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ABSTRACT

Reinforcement Learning from Verifiable Rewards (RLVR) is a promising method
for enhancing the complex problem-solving abilities of large language models
(LLMs). This is particularly evident in domains requiring long-horizon reason-
ing and precise execution, such as solving complex mathematical problems where
solutions hinge on a fragile sequence of tool-based actions. However, current ap-
proaches are often crippled by two interconnected issues: the near-miss problem,
where sparse rewards nullify the learning signal for almost-correct attempts, and
the resulting exploration stagnation, which prevents the model from discovering
better solutions. To address these challenges, we introduce HiPO (Hint-guided
Policy Optimization), a novel RLVR framework that enables the agent to learn
from its own rare successes. Our core insight is to capture an occasional success-
ful trajectory within a training batch and repurpose its initial correct steps as an
on-policy “hint”. This process transforms a single, stochastically-found success
into a dense contrastive learning signal, effectively allowing the model to teach
itself how to overcome the near-miss problem and break exploration stagnation.
On a challenging suite of five mathematical reasoning benchmarks, HiPO im-
proves the average avg@32 by +5.0 percentage points (pp) over the strong GRPO
baseline. This improvement is driven by substantial absolute point gains on chal-
lenging datasets, including +10.3 pp on CMIMC 2025, +4.9 pp on BRUMO
2025, +4.6 pp on AIME 2024, and +3.1 pp on AIME 2025. Furthermore,
HiPO demonstrates a new exploration paradigm, repurposing rare successes into
reusable guidance to significantly accelerate skill acquisition for complex tasks,
establishing a more efficient and scalable path for models to autonomously master
intricate reasoning.

1 INTRODUCTION

A central ambition in artificial intelligence is to create agents capable of acquiring complex rea-
soning skills autonomously, moving beyond the reliance on curated expert data (DeepSeek, 2025;
Lambert et al., 2024). Reinforcement Learning from Verifiable Rewards (RLVR) marks a promising
step towards this vision, enabling Large Language Models (LLMs) to learn from outcome-based
feedback in domains like advanced mathematics (Shao et al., 2024; DeepSeek, 2025) . However,
this pursuit confronts a fundamental paradox rooted in the very nature of complex problem-solving.
Success often depends on a fragile sequence of self-reflection (Renze & Guven, 2024) and tool-
integrated reasoning (Feng et al., 2025; Li et al., 2025b), making a correct solution an exceptionally
rare event. This fragility exposes a critical flaw in current RLVR frameworks: a brittleness of the
learning signal.

This signal brittleness manifests in two interconnected challenges. The first is the near-miss prob-
lem: a nearly-perfect trajectory receives the same sparse, negative reward as a complete failure,
thereby penalizing correct intermediate reasoning steps through flawed credit assignment. Conse-
quently, this leads to the second, more debilitating challenge: exploration stagnation. The consistent
punishment for near-misses disincentivizes any deviation from simple, suboptimal strategies, pre-
venting the very breakthroughs in capability the learning process is meant to foster (Cui et al., 2025;
An et al., 2025; Cheng et al., 2025). This is further exacerbated by signal collapse, a scenario where
uniform rewards within a training batch cause the policy gradient to vanish entirely (Yu et al., 2025;
Xu & Ding, 2025). In essence, the agent cannot learn from its successes if those successes are
statistically impossible to discover.
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To make this exploration challenge concrete, consider a motivating example. As shown in Figure 1,
a baseline model without guidance struggles to generate correct trajectories. However, when pro-
vided with a partial correct solution as a “hint”, its performance improves dramatically, transforming
the distribution from near-certain failure to high-probability success. This stark contrast suggests the
primary bottleneck is not the model’s intrinsic reasoning ability, but the discovery of a valid reason-
ing path. This begs the critical question: can a model learn to provide these crucial hints for itself,
bootstrapping its own learning from its own rare successes?
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Figure 1: (a-c) show as the hint ratio (the proportion of the trajectory as a prefix) increases, the
correct solutions improves. (d) compares the pass@k performance for different hint ratios.

To answer this question, we introduce Hint-guided Policy Optimization (HiPO), a framework
that operationalizes a new paradigm: Endogenous Self-Hint. The core insight is that a single,
stochastically-found success is not merely an endpoint to be rewarded, but a rich source of curricu-
lum to be exploited. HiPO captures these rare successful trajectories and repurposes their initial
correct steps as on-policy “hints”. This process transforms the intractable task of end-to-end dis-
covery into a more manageable one of guided completion. By juxtaposing the policy’s unaided
exploration with its hint-guided exploration, HiPO forges a dense and powerful contrastive learning
signal from sparse rewards. It directly resolves the near-miss problem by rewarding valid reasoning
prefixes, and by providing a trustworthy path forward, it shatters exploration stagnation, guiding the
policy toward mastering more complex reasoning patterns.

Our main contributions are:

• We propose HiPO, a new framework that materializes the concept of endogenous self-hint.
It leverages policy’s own rare successes as on-policy hints to create a robust, contrastive
learning signal, converting sparse rewards into a dense, self-generated curriculum.

• HiPO significantly outperforms a strong GRPO baseline on five challenging math-
ematical reasoning benchmarks, achieving a +5.0 pp average improvement in
avg@32. The gains are particularly substantial on difficult datasets, including CMIMC
2025 (+10.3 pp) (Balunović et al., 2025), BRUMO 2025 (+4.9 pp) (Balunović et al.,
2025), and AIME 2024 (+4.6 pp).

• We provide empirical evidence that HiPO successfully counteracts exploration stagnation.
Through analysis of training dynamics, we show that it maintains higher policy entropy and
fosters longer, more complex tool-use sequences, confirming that our self-hint mechanism
enables more sophisticated reasoning.

These results highlight HiPO as an efficient and scalable paradigm for autonomous learning. By
enabling models to repurpose their own successes into reusable guidance, our work provides a boot-
strapped pathway to mastering complex tasks, accelerating progress towards more capable and in-
dependent AI systems.

