Under review as a conference paper at ICLR 2026

CS-PFEDTM: COMMUNICATION-EFFICIENT AND
SIMILARITY-BASED PERSONALIZATION WITH
TSETLIN MACHINES

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning has become a promising framework for preserving data pri-
vacy in collaborative training across decentralized data sources. However, the
presence of data heterogeneity remains a significant challenge, impacting both
the performance and efficiency of FL systems. To address this, we introduce
CS-pFedTM (Communication-Efficient and Similarity-based Personalization with
Tsetlin Machines), a method that addresses this challenge by jointly enforcing
communication-aware resource allocation and heterogeneity-driven personaliza-
tion. CS-pFedTM enforces communication budget feasibility through clause allo-
cation and tailor personalization using clients’ parameters similarity as a proxy
for data heterogeneity. To further improve scalability, CS-pFedTM integrates
performance-based client selection and weight masking. Experiments demon-
strate that CS-pFedTM consistently outperforms state-of-the-art personalized FL
approaches, achieving at least 5.58 X communication savings and average im-
provements of 2.3 x in storage and 7.2 x in runtime efficiency, while maintaining
competitive performance.

1 INTRODUCTION

Federated Learning (FL) enables clients to train models locally while only sharing parameters, pre-
serving privacy as sensitive data remain on individual devices (McMahan et al.| [2016). Despite its
promise, FL still faces two major challenges: data heterogeneity across clients and communication
constraints, which bottleneck scalability in real-world systems (Khan et al., 2021}).

Personalized FL addresses data heterogeneity by combining locally adapted models with shared
global knowledge. The central challenge in this lies in balancing effective personalization with
communication efficiency. Existing methods partially tackle this trade-off but often lack the ability
to provide adaptable, fine-grained personalization and flexible control over communication costs
(Shamsian et al.,|2021). Furthermore, most approaches rely on deep neural networks (DNNs) (Asad
et al) [2023} [Lei et al., [2020), which incur high computational and memory costs, limiting their
practicality for resource-constrained edge devices (Almanifi et al., 2023} Khan et al.| 2021)).

To overcome these limitations, we leverage the low-complexity Tsetlin Machine (TM), a rule-based
model based on finite-state automata and game theory, as an efficient alternative to DNNs (Lei et al.,
2020; 2021). We propose CS-pFedTM (Communication-Efficient, Similarity-based Personalized
FL with TM), which simultaneously addresses data heterogeneity and communication efficiency.
Our analysis reveals a strong correlation between TM clause parameters and the underlying FL
data distribution, motivating personalization based on data heterogeneity. Our method also accounts
for communication budgets when allocating clause contributions, and incorporates weight masking
to handle locally absent classes to optimize performance and efficiency,. Our approach improves
storage and runtime efficiency by an average of 2.3x and 7.2 X, respectively, while reducing upload
communication by 31.3-886x and download communication by 5.58 — 107 x compared to state-
of-the-art (SOTA) communication-efficient personalized FL baselines using DNNs.

In summary, our contributions are as follows:

Under review as a conference paper at ICLR 2026

* We introduce a novel TM-based personalization scheme in which each client trains both
a local and a global model, while communicating only the global model. To improve
flexibility and efficiency, we incorporate class-specific weight masking and performance-
based client selection, all without requiring clients to share metadata.

* We show that the similarity between clients’ TM parameters reflects overall system hetero-
geneity, which we exploit to adaptively allocate local and global clauses. Higher hetero-
geneity leads to more local clauses to strengthen personalization, while lower heterogeneity
shifts the balance toward global clauses to reinforce shared knowledge.

* We proposed a a budget-constrained allocation mechanism that adjusts this allocation ac-
cording to communication limits, supporting efficient and adaptive personalization.

» Extensive experiments show that CS-pFedTM outperforms SOTA communication-efficient
personalized FL baselines while significantly reducing communication, storage, runtime,
and training latency.

2 RELATED WORK

In FL, data heterogeneity and communication efficiency are major challenges (Tan et al.,|2023;|Asad
et al.,[2023)). Strategies such as quantization (Mao et al., 2022} [Reisizadeh et al., 2019; [Honig et al.,
2022), sparsification (Qiu et al., [2022; |[Rothchild et al., [2020), and network pruning (Jiang et al.,
2022; L1 et al.l 2021) reduce communication and computation. Alternative architectures such as
Binary Neural Networks (BNN) (Yang et al., 2021) and Tsetlin Machines (TM) (How et al., [2023))
further reduce the size and memory of the model, improving efficiency.

Beyond efficiency, substantial progress has been made in addressing data heterogeneity in FL (Imtea;j
et al., 2022} Tan et al., 2023; [Fallah et al., |2020). Multi-task learning (T. Dinh et al., |2020} |Smith
et al.,|2017) couples client-specific models with a global representation, meta-learning (Fallah et al.,
2020; Jiang et al., 2023) enables rapid local adaptation, clustering (Sattler et al., [2021]) groups sim-
ilar clients, and knowledge distillation (L1 & Wang] 2019)) transfers knowledge via teacher—student
frameworks. Personalization via latent distribution modeling (Marfoq et al.| [2022; Mclaughlin &
Sul, 2024)) explicitly captures data variability, balancing local flexibility and global generalization.

A complementary line of work simultaneously tackles personalization and communication effi-
ciency. Parameter decoupling methods such as LG-FedAvg, FedRep, FedBABU, FedPer, and Fed-
PAC (Liang et al., [2020; (Collins et al., |2023; /Oh et al.l 2022} |Arivazhagan et al., [2019j Xu et al.,
2023) separate client-specific and global components but remain coarse-grained and fixed. Fed-
Select (Tamirisa et al., [2024), inspired by the Lottery Ticket Hypothesis, discovers fine-grained
subnetworks via parameter masks, though fairness concerns arise since non-selected clients do not
benefit from aggregation. Similarly, sparsification-based personalization methods such as DisPFL
(Dai et al.| 2022), a decentralized FL method, prune dynamically to exchange only active weights
between clients, and SpaFL (Kim et al.l 2024) communicates only trainable thresholds, reducing
communication by two orders of magnitude. While effective, these approaches still impose struc-
tural constraints and do not adaptively allocate shared versus local parameters based on client het-
erogeneity.

To the best of our knowledge, no TM-based FL. methods have addressed data heterogeneity. Our
work is the first to adaptively allocate global and local components based on both heterogeneity and
communication budgets.

3 BACKGROUND

3.1 TSETLIN MACHINE

TM is a machine learning algorithm that employs propositional logic to capture frequent patterns. It
operates using Tsetlin Automata (TA) arranged in teams, building discriminative conjunctive clauses
and utilizing a majority voting mechanism for final classification (Granmo, 2021)).

Under review as a conference paper at ICLR 2026

3.1.1 TSETLIN MACHINE STRUCTURE

The TM structure is based on a two-action TA, building upon reinforcement learning principles.

Consider an input vector of o propositional variables: x = {z1,...,z,} € {0,1}°. Along
with their negated counterparts, {—x1,...,x,}, the variables together form a literal set L =
{l1,...,lao} = {z1,..., 0,21, ..., %, }. The TM comprehends the structure of each conjunc-
tive clause (C;(x)), indexed by 7, by defining its literals through a team of 20 TAs. A conjunctive
clause is constructed by taking the AND operation of a subset L; C L:

Cj(X)Z /\ lk.

lxeL;

With n clauses and 2o literals, we have 20 - n TAs. Each TA makes decisions on whether to exclude
or include the associated literal in the conjunctive clause.

3.1.2 TSETLIN MACHINE LEARNING MECHANISM

TM learning begins by converting training data into boolean form, enabling the creation of conjunc-
tive clauses from literals (input variables and their negations). For n clauses, n/2 positive clauses
identify class y = 1, and n/2 negative clauses identify class y = 0. Training occurs online, process-
ing one example (x,y) at a time.

Using (x,y), the TM adjusts its TAs via two feedback types, which decide whether input literals
should be included in clauses that vote for a class. Type I Feedback strengthens clauses correspond-
ing to the correct class, increasing the chance of outputting 1, while Type II Feedback suppresses
clauses that would cause false positives. Feedback is applied to a random subset of clauses, con-

trolled by hyperparameter T, so that the sum s(x) = Z?L 21 C’;‘ (x) — Z?:n /241 €5 (x), approach
—T fory = 0 or T for y = 1. The sum is clamped, and feedback probabilities are proportional to
the difference between the clamped sum, ¢(x) = clamp(s(x), =7, T'), and the target.

