduce communication costs beyond parameter or gradient exchange, pruning-based
methods have been proposed. In SpaFL, trainable thresholds are assigned to each filter or neuron,
which prune their connected parameters to induce structured sparsity. To minimize communication,
only these thresholds are exchanged between clients and the server, reducing costs by up to two
orders of magnitude compared to transmitting full model parameters Kim et al. (2024).

However, pruning is largely ineffective for smaller CNNs, since their limited parameter counts leave
little redundancy to exploit. Therefore, because the CNNs used in Section 5 are too small for prun-
ing, we adopt the larger model from the original SpaFL paper for comparison. Moreover, since
SpaFL communicates only thresholds, we evaluate our CS-pFedTM under stricter communication
budgets to ensure fairness. The results in Table 6 demonstrate that our method achieves stronger
personalization while operating under tighter resource constraints.
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Table 6: Comparison of SpaFL and CS-pFedTM: Performance, Communication Costs per client per
round, and Model Size after pruning for SpaFL

FMNIST CIFAR-10 CIFAR-100
Dir(0.05) Dir(0.1) Dir(0.05) Dir(0.1) Dir(0.05) Dir(0.1)

Acc CC Size Acc CC Size Acc CC Size Acc CC Size Acc CC Size Acc CC Size
SpaFL 96.72±0.31 0.07/0.23 0.94 95.24±0.42 0.07/0.23 0.94 83.33±0.79 0.09/0.26 3.23 75.57±0.65 0.09/0.26 3.23 45.15±0.94 0.29/0.96 11.2 36.25±0.64 0.29/0.96 11.2

CS-pFedTM 97.83±0.44 0.02/0.22 0.26 95.58±0.38 0.02/0.24 0.26 85.34±0.74 0.004/0.09 0.35 78.57±0.69 0.06/0.15 0.35 48.03±0.81 0.25/0.85 0.83 38.16±0.52 0.06/1.5 0.83

C.2 EFFECT OF PARTICIPATION RATIO AND NUMBER OF CLIENTS

We analyzed the scalability of CS-pFedTM by varying the number of clients from 20 to 500 and ad-
justing the client participation ratio per communication round to [0.1, 0.3, 0.5, 1.0] on the CIFAR-10
dataset. The results demonstrate that CS-pFedTM consistently delivers strong performance across
all configurations, regardless of the total number of clients or the participation rate per round. This
shows CS-pFedTM’s scalability and robustness, making it well-suited for various FL scenarios.

Figure 4: Performance of the algorithms for varying (a) number of clients and (b) participation ratio

C.3 PERFORMANCE IN EXTREME NON-IID SCENARIOS

Furthermore, it is expected that parameter similarity may lose granularity under extreme non-IID
conditions (eg. when clients have completely disjoint label spaces). In such cases, the Jaccard
similarity between client clauses can saturate near zero, and the resulting clause allocation becomes
highly personalized. This behavior is expected: when clients share almost no structure, the model
should tend toward fully personalized learning.

To verify robustness in these extreme regimes, we evaluated CS-pFedTM under Dirichlet settings
of α = 0.01 and α = 0.005. As shown in Table 7, CS-pFedTM continues to match or exceed the
performance of all baselines, even as global sharing naturally diminishes. These results indicate
that the similarity-driven allocation mechanism remains stable and effective, even when the model
transitions toward near-fully personalized operation.

Table 7: Performance of the algorithms in the extreme non-IID setting
Dir(0.005) Dir(0.01)

FedAvg 28.18±0.74 25.36±0.58
FedAvg++ 95.91±1.12 92.27±0.84
pfedFDA 94.89±0.66 91.86±0.91
FedPAC 97.81±0.93 96.98±0.77
FedRep 97.25±0.85 95.20±0.64
FedPer 98.04±1.02 96.67±0.72

LG-FedAvg 98.57±0.81 94.36±1.10
FedSelect(0.3) 98.12±0.69 96.20±0.95
FedSelect(1.0) 96.49±0.54 95.88±1.16

TPFL 98.38±1.07 96.29±0.91
FedTM 16.78±0.48 15.93±0.62

CS-pFedTM 98.79±0.78 96.72±0.65
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C.4 COMPARISON WITH LARGER BASELINE MODEL

Our primary focus is efficiency-oriented personalized FL, where comparisons are typically made
under realistic communication and computational constraints. In this setting, lightweight CNNs
remain the standard choice across recent personalization literature, as they better reflect practical
FL deployments. Nonetheless, we also evaluated the DNN-based FL methods using MobileNet-v2
(Sandler et al., 2019) on CIFAR-10. The outcomes align with the expected behavior of parameter-
decoupled FL methods where methods that personalize a substantial portion of the model (eg. LG-
FedAvg) retain reasonable performance even with MobileNet, since a large number of parameters
are adapted locally. However, methods that personalize only the classifier head (FedPer, FedRep,
FedPAC) perform worse than with a 2-layer CNN. This is expected: MobileNet’s large shared back-
bone dominates the representation, and personalizing only the final layer is insufficient to overcome
strong distribution shifts under heterogeneous data.