2 RELATED WORK

A prominent baseline within RLVR (Lambert et al., 2024; DeepSeek, 2025) is Group Relative Policy
Optimization (GRPO) (Shao et al., 2024), which simplifies policy optimization by forgoing a critic
network and instead normalizing rewards across a group of concurrently generated responses.
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However, this group-based approach is crippled when rewards are sparse; if all responses in a train-
ing batch fail, the resulting advantage is zero, nullifying the learning signal. To mitigate this, meth-
ods like DAPO (Yu et al., 2025) enhance GRPO with engineering treatments such as dynamic sam-
pling, which forces the generation process to continue until a non-zero advantage is found. Despite
these improvements, such approaches are fundamentally reactive; they can only refine the learn-
ing signal if at least one successful trajectory is stochastically discovered within a group, failing to
address the core exploration problem when success is exceptionally rare.

Moving beyond purely algorithmic modifications, another line of work injects external guidance to
scaffold learning. QuestA (Li et al., 2025a) and StepHint (Zhang et al., 2025), for instance, augment
prompts with partial solutions or stepwise hints derived from stronger teacher models or existing
datasets of OpenR1-Math-220K (OpenR1, 2025). While effective at creating a denser reward signal,
this reliance on external, off-policy guidance creates a dependency on pre-existing knowledge and
does not represent autonomous learning from the agent’s own experience. Our work, HiPO, provides
a novel synthesis to overcome these limitations. It addresses the sparse reward problem like hint-
based methods, but does so by creating hints that are both endogenous and on-policy. By capturing
a rare success within a training batch and repurposing its initial correct steps as a hint for the entire
group, HiPO enables the model to teach itself, transforming a single stochastic success into a dense,
reusable learning signal without depending on external teacher models.

3 BACKGROUND

3.1 POLICY GRADIENT IN RLVR

The optimization of RLVR is fundamentally grounded in the policy gradient theorem from reinforce-
ment learning (Sutton & Barto, 2018). We can formalize the sequential problem-solving process as
a finite-horizon Markov Decision Process (MDP) (Puterman, 1990). For a given prompt P , serves
as the initial state s0, the model autoregressively generates a trajectory τ = (o0, o1, . . . , oT−1), a
sequence of tokens from a vocabulary V . At each step t, the model’s policy πθ defines a probability
distribution over the next token ot, conditioned on the current state st.

The policy πθ, parameterized by the model’s weights θ, is the language model itself. In RLVR, a
sparse reward R(τ) is typically assigned only at the end of a generated trajectory τ . The objective
is to adjust the parameters θ to maximize the expected reward over all possible trajectories:

J(θ) = Eτ∼πθ
[R(τ)]. (1)

The policy gradient is optimized by computing its gradient with respect to θ, which can be estimated
by sampling:

∇θJ(θ) = Eτ∼πθ
[R(τ)∇θ log πθ(τ)]. (2)

To reduce the high variance of this estimator, a state-dependent baseline b(P ) is subtracted from the
reward R(τ) to yield a lower-variance advantage estimate, A(τ) = R(τ)− b(P ). This results in the
final policy gradient update rule:

∇θJ(θ) = Eτ∼πθ
[A(τ)∇θ log πθ(τ)]. (3)

This rule guides the model to favor trajectories with positive advantages (better than average) and
avoid those with negative ones, making a meaningful advantage signal crucial for effective learning.

3.2 GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) is a prominent RLVR algorithm that forgoes a learned
critic network, which is a key component of the PPO algorithm (Schulman et al., 2017). Instead,
it constructs an empirical, on-the-fly advantage signal by generating a group of n trajectories Tj =
{τj,1, . . . , τj,n} for each prompt Pj .

To optimize, GRPO maximizes an objective function based on an importance sampling ratio. For a
given trajectory τj,i ∈ Tj , we define the probability ratio for each token oj,i,t at timestep t as:

r
(j,i)
t (θ) =

πθ(oj,i,t|Pj , oj,i,<t)

πθold(oj,i,t|Pj , oj,i,<t)
, (4)

3
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where oj,i,<t represents the sequence of tokens. The objective function is defined as:

JGRPO(θ) = EPj ,Tj

 1

n

n∑
i=1

1

|τj,i|

|τj,i|∑
t=1

min
(
r
(j,i)
t (θ)Âj,i, clip

(
r
(j,i)
t (θ), 1− ϵ, 1 + ϵ

)
Âj,i

) .

(5)

GRPO’s core lies in its advantage normalization, where a single advantage Âj,i is computed for each
trajectory τj,i and applied uniformly across all its tokens:

Âj,i =
R(τj,i)− µTj

σTj
+ ϵstable

. (6)

where µTj
= 1

n

∑n
k=1 R(τj,k) is the mean reward of the group, and σTj

is its standard deviation.
The policy is then updated using this uniform advantage signal across all time steps of the trajectory.

However, while this design is computationally efficient, its reliance on a single outcome reward in-
troduces critical flaws. The first, and for our purposes the most detrimental, is the problem of credit
misassignment for fragile trajectories. In the context of complex mathematical reasoning, a trajec-
tory is often “fragile”; a single error can invalidate a long sequence of correct logical steps, thereby
resulting in a minimal or zero final reward. Under this reward structure, the negative feedback de-
rived from this outcome is uniformly distributed across all tokens in the sequence. Consequently, the
vast majority of correct and valuable reasoning steps are unduly penalized, which actively impedes
the model’s acquisition of the long-form logic required for challenging problems.

Furthermore, the reliance on the formulation in Equation 6 gives rise to another critical flaw: the
signal collapse problem (Yu et al., 2025; Xu & Ding, 2025). This issue materializes in what we term
a “null-signal group”, a scenario wherein all trajectories happen to share the same reward. In such
cases, both the numerator (R(τj,i) − µTj

) and the denominator (σTj
) of the advantage calculation

nullify. This inevitably results in Âj,i = 0 for every sample, which constitutes a catastrophic loss of
the learning signal that leads to the stagnation of exploration.