T+c(x) ify=0

9 Y=

py(x) =4 7206 . (1
’ {T 2T()’ ify=1

The randomized selection of clauses ensures diverse feedback distribution, preventing clustering
on specific patterns and fostering recognition across various sub-patterns. In essence, TM’s learn-
ing mechanism refines clause evaluations over successive training cycles, adapting to specific class
objectives and promoting effective pattern recognition.

Weighted TM: The introduction of weights entails assigning positive real-valued weights to in-
dividual clauses, facilitating a more concise representation of the clause collection. By adjusting
these weights, the influence of particular clauses can be altered, contributing to a real-valued overall
sum within the TM (Phoulady et al.,|2020). The resulting overall sum, denoted as s(x), becomes a

real-valued quantity: s(x) = Z;Lfl wiCF (%) = 37, 91wy Cf (%)

Multi-Class TM: For classification, the TM applies the unit step function to the sum (u(s(x))). If
the signed sum is negative, the TM outputs y = 0; otherwise, it outputs y = 1. In the multi-class
scenario, it adheres to a comparable operational pattern. Each class, denoted as m = 1,..., M,
possesses its own TA teams. Suppose the current observation (x,y) has y = k, the TA teams
affiliated with class k are trained as y = 1. Concurrently, a random class | # k is selected and the
TA teams associated with class [are then trained as y = 0. In this scenario, the threshold function for
each output y is modified by utilizing the arg max operator to output the class m that corresponds
to the largest sum, s™(x) = Z;Lfl w e (x) — Yo w; "C M (%), to determine the
final output of the TM:

7 = argmax s™(x), 2)
m=1...M

Convolutional TM (CTM): Inspired by convolutional structures in DNNGs, filters with spatial di-
mensions W x W and Z binary layers are utilized. Each image, with dimensions X x Y and Z

Under review as a conference paper at ICLR 2026

binary layers is modeled in TMs using an input vector x = {xy | k € {0,1}¥*Y*Z} In CTM,
clauses function as filters, each composed of X x Y x Z x 2 literals (Granmo et al.,[2019).

In the CTM, the input vector represents an image patch, and an image contains B patches. There are
B literal inputs per clause. Each clause outputs B values per image (one value per patch) instead of a
single output for the TM. The output of a positive clause j on patch b is denoted as cg . To consolidate

multiple outputs c1 e B of clause j into a single output c¢;, a logical OR operation is applied:

cj = \/bB 1 J Tralnlng bu1lds upon the learning process of TM, encompassing Type I and Type
II feedback. To determine which patch to use during clause updating, the CTM randomly selects a
single patch from those contributing to the clause evaluating to 1. The clause is then updated based
on this chosen patch.

TM Composites: TM Composites, as introduced in |Granmo| (2023)), foster collaboration among
multiple independently trained TM models. Instead of utilizing the arg max operator as described
in Equation [2] to determine the class index m associated with the largest sum, TM composites
involve computing the class sums, s}*(x), for each TM ¢, where ¢ € {1, 2, ...,r}. These class sums
are then normalized by dividing by the difference between the maximum and minimum class sums
in the input set, (a; = max,, (s}*(x)) — min,, (s7*(x))).

The final class output is determined by the maximum value of the sum of all » TMs, calculated as:

j = arg max (Z ;s;“(x)> 3)

t=1 ¢
4 METHODOLOGY

Before presenting the full method, we first introduce our novel personalization scheme in CS-
pFedTM, which addresses limitations in TM-based FL approaches in handling data heterogeneity
(How et al.l[2023). Building on this scheme, CS-pFedTM jointly adapts global and local clause allo-
cations based on client heterogeneity and communication constraints, achieving an optimal balance
between personalization and efficiency.

4.1 PERSONALIZATION

Our personalization strategy improves the adaptability of the local model to client-specific data while
leveraging global knowledge. Each client maintains two independent TMs: a local TM, trained ex-
clusively on its own data to capture client-specific patterns, and a global TM, also trained locally but
whose parameters are shared with the server. During each communication round, only the global TM
parameters are uploaded to the server; the server aggregates these updates and returns the updated
global model to clients.

Clients then combine the outputs of the local and global TMs using Equation (3] integrating local
adaptation and shared global knowledge. Furthermore, the class-specific weights of TMs allow
for further personalization through weight masking: weights corresponding to classes not observed
locally can be set to zero, enabling the model to quickly adapt to unseen classes. This design ensures
robust and flexible personalization in FL with heterogeneous data.

4.2 PROBLEM FORMULATION

While this personalization framework enables clients to adapt effectively to heterogeneous data, the
allocation of clauses between local and global components directly impacts both performance and
efficiency. Clients with more heterogeneous data benefit from a larger fraction of local clauses to
capture client-specific patterns, whereas clients with less heterogeneous data can rely more on global
clauses for shared knowledge Additionally, communication constraints impose upper limits on the
amount of information each client can share per round.

The challenge, therefore, is to determine the optimal allocation of local and global clauses that
maximizes performance while adhering to defined communication budgets, without requiring
clients to share explicit metadata about their data distributions. This motivates CS-pFedTM, our

Under review as a conference paper at ICLR 2026

SVHN (10 classes) EMNIST (62 classes)

e e e e JE—— —

Accuracy
Accuracy

1 N e B e e

10

0z 04 o6 [10 o0 0z 04 o6 o8
Local fraction (local / total clauses) Heterogeneity levels: Local fraction (local / total clauses)
—e— High Moderate ~ —e— Low

00

Figure 1: Effect of local clause fraction on performance. Peak shifts to higher fractions with in-
creasing heterogeneity and class count

communication-efficient personalization framework, which leverages the similarity of trained TM
parameters across clients to guide adaptive clause allocation.

4.2.1 EFFECT OF DATA HETEROGENEITY ON PERSONALIZATION

We first study fixed local-global splits to understand performance trends. As shown in Figure [T}
performance consistently degrades at both extremes: allocating nearly all clauses locally or globally
leads to suboptimal outcomes. Instead, peak performance emerges at intermediate allocations. For
highly heterogeneous clients, retaining more local clauses improves personalization, and similarly,
datasets with a larger number of classes also require a higher fraction of local clauses to reach
peak accuracy. This occurs because higher heterogeneity and increased number of classes enhances
the diversity of patterns each client must capture locally, making a larger fraction of local clauses
necessary to model client-specific distributions effectively.

This shows that no fixed allocation is optimal across all heterogeneity levels, motivating our adaptive
allocation mechanism that dynamically adjusts the local-to-global ratio based on heterogeneity.

4.2.2 EXPLORING THE CONNECTION BETWEEN TRAINED PARAMETERS AND
DISTRIBUTION DISTANCES

TMs are sensitive to data distributions due to stochastic clause updates and clauses corresponding to
underrepresented patterns tend to be reinforced less (Granmol 2021). As a result, the learned clauses
encode the statistical properties of the training data. In FL, this implies that clients with heteroge-
neous data produces distinct TM parameters, naturally reflecting differences in local distributions.

We show that parameter similarity across clients inversely reflects data heterogeneity: Clients with
high data heterogeneity exhibit lower parameter similarity, while less heterogeneous clients yield
higher parameter similarity. Let W (qaqp) denote the Wasserstein distance between two data distri-
butions, and [J(S4, Sp) the Jaccard similarity between their trained TM parameters, which quanti-
fies the overlap of active clauses between models trained on the different distributions.

Corollary 1 (Inverse Relation Between Distribution Divergence and Clause Overlap) Let ¢4
and qp be two class distributions and S 4, Sp be the corresponding trained TM states (sets of
clauses). Then:

W(QAan) — 0 = j(SA7SB> — 17

Thus, lower distributional divergence corresponds to higher parameter similarity.

Intuitively, when two clients have similar data distributions, the stochastic clause updates in each
TM are likely to reinforce the same clause. This alignment leads to a larger overlap, hence a higher
Jaccard similarity. A formal proof is provided in Appendix [A.T]

Empirical results (Figure [2) show that the Jaccard similarity of clients’ learned parameters,
J (clients), is strongly positively correlated with the true label distribution similarity, 7 (true), and
strongly negatively correlated with the Wasserstein distance between client and true distributions,
W (true). This indicates that data heterogeneity can be reliably inferred from observable TM param-
eters (7 (clients)), motivating similarity-driven clause allocation without accessing metadata.

