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ABSTRACT

The rapid development of visual generative models raises the need for more scal-
able and human-aligned evaluation methods. While the crowdsourced Arena
platforms offer human preference assessments by collecting human votes, they
are costly and time-consuming, inherently limiting their scalability. Leveraging
vision-language model (VLMs) as substitutes for manual judgments presents a
promising solution. However, the inherent hallucinations and biases of VLMs hin-
der alignment with human preferences, thus compromising evaluation reliability.
Additionally, the static evaluation approach lead to low efficiency. In this paper,
we propose K-Sort Eval, a reliable and efficient VLM-based evaluation frame-
work that integrates posterior correction and dynamic matching. Specifically, we
curate a high-quality dataset from thousands of human votes in K-Sort Arena, with
each instance containing the outputs and rankings of K models. When evaluat-
ing a new model, it undergoes (K+1)-wise free-for-all comparisons with existing
models, and the VLM provide the rankings. To enhance alignment and reliability,
we propose a posterior correction method, which adaptively corrects the posterior
probability in Bayesian updating based on the consistency between the VLM pre-
diction and human supervision. Moreover, we propose a dynamic matching strat-
egy, which balances uncertainty and diversity to maximize the expected benefit of
each comparison, thus ensuring more efficient evaluation. Extensive experiments
show that K-Sort Eval delivers evaluation results consistent with K-Sort Arena,
typically requiring fewer than 90 model runs, demonstrating both its efficiency
and reliability. The dataset and code will be publicly available.

1 INTRODUCTION

Visual generative models have achieved remarkable progress, enabling high-quality outputs in tasks
such as text-to-image (Betker et al., 2023; Podell et al., 2023; Rombach et al., 2022) and text-to-
video (Esser et al., 2023; He et al., 2022; Zhou et al., 2022) generation. This rapid advancement has
fueled growing interest in the field, driving the continuous emergence of new models. However, the
evaluation methods fail to keep pace with the model development, struggling to offer a fair and com-
prehensive assessment of generated outputs. Traditional metrics such as IS (Salimans et al., 2016),
FID (Heusel et al., 2017), and FVD (Unterthiner et al., 2018), while widely used, are criticized for
their inability to capture human preference judgements in the real world. In response, several efforts
attempt to construct static datasets for human preference evaluation (Kirstain et al., 2023; Wu et al.,
2023; Xu et al., 2023). However, these datasets are inherently limited by their closed-ended nature,
lack of user interaction, and inability to stay up-to-date (Li et al., 2025; Chiang et al., 2024).

In contrast, the Arena method, which is an open and live benchmark platform, is a more effective
approach for human preference evaluation. It captures real human feedback by collecting crowd-
sourced manual voting on model comparisons, allowing for a better reflection of real-world prefer-
ences. This approach is initially used for evaluating large language models (LLMs) (Chiang et al.,
2024) and is later extended to apply to visual generative models (Jiang et al., 2024; Li et al., 2025)
and multi-modal models (Lu et al., 2024; Chou et al., 2024). Notably, for visual generative models,
K-Sort Arena (Li et al., 2025) significantly improves the efficiency and reliability of Arena eval-
uation by incorporating an improved comparison mode, probabilistic modeling and updating, and
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Figure 1: Overview of the proposed K-Sort Eval. First, a high-quality dataset is curated through
consistency filtering. When evaluating a new model, we begin with dynamic matching to select
the most informative instance. Then, two prompt strategies are employed to effectively guide the
VLM and mitigate hallucinations. Finally, Bayesian updating with correction is performed, where
the discrepancy between VLM prediction and dataset supervision is treated as observation noise to
correct the posterior estimation of model capability.

an optimized model matching strategy. Nevertheless, due to its heavy reliance on human voting, it
still faces significant cost and time-consuming challenges. The excessive human involvement can
also lead to potential leaderboard illusion issues (Singh et al., 2025), and the potential delays in
crowdsourcing may hinder the timely evaluation of new models, thus limiting its scalability.

