
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CS-PFEDTM: COMMUNICATION-EFFICIENT AND
SIMILARITY-BASED PERSONALIZATION WITH
TSETLIN MACHINES

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning has become a promising framework for preserving data pri-
vacy in collaborative training across decentralized data sources. However, the
presence of data heterogeneity remains a significant challenge, impacting both
the performance and efficiency of FL systems. To address this, we introduce
CS-pFedTM (Communication-Efficient and Similarity-based Personalization with
Tsetlin Machines), a method that addresses this challenge by jointly enforcing
communication-aware resource allocation and heterogeneity-driven personaliza-
tion. CS-pFedTM enforces communication budget feasibility through clause allo-
cation and tailor personalization using clients’ parameters similarity as a proxy
for data heterogeneity. To further improve scalability, CS-pFedTM integrates
performance-based client selection and weight masking. Experiments demon-
strate that CS-pFedTM consistently outperforms state-of-the-art personalized FL
approaches, achieving at least 5.58× communication savings and average im-
provements of 2.3× in storage and 7.2× in runtime efficiency, while maintaining
competitive performance.

1 INTRODUCTION

Federated Learning (FL) enables clients to train models locally while only sharing parameters, pre-
serving privacy as sensitive data remain on individual devices (McMahan et al., 2016). Despite its
promise, FL still faces two major challenges: data heterogeneity across clients and communication
constraints, which bottleneck scalability in real-world systems (Khan et al., 2021).

Personalized FL addresses data heterogeneity by combining locally adapted models with shared
global knowledge. The central challenge in this lies in balancing effective personalization with
communication efficiency. Existing methods partially tackle this trade-off but often lack the ability
to provide adaptable, fine-grained personalization and flexible control over communication costs
(Shamsian et al., 2021). Furthermore, most approaches rely on deep neural networks (DNNs) (Asad
et al., 2023; Lei et al., 2020), which incur high computational and memory costs, limiting their
practicality for resource-constrained edge devices (Almanifi et al., 2023; Khan et al., 2021).

To overcome these limitations, we leverage the low-complexity Tsetlin Machine (TM), a rule-based
model based on finite-state automata and game theory, as an efficient alternative to DNNs (Lei et al.,
2020; 2021). We propose CS-pFedTM (Communication-Efficient, Similarity-based Personalized
FL with TM), which simultaneously addresses data heterogeneity and communication efficiency.
Our analysis reveals a strong correlation between TM clause parameters and the underlying FL
data distribution, motivating personalization based on data heterogeneity. Our method also accounts
for communication budgets when allocating clause contributions, and incorporates weight masking
to handle locally absent classes to optimize performance and efficiency,. Our approach improves
storage and runtime efficiency by an average of 2.3× and 7.2×, respectively, while reducing upload
communication by 31.3–886× and download communication by 5.58 − 107× compared to state-
of-the-art (SOTA) communication-efficient personalized FL baselines using DNNs.

In summary, our contributions are as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We introduce a novel TM-based personalization scheme in which each client trains both
a local and a global model, while communicating only the global model. To improve
flexibility and efficiency, we incorporate class-specific weight masking and performance-
based client selection, all without requiring clients to share metadata.

• We show that the similarity between clients’ TM parameters reflects overall system hetero-
geneity, which we exploit to adaptively allocate local and global clauses. Higher hetero-
geneity leads to more local clauses to strengthen personalization, while lower heterogeneity
shifts the balance toward global clauses to reinforce shared knowledge.

• We proposed a a budget-constrained allocation mechanism that adjusts this allocation ac-
cording to communication limits, supporting efficient and adaptive personalization.

• Extensive experiments show that CS-pFedTM outperforms SOTA communication-efficient
personalized FL baselines while significantly reducing communication, storage, runtime,
and training latency.

2 RELATED WORK

In FL, data heterogeneity and communication efficiency are major challenges (Tan et al., 2023; Asad
et al., 2023). Strategies such as quantization (Mao et al., 2022; Reisizadeh et al., 2019; Hönig et al.,
2022), sparsification (Qiu et al., 2022; Rothchild et al., 2020), and network pruning (Jiang et al.,
2022; Li et al., 2021) reduce communication and computation. Alternative architectures such as
Binary Neural Networks (BNN) (Yang et al., 2021) and Tsetlin Machines (TM) (How et al., 2023)
further reduce the size and memory of the model, improving efficiency.

Beyond efficiency, substantial progress has been made in addressing data heterogeneity in FL (Imteaj
et al., 2022; Tan et al., 2023; Fallah et al., 2020). Multi-task learning (T. Dinh et al., 2020; Smith
et al., 2017) couples client-specific models with a global representation, meta-learning (Fallah et al.,
2020; Jiang et al., 2023) enables rapid local adaptation, clustering (Sattler et al., 2021) groups sim-
ilar clients, and knowledge distillation (Li & Wang, 2019) transfers knowledge via teacher–student
frameworks. Personalization via latent distribution modeling (Marfoq et al., 2022; Mclaughlin &
Su, 2024) explicitly captures data variability, balancing local flexibility and global generalization.

A complementary line of work simultaneously tackles personalization and communication effi-
ciency. Parameter decoupling methods such as LG-FedAvg, FedRep, FedBABU, FedPer, and Fed-
PAC (Liang et al., 2020; Collins et al., 2023; Oh et al., 2022; Arivazhagan et al., 2019; Xu et al.,
2023) separate client-specific and global components but remain coarse-grained and fixed. Fed-
Select (Tamirisa et al., 2024), inspired by the Lottery Ticket Hypothesis, discovers fine-grained
subnetworks via parameter masks, though fairness concerns arise since non-selected clients do not
benefit from aggregation. Similarly, sparsification-based personalization methods such as DisPFL
(Dai et al., 2022), a decentralized FL method, prune dynamically to exchange only active weights
between clients, and SpaFL (Kim et al., 2024) communicates only trainable thresholds, reducing
communication by two orders of magnitude. While effective, these approaches still impose struc-
tural constraints and do not adaptively allocate shared versus local parameters based on client het-
erogeneity.

To the best of our knowledge, no TM-based FL methods have addressed data heterogeneity. Our
work is the first to adaptively allocate global and local components based on both heterogeneity and
communication budgets.

3 BACKGROUND

3.1 TSETLIN MACHINE

TM is a machine learning algorithm that employs propositional logic to capture frequent patterns. It
operates using Tsetlin Automata (TA) arranged in teams, building discriminative conjunctive clauses
and utilizing a majority voting mechanism for final classification (Granmo, 2021).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.1.1 TSETLIN MACHINE STRUCTURE

The TM structure is based on a two-action TA, building upon reinforcement learning principles.

Consider an input vector of o propositional variables: x = {x1, . . . , xo} ∈ {0, 1}o. Along
with their negated counterparts, {¬x1, . . . ,¬xo}, the variables together form a literal set L =
{l1, . . . , l2o} = {x1, . . . , xo,¬x1, . . . ,¬xo}. The TM comprehends the structure of each conjunc-
tive clause (Cj(x)), indexed by j, by defining its literals through a team of 2o TAs. A conjunctive
clause is constructed by taking the AND operation of a subset Lj ⊆ L:

Cj(x) =
∧

lk∈Lj

lk.

With n clauses and 2o literals, we have 2o · n TAs. Each TA makes decisions on whether to exclude
or include the associated literal in the conjunctive clause.

3.1.2 TSETLIN MACHINE LEARNING MECHANISM

TM learning begins by converting training data into boolean form, enabling the creation of conjunc-
tive clauses from literals (input variables and their negations). For n clauses, n/2 positive clauses
identify class y = 1, and n/2 negative clauses identify class y = 0. Training occurs online, process-
ing one example (x, y) at a time.