Under review as a conference paper at ICLR 2026

EMNIST, corr = 0.99

SVHN, corr = 0.96
CIFAR-10, corr = 0.99
Tiny-ImageNet, corr = 0.99
SC-12, corr = 0.98

0175 —¥— EMNIST, corr = -0.97

—&— SVHN, corr = -0.99

—<— CIFAR-10, corr = -0.99

—e— Tiny-ImageNet, corr = -0.94
= SC-12, corr = -0.94

0150

0125

FHHet

0100

Jlclients)
W(true)

0075

0050 w

0.000

03

00 01 02 o3

04 05 o6 07 08 00 02 04
Jltrue) Jlclients)

(a) (b)

Figure 2: (a) Strong positive correlation and consistent trend between 7 (true) and 7 (clients). (b)
Relationship between W (true) and J (clients) shows strong negative correlation across datasets.

4.3 ALGORITHM OVERVIEW

CS-pFedTM begins with a reference round, in which clients train a tiny reference TM and upload
their parameters to the server. These reference parameters serve two key purposes. Firstly, they
enable the server to estimate the communication cost per clause and, given the communication bud-
get for downloading the global model, determine the minimum fraction of clauses that must remain
local. Secondly, they provide a basis for computing client parameter similarity, which serves as
a proxy for data heterogeneity. This similarity-driven measure is then used to set the local-global
clause allocation for the system: when the participating clients exhibit higher overall heterogeneity,
the scheme emphasizes more local clauses to improve personalization, whereas for lower hetero-
geneity, more global clauses are used for knowledge sharing. For subsequent rounds, clients are
randomly sampled as usual, but only the top-performing clients’ states (based on local performance)
are uploaded and used in global aggregation. This ensures that the global model incorporates the
most informative updates while maintaining fairness in client participation.

Based on the observed parameter similarity and communication budget, the server allocates local
and global clauses for each client accordingly. Algorithm 3]summarizes the full approach.

Algorithm 1 CS-pFedTM: Communication-Efficient and Similarity-Driven Personalization
with TM
Input: Total number of clients N, total communication rounds 7', number of clauses per client
Nelauses, COMMunication budget 7
forroundt =0,1,...,7 do
Server randomly samples N, clients, C;
if ¢ == 0 then
Clients train a tiny reference TM and upload state parameters
min_frac < compute_min_frac
J Sclients < compute_client_similarity

local_frac < exp (—In(1/min_frac) - JSCliemS>
Assign local and global clauses:

Nyocal = anlauses : local,fracj ; TMglobal = Tlclauses — Tllocal

for each client n € C; do
Client trains local model L™, global model G™
L™, G™ < mask_weights(L"), mask_weights(G™)
Client uploads global parameters G to the server
G < aggregate_global models
Server updates clients’ global TM with G
return Personalized TMs for each client: TM™ € {G,, L™}, combined using Equation[3|

Under review as a conference paper at ICLR 2026

4.3.1 COMMUNICATION-AWARE CLAUSE ALLOCATION

To address client heterogeneity under communication constraints, we introduce a communication-
aware allocation mechanism. Given a communication budget 7, which specifies the maximum num-
ber of megabytes that each client can communicate per round, we first use the reference TM to
estimate the per-clause communication footprint, including clause weights and states. This enables
us to translate the abstract budget 7 into a concrete bound on the number of clauses that can be
shared globally without exceeding this budget.

From this bound, we compute min_frac, the minimum fraction of clauses that must remain lo-
cal. This ensures that each client retains enough locally trained clauses that adhere to the com-
munication budget while still benefiting from global aggregation. By enforcing this budget-driven
lower bound, the mechanism prevents infeasible allocations, preserves fairness across heterogeneous
clients, and provides a stable foundation for similarity-driven personalization, which dynamically
allocates clauses according to data heterogeneity.

4.3.2 SIMILARITY-DRIVEN PERSONALIZATION

Within this communication limit, we further adapt clause allocation based on data heterogeneity. As
shown in Figure [1} higher heterogeneity (W (true)) favors larger local fractions. Since W (true) is
unobservable in FL, we approximate it with 7 (clients), the average similarity between clients” TM
parameters. Empirical results reveal a strong inverse relationship between 7 (clients) and W (true):
as clients’ data distributions diverge further from the true distribution of the system, their parameters
become less similar.

We model this in a stable and bounded manner using a decreasing exponential function, which
naturally captures the diminishing effect of increasing similarity. When clients are very dissimilar
(high heterogeneity), the exponential term is large, resulting in a higher allocation of local clauses,
emphasizing personalization. Conversely, as clients become more similar (low heterogeneity), the
exponential term decreases rapidly, reducing the local fraction and favoring shared global knowl-
edge. This formulation ensures that even small differences in similarity among highly heterogeneous
clients produce meaningful increases in local clause allocation, while clients that are already similar
are quickly shifted toward increased global aggregation. Furthermore, by setting:

¢=1In(1/min_frac),

we guarantee exp(—c - J(clients)) > min_frac, ensuring that the allocation never falls below the
budget-driven minimum.

The local allocation threshold is therefore defined as:
local_frac = exp(— c- J(clients))
The number of local and global clauses is then computed as

Niocal = anlauses : local,fracj) Nglobal = Tlclauses — Tlocal -

Hence, by directly linking clause allocation to the derived similarity measure, CS-pFedTM achieves
communication- and heterogeneity-aware personalization.

5 EXPERIMENTS

Benchmark Datasets: We performed experiments on five image datasets and an audio dataset
commonly featured in the FL literature: SVHN (Netzer et al. [2011), EMNIST (Cohen et al.,
2017), CIFAR-10, CIFAR-100 (Krizhevsky, 2009), Tiny-ImageNet (Le & Yang, 2015) and
SpeechCommands-12 (SC-12) (Warden, 2018)).

Baseline Methods: To ensure a fair comparison, we evaluated several parameter-decoupling person-
alization approaches alongside CS-pFedTM. FedAvg serves as the standard FL benchmark (McMa-
han et al.| [2016), while FedAvg++ adds local fine-tuning (Jiang et al.| [2023)). pFedFDA addresses
the bias-variance trade-off via generative classifiers and feature distribution adaptation (Mclaughlin
& Su}, 2024). FedPAC aligns local and global feature representations using a regularization term (Xu

Under review as a conference paper at ICLR 2026

Table 1: Accuracy (%) of the algorithms for the FL with data heterogeneity and CC - Communica-
tion Costs (Upload/Download) for all clients per communication round

SVHN EMNIST CIFAR-T0 CIFAR-100 SC-12 Tiny-ImageNet Avg!
0.05 0.T 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 Acc.
Acc CC Acc CcC Acc CcC Acc CC Acc CcC Acc CcC Acc CcC Acc CcC Acc Acc Acc CC Acc

FedAvg 29.16 13/43 |5384 13/43 |71.41 15/50 [56.31 15/50 [31.23 13/43 [3299 13/43 [658 14/48 [6.82 14/48 [56.37 42/141 [65.46 42/141 [150 16/53 [1.48 16/53 [34.42
FedAvg++ |80.08 N 71.05 " 7271 v 74.54 " 79.12 N 67.41 " 43.20 " 34.57 " 67.82 " 66.35 " 19.42 " 14.79 " 57.59
pFedFDA |81.28 " 70.58 " 95.73 - 94.26 " 85.60 - 77.05 " 47.03 " 3847 " 90.57 " 9111 - 28.03 " 2322 - 68.58
FedPAC 83.03 " 82.96 " 9577 14/46 |94.28 14/46 (85.28 - 79.17 " 45.46 " 37.11 " 86.67 42/141 [90.20 42/141 |28.60 13/43 |21.59 13/43 |69.18
FedRep 80.81 N 81.33 " 78.12 o 78.18 " 86.43 N 79.48 " 44.44 " 38.01 " 88.49 " 82.91 " 2747 " " 65.54