4 THE HIPO FRAMEWORK

4.1 CORE MECHANISM: ON-POLICY HINT

The core mechanism of HiPO constructs a contrastive learning signal by juxtaposing the policy’s
unaided exploration with its hint-guided exploration. HiPO enriches low-signal batches by using
rare successes to generate high-signal replacements for completely unlearnable groups. This process
unfolds in two phases for each prompt Pj within a given mini-batch.

First, the policy attempts to solve the prompt without assistance, generating a standard Group of n
trajectories, Torig,j . This group faithfully reflects the model’s current capabilities.

Torig,j = {τ1, . . . , τn} where τi ∼ πθ(·|Pj). (7)

From this initial generation, we identify specific low-performing groups as “Near-miss Groups”
Tnear-miss,j , which are defined as those where the success rate of rollouts falls below half, and “Un-
learnable Groups” Tnull-signal,j , where the reward variance is zero. The upper portion of Figure 2
visually represents a Tnear-miss,j , characterized by a high proportion of failed rollouts (red) and a
scarcity of successful ones (green), which typifies the challenge in complex reasoning tasks.

To counteract this, we employ a guided exploration strategy. First, an on-policy hint pool is con-
structed from the set of all successful trajectories within the near-miss group: Hpool,j = {τ ∈
Tnear-miss,j | R(τ) = 1}. The core of this strategy is to capitalize on these rare successes to generate
a new, high-signal Hinted Group, Thint,j . To ensure diversity within this new group, each trajectory
is generated using a unique hint. This hint is created via a two-stage sampling process: first, a source
trajectory τsource is uniformly sampled from Hpool,j . Second, a prefix ratio p is sampled from dis-
crete values in the range [0.05, 0.45] with a step of 0.05 to determine a hint length k = ⌊p · |τsource|⌋.
This procedure yields a unique hint, Hj,i = Prefix(τsource, k), which represents the initial steps of
a successful attempt. As illustrated in Figure 2, this process corresponds to randomly truncating a

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026��������	
��
����
��
�
�����������
����
����
���� �
!"#
$%&
'"("#")*+
),
&-+
�.����
�/
��0
1�23�4
52��
36�614789:;<�0=
��
>
��?�
��2�
1���@�3
�����
�
�����������
A2��
�1��2/2�
��B�
@��B���4
C-+
DE+#&"%$
"#
F#G"$H
I%J
!K
L-"M-
2�
�.��@4
N���
�O1����
����P�	Q��:8�9'"#&F$M+
"$
&-+
I%JR
!#%
(%*ER+
"#
!S
�@������2?�@0=
1����1�
>
���
��31���
&-+
!
T+#S
U%
&-F&V#
M%JJ+M&S
W�
�@@
���1�
���
�������4
W�
���
���A��
2�
XYZ4[���A��\XYZ[]���A��\ �� 789:
̂��_Q�̀a�b	8cc
̂��_Q
Figure 2: An illustration of the HiPO core mechanism.

successful trajectory. The final trajectory is then generated conditioned on the hint being appended
to the original prompt: τ ′i ∼ πθ(·|Pj ⊕Hj,i). A detailed discussion of the hint generation strategy
is provided in Appendix D

The theoretical underpinning of this method is its principled resolution of sample inefficiency. A
naive alternative for improving sample efficiency might involve augmenting the training data with
off-policy expert trajectories drawn from a distribution πE . This approach, however, suffers from
two fundamental drawbacks. The most critical is a practical one: the requisite high-quality expert
data is often prohibitively expensive or simply unavailable, as its acquisition demands either ex-
tensive manual annotation or a pre-existing, superior “teacher” model. This reliance on external
supervision contrasts sharply with self-sufficient, bootstrapping methods like our own. Secondly,
even if such data were accessible, its introduction engenders a significant distributional mismatch
between the agent’s policy πθ and the expert policy πE . This discrepancy is a well-documented
cause of training instability, hindering reliable convergence by destabilizing the gradient estimator.

Algorithm 1 The Hint Mechanism of HiPO

Input: A prompt P , current policy πθ, group size n.
Output: An augmented group of trajectories.

1: procedure GENERATEAUGMENTEDGROUP(P, πθ, n)
2: Torig ← Generate n trajectories for P using policy πθ.
3: Hpool ← {τ ∈ Torig | R(τ) = 1}.
4: IF 0 < |Hpool| < n/2 then
5: Thint ← ∅.
6: FOR k = 1, . . . , n do
7: H ← ExtractRandomHint(Hpool).
8: Generate τ ′new from P ⊕H and add to Thint.
9: end FOR

10: RETURN Thint
11: end IF
12: end procedure

Ultimately, the policy update leverages data from both the Original and Hinted groups. This trans-
forms a potentially degenerate learning signal into a well-posed, contrastive optimization problem.
This self-teaching process, formalized in Algorithm 1, is strategically activated to create this contrast
precisely when it is most needed. The hint-generation phase is triggered for what we term “Near-
miss Groups”: those where the success rate is greater than zero but falls below half. This targets
the critical scenarios where initial successes are present but fragile, representing moments where the
model is on the cusp of a breakthrough but still requires guidance. The resulting juxtaposition of
the low-success-rate Original Group and the high-success-rate Hinted Group creates a highly infor-
mative advantage signal: a positive advantage reinforces the completion of nascent but promising

5
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reasoning paths, as demonstrated in the Hinted Group, while a negative advantage penalizes iden-
tifiable failure modes that persist even with guidance. HiPO thereby offers a more principled and
efficient path toward mastering complex reasoning.

4.2 HOW HIPO CREATES DENSE LEARNING SIGNALS FROM SPARSE REWARDS

We frame complex reasoning under sparse rewards as a problem of leveraging the structure of suc-
cessful trajectories. However, frequent failures often lead to signal collapse, which is a scenario
where zero reward variance within a group nullifies the advantage estimate and halts learning. To
overcome this, HiPO extracts intermediate states from rare successes to serve as “hints” for initiat-
ing new, guided trajectories. This approach transforms the difficult task of end-to-end discovery into
the more manageable one of completing a partially successful reasoning path, generating a dense
learning signal from both unaided and hint-guided rollouts.