Using (x, y), the TM adjusts its TAs via two feedback types, which decide whether input literals
should be included in clauses that vote for a class. Type I Feedback strengthens clauses correspond-
ing to the correct class, increasing the chance of outputting 1, while Type II Feedback suppresses
clauses that would cause false positives. Feedback is applied to a random subset of clauses, con-
trolled by hyperparameter T , so that the sum s(x) =

∑n/2
j=1 C

+
j (x)−

∑n
j=n/2+1 C

−
j (x), approach

−T for y = 0 or T for y = 1. The sum is clamped, and feedback probabilities are proportional to
the difference between the clamped sum, c(x) = clamp(s(x),−T, T), and the target.

py(x) =

{
T+c(x)

2T , if y = 0
T−c(x)

2T , if y = 1
(1)

The randomized selection of clauses ensures diverse feedback distribution, preventing clustering
on specific patterns and fostering recognition across various sub-patterns. In essence, TM’s learn-
ing mechanism refines clause evaluations over successive training cycles, adapting to specific class
objectives and promoting effective pattern recognition.

Weighted TM: The introduction of weights entails assigning positive real-valued weights to in-
dividual clauses, facilitating a more concise representation of the clause collection. By adjusting
these weights, the influence of particular clauses can be altered, contributing to a real-valued overall
sum within the TM (Phoulady et al., 2020). The resulting overall sum, denoted as s(x), becomes a
real-valued quantity: s(x) =

∑n/2
j=1 w

+
j C

+
j (x)−

∑n
j=n/2+1 w

−
j C

−
j (x)

Multi-Class TM: For classification, the TM applies the unit step function to the sum (u(s(x))). If
the signed sum is negative, the TM outputs y = 0; otherwise, it outputs y = 1. In the multi-class
scenario, it adheres to a comparable operational pattern. Each class, denoted as m = 1, ...,M ,
possesses its own TA teams. Suppose the current observation (x, y) has y = k, the TA teams
affiliated with class k are trained as y = 1. Concurrently, a random class l ̸= k is selected and the
TA teams associated with class l are then trained as y = 0. In this scenario, the threshold function for
each output y is modified by utilizing the argmax operator to output the class m that corresponds
to the largest sum, sm(x) =

∑n/2
j=1 w

+,m
j C+,m

j (x) −
∑n

j=n/2+1 w
−,m
j C−,m

j (x), to determine the
final output of the TM:

ŷ = argmax
m=1...M

sm(x), (2)

Convolutional TM (CTM): Inspired by convolutional structures in DNNs, filters with spatial di-
mensions W ×W and Z binary layers are utilized. Each image, with dimensions X × Y and Z

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

binary layers is modeled in TMs using an input vector x = {xk | k ∈ {0, 1}X×Y×Z}. In CTM,
clauses function as filters, each composed of X × Y × Z × 2 literals (Granmo et al., 2019).

In the CTM, the input vector represents an image patch, and an image contains B patches. There are
B literal inputs per clause. Each clause outputs B values per image (one value per patch) instead of a
single output for the TM. The output of a positive clause j on patch b is denoted as cbj . To consolidate
multiple outputs c1j , . . . , c

B
j of clause j into a single output cj , a logical OR operation is applied:

cj =
∨B

b=1 c
b
j . Training builds upon the learning process of TM, encompassing Type I and Type

II feedback. To determine which patch to use during clause updating, the CTM randomly selects a
single patch from those contributing to the clause evaluating to 1. The clause is then updated based
on this chosen patch.

TM Composites: TM Composites, as introduced in Granmo (2023), foster collaboration among
multiple independently trained TM models. Instead of utilizing the argmax operator as described
in Equation 2, to determine the class index m associated with the largest sum, TM composites
involve computing the class sums, smt (x), for each TM t, where t ∈ {1, 2, ..., r}. These class sums
are then normalized by dividing by the difference between the maximum and minimum class sums
in the input set, (αt = maxm(smt (x))−minm(smt (x))).

The final class output is determined by the maximum value of the sum of all r TMs, calculated as:

ŷ = argmax
m

(
r∑

t=1

1

αt
smt (x)

)
(3)

4 METHODOLOGY

Before presenting the full method, we first introduce our novel personalization scheme in CS-
pFedTM, which addresses limitations in TM-based FL approaches in handling data heterogeneity
(How et al., 2023). Building on this scheme, CS-pFedTM jointly adapts global and local clause allo-
cations based on client heterogeneity and communication constraints, achieving an optimal balance
between personalization and efficiency.

4.1 PERSONALIZATION

Our personalization strategy improves the adaptability of the local model to client-specific data while
leveraging global knowledge. Each client maintains two independent TMs: a local TM, trained ex-
clusively on its own data to capture client-specific patterns, and a global TM, also trained locally but
whose parameters are shared with the server. During each communication round, only the global TM
parameters are uploaded to the server; the server aggregates these updates and returns the updated
global model to clients.

Clients then combine the outputs of the local and global TMs using Equation 3, integrating local
adaptation and shared global knowledge. Furthermore, the class-specific weights of TMs allow
for further personalization through weight masking: weights corresponding to classes not observed
locally can be set to zero, enabling the model to quickly adapt to unseen classes. This design ensures
robust and flexible personalization in FL with heterogeneous data.

4.2 PROBLEM FORMULATION

While this personalization framework enables clients to adapt effectively to heterogeneous data, the
allocation of clauses between local and global components directly impacts both performance and
efficiency. Clients with more heterogeneous data benefit from a larger fraction of local clauses to
capture client-specific patterns, whereas clients with less heterogeneous data can rely more on global
clauses for shared knowledge Additionally, communication constraints impose upper limits on the
amount of information each client can share per round.

The challenge, therefore, is to determine the optimal allocation of local and global clauses that
maximizes performance while adhering to defined communication budgets, without requiring
clients to share explicit metadata about their data distributions. This motivates CS-pFedTM, our

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Effect of local clause fraction on performance. Peak shifts to higher fractions with in-
creasing heterogeneity and class count

communication-efficient personalization framework, which leverages the similarity of trained TM
parameters across clients to guide adaptive clause allocation.

4.2.1 EFFECT OF DATA HETEROGENEITY ON PERSONALIZATION

We first study fixed local-global splits to understand performance trends. As shown in Figure 1,
performance consistently degrades at both extremes: allocating nearly all clauses locally or globally
leads to suboptimal outcomes. Instead, peak performance emerges at intermediate allocations. For
highly heterogeneous clients, retaining more local clauses improves personalization, and similarly,
datasets with a larger number of classes also require a higher fraction of local clauses to reach
peak accuracy. This occurs because higher heterogeneity and increased number of classes enhances
the diversity of patterns each client must capture locally, making a larger fraction of local clauses
necessary to model client-specific distributions effectively.

This shows that no fixed allocation is optimal across all heterogeneity levels, motivating our adaptive
allocation mechanism that dynamically adjusts the local-to-global ratio based on heterogeneity.

4.2.2 EXPLORING THE CONNECTION BETWEEN TRAINED PARAMETERS AND
DISTRIBUTION DISTANCES

TMs are sensitive to data distributions due to stochastic clause updates and clauses corresponding to
underrepresented patterns tend to be reinforced less (Granmo, 2021). As a result, the learned clauses
encode the statistical properties of the training data. In FL, this implies that clients with heteroge-
neous data produces distinct TM parameters, naturally reflecting differences in local distributions.

We show that parameter similarity across clients inversely reflects data heterogeneity: Clients with
high data heterogeneity exhibit lower parameter similarity, while less heterogeneous clients yield
higher parameter similarity. Let W (qAqB) denote the Wasserstein distance between two data distri-
butions, and J (SA, SB) the Jaccard similarity between their trained TM parameters, which quanti-
fies the overlap of active clauses between models trained on the different distributions.

Corollary 1 (Inverse Relation Between Distribution Divergence and Clause Overlap) Let qA
and qB be two class distributions and SA, SB be the corresponding trained TM states (sets of
clauses). Then:

W (qA, qB) −→ 0 =⇒ J (SA, SB) −→ 1,

Thus, lower distributional divergence corresponds to higher parameter similarity.