Therefore, leveraging powerful vision-language models (VLMs) to replace manual judgements,
known as VLM-as-a-Judge (Chen et al., 2024; Liu & Zhang, 2025), presents a promising solu-
tion. For instance, T2I-CompBench (Huang et al., 2023) investigates the potential of VLMs for
compositionality evaluation of text-to-image models, and VIEScore (Ku et al., 2023) demonstrates
that VLMs can provide results that have a certain relevance to human evaluations. However, VLMs
are inherently prone to hallucinations, inconsistencies, and biases, raising concerns about their reli-
ability as a trustworthy substitute for human judgements (Li et al., 2024b; Gu et al., 2024). While
certain techniques from LLM-as-a-Judge, such as swapping operation (Zheng et al., 2023), rule
augmentation (Bai et al., 2022), and multi-agent collaboration (Li et al., 2023) strategies, can be
adapted, they fail to addressing these inherent issues, thus still hindering reliable alignment with hu-
man preferences. In addition, existing methods follow the static evaluation style, which necessitates
processing the entire large-scale dataset, making the efficiency fall short of expectations.

In this paper, we propose K-Sort Eval, built on top of K-Sort Arena (Li et al., 2025), to enable
efficient and reliable visual preference evaluation via VLM-as-a-Judge. Specifically, we curate a
high-quality dataset from thousands of human votes in K-Sort Arena, where each instance consists
of the outputs of K models along with their rankings. First, we use Spearman’s rank correlation
coefficient (Spearman, 1961) to align local rankings within each instance with the overall leader-
board, filtering out contaminated votes that significantly deviate from typical preference patterns.
Then, Llama Guard (Inan et al., 2023) is applied to screen out potentially harmful or offensive
user prompts, ultimately resulting in a widely applicable and representative dataset. With the above
dataset, the model to be evaluated can form a (K+1)-wise free-for-all comparisons with the K
models in each instance. Notably, we propose optimized algorithms to ensure the reliability and
efficiency of the evaluation. ❶ For reliability, we propose a posterior correction method, which
utilizes the human preference outcomes in the dataset as supervision to correct the update of model
capability. Following K-Sort Arena, we employ probabilistic modeling to represent model capa-
bilities, and use VLM judgements as observations to update the posterior probability via Bayesian
inference. Here, we treat the misalignment between VLM results and supervision as observation
noise, and thus derive an adaptive correction policy for the posterior probability. ❷ For efficiency,
we propose a dynamic matching strategy, which leverages both uncertainty and diversity to promote
the comparison of maximum expected gains. It avoids worthless comparisons, enabling the evalua-
tion to be accomplished using only a subset of the dataset, without traversing the entire dataset. The
overview of K-Sort Eval is illustrated in Figure 1.

Table 1 compares K-Sort Eval with existing evaluation methods across various categories, high-
lighting its advantages in scalability, alignment, efficiency, and generalizability. Furthermore, we
conduct extensive experiments to validate the effectiveness of K-Sort Eval, and the results show that
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Table 1: Comparison with existing evaluation methods. The proposed K-Sort Eval demonstrates
advantages in terms of scalability, alignment, efficiency, and generalizability.

Evaluation Method Pipeline Judgement Data Selection Target Model
(Scalability) (Alignment) (Efficiency) (Generalizability)

K-Sort Arena (Li et al., 2025) Manual Human No dataset Image & Video
TIFA (Hu et al., 2023), T2I-CompBench (Huang et al., 2023) Automatic Predefined metric Static Image
VBench (Huang et al., 2024), EvalCrafter (Liu et al., 2024) Automatic Predefined metric Static Video
ImageReward (Xu et al., 2023), HPD (Wu et al., 2023) Automatic Reward model Static Image
GenAI-Bench (Li et al., 2024a) Automatic Reward model Static Image & Video
VIEScore (Ku et al., 2023), MiniGPT4-CoT (Huang et al., 2023) Automatic VLM judge Static Image
VideoPhy (Bansal et al., 2024), VideoScore (He et al., 2024) Automatic VLM judge Static Video
K-Sort Eval (Ours) Automatic Corrected VLM judge Dynamic Image & Video

it achieves results consistent with K-Sort Arena, while requiring fewer than 90 model runs in most
cases, demonstrating its strong potential for reliable preference evaluation of generative models.