HiPO’s refines the exploration strategy by modifying the initial state distribution for a subset
of rollouts. We define the set of successful trajectories from the unaided exploration phase as
T +

near-miss ≜ {τ ∈ Tnear-miss | R(τ) = 1}. We define a hint H as an intermediate state sk within
a successful trajectory, where sk ∈ τ for some τ ∈ T +

near-miss. Trajectories in the Hinted Group, Thint,
are then generated by sampling from the model πθ conditioned on the concatenation of an original
prompt Pj and a hint H . This process is formally expressed as τ ′ ∼ πθ(·|Pj ⊕ H), where H is
a state drawn from a successful trajectory. This acts as a form of value-guided exploration. While
the optimal value function V ∗ is unknown, states from empirically successful trajectories serve as
effective proxies for high-value states. This method also prevents signal collapse by diversifying re-
wards within a batch, which averts the vanishing advantage estimate Âτ from identically-rewarded
trajectories. By ensuring signal diversity, HiPO avoids the catastrophic loss of learning signal and
the subsequent stagnation of exploration.

To counteract this, HiPO implements a strategic batch replacement. Let Borig denote original groups
generated in the unaided exploration. The method sources successful trajectories from Tnear-miss
within this batch to generate Thint. These new groups then strategically replace the Tnull-signal that
offer no learning gradient. This process is formalized as:

BHiPO ≜ (Borig \ Tnull-signal) ∪ Thint. (8)

The gradient estimator over this optimized batch is:

ĝHiPO = Eτ∼BHiPO

 |τ |∑
t=1

∇θ min
(
r
(τ)
t (θ)Âτ , clip

(
r
(τ)
t (θ), 1− ϵ, 1 + ϵ

)
Âτ

) , (9)

where Âτ is the advantage estimate and r
(τ)
t is the importance sampling ratio. For any trajectory τ

in the augmented batch BHiPO, its advantage is in its respective group. By replacing, this formula-
tion decomposes the learning objective into a structured set of signals. The gradient is shaped by
four distinct, high-value scenarios. Rare, successful trajectories remaining in Borig receive a strong
positive signal, anchoring the policy. In contrast, failed trajectories remaining in Borig are penalized,
though their signal may contain “near-miss” paths. Successful trajectories in Thint form the core
learning signal by salvaging near-misses from high-value states. Most critically, failed trajectories
in Thint provide a clear, high-quality negative signal, precisely penalizing deviations from a known-
good path. By disentangling the learning signal, HiPO effectively transforms the learning problem
from one of sparse rewards and catastrophic signal loss to a structured task of guided completion.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

We train our model on the DAPO dataset (Yu et al., 2025), a challenging collection of 17K mathe-
matical problems with integer answers sourced from the AoPS community. For evaluation, we test
our model across a comprehensive suite of recent mathematics competitions, including the AIME
2024, AIME 2025, BRUMO 2025 (Balunović et al., 2025), HMMT Feb 2025 (Balunović et al.,

6
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2025), CMIMC 2025 (Balunović et al., 2025), and Apex 2025 (Balunović et al., 2025). Perfor-
mance is measured by the average accuracy across 32 generated samples per problem (avg@32),
along with the majority vote accuracy (maj@32) and pass rate (pass@32).

Our approach is based on the Qwen3-8B (Qwen, 2025) model, which we trained our model using
the VeRL (Sheng et al., 2024) and using the ReTool framework (Feng et al., 2025; Lin & Xu,
2025). ReTool is a reinforcement learning paradigm that teaches the LLM to utilize a Python code
interpreter. It learns from outcome-based feedback over multi-turn interactions, with a maximum of
eight turns per math prompt.

Key training hyperparameters include a learning rate of 1e-6, a batch size of 96, a mini-batch size
of 12, and a maximum response length of 16K tokens. We adopt the Clip-Higher strategy (Yu et al.,
2025), setting εlow to 0.2 and εhigh to 0.28. At each training step, the policy is updated using rewards
calculated from 16 sampled responses per prompt. For evaluation, a maximum response length of
32K tokens is used.

5.2 EMPIRICAL COMPARISON WITH BASELINE

Table 1: Comparison of HiPO, GRPO and DAPO on five benchmarks using avg@32, pass@32, and
maj@32. Averages are shown in the last column. Bold indicates the better-performing method for
each metric. For the DAPO, the generation batch size is set to 192, and the maximum number of
generation batches is 2.

AIME 2024 AIME 2025 BRUMO 2025

Model avg@32 pass@32 maj@32 avg@32 pass@32 maj@32 avg@32 pass@32 maj@32

Qwen3-8B 54.7 85.5 60.0 47.6 84.9 63.3 30.3 55.5 56.7
GRPO 72.1 91.7 60.0 63.0 87.1 70.0 41.7 52.1 53.3
DAPO 76.0 89.5 60 63.7 87.9 70 47.8 56.6 63.3
HiPO 76.7 89.8 63.3 66.1 88.3 76.7 46.6 56.6 63.3

HMMT 2025 CMIMC 2025 Average

Model avg@32 pass@32 maj@32 avg@32 pass@32 maj@32 avg@32 pass@32 maj@32

Qwen3-8B 14.0 38.7 40.0 37.0 75.0 60.0 36.7 67.9 56.0
GRPO 28.6 48.2 46.7 43.5 75.0 55.0 49.8 70.8 57.0
DAPO 31.4 48.4 43.3 49.9 80.0 52.5 53.7 72.4 57.8
HiPO 30.8 49.2 40.0 53.8 80.0 65.0 54.8 72.8 61.7
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Figure 3: Pass@k curves for different benchmarks.
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Our experiments demonstrate that HiPO consistently outperforms the GRPO and DAPO (Yu et al.,
2025) baseline on challenging mathematical reasoning benchmarks. As shown in Table 1, HiPO
achieves superior aggregate scores on all primary metrics. Specifically, it obtains an avg@32 of
54.8 compared to GRPO’s 49.8, representing a significant improvement of +5.0 pp. This aggregate
strength is underscored by a notable consistency, as HiPO outperforms GRPO on the avg@32 metric
across all five benchmarks. Notably, DAPO’s dynamic sampling incurs significant computational
overhead, as each training step requires processing a candidate batch of prompts that is a mul-
tiple of the size of the batch ultimately used for the gradient update. As shown in Appendix B,
DAPO’s dynamic sampling incurs significant computational overhead, consuming approximately
4× the prompt volume of HiPO to achieve comparable performance.