FedPer 83.27 " 76.12 " 94.37 - 92.68 " 83.76 " 76.13 " 43.02 " 34.66 " 90.82 90.97 - 2627 " 19.89 - 67.66
LG-FedAvg |84.20 0.67/1.0 [78.95 0.67/1.0 |75.80 4.2/6.4 |75.69 4.2/6.4 |84.22 0.67/1.0 [75.56 0.67/1.0 |37.88 6.7/10 [29.07 6.7/10 |79.42 0.41/0.62(76.72 0.41/0.62|22.62 13/20 |15.54 13/20 |61.30
FedSelect (0.3)| 79.51 2.3/23 (67.90 2.3/23 (94.18 2.7/2.7 |91.51 2.7/2.7 (8595 23/2.3 |78.47 23/2.3 |47.75 2.6/2.6 |37.13 2.6/2.6 |91.07 7.5/7.5 |8583 7.5/7.5 |29.11 2.9/2.9 (22.42 29/2.9 |67.57
FedSelect (1.0)[79.45 7.7/7.7 |68.88 7.7/7.7 |94.55 8.9/8.9 |91.78 8.9/89 |86.37 7.7/7.7 |7881 7.7/1.7 |47.76 8.6/8.6 |36.04 8.6/8.6 [91.16 25/25 |85.85 25/25 [30.02 9.6/9.6 [22.45 9.6/9.6 |67.76
FedTM 55.58 0.33/12 |59.02 0.33/12 |62.94 1.4/48 [69.44 1.4/48 |37.86 0.37/15 [39.62 0.37/15 | 437 1.3/46 | 4.52 1.3/46 |62.33 1.2/35 6237 1.2/35 | 3.67 1.4/53 | 3.43 1.4/53 |38.76
CS-pFedTM_[89.59 0.01/0.28 [83.91 0.05/0.96[94.60 0.02/0.5[91.51 0.11/2.2[86.92 0.03/0.76 [79.81 0.03/0.99 [48.20 0.04/0.88[39.03 0.04/0.8891.16 0.01/0.35[91.76 0.02/0.56|29.25 0.12/2.6]24.20 0.12/2.6[70.82

et al., 2023)). FedRep and FedPer communicate only base layers, retraining classifier heads or the
full model for personalization (Collins et al., 2023 |Arivazhagan et al., 2019). LG-FedAvg transmits
only the global classifier and linearly combines local and global layers (Liang et al.| 2020). FedS-
elect personalizes subnetworks via selective masking but limits aggregation to participating clients,
requiring full participation for stable updates (Tamirisa et al., [2024).

FL Configuration: Following standard practices (Hsu et al.l [2019; Jiang et al., 2023} Mclaughlin
& Su, 2024)), data heterogeneity was simulated using a Dirichlet distribution with concentration
parameter « € {0.1,0.05}, and a 0.3 client participation rate across 100 clients. Each client trained
for 1 local epoch per round, and we report the highest average personalized accuracy after 100
rounds, averaged over 3 runs. Communication cost was measured as the total number of parameters
uploaded and downloaded per round. FedSelect was adapted to the cross-device setting with 0.3 for
both upload and download participation rate, averaging personalized accuracy across all clients, and
full participation results are also reported for consistency.

Model Configuration: We used a 2-layer CNN (Xu et al.,|2023) for the image datasets and the CNN
from |Zhang et al.| (2018) for SC-12, trained with batch size 128 (Liang et al., 2020). FedTM and
CS-pFedTM used CTMs, with CS-pFedTM’s download budget 7 set to match the most download-
efficient baseline, demonstrating strong performance under comparable communication constraints.

5.1 ACCURACY

CS-pFedTM attains accuracy on par with SOTA baselines in highly heterogeneous scenarios, deliv-
ering the highest average performance across all settings, as shown in Table [T} It outperforms the
second-best method by an average of 1.1%, except on EMNIST, and surpasses FedTM in all settings
with an average of 32.1% improvement. We also benchmarked CS-pFedTM against sparsification-
based personalization methods. As DisPFL is decentralized and SpaFL requires larger CNNs for
pruning, we report these results in Appendix where CS-pFedTM outperforms them with higher
efficiency.

5.2 COMMUNICATION COSTS

Communication costs are critical in FL, especially for edge devices with limited bandwidth (Asad
et al.| [2023). Table E] shows that CS-pFedTM achieves the lowest overall communication costs
among all evaluated methods. This reduction is primarily due to CS-pFedTM’s design, which up-
loads only global parameters guided by client heterogeneity and communication budgets, rather
than the full model, while the bit-based CTM representation additionally reduces memory require-
ments compared to full-precision CNNs (Lei et al., 2020). As a result, CS-pFedTM achieves 31.3x
and 45.8x lower upload and download costs than FedTM. On average, CS-pFedTM is 85.8x
more upload-efficient and 5.58 x more download-efficient compared to LG-FedAvg, and 158 x and
6x more efficient compared to FedSelect, while delivering superior model performance. FedTM
demonstrates lower upload costs compared to LG-FedAvg, yet remains less efficient in download
costs. Although FedPAC surpasses CS-pFedTM in terms of accuracy on the EMNIST dataset, CS-
pFedTM remains an average of 876x more upload-efficient and 106 x more download-efficient.
This combination of strong accuracy and communication efficiency highlights CS-pFedTM’s practi-
cality for FL, particularly in edge environments where reducing communication overhead, especially
upload costs, without compromising performance is crucial.

Under review as a conference paper at ICLR 2026

5.3 MEMORY COSTS AND LATENCY

Table 2: Average Memory Storage (MS) and Runtime Memory (RTM) in MB and Training Latency
(L) in seconds on each client

SVHN EMNIST CIFAR-10 CIFAR-100 SC-12 Tiny-ImageNet
MS RTM L [MS RTM L [MS RTM L |[MS RTM L |[MS RTM L [MS RTM L
CNN|[0.43 101 1.12]0.50 50.6 5.19{0.43 111 0.85]0.48 118 1.081.41 278 14.8|0.53 144 2.09
CTM|0.12 22.1 0.81(0.48 47.6 1.65/0.15 31.8 0.74|0.46 25.7 0.41|0.35 10.8 0.99/0.53 42.5 0.68

We evaluated runtime memory during training and the memory required for individual models. The
reported runtime memory reflects the average used for local training. Table [2] shows that CTMs
outperforms CNNs in both storage and runtime efficiency, requiring on average 2.3 x less storage
across datasets and achieving a 7.2 x improvement in runtime memory efficiency. We measured the
average latency for training each model on each client on a compute node with 2 CPU cores. Across
all datasets, CTM has the lowest training latency and is on average 4.39 x more efficient than CNN.
This efficiency is advantageous for devices with limited resources and positions
CS-pFedTM as a compelling solution for deploying FL on devices with constrained capabilities.

5.4 EFFECT OF HETEROGENEITY

To analyze heterogeneity, we varied the number of classes per client in CIFAR-10, with fewer classes
indicating higher heterogeneity. From Figure[3] CS-pFedTM achieves the largest gains under highly
heterogeneous settings, though its advantage slightly decreases as heterogeneity lowers. It con-
sistently outperforms communication-efficient baselines such as LG-FedAvg and FedSelect. Like
CNN-based methods, stronger performance under lower heterogeneity often requires more shared
global parameters, a trend CS-pFedTM follows. For the higher budget setting, we constrained CS-
pFedTM’s communication to the maximum used by competing methods; even so, it incurs signif-
icantly lower costs while closing the performance gap. Another factor partly explaining this gap
is that TMs are generally less robust than CNNs; however, recent advances combining multiple
TM models with different encodings and receptive fields offer a promising path to mitigating this

limitation 2023).

FedAvg
. FedAvg++
s FedTM
EEm pFedFDA
mm FedPAC

FedRep
mm FedPer
mm | G-FedAvg
B FedSelect
I CS-pFedTM

5 6 mmm CS-pFedTM (higher budget)

2 o @
8 a3 S

Accuracy (%)

N
S

o

3

&
Number of Classes on each Client

Figure 3: Performance of the algorithms on varying heterogeneity

6 CONCLUSIONS

We presented CS-pFedTM, an efficient personalized FL approach based on TMs that jointly lever-
ages local and global models. By exploiting correlations between parameters and client data, it
employs a similarity-based clause allocation scheme that adapts to heterogeneity and enhances per-
sonalization. CS-pFedTM achieves substantial resource reductions, at least 85.8 x in upload, 5.58 x
in download, 2.3 in storage, 7.2 in runtime memory, and 4.39 in training latency, without com-
promising accuracy. Focusing on clause optimization, the core building blocks of TMs, this work
lays the foundation for further improvements, such as weight optimization, adaptive mask learning
and clause sparsification or pruning. Future work could address the trade-off between robustness and
efficiency under varying heterogeneity through hybrid designs combining lightweight local CNNs
with global TMs while keeping communication costs low. Additionally, the observed link between
parameter similarity and data distribution provides insights for FL extensions, including resource-
aware personalization for edge devices and dynamic clause adaptation to handle concept drift.