2 RELATED WORK

Visual Generation Evaluation. Traditional metrics assess the quality of generated content by mea-
suring its divergence from real data, with FID (Heusel et al., 2017) and IS (Salimans et al., 2016)
commonly used for images, and FVD (Unterthiner et al., 2018) for videos. To enable more com-
prehensive evaluations, various benchmarks have been proposed, including image benchmarks such
as TIFA (Hu et al., 2023) and T2I-CompBench (Huang et al., 2023), as well as video benchmarks
like VBench (Huang et al., 2024) and EvalCrafter (Liu et al., 2024). However, these benchmarks
still rely on predefined metrics, which typically fail to reflect human preferences. Several efforts
focus on developing reward models, such as ImageReward (Xu et al., 2023), HPD (Wu et al., 2023),
Pick-a-Pic (Kirstain et al., 2023), and GenAI-Bench (Li et al., 2024a), which finetune the CLIP
model (Radford et al., 2021) to achieve better alignment. However, CLIP’s limited ability to capture
high-level semantics continues to hinder alignment and fairness in evaluation.

Arena Evaluation with Human Preferences. To enable evaluations that better align with human
preferences, Chatbot Arena (Chiang et al., 2024) builds a platform for anonymized pairwise com-
parisons of language models, and collects user judgements on the outputs to obtain an overall model
ranking. This approach also inspires efforts in other domains, such as WildVision (Lu et al., 2024)
for multi-modal models and GenAI Arena (Jiang et al., 2024) for visual generative models. Fur-
thermore, K-Sort Arena (Li et al., 2025) introduces K-wise comparisons (K >2), leveraging prob-
abilistic modeling and matching strategies to enable more efficient and reliable evaluation of visual
generative models. Despite their success, these methods are resource-intensive and time-consuming,
leading to evaluation delays and potential issues such as leaderboard overfitting or illusion (Singh
et al., 2025), which inherently limit their scalability.

Large Model as a Judge. In addition to generation, the judgement capabilities of LLMs, called
LLM-as-a-judge, have also been explored for scoring and ranking tasks (Li et al., 2024b). To address
the hallucinations and biases issues, various strategies have been developed, including swapping op-
erations (Zheng et al., 2023), rule augmentation (Bai et al., 2022), multi-agent collaboration (Li
et al., 2023), demonstrations (Jain et al., 2023), and multi-turn interactions (Bai et al., 2023b). Like-
wise, leveraging VLMs as judge models to harness their visual understanding capabilities has shown
great promise (Chen et al., 2024; Liu & Zhang, 2025). VLMs have been employed to evaluate the
quality of generated images (Ku et al., 2023; Huang et al., 2023) and videos (Bansal et al., 2024;
He et al., 2024). However, VLMs still exhibit inherent hallucinations and biases, which limit their
ability to make judgments fully aligned with human preferences. Thus, how to utilize VLMs for
reliable human preference evaluations remains an open issue.

3 METHODOLOGY

In this paper, we propose K-Sort Eval, an efficient VLM-as-a-Judge evaluation framework that re-
liably aligns human preferences. K-Sort Eval benefits from both new datasets and novel evaluation
strategies. The dataset curation is presented in Section 3.1, followed by the proposed methods for
improving evaluation reliability and efficiency in Sections 3.2 and 3.3, respectively, with the overall
evaluation pipeline ultimately formed in Section 3.4.
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3.1 HUMAN PREFERENCE DATASET CURATION

K-Sort Arena (Li et al., 2025), as a precursor to this work, serves as the platform for collecting data
on human preferences. K-Sort Arena organizes free-for-all comparisons among K visual generative
models, including text-to-image models and text-to-video models. Here, K > 2 and is set to 4 in
practice. Leveraging the intuitive nature of visual perception, users can confidently vote to rank
the outputs based on their preferences. Each data instance Di = (P i,Oi,Ri), which consists of
one prompt P i along with the outputs Oi = {Oi

k}Kk=1 of the K models Mi = {M i
k}Kk=1 and the

user-voted rankings Ri = {Ri
k}Kk=1, becomes a preliminary candidate for the dataset Dc. Here,

i = 1, 2, · · · , Nc, and Nc is the number of candidate instances.

K-Sort Arena makes efforts in terms of data diversity and voting consistency, thus providing a fun-
damental assurance of data quality. K-Sort Arena supports input prompts sampled from existing
datasets as well as fresh prompts customized by users, which facilitates prompts from diverse do-
mains and varying complexity levels. To ensure the voting quality, all crowdsourced participants
are professors and graduate students specializing in visual generation. They all complete pre-voting
training, particularly on the evaluation criteria, which is detailed in Appendix A. Additionally, as an
open-source project, K-Sort Arena actively encourages contributions from the public community,
with the criteria serving as a guiding reference for their voting as well.