Importantly, even with this much larger backbone model, the communication cost of these
MobileNet-based baselines remains several orders of magnitude higher than CS-pFedTM. Despite
using a lightweight architecture, CS-pFedTM achieves comparable accuracy while maintaining its
primary advantage of reduced communication.

Table 8: Performance of the algorithms with larger models
Dir(0.05) Dir(0.1)

Acc CC Acc CC
FedAvg 39.73±1.99 268/895 33.25±1.34 268/895

FedAvg++ 72.4±1.31 ” 60.53±1.02 ”
pfedFDA 88.01±1.17 ” 80.93±0.91 ”
FedPAC 75.29±0.96 267/890 69.64±0.83 267/890
FedRep 80.72±1.25 ” 78.44±1.11 ”
FedPer 76.79±0.92 ” 66.17±0.73 ”

LG-FedAvg 87.68±1.83 6.66/10.2 83.21±1.55 6.66/10.2
FedSelect(0.3) 88.77±0.53 7.63/7.63 78.76±0.83 7.63/7.63
FedSelect(1.0) 85.71±0.19 25.4/25.4 80.18±0.22 25.4/25.4
CS-pFedTM 87.34±0.51 0.02/0.44 80.34±0.96 0.26/5.76

C.5 SENSITIVITY ANALYSIS

As shown in Figure 5, our similarity-driven allocation selects the optimal point on each curve, adap-
tively adjusting the local/global split based on client heterogeneity. Upload communication costs in-
crease as heterogeneity decreases, since more homogeneous clients share a larger fraction of global
clauses. These results highlight the trade-off between personalization and communication, demon-
strating that our allocation mechanism consistently identifies the best balance across heterogeneity
levels.

Figure 5: Performance as a function of local clause fraction under different heterogeneity levels. The
points indicate the local/global split selected by our similarity-driven allocation, which achieves the
highest performance on each curve.
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C.6 ABLATION STUDIES

We conduct ablation experiments to evaluate the individual contributions of CS-pFedTM’s two core
components: masking and similarity-based personalization. When applied separately, each leads
to partial improvements under data heterogeneity. However, the joint application of masking and
personalization delivers the best performance, demonstrating that CS-pFedTM consistently achieves
the highest accuracy and stability across all datasets.

Table 9: Ablation Studies for CS-pFedTM
FedTM Mask only Personalization only CS-pFedTM

SVHN 55.58±1.13 57.63±2.44 87.48±0.94 89.59±0.78
EMNIST 62.94±1.87 63.57±2.19 91.70±1.38 94.60±0.37

SC-12 62.33±0.27 63.37±0.87 88.82±1.93 91.16±2.64
CIFAR-10 37.86±1.90 39.48±0.82 85.31±0.91 86.92±0.83

CIFAR-100 4.37±0.06 6.61±0.19 43.53±0.71 48.20±0.85

Dir(0.05)

Tiny-Imagenet 3.67±0.06 4.58±0.09 21.28±0.58 29.25±0.66
SVHN 59.02±3.77 59.66±0.84 81.83±0.92 83.91±1.61

EMNIST 69.44±1.87 71.15±0.42 88.49±1.30 91.51±0.54
SC-12 62.37±0.21 63.14±0.84 91.01±0.07 91.76±1.21

CIFAR-10 39.62±0.31 41.98±0.78 77.15±0.24 79.81±0.68
CIFAR-100 4.52±0.57 9.12±0.49 30.72±0.78 39.03±0.69

Dir(0.1)

Tiny-Imagenet 3.43±0.26 4.50±0.04 13.75±0.15 24.20±0.09

Furthermore, we conducted ablation studies for τ , which defines the maximum communication cost
allowed per client per round, which determines the minimum fraction of clauses that must remain
local (min frac). It influences only how many parameters can be transmitted per client. We provide
experiments with the CIFAR-10 varying τ in Table C.6 and we observed that at lower heterogeneity
levels (Dir(0.1) and Dir(0.05)), increasing τ (permitting more global clause sharing) yields higher
accuracy, since more global knowledge benefits clients that share substantial distributional over-
lap. However, under extreme heterogeneity (Dir(0.01) and Dir(0.005)), increasing τ produces only
marginal changes as personalization dominates, and additional global clauses offer limited benefit.
These results demonstrate that τ primarily governs the communication budget and does not desta-
bilize or meaningfully alter the personalization behaviour of CS-pFedTM. The accuracy remains
stable across a wide range of τ values, indicating that the clause allocation and masking mecha-
nisms operate consistently regardless of the communication limit.