The performance disparity is most pronounced on the CMIMC 2025 dataset, where HiPO achieves
a substantial +10.3 pp gain. Further significant improvements are observed on BRUMO 2025
(+4.9 pp) and AIME 2024 (+4.6 pp), underscoring the robustness of HiPO’s advantages. While
GRPO is competitive on certain metrics, HiPO’s consistent and significant lead, particularly on the
most difficult datasets, suggests it learns more robust and generalizable reasoning pathways.

These findings are further supported by the pass@k performance (Chen et al., 2021) curves in Fig-
ure 3. The plots generally indicate an advantage for HiPO in sample efficiency, as it often achieves a
higher pass rate at lower values of k. This trend is most pronounced on the exceptionally challeng-
ing Apex 2025 dataset, where the performance gap between HiPO and GRPO widens dramatically
as k increases. On this benchmark, HiPO’s pass@32 score is nearly double that of the baseline,
which suggests that the benefits of its signal reshaping mechanism are particularly salient on prob-
lems where successful trajectories are rare. While the performance of both methods converges at
higher values of k on some benchmarks, such as AIME 2024, HiPO maintains a clear and consistent
performance lead across most other datasets, including Brumo 2025 and AIME 2025, highlighting
the potential robustness of our approach. Furthermore, we empirically demonstrate HiPO’s robust-
ness in ultra-sparse reward regimes by addressing the cold start problem on the hardest subset of the
Omni-Math dataset (Gao et al., 2024) in Appendix C.

5.3 TRAINING DYNAMICS
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Figure 4: Training dynamics of actor entropy and mean number of turns.

To understand the mechanisms driving HiPO’s superior performance, we analyze two key metrics
throughout the training process: policy entropy and the average tool-use turns. As plotted in Fig-
ure 4. Figure 4a tracks the policy entropy, a measure of policy stochasticity. The plot shows that
HiPO (cyan) consistently maintains a higher level of entropy than GRPO (blue). This provides
empirical evidence that HiPO successfully mitigates the problem of exploration stagnation (Cui
et al., 2025; Wang et al., 2025). GRPO’s penalization of near-miss trajectories suppresses explo-
ration, causing the policy to converge on suboptimal, low-diversity strategies. In contrast, HiPO’s
on-policy hinting mechanism stabilizes the learning signal, promoting the exploration of diverse
reasoning pathways and preventing premature policy collapse. This sustained diversity is crucial
for discovering more effective problem-solving strategies. The case study in Appendix F provides a
concrete example of this behavioral difference. It shows that the HiPO agent identifies an alterna-
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Figure 5: Ablation on hint ratios. (a-b) Training curves on AIME 2024 and AIME 2025 bench-
marks compared across different hint strategies. (c) The evolution of policy entropy during training.
(d) The average number of tool-use turns throughout the training process.

tive algebraic structure to simplify the problem, whereas the GRPO agent follows a more direct but
computationally complex path that leads to an incorrect result.

Complementing the entropy analysis, Figure 4b illustrates the model’s capacity for complex, multi-
step reasoning by plotting the tool-use turns. A stark divergence emerges: the average number of
turns for HiPO trends significantly upwards, indicating that the model learns to engage in longer
interactions with the code interpreter. Conversely, the GRPO baseline struggles to increase, show-
ing minimal growth. This suggests that GRPO’s flawed credit assignment makes longer reasoning
chains brittle and risky, incentivizing the model to adopt simplistic strategies. HiPO, by providing a
scaffold for exploration, enables the model to successfully learn and execute the longer, more com-
plex reasoning chains necessary to solve challenging mathematical problems. Taken together, these
dynamics provide compelling evidence that HiPO directly counteracts exploration stagnation. By
preserving policy diversity, it enables the model to discover and master the longer, more complex
reasoning chains necessary for advanced problem-solving.

5.4 ABLATION STUDY: ANALYSIS OF HINT RATIO

To validate the necessity of our dynamic hint strategy, we evaluate a low-ratio variant with p = 0.05
to represent minimal guidance, and a high-ratio variant with p = 0.80 to simulate excessive guid-
ance. Figure 5 confirms that HiPO consistently outperforms static hint strategies. The mechanisms
driving these results are revealed in the training dynamics. The high-ratio variant (p = 0.8) exhibits
low entropy and minimal tool-use turns. This indicates that excessive guidance restricts exploration,
trapping the model in local sub-optima where it relies on simple completion rather than learning
robust reasoning. Conversely, the low-ratio variant (p = 0.05) maintains high entropy but fails to
increase tool usage. This suggests that while the model is actively exploring, the lack of sufficient
scaffolding prevents it from effectively discovering complex, superior trajectories. HiPO achieves
the highest tool-use frequency while maintaining healthy entropy, demonstrating that our dynamic
strategy successfully strikes a critical balance between exploration and exploitation, guiding the
model toward sophisticated solutions without sacrificing diversity.

5.5 ABLATION STUDY: ON-POLICY VS. OFF-POLICY HINTS

To determine whether the efficacy of HiPO stems from the content of the hints or the on-policy
nature of their generation, we compare HiPO against an “Off-Policy Hint” baseline. We simulates
a standard teacher-student distillation by collecting successful trajectories from the base model, ex-
tract the first 20% of tokens as static hints.