Under review as a conference paper at ICLR 2026

REFERENCES

Omair Rashed Abdulwareth Almanifi, Chee-Onn Chow, Mau-Luen Tham, Joon Huang Chuah, and
Jeevan Kanesan. Communication and computation efficiency in Federated Learning: A sur-
vey. Internet of Things, 22:100742, 2023. ISSN 2542-6605. doi: https://doi.org/10.1016/j.iot.
2023.100742. URL https://www.sciencedirect.com/science/article/pii/
S52542660523000653.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated Learning with Personalization Layers, 2019.

Muhammad Asad, Saima Shaukat, Dou Hu, Zekun Wang, Ehsan Javanmardi, Jin Nakazato, and
Manabu Tsukada. Limitations and Future Aspects of Communication Costs in Federated Learn-
ing: A Survey. Sensors, 23(17), 2023. ISSN 1424-8220. doi: 10.3390/s23177358.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: Extending
MNIST to handwritten letters. In IJCNN, pp. 2921-2926, 2017. doi: 10.1109/IJCNN.2017.
7966217.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting Shared Repre-
sentations for Personalized Federated Learning, 2023.

Luciano Costa. Further Generalizations of the Jaccard Index, 2021.

Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. DisPFL: Towards
Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training. In
ICML, 2022.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized Federated Learning: A Meta-
Learning Approach, 2020.

Ole-Christoffer Granmo. The Tsetlin Machine - A Game Theoretic Bandit Driven Approach to
Optimal Pattern Recognition with Propositional Logic, 2021.

Ole-Christoffer Granmo. TMComposites: Plug-and-Play Collaboration Between Specialized Tsetlin
Machines, 2023.

Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian W. Omlin, and
Geir Thore Berge. The Convolutional Tsetlin Machine, 2019.

Robert Honig, Yiren Zhao, and Robert Mullins. DAdaQuant: Doubly-adaptive quantization for
communication-efficient federated learning. In ICML, volume 162. PMLR, 2022.

Shannon Shi Qi How, Jagmohan Chauhan, Geoff V Merrett, and Jonathan Hare. FedTM: Memory
and Communication Efficient Federated Learning with Tsetlin Machine. In 2023 International
Symposium on the Tsetlin Machine, pp. 1-8, 2023. doi: 10.1109/ISTM58889.2023.10454982.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the Effects of Non-Identical Data
Distribution for Federated Visual Classification, 2019.

Ahmed Imteaj, Urmish Thakker, Shigiang Wang, Jian Li, and M. Hadi Amini. A Survey on Feder-
ated Learning for Resource-Constrained IoT Devices. IEEE IoT-J, 9(1):1-24, 2022.

Yihan Jiang, Jakub Konec¢ny, Keith Rush, and Sreeram Kannan. Improving Federated Learning
Personalization via Model Agnostic Meta Learning, 2023.

Yuang Jiang, Shigiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K. Leung, and Leandros
Tassiulas. Model Pruning Enables Efficient Federated Learning on Edge Devices. IEEE TNNLS,
pp. 1-13, 2022. doi: 10.1109/TNNLS.2022.3166101.

Latif U. Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong. Federated Learning
for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Communica-
tions Surveys & Tutorials, 23(3):1759-1799, 2021. doi: 10.1109/COMST.2021.3090430.

10

https://www.sciencedirect.com/science/article/pii/S2542660523000653
https://www.sciencedirect.com/science/article/pii/S2542660523000653

Under review as a conference paper at ICLR 2026

Minsu Kim, Walid Saad, Merouane Abdelkader DEBBAH, and Choong Seon Hong. SpaFL:
Communication-Efficient Federated Learning With Sparse Models And Low Computational
Overhead. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=dAXuir2ets.

Soheil Kolouri, Serim Park, Matthew Thorpe, Dejan Slepcev, and Gustavo Rohde. Optimal Mass
Transport: Signal processing and machine-learning applications. IEEE SPM, 34:43-59, 07 2017.
doi: 10.1109/MSP.2017.2695801.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009. URL https:
//api.semanticscholar.orqg/CorpusID:18268744.

Ya Le and Xuan S. Yang. Tiny ImageNet Visual Recognition Challenge. 2015. URL https:
//api.semanticscholar.org/CorpusID:16664790.

Jie Lei, Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, and Ole-Christoffer Granmo. From Arith-
metic to Logic based Al: A Comparative Analysis of Neural Networks and Tsetlin Machine. In
IEEE ICECS, pp. 14, 2020. doi: 10.1109/ICECS49266.2020.9294877.

Jie Lei, Tousif Rahman, Rishad Shafik, Adrian Wheeldon, Alex Yakovlev, Ole-Christoffer Granmo,
Fahim Kawsar, and Akhil Mathur. Low-Power Audio Keyword Spotting Using Tsetlin Machines.
JLPFEA, 11(2),2021. ISSN 2079-9268. doi: 10.3390/jlpeal 1020018.

Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. Hermes: An Efficient Federated
Learning Framework for Heterogeneous Mobile Clients. MobiCom, pp. 420-437, 2021. ISBN
9781450383424. doi: 10.1145/3447993.3483278.

Daliang Li and Junpu Wang. FedMD: Heterogenous Federated Learning via Model Distillation,
2019. URL https://arxiv.org/abs/1910.03581.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B. Allen, Randy P. Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think Locally, Act Globally: Federated Learning
with Local and Global Representations, 2020.

Yuzhu Mao, Zihao Zhao, Guangfeng Yan, Yang Liu, Tian Lan, Linqi Song, and Wenbo Ding.
Communication-Efficient Federated Learning with Adaptive Quantization. ACM Trans. Intell.
Syst. Technol., 13(4), aug 2022. ISSN 2157-6904. doi: 10.1145/3510587.

Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, and Richard Vidal. Personalized Federated
Learning through Local Memorization, 2022.

Connor Mclaughlin and Lili Su. Personalized Federated Learning via Feature Distribution Adapta-
tion. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agiiera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In AISTATS,
2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. In NeuRIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, 2011.

Jaehoon Oh, SangMook Kim, and Se-Young Yun. FedBABU: Toward enhanced representation for
federated image classification. In ICML, 2022. URL https://openreview.net/forum?
id=HuaYQfggn5u.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library, 2019.

11

https://openreview.net/forum?id=dAXuir2ets
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://arxiv.org/abs/1910.03581
https://openreview.net/forum?id=HuaYQfggn5u
https://openreview.net/forum?id=HuaYQfggn5u

Under review as a conference paper at ICLR 2026

Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ahmady Phoulady. The
Weighted Tsetlin Machine: Compressed Representations with Weighted Clauses, 2020. URL
https://arxiv.org/abs/1911.12607.

Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao, Titouan Parcollet, and
Nicholas Donald Lane. ZeroFL: Efficient on-device training for federated learning with local
sparsity. In ICLR, 2022.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and
Quantization, 2019.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. FetchSGD: Communication-Efficient Federated Learning
with Sketching. ICML, 2020.

Felix Sattler, Klaus-Robert Miiller, and Wojciech Samek. Clustered Federated Learning: Model-
Agnostic Distributed Multitask Optimization Under Privacy Constraints. IEEE Transactions on
Neural Networks and Learning Systems, 32(8):3710-3722, 2021. doi: 10.1109/TNNLS.2020.
3015958.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized Federated Learning
using Hypernetworks, 2021.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated Multi-Task
Learning. In NeurlIPS, volume 30, 2017.

Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Personalized Federated Learning with Moreau
Envelopes. In NeuRIPS, volume 33, pp. 21394-21405, 2020.

Rishub Tamirisa, Chulin Xie, Wenxuan Bao, Andy Zhou, Ron Arel, and Aviv Shamsian. FedSelect:
Personalized Federated Learning with Customized Selection of Parameters for Fine-Tuning, 2024.
URL https://arxiv.org/abs/2404.02478.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards Personalized Federated Learning.
IEEE Transactions on Neural Networks and Learning Systems, 34(12):9587-9603, 2023. doi:
10.1109/TNNLS.2022.3160699.

Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition, 2018.

Da-Feng Xia, Sen-Lin Xu, and Feng Qi. A proof of the arithmetic mean-geometric mean-harmonic
mean inequalities. RGMIA Research Report Collection, 2:Article 10, 99—, 11 1999.

Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized Federated Learning with Feature Align-
ment and Classifier Collaboration. In ICML, 2023.

Yuzhi Yang, Zhaoyang Zhang, and Qiangian Yang. Communication-Efficient Federated Learning
With Binary Neural Networks. [EEE JSAC, 39(12):3836-3850, 2021. doi: 10.1109/jsac.2021.
3118415.

Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello Edge: Keyword Spotting
on Microcontrollers, 2018.

12

https://arxiv.org/abs/1911.12607
https://arxiv.org/abs/2404.02478

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOF OF RELATION BETWEEN WASSERSTEIN DISTANCE AND JACCARD SIMILARITY
Training in a Tsetlin Machine (TM) is stochastic because of’:

* Random selection of clauses for updating, and

* Randomized rewards and penalties from Type I feedback.

This stochasticity makes the learned clause states highly sensitive to the underlying data distribution.
Motivated by this, we investigate how differences in data distributions across clients—quantified via
the Wasserstein distance—affect the similarity of their learned parameters, measured using Jaccard
similarity.

Definition 1 (1-Wasserstein Distance (Kolouri et al.,[2017)) The 1-Wasserstein distance between
two distributions q1 and qo over a metric space Z is

Wi(q1,q2) == _ inf / d(21, 22) dq(z1, 22),
q€Q(q1,92) Jzxz

where d(-,-) is a distance function and Q(q1, q2) denotes the set of couplings with marginals q; and

q2.

Lemma 2 (Distributional Dissimilarity) Ler q1,q2,q5 be data distributions. If W(q1,q5) >
W(q1, q2), then ¢} is more dissimilar to q; than qs is.

By the definition of the 1-Wasserstein distance and the principle of optimal transport (Kolouri et al.}
2017), a larger value indicates that, on average, it is “harder” to transport samples from ¢q; to gs.
Hence, if W(q1, ¢5) > W (q1, ¢2), the distribution ¢4 is more dissimilar to g; than g5 is. Intuitively,
samples from ¢} are less likely to resemble samples from g; compared to samples from ¢s.

Next, we define the similarity of parameters by

Definition 2 (Jaccard Similarity (Costa),2021)) The Jaccard similarity between two sets of binary
vectors S o and Sp is the size of the intersection divided by the size of the union of the sets:

|SA ﬁSB‘
Sa,S) = —F+—.
j(Ay B) |SAUSB‘

To compare the states between two sets of clauses A and B:

* |S4aNSp|: represents the number of clauses that are active in both sets, (clauses that include
at least one literal in both)

* |S4 U Sp|: represents the number of clauses that contain literals in either S4 or Sp.

The Jaccard similarity between two states, S4 and Sp, therefore measures the degree of overlap in
active clauses between the two states. Higher values indicate that the same clauses has at least an
include action in both states, reflecting the similarity in how feedback has shaped the clauses during
training.

Corollary 3 (Inverse Relation Between Distribution Divergence and Clause Overlap) Let g4
and qp be two class distributions and S4, Sp be the corresponding trained TM states (sets of
clauses). Then:

W(qA,qB) — 0 = j(SA,SB) — 1,

Thus, lower distributional divergence corresponds to higher parameter similarity.
Training is done one sample at a time. Given a Multi-Class TM with M classes, when training an

input x from class y = k, the TA teams associated with class £ will be trained to output y = 1 and
the other classes’ (y # k) TA teams will be selected to train to output y = 0 on the training input

13

Under review as a conference paper at ICLR 2026

x. The probability of selecting a TA team from class m € {1, ..., M} for positive training can be
M
defined as g,,, where > .| ¢, = 1.

Let CL be the j-th clause for class k, with C' total clauses per class. Let Li denote the number of
literals included in the TA teams of c},. During training of (x,y) with class label y:

* Type I feedback reinforces the TA teams of clauses corresponding to y = k are reinforced
to include literals matching the input, increasing the likelihood that the clause outputs 1:
AL, |y=Fk>0.

* Type II feedback guides the TAs in clauses of other classes y # k to include zero-valued
literals or suppress active literals. This reduces the likelihood of false positives, effectively

decreasing the number of literals contributing to the clause output: ALi |y #k <0.

We define the change in the number of literals included in clause c,i as ALi, which depends on
Equation 2]and the specific training sample. Let

o, =E[AL] |y=k >0, 0_:=E[-AL]|y#k] >0,

represent the expected increase in literals for Type I feedback and the expected decrease in literals
for Type II feedback, respectively.

Then, for a data distribution ¢ = {g;, }}/_,, the expected number of literals in clause c;, after training
is

E[L] | gx] = qx 64 + (1 — qx) - 4
=0_+qu(dy —6-), ®)

This expression captures the average effect of Type I and Type II feedback across the class distribu-
tion.

Let two datasets, A and B have distributions ¢ = {g{*}}_, and ¢ = {¢P}}M |,

Sa={c LI >1YkeM,jeC}, Sp={c:Li’>1Yke M,jecC},
denote the sets of clauses that contain at least one include action, respectively.

We define indicator variables for literals present in clauses:
X =1r*>1}, Xe{A B}
Thus, a clause ¢, belongs to S if and only if I;* =1

The size of the overlap between the two sets is the dot product of the indicator vectors:

M C

San85 =3 3 1A 18
k=1j=1
Taking expectations, we obtain
M C o
E[|Sa N Spl] =Y > B L"),
k=1j=1

Since the TM 4 and TMp trained on ¢ and ¢” are independent, the expectation can be expressed
as:

M C
E[[S4nSpll =Y B[R],

k=1 j=1

14

Under review as a conference paper at ICLR 2026

Since E[I}X] = Pr(I}X =1) = Pr(L)™ > 1), we get:

M C
E[SanSel]=> Y Pr(Ly* > 1)-Pr(L]” > 1).

k=1 j=1

Approximating them using normalized expected literal counts:

For the bounded random variable L7~ € [0, Linax], we can bound Pr(L7~ > 1) using its expecta-
tion:

BILEY) = BILYY | L > 0P > 1)+ BILPS | L)X < P < 1),
Since 0 < Li’X < Lax on the event {Li’x > 1}, we have
Pr(L* > 1) < E[LPY),
and similarly
E[LLY] < Liax Pr(LLY > 1),
which implies
E[L;™]

Ll’l’l&X

< Pr(L3¥ >1) < E[LI7Y].

Since the distribution of L{;’X is typically spread across [0, Lyax], its normalized expectation pro-
vides a tractable approximation:

E[L™ | 4]

Pr(l?X >1) ~ =2k T3k 1
r(k -) Lmax

Substituting this approximation, the expected overlap becomes

M C _ .
E[|Sa N Sg| ~ Z Z E[ﬁi!‘l?] .]E[fjk‘,qf]
k=1 j=1)
Definition 3 (Arithmetic Mean-Geometric Mean Inequality (Xia et al., 1999)) For non-
negative numbers ay,as, . .., a7,
ai + as E"‘FGM > Waras
with equality if and only if a1 = a2 = --- = ap.
Applying the AM—GM inequality gives
: : ElLlad] | ELlaf] °
EL; |gi] ElLi |af] _ Toox T Lo
Lmax Lmax - 2

Hence, each product term is maximized when

(L}, | 4] = EILj | ¢).

Therefore, summing over all classes and clauses, the total expected overlap is maximized when the
two data distributions are aligned:
Gt =qP Vke M.

Therefore, the expected clause overlap E[|S4 N Sp|] is maximized when the class distributions
are identical W (¢, ¢®) = 0. Smaller distributional distance between ¢ and ¢” implies higher
expected Jaccard similarity of the clause-activity states; conversely, larger distributional divergence
generally reduces clause overlap.