Intuitively, when two clients have similar data distributions, the stochastic clause updates in each
TM are likely to reinforce the same clause. This alignment leads to a larger overlap, hence a higher
Jaccard similarity. A formal proof is provided in Appendix A.1.

Empirical results (Figure 2) show that the Jaccard similarity of clients’ learned parameters,
J (clients), is strongly positively correlated with the true label distribution similarity, J (true), and
strongly negatively correlated with the Wasserstein distance between client and true distributions,
W (true). This indicates that data heterogeneity can be reliably inferred from observable TM param-
eters (J (clients)), motivating similarity-driven clause allocation without accessing metadata.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: (a) Strong positive correlation and consistent trend between J (true) and J (clients). (b)
Relationship between W (true) and J (clients) shows strong negative correlation across datasets.

4.3 ALGORITHM OVERVIEW

CS-pFedTM begins with a reference round, in which clients train a tiny reference TM and upload
their parameters to the server. These reference parameters serve two key purposes. Firstly, they
enable the server to estimate the communication cost per clause and, given the communication bud-
get for downloading the global model, determine the minimum fraction of clauses that must remain
local. Secondly, they provide a basis for computing client parameter similarity, which serves as
a proxy for data heterogeneity. This similarity-driven measure is then used to set the local-global
clause allocation for the system: when the participating clients exhibit higher overall heterogeneity,
the scheme emphasizes more local clauses to improve personalization, whereas for lower hetero-
geneity, more global clauses are used for knowledge sharing. For subsequent rounds, clients are
randomly sampled as usual, but only the top-performing clients’ states (based on local performance)
are uploaded and used in global aggregation. This ensures that the global model incorporates the
most informative updates while maintaining fairness in client participation.

Based on the observed parameter similarity and communication budget, the server allocates local
and global clauses for each client accordingly. Algorithm 3 summarizes the full approach.

Algorithm 1 CS-pFedTM: Communication-Efficient and Similarity-Driven Personalization
with TM
Input: Total number of clients Nc, total communication rounds T , number of clauses per client
nclauses, communication budget τ
for round t = 0, 1, . . . , T do

Server randomly samples Nt clients, Ct
if t == 0 then

Clients train a tiny reference TM and upload state parameters
min frac← compute min frac
JSclients ← compute client similarity
local frac← exp

(
− ln(1/min frac) · JSclients

)
Assign local and global clauses:

nlocal = ⌊nclauses · local frac⌋, nglobal = nclauses − nlocal

for each client n ∈ Ct do
Client trains local model Ln, global model Gn

Ln, Gn ← mask weights(Ln),mask weights(Gn)
Client uploads global parameters Gn to the server

Gt ← aggregate global models
Server updates clients’ global TM with Gt

return Personalized TMs for each client: TMn ∈ {Gt, L
n}, combined using Equation 3

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.3.1 COMMUNICATION-AWARE CLAUSE ALLOCATION

To address client heterogeneity under communication constraints, we introduce a communication-
aware allocation mechanism. Given a communication budget τ , which specifies the maximum num-
ber of megabytes that each client can communicate per round, we first use the reference TM to
estimate the per-clause communication footprint, including clause weights and states. This enables
us to translate the abstract budget τ into a concrete bound on the number of clauses that can be
shared globally without exceeding this budget.

From this bound, we compute min frac, the minimum fraction of clauses that must remain lo-
cal. This ensures that each client retains enough locally trained clauses that adhere to the com-
munication budget while still benefiting from global aggregation. By enforcing this budget-driven
lower bound, the mechanism prevents infeasible allocations, preserves fairness across heterogeneous
clients, and provides a stable foundation for similarity-driven personalization, which dynamically
allocates clauses according to data heterogeneity.

4.3.2 SIMILARITY-DRIVEN PERSONALIZATION

Within this communication limit, we further adapt clause allocation based on data heterogeneity. As
shown in Figure 1, higher heterogeneity (W (true)) favors larger local fractions. Since W (true) is
unobservable in FL, we approximate it with J (clients), the average similarity between clients’ TM
parameters. Empirical results reveal a strong inverse relationship between J (clients) and W (true):
as clients’ data distributions diverge further from the true distribution of the system, their parameters
become less similar.

We model this in a stable and bounded manner using a decreasing exponential function, which
naturally captures the diminishing effect of increasing similarity. When clients are very dissimilar
(high heterogeneity), the exponential term is large, resulting in a higher allocation of local clauses,
emphasizing personalization. Conversely, as clients become more similar (low heterogeneity), the
exponential term decreases rapidly, reducing the local fraction and favoring shared global knowl-
edge. This formulation ensures that even small differences in similarity among highly heterogeneous
clients produce meaningful increases in local clause allocation, while clients that are already similar
are quickly shifted toward increased global aggregation. Furthermore, by setting:

c = ln(1/min frac),

we guarantee exp(−c · J (clients)) ≥ min frac, ensuring that the allocation never falls below the
budget-driven minimum.

The local allocation threshold is therefore defined as:

local frac = exp
(
− c · J (clients))

The number of local and global clauses is then computed as

nlocal = ⌊nclauses · local frac⌋ , nglobal = nclauses − nlocal.

Hence, by directly linking clause allocation to the derived similarity measure, CS-pFedTM achieves
communication- and heterogeneity-aware personalization.

5 EXPERIMENTS

Benchmark Datasets: We performed experiments on five image datasets and an audio dataset
commonly featured in the FL literature: SVHN (Netzer et al., 2011), EMNIST (Cohen et al.,
2017), CIFAR-10, CIFAR-100 (Krizhevsky, 2009), Tiny-ImageNet (Le & Yang, 2015) and
SpeechCommands-12 (SC-12) (Warden, 2018).

Baseline Methods: To ensure a fair comparison, we evaluated several parameter-decoupling person-
alization approaches alongside CS-pFedTM. FedAvg serves as the standard FL benchmark (McMa-
han et al., 2016), while FedAvg++ adds local fine-tuning (Jiang et al., 2023). pFedFDA addresses
the bias-variance trade-off via generative classifiers and feature distribution adaptation (Mclaughlin
& Su, 2024). FedPAC aligns local and global feature representations using a regularization term (Xu

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Accuracy (%) of the algorithms for the FL with data heterogeneity and CC - Communica-
tion Costs (Upload/Download) for all clients per communication round

SVHN EMNIST CIFAR-10 CIFAR-100 SC-12 Tiny-ImageNet Avg.
0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 Acc.

Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC
FedAvg 29.16 13/43 53.84 13/43 71.41 15/50 56.31 15/50 31.23 13/43 32.99 13/43 6.58 14/48 6.82 14/48 56.37 42/141 65.46 42/141 1.50 16/53 1.48 16/53 34.42

FedAvg++ 80.08 ” 71.05 ” 72.71 ” 74.54 ” 79.12 ” 67.41 ” 43.20 ” 34.57 ” 67.82 ” 66.35 ” 19.42 ” 14.79 ” 57.59
pFedFDA 81.28 ” 70.58 ” 95.73 ” 94.26 ” 85.60 ” 77.05 ” 47.03 ” 38.47 ” 90.57 ” 91.11 ” 28.03 ” 23.22 ” 68.58
FedPAC 83.03 ” 82.96 ” 95.77 14/46 94.28 14/46 85.28 ” 79.17 ” 45.46 ” 37.11 ” 86.67 42/141 90.20 42/141 28.60 13/43 21.59 13/43 69.18
FedRep 80.81 ” 81.33 ” 78.12 ” 78.18 ” 86.43 ” 79.48 ” 44.44 ” 38.01 ” 88.49 ” 82.91 ” 27.47 ” 20.77 ” 65.54
FedPer 83.27 ” 76.12 ” 94.37 ” 92.68 ” 83.76 ” 76.13 ” 43.02 ” 34.66 ” 90.82 ” 90.97 ” 26.27 ” 19.89 ” 67.66