Table 10: Ablation Studies for τ
τ Dir(0.1) Dir(0.05) Dir(0.01) Dir(0.005)

0.01 79.81±0.68 86.92±0.83 98.79±0.78 96.72±0.65
0.03 79.76±0.75 86.98±0.69 98.85±0.55 96.56±0.73
0.05 79.89±0.53 87.27±0.63 98.54±0.72 96.81±0.68
0.1 80.03±0.46 87.91±0.85 98.89±0.50 96.75±0.62
0.12 80.17±0.59 88.49±0.68 98.75±0.65 96.84±0.51
0.15 80.49±0.73 88.84±0.51 98.77±0.39 96.59±0.64

C.7 JUSTIFICATION FOR PERFORMANCE-BASED CLIENT SELECTION

In FedTM, TopK aggregation selects clients with the largest number of class samples. Under full
participation (cross-silo), this repeatedly favors the same clients with the most number of sam-
ples, leading to fairness issues and poor representation of clients with more challenging or smaller
datasets. To address this, CS-pFedTM selects the Top-K clients based on local validation accuracy
rather than sample counts.

This design is motivated by two factors:

• Fairness: accuracy-based selection allows clients with fewer samples—but well-trained
local models—to contribute, preventing dominance by a small subset of clients.
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• Model quality: local performance is a more reliable indicator of useful updates than dataset
size, reducing global bias toward data-rich but under-performing clients.

The choice of K = 2 follows FedTM, which showed that Top-2 aggregation provides the best trade-
off between information sharing and communication overhead. Top-1 under-utilizes cross-client
information, while larger K gives diminishing returns due to the bit-level TM representation.

We evaluated sample-based vs. performance-based TopK on CIFAR-10 under both cross-silo (10
clients) and cross-device (100 clients) configurations, with both full and 0.3 partial participation. As
shown in Table 11 below, performance-based Top-K consistently achieves higher mean accuracy,
lower or comparable variance, and significantly reduces the over-representation of dominant clients
in cross-silo settings.

Table 11: Performance of Sample-based and Performance-based TopK on various FL settings
Cross-Silo Cross-Device

Full participation Partial participation Full participation
Sample-based TopK 87.23±0.89 85.52±0.98 86.35±0.69

Performance-based TopK 87.93±1.07 86.92±0.83 86.96±0.61
Sample-based TopK 77.84±0.78 78.07±0.81 75.32±0.53

Performance-based TopK 78.04±1.19 79.81±0.68 77.65±0.55

In cross-silo settings, variance for performance-based TopK is slightly higher, which reflects greater
inclusivity: more clients are selected over time instead of always the same two. Importantly, accu-
racy is still consistently higher.We also note that model performance remains stable under different
participation rates (full participation vs. partial participation), as shown in Figure 4. This indicates
that the effectiveness of the performance-based TopK is not sensitive to the participation ratio: even
when fewer clients participate, the selected updates remain representative of the overall client pop-
ulation. In other words, the selection mechanism does not overfit to any subset of clients, and the
aggregation remains robust across both cross-device and cross-silo settings.

Several prior works have shown that client selection schemes that account for client model quality
or utility led to better global performance than naive or sample-count–based selection. For example,
Jee Cho et al. (2022) and Lai et al. (2021) demonstrate that incorporating client-side metrics, such
as loss, update usefulness, or training reliability. These substantially improves convergence and
generalization in federated optimization. Although the specific criteria differ from ours, these works
reinforce the broader conclusion that data-quantity–based selection tends to introduce bias, while
performance-aware selection results in more informative updates.

A full convergence analysis for non-convex, non-differentiable TM training with selective aggre-
gation is, to our knowledge, still an open problem even for simpler TM setups. Our approach
follows the standard FL aggregation pattern (averaging over selected client models), and our exper-
iments show stable convergence across all configurations with low variance across the experiments.
We therefore position the performance-based TopK as a practically motivated, performance-aware
client-selection heuristic, analogous in spirit to utility-based selection schemes studied in prior FL
work and support it with empirical evidence rather than a full convergence proof.