To date, K-Sort Arena has collected thousands of votes from both crowdsourced participants and the
public community. For text-to-image generation, we have gathered over 1,800 human votes across
35 models, resulting in more than 10,800 pairwise comparisons. For text-to-video generation, we
have collected more than 700 human votes across 14 models, which are equivalent to more than
4,200 pairwise comparisons. However, despite training and provided guidelines, inherent subjective
differences among individuals can lead to inconsistencies in voting, with some votes deviating from
typical preference patterns. In some cases, unintended operational errors may further introduce
inaccuracies, posing the risk of preference data contamination.

To this end, we apply a careful filtering for each instance to ensure a representative dataset. Due to
probabilistic modeling and Bayesian updating, the leaderboard constructed by K-Sort Arena demon-
strates strong robustness to preference noise, i.e., the leaderboard is sufficiently reliable. Thus, we
use the consistency between the local ranking Ri within each instance and the overall ranking R(L)

in the leaderboard as the filtering criterion. Specifically, we quantify this consistency by calculating
Spearman’s rank correlation coefficient ρ as follows:

ρi =

∑K
k=1

(
Ri

k − R̄i
)(

R
(L)
k − R̄(L)

)
√∑K

k=1

(
Ri

k − R̄i
)2

·
√∑K

k=1

(
R

(L)
k − R̄(L)

)2 (1)

where Ri
k denotes the local ranking assigned to model M i

k, and R
(L)
k denotes the corresponding

ranking in the global leaderboard R(L) of the same model M i
k in Ri. R̄i and R̄(L) are their respec-

tive mean rankings. With the coefficient ρ, the filtered dataset is obtained as follows:
D = {Di | ρi > τ,Di ∈ Dc, i = 1, 2, · · · , Nc} (2)

where τ is the filtering threshold. Threshold selection is presented in Appendix B. Furthermore,
we apply Llama Guard (Inan et al., 2023) to identify and filter out user prompts that are poten-
tially harmful or offensive, which ensures the exclusion of inappropriate content, contributing to the
creation of a dataset that is broadly applicable and ethically sound.

Table 2: Description of the curated dataset.

Model #Instance #Visual Data Visual Format Annotation

Text-to-Image 500 2,000 512×512 [1,2,3,4]
Text-to-Video 300 1,200 512×512, 8 FPS, 5s [1,2,3,4]

Following the curation and filtering pro-
cesses outlined above, the K-Sort Eval
dataset is ultimately established. The
dataset description, including size and for-
mat, is presented in Table 2.

3.2 POSTERIOR CORRECTION FOR EVALUATION RELIABILITY

In order to align with K-Sort Arena (Li et al., 2025), we follow the probabilistic modeling approach
for model capability θ as follows:

θ ∼ N (µ, σ2) (3)
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where µ and σ are the model’s expected capability and uncertainty, respectively, and N (·) denotes
the normal distribution. In each round of voting, the probability density of the model’s current capa-
bility P (θ) is taken as the prior probability, while the voting result P (D|θ) serves as the likelihood
function for the observation D conditioned on θ. The posterior distribution of the capability P (θ|D)
is then computed using Bayes’ theorem as follows:

P (θ|D) =
P (D|θ)P (θ)∫∞

−∞ P (D|θ′)P (θ′) dθ′
=

P (D|θ)P (θ)

C
(4)

With the posterior probability, the posterior mean and variance of the model capability are updated
as follows:

µ̂ = E[θ|D] =
∫∞
−∞ θP (θ|D)dθ

σ̂2 = Var[θ|D] =
∫∞
−∞(θ − E[θ|D])2P (θ|D)dθ

(5)

The derivation and results of the above equations are detailed in Appendix C.