LG-FedAvg 84.20 0.67/1.0 78.95 0.67/1.0 75.80 4.2/6.4 75.69 4.2/6.4 84.22 0.67/1.0 75.56 0.67/1.0 37.88 6.7/10 29.07 6.7/10 79.42 0.41/0.62 76.72 0.41/0.62 22.62 13/20 15.54 13/20 61.30
FedSelect (0.3) 79.51 2.3/2.3 67.90 2.3/2.3 94.18 2.7/2.7 91.51 2.7/2.7 85.95 2.3/2.3 78.47 2.3/2.3 47.75 2.6/2.6 37.13 2.6/2.6 91.07 7.5/7.5 85.83 7.5/7.5 29.11 2.9/2.9 22.42 2.9/2.9 67.57
FedSelect (1.0) 79.45 7.7/7.7 68.88 7.7/7.7 94.55 8.9/8.9 91.78 8.9/8.9 86.37 7.7/7.7 78.81 7.7/7.7 47.76 8.6/8.6 36.04 8.6/8.6 91.16 25/25 85.85 25/25 30.02 9.6/9.6 22.45 9.6/9.6 67.76

FedTM 55.58 0.33/12 59.02 0.33/12 62.94 1.4/48 69.44 1.4/48 37.86 0.37/15 39.62 0.37/15 4.37 1.3/46 4.52 1.3/46 62.33 1.2/35 62.37 1.2/35 3.67 1.4/53 3.43 1.4/53 38.76
CS-pFedTM 89.59 0.01/0.28 83.91 0.05/0.96 94.60 0.02/0.5 91.51 0.11/2.2 86.92 0.03/0.76 79.81 0.03/0.99 48.20 0.04/0.88 39.03 0.04/0.88 91.16 0.01/0.35 91.76 0.02/0.56 29.25 0.12/2.6 24.20 0.12/2.6 70.82

et al., 2023). FedRep and FedPer communicate only base layers, retraining classifier heads or the
full model for personalization (Collins et al., 2023; Arivazhagan et al., 2019). LG-FedAvg transmits
only the global classifier and linearly combines local and global layers (Liang et al., 2020). FedS-
elect personalizes subnetworks via selective masking but limits aggregation to participating clients,
requiring full participation for stable updates (Tamirisa et al., 2024).

FL Configuration: Following standard practices (Hsu et al., 2019; Jiang et al., 2023; Mclaughlin
& Su, 2024), data heterogeneity was simulated using a Dirichlet distribution with concentration
parameter α ∈ {0.1, 0.05}, and a 0.3 client participation rate across 100 clients. Each client trained
for 1 local epoch per round, and we report the highest average personalized accuracy after 100
rounds, averaged over 3 runs. Communication cost was measured as the total number of parameters
uploaded and downloaded per round. FedSelect was adapted to the cross-device setting with 0.3 for
both upload and download participation rate, averaging personalized accuracy across all clients, and
full participation results are also reported for consistency.

Model Configuration: We used a 2-layer CNN (Xu et al., 2023) for the image datasets and the CNN
from Zhang et al. (2018) for SC-12, trained with batch size 128 (Liang et al., 2020). FedTM and
CS-pFedTM used CTMs, with CS-pFedTM’s download budget τ set to match the most download-
efficient baseline, demonstrating strong performance under comparable communication constraints.

5.1 ACCURACY

CS-pFedTM attains accuracy on par with SOTA baselines in highly heterogeneous scenarios, deliv-
ering the highest average performance across all settings, as shown in Table 1. It outperforms the
second-best method by an average of 1.1%, except on EMNIST, and surpasses FedTM in all settings
with an average of 32.1% improvement. We also benchmarked CS-pFedTM against sparsification-
based personalization methods. As DisPFL is decentralized and SpaFL requires larger CNNs for
pruning, we report these results in Appendix C.1, where CS-pFedTM outperforms them with higher
efficiency.

5.2 COMMUNICATION COSTS

Communication costs are critical in FL, especially for edge devices with limited bandwidth (Asad
et al., 2023). Table 1 shows that CS-pFedTM achieves the lowest overall communication costs
among all evaluated methods. This reduction is primarily due to CS-pFedTM’s design, which up-
loads only global parameters guided by client heterogeneity and communication budgets, rather
than the full model, while the bit-based CTM representation additionally reduces memory require-
ments compared to full-precision CNNs (Lei et al., 2020). As a result, CS-pFedTM achieves 31.3×
and 45.8× lower upload and download costs than FedTM. On average, CS-pFedTM is 85.8×
more upload-efficient and 5.58× more download-efficient compared to LG-FedAvg, and 158× and
6× more efficient compared to FedSelect, while delivering superior model performance. FedTM
demonstrates lower upload costs compared to LG-FedAvg, yet remains less efficient in download
costs. Although FedPAC surpasses CS-pFedTM in terms of accuracy on the EMNIST dataset, CS-
pFedTM remains an average of 876× more upload-efficient and 106× more download-efficient.
This combination of strong accuracy and communication efficiency highlights CS-pFedTM’s practi-
cality for FL, particularly in edge environments where reducing communication overhead, especially
upload costs, without compromising performance is crucial.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 MEMORY COSTS AND LATENCY

Table 2: Average Memory Storage (MS) and Runtime Memory (RTM) in MB and Training Latency
(L) in seconds on each client

SVHN EMNIST CIFAR-10 CIFAR-100 SC-12 Tiny-ImageNet
MS RTM L MS RTM L MS RTM L MS RTM L MS RTM L MS RTM L

CNN 0.43 101 1.12 0.50 50.6 5.19 0.43 111 0.85 0.48 118 1.08 1.41 278 14.8 0.53 144 2.09
CTM 0.12 22.1 0.81 0.48 47.6 1.65 0.15 31.8 0.74 0.46 25.7 0.41 0.35 10.8 0.99 0.53 42.5 0.68

We evaluated runtime memory during training and the memory required for individual models. The
reported runtime memory reflects the average used for local training. Table 2 shows that CTMs
outperforms CNNs in both storage and runtime efficiency, requiring on average 2.3× less storage
across datasets and achieving a 7.2× improvement in runtime memory efficiency. We measured the
average latency for training each model on each client on a compute node with 2 CPU cores. Across
all datasets, CTM has the lowest training latency and is on average 4.39× more efficient than CNN.
This efficiency is advantageous for devices with limited resources (Khan et al., 2021) and positions
CS-pFedTM as a compelling solution for deploying FL on devices with constrained capabilities.

5.4 EFFECT OF HETEROGENEITY

To analyze heterogeneity, we varied the number of classes per client in CIFAR-10, with fewer classes
indicating higher heterogeneity. From Figure 3, CS-pFedTM achieves the largest gains under highly
heterogeneous settings, though its advantage slightly decreases as heterogeneity lowers. It con-
sistently outperforms communication-efficient baselines such as LG-FedAvg and FedSelect. Like
CNN-based methods, stronger performance under lower heterogeneity often requires more shared
global parameters, a trend CS-pFedTM follows. For the higher budget setting, we constrained CS-
pFedTM’s communication to the maximum used by competing methods; even so, it incurs signif-
icantly lower costs while closing the performance gap. Another factor partly explaining this gap
is that TMs are generally less robust than CNNs; however, recent advances combining multiple
TM models with different encodings and receptive fields offer a promising path to mitigating this
limitation (Granmo, 2023).

Figure 3: Performance of the algorithms on varying heterogeneity

6 CONCLUSIONS

We presented CS-pFedTM, an efficient personalized FL approach based on TMs that jointly lever-
ages local and global models. By exploiting correlations between parameters and client data, it
employs a similarity-based clause allocation scheme that adapts to heterogeneity and enhances per-
sonalization. CS-pFedTM achieves substantial resource reductions, at least 85.8× in upload, 5.58×
in download, 2.3× in storage, 7.2× in runtime memory, and 4.39× in training latency, without com-
promising accuracy. Focusing on clause optimization, the core building blocks of TMs, this work
lays the foundation for further improvements, such as weight optimization, adaptive mask learning
and clause sparsification or pruning. Future work could address the trade-off between robustness and
efficiency under varying heterogeneity through hybrid designs combining lightweight local CNNs
with global TMs while keeping communication costs low. Additionally, the observed link between
parameter similarity and data distribution provides insights for FL extensions, including resource-
aware personalization for edge devices and dynamic clause adaptation to handle concept drift.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Omair Rashed Abdulwareth Almanifi, Chee-Onn Chow, Mau-Luen Tham, Joon Huang Chuah, and
Jeevan Kanesan. Communication and computation efficiency in Federated Learning: A sur-
vey. Internet of Things, 22:100742, 2023. ISSN 2542-6605. doi: https://doi.org/10.1016/j.iot.
2023.100742. URL https://www.sciencedirect.com/science/article/pii/
S2542660523000653.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated Learning with Personalization Layers, 2019.