C.8 STABILITY OF PARAMETER SIMILARITY AND USE OF THE REFERENCE ROUND

The reference round is used solely to estimate the parameter similarity that guides clause allocation.
Because clients are sampled uniformly at random in every round, including the reference round, the
participating clients constitute an unbiased sample of the overall population. Thus, the similarity
measured in this round provides a reliable estimator of the system’s underlying heterogeneity.

Empirically, we computed the client parameter similarity at every training round and reported its
average variance across rounds, for varying client participation rates (0.1, 0.3, 0.5, 1.0) and averaged
over three independent random seeds in Table12. Across all datasets and heterogeneity settings,
the variance is extremely small, indicating that similarity remains tightly concentrated around the
reference-round estimate. Although variance decreases slightly as the participation rate increases,
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the reduction is minor, indicating that similarity is already highly stable even under low participation.
This further confirms that the reference-round estimate remains reliable regardless of sampling rate.

Table 12: Average Variance of parameter similarity across training rounds
Participation Ratio SVHN EMNIST SC-12 CIFAR-10 CIFAR-100 Tiny-Imagenet

0.1 0.0120 0.0007 0.0029 0.0054 0.0005 0.0006
Dir(0.05) 0.3 0.0047 0.0006 0.0024 0.0028 0.0004 0.0008

0.5 0.0029 0.0005 0.0018 0.0023 0.0004 0.0005
1 0.0021 0.0005 0.0009 0.0023 0.0003 0.0005

0.1 0.0023 0.0040 0.0047 0.0116 0.0011 0.0013
Dir(0.1) 0.3 0.0053 0.0028 0.0035 0.0099 0.0009 0.0007

0.5 0.0015 0.0021 0.0029 0.0058 0.0009 0.0002
1 0.0019 0.0011 0.0006 0.0035 0.0009 0.0002

Moreover, Figure 4 shows that model performance remains stable under different participation rates
(full participation vs. partial participation). If the similarity estimate were highly sensitive to which
clients participate in any individual round, we would expect substantial divergence in accuracy
across participation settings. Instead, accuracy remains nearly unchanged, further indicating that
the heterogeneity captured in the reference round is representative of subsequent rounds. We also
observe consistently low variance in overall performance across runs, reinforcing that system be-
havior does not fluctuate meaningfully with changes in the sampled client set.

Regarding dynamic data distributions (concept drift), CS-pFedTM is naturally compatible with such
settings: since global parameters are already transmitted every round, the system can simply re-
estimate inter-client similarity periodically (eg. every N rounds) and update clause allocation ac-
cordingly, without modifying the core algorithm or increasing communication cost.

D LIMITATIONS AND FUTURE WORK

While CS-pFedTM delivers strong accuracy under heterogeneity and achieves substantial communi-
cation savings, its performance remains fundamentally bounded by the current capabilities of TMs.
In centralized settings, TMs can lag behind state-of-the-art DNNs due to information loss from
booleanization and limited expressive power of bit-level learning. Although recent advances, such
as TM composites (Granmo, 2023), multi-encoding architectures, and emerging variants like Graph
TMs (Granmo et al., 2025), are beginning to close this gap, improving centralized TM performance
remains a prerequisite for further boosting federated accuracy (How et al., 2025). Future extensions
of CS-pFedTM could incorporate these enhanced TM architectures, enabling richer clause repre-
sentations while maintaining efficiency. Another promising direction is adapting CS-pFedTM to
concept drift. As similarity is computed independently of training dynamics, the framework can
naturally re-estimate similarity every N rounds and update global/local clause allocation as client
distributions evolve. Additionally, integrating elements of Coalesced TMs may help reduce static
memory footprint, while adaptive clause sparsification or dynamic clause reduction could further
lower runtime memory and latency. These directions offer a path toward more expressive, adaptive,
and resource-efficient TM-based personalized FL.
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E ALGORITHMS

E.1 FEDTM IMPLEMENTATION DETAILS

FedTM is the first FL framework that leverages TM to concurrently optimize communication ef-
ficiency and memory utilization. In contrast to FL frameworks employing DNNs, where weight
aggregation often involves a straightforward weighted averaging of integer weights, FedTM adopts
a distinctive two-step aggregation scheme How et al. (2023), owing to the unique structure of TM
as described in Section 3.1.