Posterior Correction. The above is the updating process under the ideal condition of unbiased
human preferences. However, when employing a VLM-as-a-Judge, the results inherently contain
hallucinations and biases, which cannot ensure alignment with true human preferences. We define
the misalignment between VLM predictions and human preferences as observation noise, and ac-
cordingly model the conditional distribution of the observation as a mixture distribution, resulting
in the following noise-aware likelihood function:

P̃ (D|θ) = λP (D|θ) + (1− λ)Pn(D) (6)
where Pn(D) is the noise distribution of observation D, and λ ∈ [0, 1] is the confidence coefficient
of the observation, with λ = 1 indicating perfect reliability and no noise.
Assumption 1. Assume that Pn(D), representing a non-informative noise distribution over the
observation D, is statistically independent of the parameter θ.
Lemma 1. Under Assumption 1, when the observation is subject to contamination by the noise
distribution Pn(D), the resulting posterior distribution P̃ (θ|D) can be represented as a mixture of
the noise-free posterior distribution and the prior distribution. Specifically, it holds that:

P̃ (θ|D) = λ′P (θ|D) + (1− λ′)P (θ) (7)
where λ′ ∈ [0, 1] reflects the relative credibility of the posterior distribution induced by the obser-
vation with respect to the prior.

Proof. According to Bayes’ theorem, when the likelihood function is computed as in Eq. 6, the
posterior probability is given by:

P̃ (θ|D) =
P̃ (D|θ)P (θ)∫∞

−∞ P̃ (D|θ′)P (θ′) dθ′
=

[λP (D|θ) + (1− λ)Pn(D)]P (θ)∫∞
−∞[λP (D|θ′) + (1− λ)Pn(D)]P (θ′) dθ′

(8)

Based on the additivity of integration, the expression in the denominator can be split into two sep-
arate terms,

∫∞
−∞ λP (D|θ′)P (θ′) dθ′ and

∫∞
−∞(1− λ)Pn(D)P (θ′) dθ′. Base on the homogeneity,

the first term can be simplified as:∫∞
−∞ λP (D|θ′)P (θ′) dθ′ = λ

∫∞
−∞ P (D|θ′)P (θ′) dθ′ = λC (9)

where C is the normalizing constant as in Eq. 4. For the second item, with Assumption 1, since
Pn(D) is independent of θ, we have:∫∞

−∞(1− λ)Pn(D)P (θ′) dθ′ = (1− λ)Pn(D)
∫∞
−∞ P (θ′) dθ′ = (1− λ)Pn(D) (10)

Substituting the simplified terms into the expression for the posterior, we obtain:

P̃ (θ|D) =
[λP (D|θ) + (1− λ)Pn(D)]P (θ)

λC + (1− λ)Pn(D)

=
λC

λC + (1− λ)Pn(D)

P (D|θ)P (θ)

C
+

(1− λ)Pn(D)

λC + (1− λ)Pn(D)
P (θ)

(11)

When the actual observation is D∗, we define λ′ = λC/[λC +(1−λ)Pn(D
∗)]. This completes the

proof of Lemma 1.
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According to Lemma 1, the posterior under noise can be viewed as a weighted combination between
the noise-free posterior and the prior. To derive the weighting factor, we treat human preferences
Ri in the dataset as supervision, and quantify the noise level in the VLM outputs by computing
Spearman’s rank correlation coefficient ρ′ as follows:

ρ′i =

∑K
k=1

(
R(VLM)

k − R̄(VLM)
)(

Ri
k − R̄i

)
√∑K

k=1

(
R(VLM)

k − R̄(VLM)
)2

·
√∑K

k=1

(
Ri

k − R̄i
)2 (12)

where R(VLM)
k denotes the VLM’s ranking result of the same model M i

k in Ri. Here, the range of ρ′
is [-1,1]. To further normalize it and constrain the values to [0,1] as in Eq. 7, we apply the sigmoid
function as follows:

λ′
i = Sigmoid(κρ′i) =

1

1 + e−κρ′
i

(13)

where κ is the coefficient that controls the slope.

Given λ′, we proceed to derive the posterior mean and variance under the presence of noise. In Eq.
7, the weighted posterior λ′P (θ|D) follows a normal distribution N (λ′µ̂, λ′2σ̂2), and the weighted
prior (1 − λ′)P (θ) follows a normal distribution N ((1 − λ′)µ, (1 − λ′)2σ2). Since P (θ|D) and
P (θ) are independently distributed, the additive property of normal distributions applies. Therefore,
their weighted sum P̃ (θ|D) also follows a normal distribution, with its mean and variance given by:

µ̂c = λ′µ̂+ (1− λ′)µ

σ̂2
c = λ′2σ̂2 + (1− λ′)2σ2

(14)

where µ̂c and σ̂2
c are the corrected posterior mean and variance, respectively.