Muhammad Asad, Saima Shaukat, Dou Hu, Zekun Wang, Ehsan Javanmardi, Jin Nakazato, and
Manabu Tsukada. Limitations and Future Aspects of Communication Costs in Federated Learn-
ing: A Survey. Sensors, 23(17), 2023. ISSN 1424-8220. doi: 10.3390/s23177358.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: Extending
MNIST to handwritten letters. In IJCNN, pp. 2921–2926, 2017. doi: 10.1109/IJCNN.2017.
7966217.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting Shared Repre-
sentations for Personalized Federated Learning, 2023.

Luciano Costa. Further Generalizations of the Jaccard Index, 2021.

Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. DisPFL: Towards
Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training. In
ICML, 2022.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized Federated Learning: A Meta-
Learning Approach, 2020.

Ole-Christoffer Granmo. The Tsetlin Machine - A Game Theoretic Bandit Driven Approach to
Optimal Pattern Recognition with Propositional Logic, 2021.

Ole-Christoffer Granmo. TMComposites: Plug-and-Play Collaboration Between Specialized Tsetlin
Machines, 2023.

Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian W. Omlin, and
Geir Thore Berge. The Convolutional Tsetlin Machine, 2019.

Robert Hönig, Yiren Zhao, and Robert Mullins. DAdaQuant: Doubly-adaptive quantization for
communication-efficient federated learning. In ICML, volume 162. PMLR, 2022.

Shannon Shi Qi How, Jagmohan Chauhan, Geoff V Merrett, and Jonathan Hare. FedTM: Memory
and Communication Efficient Federated Learning with Tsetlin Machine. In 2023 International
Symposium on the Tsetlin Machine, pp. 1–8, 2023. doi: 10.1109/ISTM58889.2023.10454982.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the Effects of Non-Identical Data
Distribution for Federated Visual Classification, 2019.

Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M. Hadi Amini. A Survey on Feder-
ated Learning for Resource-Constrained IoT Devices. IEEE IoT-J, 9(1):1–24, 2022.

Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. Improving Federated Learning
Personalization via Model Agnostic Meta Learning, 2023.

Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K. Leung, and Leandros
Tassiulas. Model Pruning Enables Efficient Federated Learning on Edge Devices. IEEE TNNLS,
pp. 1–13, 2022. doi: 10.1109/TNNLS.2022.3166101.

Latif U. Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong. Federated Learning
for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Communica-
tions Surveys & Tutorials, 23(3):1759–1799, 2021. doi: 10.1109/COMST.2021.3090430.

10

https://www.sciencedirect.com/science/article/pii/S2542660523000653
https://www.sciencedirect.com/science/article/pii/S2542660523000653

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Minsu Kim, Walid Saad, Merouane Abdelkader DEBBAH, and Choong Seon Hong. SpaFL:
Communication-Efficient Federated Learning With Sparse Models And Low Computational
Overhead. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=dAXuir2ets.

Soheil Kolouri, Serim Park, Matthew Thorpe, Dejan Slepcev, and Gustavo Rohde. Optimal Mass
Transport: Signal processing and machine-learning applications. IEEE SPM, 34:43–59, 07 2017.
doi: 10.1109/MSP.2017.2695801.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Ya Le and Xuan S. Yang. Tiny ImageNet Visual Recognition Challenge. 2015. URL https:
//api.semanticscholar.org/CorpusID:16664790.

Jie Lei, Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, and Ole-Christoffer Granmo. From Arith-
metic to Logic based AI: A Comparative Analysis of Neural Networks and Tsetlin Machine. In
IEEE ICECS, pp. 1–4, 2020. doi: 10.1109/ICECS49266.2020.9294877.

Jie Lei, Tousif Rahman, Rishad Shafik, Adrian Wheeldon, Alex Yakovlev, Ole-Christoffer Granmo,
Fahim Kawsar, and Akhil Mathur. Low-Power Audio Keyword Spotting Using Tsetlin Machines.
JLPEA, 11(2), 2021. ISSN 2079-9268. doi: 10.3390/jlpea11020018.

Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. Hermes: An Efficient Federated
Learning Framework for Heterogeneous Mobile Clients. MobiCom, pp. 420–437, 2021. ISBN
9781450383424. doi: 10.1145/3447993.3483278.

Daliang Li and Junpu Wang. FedMD: Heterogenous Federated Learning via Model Distillation,
2019. URL https://arxiv.org/abs/1910.03581.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B. Allen, Randy P. Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think Locally, Act Globally: Federated Learning
with Local and Global Representations, 2020.

Yuzhu Mao, Zihao Zhao, Guangfeng Yan, Yang Liu, Tian Lan, Linqi Song, and Wenbo Ding.
Communication-Efficient Federated Learning with Adaptive Quantization. ACM Trans. Intell.
Syst. Technol., 13(4), aug 2022. ISSN 2157-6904. doi: 10.1145/3510587.

Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, and Richard Vidal. Personalized Federated
Learning through Local Memorization, 2022.

Connor Mclaughlin and Lili Su. Personalized Federated Learning via Feature Distribution Adapta-
tion. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In AISTATS,
2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. In NeuRIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, 2011.

Jaehoon Oh, SangMook Kim, and Se-Young Yun. FedBABU: Toward enhanced representation for
federated image classification. In ICML, 2022. URL https://openreview.net/forum?
id=HuaYQfggn5u.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library, 2019.

11

https://openreview.net/forum?id=dAXuir2ets
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://arxiv.org/abs/1910.03581
https://openreview.net/forum?id=HuaYQfggn5u
https://openreview.net/forum?id=HuaYQfggn5u

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ahmady Phoulady. The
Weighted Tsetlin Machine: Compressed Representations with Weighted Clauses, 2020. URL
https://arxiv.org/abs/1911.12607.

Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao, Titouan Parcollet, and
Nicholas Donald Lane. ZeroFL: Efficient on-device training for federated learning with local
sparsity. In ICLR, 2022.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and
Quantization, 2019.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. FetchSGD: Communication-Efficient Federated Learning
with Sketching. ICML, 2020.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered Federated Learning: Model-
Agnostic Distributed Multitask Optimization Under Privacy Constraints. IEEE Transactions on
Neural Networks and Learning Systems, 32(8):3710–3722, 2021. doi: 10.1109/TNNLS.2020.
3015958.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized Federated Learning
using Hypernetworks, 2021.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated Multi-Task
Learning. In NeurIPS, volume 30, 2017.

Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Personalized Federated Learning with Moreau
Envelopes. In NeuRIPS, volume 33, pp. 21394–21405, 2020.

Rishub Tamirisa, Chulin Xie, Wenxuan Bao, Andy Zhou, Ron Arel, and Aviv Shamsian. FedSelect:
Personalized Federated Learning with Customized Selection of Parameters for Fine-Tuning, 2024.
URL https://arxiv.org/abs/2404.02478.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards Personalized Federated Learning.
IEEE Transactions on Neural Networks and Learning Systems, 34(12):9587–9603, 2023. doi:
10.1109/TNNLS.2022.3160699.

Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition, 2018.

Da-Feng Xia, Sen-Lin Xu, and Feng Qi. A proof of the arithmetic mean-geometric mean-harmonic
mean inequalities. RGMIA Research Report Collection, 2:Article 10, 99–, 11 1999.

Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized Federated Learning with Feature Align-
ment and Classifier Collaboration. In ICML, 2023.

Yuzhi Yang, Zhaoyang Zhang, and Qianqian Yang. Communication-Efficient Federated Learning
With Binary Neural Networks. IEEE JSAC, 39(12):3836–3850, 2021. doi: 10.1109/jsac.2021.
3118415.

Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello Edge: Keyword Spotting
on Microcontrollers, 2018.

12

https://arxiv.org/abs/1911.12607
https://arxiv.org/abs/2404.02478

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOF OF RELATION BETWEEN WASSERSTEIN DISTANCE AND JACCARD SIMILARITY

Training in a Tsetlin Machine (TM) is stochastic because of:

• Random selection of clauses for updating, and

• Randomized rewards and penalties from Type I feedback.

This stochasticity makes the learned clause states highly sensitive to the underlying data distribution.
Motivated by this, we investigate how differences in data distributions across clients—quantified via
the Wasserstein distance—affect the similarity of their learned parameters, measured using Jaccard
similarity.

Definition 1 (1-Wasserstein Distance (Kolouri et al., 2017)) The 1-Wasserstein distance between
two distributions q1 and q2 over a metric space Z is

W (q1, q2) := inf
q∈Q(q1,q2)

∫
Z×Z

d(z1, z2) dq(z1, z2),

where d(·, ·) is a distance function and Q(q1, q2) denotes the set of couplings with marginals q1 and
q2.

Lemma 2 (Distributional Dissimilarity) Let q1, q2, q
′
2 be data distributions. If W (q1, q

′
2) >

W (q1, q2), then q′2 is more dissimilar to q1 than q2 is.

By the definition of the 1-Wasserstein distance and the principle of optimal transport (Kolouri et al.,
2017), a larger value indicates that, on average, it is “harder” to transport samples from q1 to q2.
Hence, if W (q1, q

′
2) > W (q1, q2), the distribution q′2 is more dissimilar to q1 than q2 is. Intuitively,

samples from q′2 are less likely to resemble samples from q1 compared to samples from q2.

Next, we define the similarity of parameters by

Definition 2 (Jaccard Similarity (Costa, 2021)) The Jaccard similarity between two sets of binary
vectors SA and SB is the size of the intersection divided by the size of the union of the sets:

J (SA, SB) =
|SA ∩ SB |
|SA ∪ SB |

.

To compare the states between two sets of clauses A and B:

• |SA∩SB |: represents the number of clauses that are active in both sets, (clauses that include
at least one literal in both)

• |SA ∪ SB |: represents the number of clauses that contain literals in either SA or SB .

The Jaccard similarity between two states, SA and SB , therefore measures the degree of overlap in
active clauses between the two states. Higher values indicate that the same clauses has at least an
include action in both states, reflecting the similarity in how feedback has shaped the clauses during
training.

Corollary 3 (Inverse Relation Between Distribution Divergence and Clause Overlap) Let qA
and qB be two class distributions and SA, SB be the corresponding trained TM states (sets of
clauses). Then:

W (qA, qB) −→ 0 =⇒ J (SA, SB) −→ 1,

Thus, lower distributional divergence corresponds to higher parameter similarity.

Training is done one sample at a time. Given a Multi-Class TM with M classes, when training an
input x from class y = k, the TA teams associated with class k will be trained to output y = 1 and
the other classes’ (y ̸= k) TA teams will be selected to train to output y = 0 on the training input

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

x. The probability of selecting a TA team from class m ∈ {1, ...,M} for positive training can be
defined as qm where

∑M
m=1 qm = 1.

Let cjk be the j-th clause for class k, with C total clauses per class. Let Lj
k denote the number of

literals included in the TA teams of cjk. During training of (x, y) with class label y:

• Type I feedback reinforces the TA teams of clauses corresponding to y = k are reinforced
to include literals matching the input, increasing the likelihood that the clause outputs 1:
∆Lj

k | y = k ≥ 0.
• Type II feedback guides the TAs in clauses of other classes y ̸= k to include zero-valued

literals or suppress active literals. This reduces the likelihood of false positives, effectively
decreasing the number of literals contributing to the clause output: ∆Lj

k | y ̸= k ≤ 0.

We define the change in the number of literals included in clause cjk as ∆Lj
k, which depends on

Equation 2 and the specific training sample. Let

δ+ := E[∆Lj
k | y = k] ≥ 0, δ− := E[−∆Lj

k | y ̸= k] ≥ 0,

represent the expected increase in literals for Type I feedback and the expected decrease in literals
for Type II feedback, respectively.

Then, for a data distribution q = {qk}Mm=1, the expected number of literals in clause cjk after training
is

E[Lj
k | qk] = qk δ+ + (1− qk) δ− (4)

= δ− + qk (δ+ − δ−), (5)

This expression captures the average effect of Type I and Type II feedback across the class distribu-
tion.

Let two datasets, A and B have distributions qA = {qAk }Mk=1 and qB = {qBk }Mk=1,

SA = {cjk : Lj,A
k ≥ 1,∀k ∈M, j ∈ C}, SB = {cjk : Lj,B

k ≥ 1,∀k ∈M, j ∈ C},
denote the sets of clauses that contain at least one include action, respectively.

We define indicator variables for literals present in clauses:

Ij,Xk := 1{Lj,X
k ≥ 1}, X ∈ {A,B}.

Thus, a clause cjk belongs to SX if and only if Ij,Xk = 1.

The size of the overlap between the two sets is the dot product of the indicator vectors:

|SA ∩ SB | =
M∑
k=1

C∑
j=1

Ij,Ak · Ij,Bk .

Taking expectations, we obtain

E[|SA ∩ SB |] =
M∑
k=1

C∑
j=1

E[Ij,Ak Ij,Bk].

Since the TMA and TMB trained on qA and qB are independent, the expectation can be expressed
as:

E[|SA ∩ SB |] =
M∑
k=1

C∑
j=1

E[Ij,Ak]E[Ij,Bk].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Since E[Ij,Xk] = Pr(Ij,Xk = 1) = Pr(Lj,X
k ≥ 1), we get:

E[|SA ∩ SB |] =
M∑
k=1

C∑
j=1

Pr(Lj,A
k ≥ 1) · Pr(Lj,B

k ≥ 1).

Approximating them using normalized expected literal counts:

For the bounded random variable Lj,X
k ∈ [0, Lmax], we can bound Pr(Lj,X

k ≥ 1) using its expecta-
tion:

E[Lj,X
k] = E[Lj,X

k | Lj,X
k ≥ 1] Pr(Lj,X

k ≥ 1) + E[Lj,X
k | Lj,X

k < 1] Pr(Lj,X
k < 1).

Since 0 ≤ Lj,X
k ≤ Lmax on the event {Lj,X

k ≥ 1}, we have

Pr(Lj,X
k ≥ 1) ≤ E[Lj,X

k],

and similarly
E[Lj,X

k] ≤ Lmax Pr(L
j,X
k ≥ 1),

which implies
E[Lj,X

k]

Lmax
≤ Pr(Lj,X

k ≥ 1) ≤ E[Lj,X
k].

Since the distribution of Lj,X
k is typically spread across [0, Lmax], its normalized expectation pro-

vides a tractable approximation:

Pr(Lj,X
k ≥ 1) ≈

E[Lj,X
k | qXk]

Lmax
.

Substituting this approximation, the expected overlap becomes

E[|SA ∩ SB |] ≈
M∑
k=1

C∑
j=1

E[Lj
k|q

A
k]

Lmax
· E[L

j
k|q

B
k]

Lmax

Definition 3 (Arithmetic Mean-Geometric Mean Inequality (Xia et al., 1999)) For non-
negative numbers a1, a2, . . . , aM ,

a1 + a2 + · · ·+ aM
M

≥ M
√
a1a2 · · · aM ,

with equality if and only if a1 = a2 = · · · = aM .