As shown in Figure 5, the Off-Policy Hint method underperforms both HiPO and the GRPO base-
line, a failure explained by the collapse of tool-use turns in Figure 4(b). This collapse occurs
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because static hints derived from the untrained base model are inherently simplistic. Enforcing these
“weak” priors suppresses exploration, trapping the policy in local optima where it mimics trivial
solutions rather than developing the complex reasoning chains required for harder problems. In
contrast, HiPO establishes a self-reinforcing curriculum where hints evolve dynamically with the
policy. As evidenced by rising tool usage, the “teacher” improves alongside the “student,” enabling
autonomous mastery without reliance on stronger external models.

5.6 SAMPLE EFFICIENCY ANALYSIS
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Figure 6: Visualization of HiPO’s training dynamics. (a) Training reward curves for HiPO and
GRPO. The HiPO hint curve represents the reward of the new batch after a group substitution occurs.
(b) A bar chart showing the proportion of learnable groups versus ineffective groups within a batch,
before (left) and after (right) applying HiPO. (c) The curve of the number of prompts enhanced by
the HiPO method during training.

HiPO is designed to enhance sample efficiency by resolving the “signal collapse” problem endemic
to group-based methods. Our training analysis in Figure 6 empirically confirms this. GRPO wastes
significant computation on “unlearnable groups”, where a staggering 82.5% of all groups (the sum
of 0/16 and 16/16 groups) yield a null gradient. In contrast, HiPO’s hint mechanism transforms these
into valuable learning opportunities. As shown in Figure 6b, HiPO elevates the proportion of learn-
able groups to 75.8%. This self-sustaining process remains stable throughout training, evidenced by
a consistently high number of augmented prompts (Figure 6c), which ensures a dense and reliable
learning signal.

The impact of this efficiency is evident in the training reward curves shown in Figure 6a. HiPO’s
policy (blue) consistently outperforms the GRPO baseline, demonstrating superior learning. Crit-
ically, this performance gain is achieved on a stable and challenging curriculum. The HiPO hint
curve (orange), which represents the reward of hint-guided rollouts, remains consistently low. This
is a positive signal. It indicates that HiPO continuously forces the model to learn from difficult,
partially-completed trajectories rather than saturating on easy ones. This creates a powerful dynamic
where the model’s overall capability rises (blue curve) while the learning signal remains potent and
challenging (orange curve), ensuring a robust and sustained path to mastery.

6 CONCLUSION

We addressed the critical challenge of exploration stagnation in RLVR by introducing HiPO, a
framework built on the paradigm of Endogenous Self-Hint. HiPO transforms an agent’s rare,
stochastically-found successes into an on-policy curriculum, converting a sparse reward landscape
into a dense, contrastive learning signal. This self-teaching mechanism not only significantly outper-
formed a strong baseline across challenging reasoning benchmarks but also demonstrably fostered
higher policy entropy and more complex reasoning chains. Our work establishes that a model can
effectively bootstrap its own learning from endogenous successes, reducing the reliance on external
expert data.

The principles of HiPO pave the way for a more scalable and autonomous paradigm of skill acquisi-
tion. By demonstrating that models can become active participants in their own education, our work
provides a robust foundation for training self-improving agents capable of mastering intricate tasks
in any domain where success is a rare and hard-won event. This highlights a powerful path toward
more capable and independent AI.
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A LLM USAGE

We used large language models (LLMs) only to polish grammar and improve the clarity of the
manuscript. All research ideas, experiments, and analyses were conducted by the authors.

B COMPARISON WITH DAPO

We compare HiPO against DAPO (Yu et al., 2025), a strong baseline employing dynamic sampling
to tackle sparse rewards. To accurately reflect computational cost, Figure 7 evaluates performance
against prompt volume.
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Figure 7: Performance curves (Avg@16) on AIME 2024 (a) and AIME 2025 (b) plotted against
the total Prompt Volume. The trajectories correspond to GRPO (blue), HiPO (cyan), and DAPO
(brown).

As shown in Figure 7, HiPO achieves superior convergence with a fraction of the data consumption.
The extended tail of DAPO reveals the high cost of its dynamic sampling mechanism: to secure
positive rewards, it must perform extensive rejection sampling, consuming approximately 4× the
trajectory budget per update step. While DAPO relies on brute-force enumeration to locate sparse
successes, HiPO employs signal amplification. By repurposing a single stochastic success into a
group-wide hint, HiPO extracts dense gradients from standard batches, eliminating the need for
wasteful resampling and establishing a significantly more efficient learning paradigm.

C ROBUSTNESS TO ULTRA-SPARSE REWARDS

A primary concern regarding RLVR in complex domains is the “cold start” problem, where ultra-
sparse rewards might starve the model of learning signals. To empirically evaluate HiPO’s robust-
ness in such regimes, we conducted a stress test using the top 10% most difficult problems from
the Omni-Math dataset (Gao et al., 2024) to train a Qwen3-8B base model. This setup simulates a
near-zero success rate environment where standard exploration often stagnates.

The results in Figure 8 demonstrate that HiPO effectively mitigates signal scarcity through batch-
level signal broadcasting. As illustrated in Figure 8(a), the initial generation phase (blue bars) is
dominated by groups with zero successes, which would typically yield a null gradient. However,
HiPO identifies rare stochastic successes present within the global batch and repurposes them to
generate hinted groups. The cyan bars show a drastic reduction in these unlearnable groups after
intervention, indicating that the method effectively amplifies sparse signals by substituting failed
trajectories with actionable, hint-guided ones. This mechanism ensures that even when success is
statistically rare, the optimization process remains supplied with valid gradients. Figures 8(b) and
(c) confirm that this signal rectification translates into tangible learning progress, with the model
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Figure 8: HiPO in Ultra-Sparse Regimes (Omni-Math-Hard). (a) The number of “Total Failure”
groups (0/16 success) in a batch before (Blue) and after (Cyan) HiPO intervention. HiPO drasti-
cally reduces the proportion of null-signal groups. (b-c) Despite the extreme difficulty, the model
maintains a steady upward learning trend on AIME benchmarks, confirming that the feedback loop
remains unbroken.

maintaining a steady upward trend on both AIME 2024 and AIME 2025 benchmarks despite the
extreme difficulty of the training distribution.