The first step employs the TopK algorithm for bit-based aggregation of the TA states. This method
selects K clients based on the confidence of the TA states, giving preference to clients with the top
K data size for each specific class. The second step involves the AverageCW method, specifi-
cally tailored for computing the average of the integer clause weights weighted based on the total
sample size of each set of local data. This two-step approach ensures the effective aggregation of
information encoded in both the bit-based and integer components of TM.

Algorithm 2 FedTM
1. Initialize global parameters W0,S0 with the same TM architecture and clients inform the
server of their local dataset sizes, |Dj |, j = 1, 2, ...N
for communication round t = 1, 2, ...T do

2. For all participating clients, J , train a TM model with the current weights, Wt−1 on their
local dataset, Dj , for e epochs
3. Clients upload their local parameters
4. Aggregation of clients’ parameters
for class m = 1, 2, ...M do

Wt[m]←AverageCW(m, δ, t)
St[m]←TopK(m, k, t)

5. All clients download the new global parameters: Wt,St

AverageCW(m, δ, t):
Wt[m]← int( 1

|D|
∑J

j=1 |Dj |Wj
t [m])

if t > 1 then
if ∀Jj=1W

j
t [m] = 0 then

Wt[m]←Wt−1[m] if class m is not seen in round t of training then use previous weights
else

Wt[m]← (1− δ)Wt−1[m] + δWt[m]
return int(Wt[m] )

TopK(m, k, t):
sorted list← sort(∀Jj=1|Dj |[m])
sortedk ← sorted list[0 : k]

St[m]←
∨sortedk

j Sj
t [m]

return St[m]
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E.2 CS-PFEDTM ALGORITHM

Algorithm 3 CS-pFedTM: Communication-Efficient and Similarity-Driven Personalization
with TM
Input: Total number of clients Nc, total communication rounds T , number of clauses per client
nclauses, communication budget τ
for round t = 0, 1, . . . , T do

Server randomly samples Nt clients, Ct
if t == 0 then

Clients train a tiny reference TM and upload state parameters
min frac← compute min frac
JSclients ← compute client similarity
local frac← exp

(
− ln(1/min frac) · JSclients

)
Assign local and global clauses:

nlocal = ⌊nclauses · local frac⌋, nglobal = nclauses − nlocal

for each client n ∈ Ct do
Client trains local model Ln, global model Gn

Ln, Gn ← mask weights(Ln),mask weights(Gn)
Client uploads global parameters Gn to the server

Gt ← aggregate global models
Server updates clients’ global TM with Gt

return Personalized TMs for each client: TMn ∈ {Gt, L
n}, combined using Equation 3

Algorithm 4 compute min frac
per clause size← ref model size

ref num clauses

max global clauses← min
(
⌊ τ
per clause size⌋,

n clauses
2

)
min local clauses← n clauses− max global clauses
Minimum local fraction: min frac← min local clauses

n clauses
return min frac

Algorithm 5 compute client similarity
total similarity← 0
pair count← 0
for pair in combinations(len(all states), 2) do

total similarity ← total similarity + JSTest(pair[0], pair[1])
pair count← pair count + 1

average jaccard similarity← total similarity
pair count if pair count > 0 else 0

return average jaccard similarity
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Algorithm 6 JSTest(SA, SB)
if len(SA) ̸= len(SB) then

raise ValueError(”Vectors must have the same length”)
intersection←

∑len(SA)
i=0 SA[i]

∧
SB [i]

union←
∑len(SA)

i=0 SA[i]
∨
SB [i]

if union == 0 then
return 0

else
return intersection

union

Algorithm 7 mask weights(W )
for class m = 1, 2, ...M do

if m is not present in local data then
W [m] = 0

return W

Algorithm 8 aggregate global models
Input: list of client models Gt, where each Gn ∈ Gt contains their weights, Wn

t and states, Sn
t

Rank of clients based on performance: rank clientst−1

Global weights W and states S
for class m = 1, . . . ,M do
Wt[m]← AverageCW
St[m]← Top2Perf

return Gt = {Wt,St}

Algorithm 9 Top2Perf

if rank clientst−1 > 1 then
St[m] = S

rank clientst−1[0]
t [m]

∨
S
rank clientst−1[1]
t [m]

else
St[m] = S

rank clientst−1[0]
t [m]

return St[m]
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Use of LLMs: We used LLMs only at the sentence level (e.g., grammar correction and rewording).
No LLMs were used for retrieval, discovery, research ideation, or any other purpose.
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