15

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL DETAILS

B.1 DATASETS

We evaluated the different approaches on the SVHN (Netzer et al., 2011), Extended MNIST (EM-
NIST) (Cohen et al., 2017), CIFAR-10 , CIFAR-100 (Krizhevsky, [2009), SpeechCommands (War-
den| 2018)) dataset and Tiny-ImageNet (Le & Yang} 2015)). All datasets are downloaded and prepro-
cessed with PyTorch (Paszke et al.,|2019).

* SVHN: This dataset is imbalanced and consists of digits and numbers captured in natural
scenes, presenting a more challenging real-world problem (Netzer et al., 2011)).

e EMNIST: The extended version of MNIST which contains 814,255 characters with 62
unbalanced classes. Similar to BiFL (Yang et al.| 2021; Marfoq et al.| 2022), we only used
a subset of the entire dataset for training and testing.

* CIFAR-10: A real-world image dataset of 10 classes with 6000 images per class
(Krizhevskyl 2009).

e CIFAR-100: A real-world image dataset of 100 classes with 6000 images per class
(Krizhevskyl 2009).

* SpeechCommands-12 (SC-12): A dataset containing 10 spoken keywords (’Yes’, 'No’,
"Left’, ’Right’, *Up’, "Down’, ’Stop’, ’Go’, On’, Off’) with the remaining 20 keywords
labelled as ’silence’ and background noise (Warden, [2018]).

* Tiny-ImageNet: A dataset containing 100000 real-world images of 200 classes, downsized
to 64x64 colored images (Le & Yang, 2015).

For the SpeechCommands-12 dataset, we preprocessed each audio clip and extracted 40x49 MFCC
features as defined in (Zhang et al., 2018)) for the DNN-based algorithms while we extracted 13x29
MFCC features as defined in (Lei et al.||2021) for the TM-based algorithms.

B.2 LIBARIES AND MACHINE

To evaluate the average run-time memory usage and training latency, these were estimated by con-
tainerizing the PyPi memory-profiler package in Docker using 2 CPUs.

B.2.1 BASELINE MODELS CONFIGURATION

In configuring all baseline models, we performed parameter tuning to optimize their performance.
specifically, for the learning rate if not defined in the original paper, we explored these values: [0.01,
0.05, 0.1].

B.3 CS-PFEDTM MODEL CONFIGURATION

To meet the booleanized input requirements essential for Tsetlin Machines (TMs), we implemented
distinct pre-processing steps for each of our datasets. For the EMNIST dataset, we encoded the data
by setting pixel values larger than 40 to 1, and values below or equal to 40 to 0. For the SVHN
dataset, we binarized the data using an adaptive Gaussian thresholding procedure with a window
size of 11 and a threshold value of 2 (Granmo et al., [2019). For the CIFAR-10, CIFAR-100 and
Tiny-ImageNet dataset, we booleanized using 8-level color thermometer encoding (Granmol [2023).
Across all datasets, we utilized the CTM, adjusting parameters such as the number of clauses, feed-
back threshold, learning sensitivity, and patch dimension. We set § = 0.5 for AverageCW pe,s to
average the local weights.

C ADDITIONAL RESULTS

C.1 COMPARISON WITH SPARSIFICATION METHODS

Sparsification can also be leveraged as a form of personalization by selectively pruning model com-
ponents based on their importance to each client. We compare our method with DisPFL (Dai et al.,

16

Under review as a conference paper at ICLR 2026

Table 3: CS-pFedTM model configuration

SVHN | EMNIST | CIFAR-10 | CIFAR-100 | SC-12 | Tiny-ImageNet
Dir(0.05) Local Clauses 293 193 190 103 792 57
) Global Clauses 7 2 10 2 8 3
Dir(0.1) Local Clauses 276 186 187 103 787 57
’ Global Clauses 24 9 13 6 2 3
Feedback Threshold 500 100 150 1000 200 2000
Learning Sensitivity 7.5 5 5 5 5 1.5
Patch Dimensions (5,5) (10,10) 3.,3) 2,2) (10,10) 2,2)

2022) and SpaFL Kim et al.| (2024), two communication-efficient personalized FL approaches that
uses sparsification.

Since DisPFL is a decentralized FL. method, we focus on the average per-round communication cost
per client when sharing parameters with neighbors, and compare it with the per-client communica-
tion cost of our approach. We utilized the same CNN models as defined in Section 3]

Table 4: Accuracy (%) of the DisPFL (n), where n is the number of neighbours vs CS-pFedTM and
CC - Average CC per client per round

SVHN EMNIST CIFAR-10 CIFAR-100 SC-12 Tiny-ImageNet
. 0.05 0.1 0.05 0. 0.05 0.1 5 . 0.05 0.T
Acc. CC | Acc. CC | Acc CC [Acc CC | Acc. CC | Acc CC | Acc CC | Acc CC | Acc CC | Acc. CC | Acc CC | Acc_ CC
DisPFL (n=30) | 77.08 6.46 | 65.09 6.46 | 90.90 743 | 8844 743 [8226 65 [7457 65 |3052 7.14[2338 7.14 [8434 2127654 2122255 793|17.09 793
DisPFL (n=10) | 75.96 2.15 | 60.18 2.15| 90.15 248 | 88.89 248 | 82.10 2.17 | 71.94 2.17 | 30.10 238 | 23.22 2.38 | 82.10 7.05 | 76.54 7.05 | 21.03 2.64 | 15.69 2.64
DisPFL (n=5) | 76.35 1.08 | 61.36 1.08 | 91.15 124 | 89.90 124 | 81.41 1.08 | 73.15 1.41 | 3046 1.19 | 21.82 1.19 | 81.91 238 | 7230 2.38 | 19.10 1.32 | 1479 1.32
CS-pFedTM | 89.59 0.01 | 83.91 0.05 | 94.60 0.02 | 91.51 0.11 | 86.92 0.03 | 79.81 0.3 | 48.20 0.04 | 39.03 0.04 | 91.16 0.01 | 91.76 0.02 | 29.25 0.1 | 2420 0.1

Although decentralized FL. methods avoid the server communication bottleneck, they become more
communication-intensive when n > 1 since each client must exchange updates with multiple
neighbors per round. In contrast, centralized FL requires only one upload and one download per
client. Our results show that CS-pFedTM consistently outperforms DisPFL across all settings, while
also achieving significantly lower per-round communication costs. Nevertheless, one advantage of
DisPFL is that the number of neighbors can be predefined, offering flexibility in network topology
design. However, this comes at the expense of a trade-off as seen in Table 4} where increasing
the number of neighbors may improve information mixing but could lead to higher communication
overhead and potentially affect model performance.

To further reduce communication costs beyond parameter or gradient exchange, pruning-based
methods have been proposed. In SpaFL, trainable thresholds are assigned to each filter or neuron,
which prune their connected parameters to induce structured sparsity. To minimize communication,
only these thresholds are exchanged between clients and the server, reducing costs by up to two
orders of magnitude compared to transmitting full model parameters |[Kim et al.[(2024)).

However, pruning is largely ineffective for smaller CNNss, since their limited parameter counts leave
little redundancy to exploit. Therefore, because the CNNs used in Section [5 are too small for prun-
ing, we adopt the larger model from the original SpaFL paper for comparison. Moreover, since
SpaFL communicates only thresholds, we evaluate our CS-pFedTM under stricter communication
budgets to ensure fairness. The results demonstrate that our method achieves stronger personaliza-
tion while operating under tighter resource constraints.

Table 5: Comparison of SpaFL and CS-pFedTM: Accuracy (%), Communication Costs per client
per round, and Model Size after pruning for SpaFL

FMNIST CIFAR-10 CIFAR-100
0.05 0.1 0.05 0.1 0.05 0.1
Acc CC Size | Acc CcC Size | Acc CcC Size | Acc CcC Size | Acc CC Size | Acc CC Size
SpaFL 96.72 0.07/0.23 094 | 9524 0.07/023 094 | 8333 0.09/026 323 | 7557 0.09/026 323 [4515 029/096 112 [3625 029/096 112
CS-pFedTM | 97.83 0.02/0.22 0.26 | 95.58 0.02/0.24 0.26 | 85.34 0.004/0.09 0.35 | 78.57 0.06/0.15 0.35 | 48.03 0.25/0.85 0.83 | 38.16 0.06/1.5 0.83

C.2 EFFECT OF PARTICIPATION RATIO AND NUMBER OF CLIENTS

We analyzed the scalability of CS-pFedTM by varying the number of clients from 20 to 500 and ad-
justing the client participation ratio per communication round to [0.1, 0.3, 0.5, 1.0] on the CIFAR-10

17

Under review as a conference paper at ICLR 2026

dataset. The results demonstrate that CS-pFedTM consistently delivers strong performance across
all configurations, regardless of the total number of clients or the participation rate per round. This
shows CS-pFedTM’s scalability and robustness, making it well-suited for various FL scenarios.