D RANDOM HINT SETTING
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(a) Hint Ratio = 0.2
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(b) Hint Ratio = 0.5
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(c) Hint Ratio = 0.7
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(d) Hint Ratio = 0.9

Figure 9: Distribution of the number of correct responses over 16 attempts (n/16) for different fixed
hint ratios. These plots illustrate how increasing the hint ratio shifts the distribution towards perfect
scores, inadvertently creating less effective learning signals.

As empirically demonstrated in Figure 9, hint ratios exceeding 0.5 cause a sharp increase in the
frequency of perfect-score (16/16) groups. This outcome is detrimental because it induces ”signal
collapse.” In a group where all trajectories succeed, the reward variance is zero, which nullifies the
advantage estimate (Âj,i = 0) for all samples and causes the policy gradient to vanish. Furthermore,
excessively long hints reduce the problem to a trivial completion task, preventing the model from
learning the complex intermediate reasoning steps and suppressing meaningful exploration of the
solution space.

Using a single, fixed hint ratio creates a critical credit assignment pathology, which can be shown
formally. Consider a hinted group Tj = {τj,1, . . . , τj,n} where all trajectories share an identical
prefix H = (o0, . . . , ok−1) because they are derived from a single source trajectory with a fixed
ratio. In GRPO, the total policy gradient for any token ot within this shared prefix (t < k) is the sum
of its gradients from each trajectory in the group. Since the advantage Âj,i is constant for all tokens
within a trajectory τj,i, and the conditional probability πθ(ot|st) is identical for all trajectories at
this step, the total gradient for token ot is:

∇θJ(ot) =

n∑
i=1

Âj,i∇θ log πθ(ot|st) =

(
n∑

i=1

Âj,i

)
∇θ log πθ(ot|st). (10)

The core issue lies in the summed advantage term. By definition, the advantage Âj,i = (R(τj,i) −
µτj )/(στj + ϵ), where µτj is the mean reward of the group. The sum of all advantages within the
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group is therefore:

n∑
i=1

Âj,i =
1

στj + ϵ

n∑
i=1

(R(τj,i)− µτj ) =
1

στj + ϵ

((
n∑

i=1

R(τj,i)

)
− n · µτj

)
= 0. (11)

This demonstrates that the aggregate advantage signal for any token in the shared prefix is precisely
zero, resulting in a null gradient. The model is thus unable to learn that the shared prefix is a valuable
reasoning path. Randomly sampling the hint ratio breaks this pathological symmetry by ensuring
the prefixes are not identical, which allows for a meaningful, non-zero gradient to be assigned.

E GENERALIZATION TO OUT-OF-DISTRIBUTION TASKS

We evaluated HiPO on HumanEval to assess its generalization capabilities beyond the mathemat-
ical domain. Despite the training data consisting exclusively of mathematical problems—making
code generation a fully out-of-distribution (OOD) task, HiPO achieves a Pass@1 score of 71.3%,
outperforming the Qwen3-8B base model (70.7%). This demonstrates that the enhanced reasoning
patterns fostered by HiPO are robust and transferable, yielding performance improvements even on
tasks unseen during training.

Table 2: Pass@1 (%) on the HumanEval benchmark. HiPO demonstrates positive generalization on
this OOD coding task, outperforming the base model.

Model Pass@1
Qwen3-8B (Base) 70.7
GRPO 71.3
HiPO (Ours) 71.3

F CASE STUDY

To provide a concrete illustration of the behavioral differences between HiPO and the GRPO base-
line, we present a qualitative case study. The following Table 3, Table 4 and Table 5 contrasts
the reasoning trajectories of both models on a challenging mathematical problem that requires both
insight and precise execution. This side-by-side comparison highlights HiPO’s ability to perform
strategic exploration to simplify the problem’s core, versus GRPO’s tendency to get locked into a
linear, computationally intensive, and ultimately fragile reasoning path.

As the comparison demonstrates, HiPO’s ability to perform strategic exploration leads to a more
robust and efficient solution path. In contrast, the baseline model’s linear, brute-force approach
results in a fragile reasoning chain that ultimately collapses due to its own complexity, perfectly
illustrating the ”exploration stagnation” that our method is designed to overcome.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: A second comparative case study. This table illustrates HiPO’s strategy of leveraging
external tools (a code interpreter) to definitively verify its algebraic insight. In contrast, the GRPO
baseline performs a robust but purely algebraic verification, re-solving the problem with a different,
more complex method to ensure correctness.

[Question]
Positive real numbers x and y satisfy y3 = x2 and (y − x)2 = 4y2. What is x+ y?
HiPO Trajectory (Our Method) GRPO Trajectory (Baseline)
Response:
...Wait, (y − x)2 = 4y2 → taking square roots
gives |y − x| = 2y.
...Case 1: y − x = 2y → x = −y. But x and y
are positive, so this can’t be possible...
Case 2: y − x = −2y → x = 3y.
So from this, x equals 3y. Now, substitute this
into equation 1.
y3 = (3y)2 → y3 = 9y2 → y = 9.
So y=9. Then x=3y=27. Therefore, x + y =
27 + 9 = 36.
But perhaps the code can solve this system of
equations.

1 import sympy as sp
2 x, y = sp.symbols(’x y’, positive=

True)
3 eq1 = sp.Eq(y**3, x**2)
4 eq2 = sp.Eq((y - x)**2, 4*y**2)
5 solution = sp.solve((eq1, eq2), (x,

y))
6 result = solution[0][0] + solution

[0][1]
7 # result is 36

Yes, the code gives 36. So that confirms the
answer. The final answer is 36 .