Applying the AM–GM inequality gives

E[Lj
k | qAk]

Lmax
·
E[Lj

k | qBk]

Lmax
≤

 E[Lj
k|q

A
k]

Lmax
+

E[Lj
k|q

B
k]

Lmax

2

2

.

Hence, each product term is maximized when

E[Lj
k | q

A
k] = E[Lj

k | q
B
k].

Therefore, summing over all classes and clauses, the total expected overlap is maximized when the
two data distributions are aligned:

qAk = qBk ∀k ∈M.

Therefore, the expected clause overlap E[|SA ∩ SB |] is maximized when the class distributions
are identical W (qA, qB) = 0. Smaller distributional distance between qA and qB implies higher
expected Jaccard similarity of the clause-activity states; conversely, larger distributional divergence
generally reduces clause overlap.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL DETAILS

B.1 DATASETS

We evaluated the different approaches on the SVHN (Netzer et al., 2011), Extended MNIST (EM-
NIST) (Cohen et al., 2017), CIFAR-10 , CIFAR-100 (Krizhevsky, 2009), SpeechCommands (War-
den, 2018) dataset and Tiny-ImageNet (Le & Yang, 2015). All datasets are downloaded and prepro-
cessed with PyTorch (Paszke et al., 2019).

• SVHN: This dataset is imbalanced and consists of digits and numbers captured in natural
scenes, presenting a more challenging real-world problem (Netzer et al., 2011).

• EMNIST: The extended version of MNIST which contains 814,255 characters with 62
unbalanced classes. Similar to BiFL (Yang et al., 2021; Marfoq et al., 2022), we only used
a subset of the entire dataset for training and testing.

• CIFAR-10: A real-world image dataset of 10 classes with 6000 images per class
(Krizhevsky, 2009).

• CIFAR-100: A real-world image dataset of 100 classes with 6000 images per class
(Krizhevsky, 2009).

• SpeechCommands-12 (SC-12): A dataset containing 10 spoken keywords (’Yes’, ’No’,
’Left’, ’Right’, ’Up’, ’Down’, ’Stop’, ’Go’, ’On’, ’Off’) with the remaining 20 keywords
labelled as ’silence’ and background noise (Warden, 2018).

• Tiny-ImageNet: A dataset containing 100000 real-world images of 200 classes, downsized
to 64×64 colored images (Le & Yang, 2015).

For the SpeechCommands-12 dataset, we preprocessed each audio clip and extracted 40x49 MFCC
features as defined in (Zhang et al., 2018) for the DNN-based algorithms while we extracted 13x29
MFCC features as defined in (Lei et al., 2021) for the TM-based algorithms.

B.2 LIBARIES AND MACHINE

To evaluate the average run-time memory usage and training latency, these were estimated by con-
tainerizing the PyPi memory-profiler package in Docker using 2 CPUs.

B.2.1 BASELINE MODELS CONFIGURATION

In configuring all baseline models, we performed parameter tuning to optimize their performance.
specifically, for the learning rate if not defined in the original paper, we explored these values: [0.01,
0.05, 0.1].

B.3 CS-PFEDTM MODEL CONFIGURATION

To meet the booleanized input requirements essential for Tsetlin Machines (TMs), we implemented
distinct pre-processing steps for each of our datasets. For the EMNIST dataset, we encoded the data
by setting pixel values larger than 40 to 1, and values below or equal to 40 to 0. For the SVHN
dataset, we binarized the data using an adaptive Gaussian thresholding procedure with a window
size of 11 and a threshold value of 2 (Granmo et al., 2019). For the CIFAR-10, CIFAR-100 and
Tiny-ImageNet dataset, we booleanized using 8-level color thermometer encoding (Granmo, 2023).
Across all datasets, we utilized the CTM, adjusting parameters such as the number of clauses, feed-
back threshold, learning sensitivity, and patch dimension. We set δ = 0.5 for AverageCWPerf to
average the local weights.

C ADDITIONAL RESULTS

C.1 COMPARISON WITH SPARSIFICATION METHODS

Sparsification can also be leveraged as a form of personalization by selectively pruning model com-
ponents based on their importance to each client. We compare our method with DisPFL (Dai et al.,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 3: CS-pFedTM model configuration
SVHN EMNIST CIFAR-10 CIFAR-100 SC-12 Tiny-ImageNet

Dir(0.05) Local Clauses 293 193 190 103 792 57
Global Clauses 7 2 10 2 8 3

Dir(0.1) Local Clauses 276 186 187 103 787 57
Global Clauses 24 9 13 6 2 3

Feedback Threshold 500 100 150 1000 200 2000
Learning Sensitivity 7.5 5 5 5 5 1.5
Patch Dimensions (5,5) (10,10) (3,3) (2,2) (10,10) (2,2)

2022) and SpaFL Kim et al. (2024), two communication-efficient personalized FL approaches that
uses sparsification.

Since DisPFL is a decentralized FL method, we focus on the average per-round communication cost
per client when sharing parameters with neighbors, and compare it with the per-client communica-
tion cost of our approach. We utilized the same CNN models as defined in Section 5.

Table 4: Accuracy (%) of the DisPFL (n), where n is the number of neighbours vs CS-pFedTM and
CC - Average CC per client per round

SVHN EMNIST CIFAR-10 CIFAR-100 SC-12 Tiny-ImageNet
0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC Acc CC
DisPFL (n=30) 77.08 6.46 65.09 6.46 90.90 7.43 88.44 7.43 82.26 6.5 74.57 6.5 30.52 7.14 23.38 7.14 84.34 21.2 76.54 21.2 22.55 7.93 17.09 7.93
DisPFL (n=10) 75.96 2.15 60.18 2.15 90.15 2.48 88.89 2.48 82.10 2.17 71.94 2.17 30.10 2.38 23.22 2.38 82.10 7.05 76.54 7.05 21.03 2.64 15.69 2.64
DisPFL (n=5) 76.35 1.08 61.36 1.08 91.15 1.24 89.90 1.24 81.41 1.08 73.15 1.41 30.46 1.19 21.82 1.19 81.91 2.38 72.30 2.38 19.10 1.32 14.79 1.32
CS-pFedTM 89.59 0.01 83.91 0.05 94.60 0.02 91.51 0.11 86.92 0.03 79.81 0.3 48.20 0.04 39.03 0.04 91.16 0.01 91.76 0.02 29.25 0.1 24.20 0.1

Although decentralized FL methods avoid the server communication bottleneck, they become more
communication-intensive when n > 1 since each client must exchange updates with multiple
neighbors per round. In contrast, centralized FL requires only one upload and one download per
client. Our results show that CS-pFedTM consistently outperforms DisPFL across all settings, while
also achieving significantly lower per-round communication costs. Nevertheless, one advantage of
DisPFL is that the number of neighbors can be predefined, offering flexibility in network topology
design. However, this comes at the expense of a trade-off as seen in Table 4, where increasing
the number of neighbors may improve information mixing but could lead to higher communication
overhead and potentially affect model performance.

To further reduce communication costs beyond parameter or gradient exchange, pruning-based
methods have been proposed. In SpaFL, trainable thresholds are assigned to each filter or neuron,
which prune their connected parameters to induce structured sparsity. To minimize communication,
only these thresholds are exchanged between clients and the server, reducing costs by up to two
orders of magnitude compared to transmitting full model parameters Kim et al. (2024).

However, pruning is largely ineffective for smaller CNNs, since their limited parameter counts leave
little redundancy to exploit. Therefore, because the CNNs used in Section 5 are too small for prun-
ing, we adopt the larger model from the original SpaFL paper for comparison. Moreover, since
SpaFL communicates only thresholds, we evaluate our CS-pFedTM under stricter communication
budgets to ensure fairness. The results demonstrate that our method achieves stronger personaliza-
tion while operating under tighter resource constraints.