90

No. of Clients

N e—— e

85 ?:’_’g/ »— FedAvg
\/4 —e— FedAvg++

80 —e— LG-FedAvg

—+— pFedFDA

— _ - +— FedPAC

35 ——— —+— FedPer

’ FedRep

309~ —=— FedSelect
0.1 0.3 0.5 1.0 —*— CS-pFedTM

Participation Ratio

(a) (b)

®
o

@
=}

40

Accuracy (%)
8

N
=)

o

red™ Fedl\“&!dw Qégdse\tg;ed‘\g\geﬁo%ed?‘\Cped‘?e(;ed“ec‘;_p?edTM

Figure 4: Performance of the algorithms for varying (a) number of clients and (b) participation ratio

C.3 SENSITIVITY ANALYSIS

As shown in Figure 5} our similarity-driven allocation selects the optimal point on each curve, adap-
tively adjusting the local/global split based on client heterogeneity. Upload communication costs in-
crease as heterogeneity decreases, since more homogeneous clients share a larger fraction of global
clauses. These results highlight the trade-off between personalization and communication, demon-
strating that our allocation mechanism consistently identifies the best balance across heterogeneity
levels.

EMNIST CIFAR-10
S
92.5 85)’
90.0
[S 3
P 2 B — >
[®) [®)
E E 75
=1 85.0 =1
8 8 70
82.5
< < -
80.0
775 60 /_/“’_\
0.0 0.5 10 15 2.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Upload Costs (MB) ~ Heterogeneity levels: Upload Costs (MB)
—— High —— Moderate = —— Low

Figure 5: Performance as a function of local clause fraction under different heterogeneity levels. The
points indicate the local/global split selected by our similarity-driven allocation, which achieves the
highest performance on each curve.

18

Under review as a conference paper at ICLR 2026

C.4 FEDTM IMPLEMENTATION DETAILS

FedTM is the first FL framework that leverages TM to concurrently optimize communication ef-
ficiency and memory utilization. In contrast to FL frameworks employing DNNs, where weight
aggregation often involves a straightforward weighted averaging of integer weights, FedTM adopts
a distinctive two-step aggregation scheme [How et al.| (2023)), owing to the unique structure of TM
as described in Section[3.1]

The first step employs the TopK algorithm for bit-based aggregation of the TA states. This method
selects K clients based on the confidence of the TA states, giving preference to clients with the top
K data size for each specific class. The second step involves the AverageCW method, specifi-
cally tailored for computing the average of the integer clause weights weighted based on the total
sample size of each set of local data. This two-step approach ensures the effective aggregation of
information encoded in both the bit-based and integer components of TM.

Algorithm 2 FedTM

1. Initialize global parameters Wy, Sy with the same TM architecture and clients inform the
server of their local dataset sizes, |D;|,j =1,2,...N
for communication round t = 1,2, ...7 do
2. For all participating clients, J, train a TM model with the current weights, W;_; on their
local dataset, D, for e epochs
3. Clients upload their local parameters
4. Aggregation of clients’ parameters
for classm =1,2,...M do
W, [m] < AverageCW(m, 4, t)
S¢[m] «TopK(m, k,t)
5. All clients download the new global parameters: W, Sy

AverageCW(m, 6, t):
. J i
Wi[m] « int(;5; 3252, [D;| Wi [m])
if t > 1 then
if V/_, W/ [m] = 0 then
W, [m] + W;_1[m] if class m is not seen in round ¢ of training then use previous weights
else
Wim] (1 — 6)Wy_1[m] + W¢[m]
return int(Wy[m])

TopK(m, k, t):

sorted_list < sort(V/_,|Dj|[m])
sortedy, « sorted_list|0 : k]
Sufm] V38]

return S;[m]

19

Under review as a conference paper at ICLR 2026

C.5 CS-PFEDTM ALGORITHM

Algorithm 3 CS-pFedTM: Communication-Efficient and Similarity-Driven Personalization
with TM
Input: Total number of clients N, total communication rounds 7', number of clauses per client
Nelauses, COMMunication budget 7
forroundt =0,1,...,7T do
Server randomly samples [V; clients, C;
if £t == 0 then
Clients train a tiny reference TM and upload state parameters
min_frac < compute_min_frac
JSclients < compute_client_similarity

local_frac < exp (—In(l/min_frac) - JSCnems)
Assign local and global clauses:

Nlocal = I_nclauses . local—fraCJ> Tglobal = Tclauses — Tlocal

for each client n € C; do
Client trains local model L", global model G™
L™ G™ < mask_weights(L"), mask_weights(G™)
Client uploads global parameters G™ to the server
G + aggregate_global_models
Server updates clients’ global TM with G,
return Personalized TMs for each client: TM™ € {G;, L}, combined using Equation 3]

Algorithm 4 compute_min_frac

ref-model_size
ref_num_clauses

per_clause_size ¢

per_clause_size 2
min_local_clauses < n_clauses —max_global_clauses
Minimum local fraction: min_frac ¢ Rip-local-clauses

) n_clauses
return min_frac

max_global_clauses ¢ min (L T], n,clauses)

Algorithm S compute_client_similarity
total_similarity < 0
pair_count <— 0
for pair in combinations(len(all_states), 2) do
total_similarity < total_similarity + JSTest(pair|[0], pair[1])
pair_count <— pair_count + 1

. L totalsimilarit
average jaccard_similarity ¢<— <>t
pair_count

return average_jaccard_similarity

if pair_count > 0 else O

20

Under review as a conference paper at ICLR 2026

Algorithm 6 JSTest(S4, SB)
if len(S#) # len(S”) then
raise ValueError(”Vectors must have the same length”)
A
intersection <— lee:ngs) 54 A\ SBi]
A
union + Y57 G \/ SBJi]
if union == 0 then
return O
else
return

intersection
union

Algorithm 7 mask_weights(11)

for classm =1,2,...M do
if m is not present in local data then
Wim] =0
return W

Algorithm 8 aggregate_global_models

Input: list of client models G;, where each G™ € G, contains their weights, W,* and states, S}"
Rank of clients based on performance: rank_clients;_
Global weights W and states S
forclassm=1,..., M do
W;[m] + AverageCWpe,s
St[m] — TOszerf
return G, = {W,,S;}

Algorithm 9 AverageCWope, ¢

Wi[m] « int(3,, Wi {m])
if t > 1 then
if V2, W2 [m] == 0 then
W, [m] < W;_1[m] > if class m is not seen in round ¢ of training then use previous weights
else
W, [m] < 5Wt [m]
return int(W[m])

Algorithm 10 Top2pe,s

if rank_clients; 1 > 1 then
rank_clients,_1[0 rank_clients,_1[1
Si[m] = S, “m] Vs a

m]
else ke cliont 0]

St [m] — S:(Z’I’L cLrentsy—1q [m]
return S;[m]

21

Under review as a conference paper at ICLR 2026

Use of LLMs: We used LLMs only at the sentence level (e.g., grammar correction and rewording).
No LLMs were used for retrieval, discovery, research ideation, or any other purpose.

22

	Introduction
	Related Work
	Background
	Tsetlin Machine
	Tsetlin Machine Structure
	Tsetlin Machine Learning Mechanism

	Methodology
	Personalization
	Problem Formulation
	Effect of Data Heterogeneity on Personalization
	Exploring the Connection Between Trained Parameters and Distribution Distances

	Algorithm Overview
	Communication-Aware Clause Allocation
	Similarity-Driven Personalization

	Experiments
	Accuracy
	Communication Costs
	Memory Costs and Latency
	Effect of Heterogeneity

	Conclusions
	Appendix
	Proof of relation between Wasserstein Distance and Jaccard Similarity

	Experimental Details
	Datasets
	Libaries and Machine
	Baseline Models Configuration

	CS-pFedTM Model Configuration

	Additional Results
	Comparison with sparsification methods
	Effect of Participation Ratio and Number of Clients
	Sensitivity Analysis
	FedTM Implementation Details
	CS-pFedTM Algorithm