Response:
...Let’s take the square root of both sides... we
get |y − x| = 2y.
...Case 1: y − x = 2y → x = −y. But x and y
are positive, so this is impossible.
Case 2: y − x = −2y → x = 3y. So this is the
valid case.
Substitute x = 3y into... y3 = (3y)2 → y3 =
9y2. ...so y = 9.
Then x = 3y = 3 × 9 = 27. Therefore,
x+ y = 27 + 9 = 36.
Wait, but let me check again if there’s an-
other way to approach this...
Alternatively, maybe expanding equation 2.
(y − x)2 = y2 − 2xy + x2 = 4y2.
... x2 − 2xy − 3y2 = 0.
Let me treat this as a quadratic equation in x...
Using quadratic formula:
x = [2y ±

√
(2y)2 − 4(1)(−3y2)]/2

x = [2y ±
√
16y2]/2 = [2y ± 4y]/2.

...only x = 3y is valid. So same result as before.
So that’s correct.
All approaches lead to x=27, y=9, sum 36. The
final answer is 36 .
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Table 4: A case study in problem restructuring. The HiPO trajectory shows the use of a key algebraic
insight to simplify the problem’s structure, leading to a straightforward solution. In contrast, the
baseline’s linear approach gets entangled in more complex and error-prone calculations.

[Question]
Find the number of triples of nonnegative integers (a, b, c) satisfying a+ b+ c = 300 and

a2b+ a2c+ b2a+ b2c+ c2a+ c2b = 6, 000, 000.

HiPO Trajectory (Our Method) GRPO Trajectory (Baseline)
Response:
...This leads to the relation ‘abc - 100(ab + bc +
ca) = -2,000,000‘.
This seems a bit abstract. How can I proceed
from here?
Alternatively, maybe think of the left-hand side
as (a-100)(b-100)(c-100)? ...

(a− 100)(b− 100)(c− 100) = 0.

Oh! That’s a big simplification! ...This is a
counting problem I can solve with inclusion-
exclusion.
Number of solutions is: 3× 201− 3× 1 + 1 =
601.
But to make sure, perhaps code it.

1 def count_solutions():
2 # Solutions where a=100: b+c

=200 -> 201
3 count = 3 * 201
4 # Subtract overlaps where a=b

=100
5 count -= 3
6 # Add back the case where a=b=c

=100
7 count += 1
8 return count
9 print(count_solutions())

Interpreter Output: 601
The code confirms my reasoning. The final an-
swer is 601 .

Response:
...This leads to the relation ‘abc - 100(ab + bc +
ca) = -2,000,000‘.
But how can I proceed from here? Let me
think.
Let me check the case where one variable is zero
first... This gives 6 solutions.
Now, let me think about other cases...

P ′(c− 100) = −100(c2 − 300c+ 20000).

Let me factor the right-hand side...

P ′(c− 100) = −100(c− 200)(c− 100).

...The discriminant is D = (S′ − 200)2, which
is a perfect square. Exactly!
...So for each c from 1 to 199, there are two or-
dered triples... except c = 100. So total solu-
tions is 1 + 198× 2 = 397.
Wait, this is a critical point... This is a big
mistake in the earlier reasoning...
The total number of solutions is 6+397 = 403.
The final answer is 403 .
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Table 5: A case study on strategy selection. HiPO correctly identifies the problem as best suited
for a computational brute-force search, leading to the correct answer. The baseline attempts a more
complex analytical shortcut, but a subtle reasoning error leads to an incorrect result, highlighting the
robustness of HiPO’s strategy.

[Question]
Let b ≥ 2 be an integer. Call a positive integer n b-eautiful if it has exactly two digits when
expressed in base b and these two digits sum to

√
n. For example, 81 is 13-eautiful because

81 = 6 313 and 6 + 3 =
√
81. Find the least integer b ≥ 2 for which there are more than ten

b-eautiful integers.
HiPO Trajectory (Our Method) GRPO Trajectory (Baseline)
Response:
Okay, I need to solve this problem... For a num-
ber to have exactly two digits in base b, it must
satisfy b ≤ n < b2. Let the digits be d1 and d2.
Then n = d1 · b+ d2 and d1 + d2 =

√
n.

So the plan is: For each base b starting from
2 upwards... iterate over all possible d1 and
d2... check if (d1+d2)² == n... and count
them. This seems suitable for code.

1 def find_min_base():
2 b = 2
3 while True:
4 count = 0
5 for d1 in range(1, b):
6 for d2 in range(0, b):
7 n = d1 * b + d2
8 sum_d = d1 + d2
9 if sum_d * sum_d ==

n:
10 count += 1
11 if count > 10:
12 return b
13 b += 1
14 result = find_min_base()
15 print(result)

Interpreter Output: 211
Wait, the code returns 211? That seems high.
Let me check for b=3.
d1=1, d2=1: n=4, sum=2. 2²=4. Yes.
...other pairs fail. So for b=3, count is 1. The
code logic seems to be working. So the answer
is 211 .

Response:
Okay, let’s tackle this problem... Let n = a*b +
c. The condition is

√
ab+ c = a + c. Let s

= a+c. Then s2 = ab + (s − a), which gives
a = s(s−1)

b−1 .
For a to be an integer, b-1 must divide s(s-1).
Since s and s-1 are coprime, b-1 must divide s
or s-1.
...This seems to imply there are very few solu-
tions for any b.
Wait, let me check the example. b=13, n=81.
Digits are 6,3. s=9. b-1=12. Here, s(s − 1) =
9 × 8 = 72. 12 divides 72, but 12 does not di-
vide 9 or 8. Ah! My reasoning was incorrect.
So I need to check for each s if b-1 divides s(s-
1). Let me try to code this.

1 # Tries to write code
2 # ... but it has syntax errors
3 def count_beautiful(b):
4 #...
5 # ... code fails to run

At this point, it’s clear that without writing
the code, it’s hard to proceed. Let me try to
estimate for b=61... This is getting too complex.
The answer is 121 .
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