Table 5: Comparison of SpaFL and CS-pFedTM: Accuracy (%), Communication Costs per client
per round, and Model Size after pruning for SpaFL

FMNIST CIFAR-10 CIFAR-100
0.05 0.1 0.05 0.1 0.05 0.1

Acc CC Size Acc CC Size Acc CC Size Acc CC Size Acc CC Size Acc CC Size
SpaFL 96.72 0.07/0.23 0.94 95.24 0.07/0.23 0.94 83.33 0.09/0.26 3.23 75.57 0.09/0.26 3.23 45.15 0.29/0.96 11.2 36.25 0.29/0.96 11.2

CS-pFedTM 97.83 0.02/0.22 0.26 95.58 0.02/0.24 0.26 85.34 0.004/0.09 0.35 78.57 0.06/0.15 0.35 48.03 0.25/0.85 0.83 38.16 0.06/1.5 0.83

C.2 EFFECT OF PARTICIPATION RATIO AND NUMBER OF CLIENTS

We analyzed the scalability of CS-pFedTM by varying the number of clients from 20 to 500 and ad-
justing the client participation ratio per communication round to [0.1, 0.3, 0.5, 1.0] on the CIFAR-10

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

dataset. The results demonstrate that CS-pFedTM consistently delivers strong performance across
all configurations, regardless of the total number of clients or the participation rate per round. This
shows CS-pFedTM’s scalability and robustness, making it well-suited for various FL scenarios.

Figure 4: Performance of the algorithms for varying (a) number of clients and (b) participation ratio

C.3 SENSITIVITY ANALYSIS

As shown in Figure 5, our similarity-driven allocation selects the optimal point on each curve, adap-
tively adjusting the local/global split based on client heterogeneity. Upload communication costs in-
crease as heterogeneity decreases, since more homogeneous clients share a larger fraction of global
clauses. These results highlight the trade-off between personalization and communication, demon-
strating that our allocation mechanism consistently identifies the best balance across heterogeneity
levels.

Figure 5: Performance as a function of local clause fraction under different heterogeneity levels. The
points indicate the local/global split selected by our similarity-driven allocation, which achieves the
highest performance on each curve.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.4 FEDTM IMPLEMENTATION DETAILS

FedTM is the first FL framework that leverages TM to concurrently optimize communication ef-
ficiency and memory utilization. In contrast to FL frameworks employing DNNs, where weight
aggregation often involves a straightforward weighted averaging of integer weights, FedTM adopts
a distinctive two-step aggregation scheme How et al. (2023), owing to the unique structure of TM
as described in Section 3.1.

The first step employs the TopK algorithm for bit-based aggregation of the TA states. This method
selects K clients based on the confidence of the TA states, giving preference to clients with the top
K data size for each specific class. The second step involves the AverageCW method, specifi-
cally tailored for computing the average of the integer clause weights weighted based on the total
sample size of each set of local data. This two-step approach ensures the effective aggregation of
information encoded in both the bit-based and integer components of TM.

Algorithm 2 FedTM
1. Initialize global parameters W0,S0 with the same TM architecture and clients inform the
server of their local dataset sizes, |Dj |, j = 1, 2, ...N
for communication round t = 1, 2, ...T do

2. For all participating clients, J , train a TM model with the current weights, Wt−1 on their
local dataset, Dj , for e epochs
3. Clients upload their local parameters
4. Aggregation of clients’ parameters
for class m = 1, 2, ...M do

Wt[m]←AverageCW(m, δ, t)
St[m]←TopK(m, k, t)

5. All clients download the new global parameters: Wt,St

AverageCW(m, δ, t):
Wt[m]← int(1

|D|
∑J

j=1 |Dj |Wj
t [m])

if t > 1 then
if ∀Jj=1W

j
t [m] = 0 then

Wt[m]←Wt−1[m] if class m is not seen in round t of training then use previous weights
else

Wt[m]← (1− δ)Wt−1[m] + δWt[m]
return int(Wt[m])

TopK(m, k, t):
sorted list← sort(∀Jj=1|Dj |[m])
sortedk ← sorted list[0 : k]

St[m]←
∨sortedk

j Sj
t [m]

return St[m]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.5 CS-PFEDTM ALGORITHM

Algorithm 3 CS-pFedTM: Communication-Efficient and Similarity-Driven Personalization
with TM
Input: Total number of clients Nc, total communication rounds T , number of clauses per client
nclauses, communication budget τ
for round t = 0, 1, . . . , T do

Server randomly samples Nt clients, Ct
if t == 0 then

Clients train a tiny reference TM and upload state parameters
min frac← compute min frac
JSclients ← compute client similarity
local frac← exp

(
− ln(1/min frac) · JSclients

)
Assign local and global clauses:

nlocal = ⌊nclauses · local frac⌋, nglobal = nclauses − nlocal

for each client n ∈ Ct do
Client trains local model Ln, global model Gn

Ln, Gn ← mask weights(Ln),mask weights(Gn)
Client uploads global parameters Gn to the server

Gt ← aggregate global models
Server updates clients’ global TM with Gt

return Personalized TMs for each client: TMn ∈ {Gt, L
n}, combined using Equation 3

Algorithm 4 compute min frac
per clause size← ref model size

ref num clauses

max global clauses← min
(
⌊ τ
per clause size⌋,

n clauses
2

)
min local clauses← n clauses− max global clauses
Minimum local fraction: min frac← min local clauses

n clauses
return min frac

Algorithm 5 compute client similarity
total similarity← 0
pair count← 0
for pair in combinations(len(all states), 2) do

total similarity ← total similarity + JSTest(pair[0], pair[1])
pair count← pair count + 1

average jaccard similarity← total similarity
pair count if pair count > 0 else 0

return average jaccard similarity

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 6 JSTest(SA, SB)
if len(SA) ̸= len(SB) then

raise ValueError(”Vectors must have the same length”)
intersection←

∑len(SA)
i=0 SA[i]

∧
SB [i]

union←
∑len(SA)

i=0 SA[i]
∨
SB [i]

if union == 0 then
return 0

else
return intersection

union

Algorithm 7 mask weights(W)
for class m = 1, 2, ...M do

if m is not present in local data then
W [m] = 0

return W

Algorithm 8 aggregate global models
Input: list of client models Gt, where each Gn ∈ Gt contains their weights, Wn

t and states, Sn
t

Rank of clients based on performance: rank clientst−1

Global weights W and states S
for class m = 1, . . . ,M do
Wt[m]← AverageCWPerf

St[m]← Top2Perf

return Gt = {Wt,St}

Algorithm 9 AverageCWPerf

Wt[m]← int(
∑N

n=1 W
n
t [m])

if t > 1 then
if ∀Nn=1W

n
t [m] == 0 then

Wt[m]←Wt−1[m] ▷ if class m is not seen in round t of training then use previous weights
else

Wt[m]← δWt[m]
return int(Wt[m])

Algorithm 10 Top2Perf

if rank clientst−1 > 1 then
St[m] = S

rank clientst−1[0]
t [m]

∨
S
rank clientst−1[1]
t [m]

else
St[m] = S

rank clientst−1[0]
t [m]

return St[m]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Use of LLMs: We used LLMs only at the sentence level (e.g., grammar correction and rewording).
No LLMs were used for retrieval, discovery, research ideation, or any other purpose.

22

	Introduction
	Related Work
	Background
	Tsetlin Machine
	Tsetlin Machine Structure
	Tsetlin Machine Learning Mechanism

	Methodology
	Personalization
	Problem Formulation
	Effect of Data Heterogeneity on Personalization
	Exploring the Connection Between Trained Parameters and Distribution Distances

	Algorithm Overview
	Communication-Aware Clause Allocation
	Similarity-Driven Personalization

	Experiments
	Accuracy
	Communication Costs
	Memory Costs and Latency
	Effect of Heterogeneity

	Conclusions
	Appendix
	Proof of relation between Wasserstein Distance and Jaccard Similarity

	Experimental Details
	Datasets
	Libaries and Machine
	Baseline Models Configuration

	CS-pFedTM Model Configuration

	Additional Results
	Comparison with sparsification methods
	Effect of Participation Ratio and Number of Clients
	Sensitivity Analysis
	FedTM Implementation Details
	CS-pFedTM Algorithm