3.3 DYNAMIC MATCHING FOR EVALUATION EFFICIENCY

Modern datasets tend to establish their authority through increasingly large scales. However, tra-
ditional evaluation methods predominantly rely on static evaluation, which requires exhaustively
traversing all instances in the dataset, regardless of the model characteristics or the task complexity.
This uniform strategy typically incurs numerous low-gain and unnecessary processes, potentially
leading to redundant computation and inefficient evaluation (Kossen et al., 2021; Polo et al., 2024).

Therefore, we are motivated to adaptively select a representative subset based on model-specific
traits, enabling a more efficient evaluation process. Thanks to the probabilistic modeling of model
capabilities, the evaluation process is equipped with a clear stopping criterion, i.e., the capability
uncertainty σ reaches the predefined threshold. To this end, we propose a dynamic matching strategy,
aiming to dynamically select the dataset instance that is expected to make the largest reduction in
the current uncertainty. Specifically, we introduce an uncertainty criterion and a diversity criterion
to jointly guide the selection process, thereby maximizing the benefit of each comparison.

Uncertainty Criterion. Traditional approaches, such as exhaustive or random matching, can lead
to uninformative comparisons. For instance, even when the current model has a high confidence in
achieving a strong capability score, it may still be matched against a significantly weaker model.
Such comparisons yield limited gains for updating the model capability. Therefore, our goal is
to promote matchups between models of comparable strength. In this way, the model maintains
approximately a 50% win rate, indicating maximum uncertainty in the comparison outcome. Based
on this insight, we define the uncertainty criterion Uunc as follows:

U i
unc = − 1

K

K∑
k=1

∣∣µ− µi
k

∣∣ (15)

where µ is the current capability mean of the new model being evaluated, and µi
k is the capability

mean of the k-th model in the i-th dataset instance.

Diversity Criterion. In the proposed dataset, there are K models in each instance, making the
evaluation of a new model essentially a one-to-many matching process. This requires not only
considering the relationship between the new model and each model within the instance, but also
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accounting for the interrelations among the K models themselves. To this end, we aim to ensure
that the group covers as diverse a set of opponents as possible, thereby avoiding homogeneous
matchups and reducing information redundancy. Here, we quantify the diversity among models
within an instance by measuring the degree of overlap between their Gaussian-modeled capability
distributions, and the diversity criterion Udiv is defined as follows:

U i
div = −

∑
1≤k1<k2≤K

∫ ∞

−∞
min

(
P (θik1

), P (θik2
)
)
dθ (16)

where P (θik) is the probability density of the k-th model’s capability in the i-th dataset instance.

Based on the above two criterions, we can dynamically match the next dataset instance by maximiz-
ing the expected gain with respect to the current model status as follows:

i∗ = argmax
i

(
U i

unc + αU i
div

)
(17)

where α is a balancing coefficient.

3.4 OVERALL PIPELINE OF K-SORT EVAL

In this section, we present the overall pipeline of K-Sort Eval in evaluating a new model. Specifi-
cally, we first initialize its capability (µ, σ) and then put it into the following procedures:

▷ Dynamic Matching: We select a dataset instance using Eq. 17, and form a group of size K+1 by
combining the new model with those in the selected instance.

▷ VLM Judgement: To mitigate hallucinations of the VLM, we adopt two prompt design strategies:
swapping operation and rule augmentation. Specifically, we first randomly shuffle the K+1 models
to eliminate potential positional biases. Then, following the voting criteria in K-Sort Arena (Li et al.,
2025), we provide the VLM with identical judgement instructions, as presented in Appendix D.

▷ Updating with Correction: We compute the posterior mean and variance under a noise-free
assumption via Eq. 5, and subsequently correct the results using Eq. 14.

The above procedures are iteratively executed until the value of σ falls below a predefined stop-
ping criterion. Finally, the model capability is estimated using the conservative score (Phillips &
Edwards, 1966) defined as S = µ− ησ, where η is a coefficient typically set to 3.0.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

K-Sort Eval enables automated preference evaluation of new models. For the VLM selection, GPT-
4o (OpenAI, 2024) is used as the judge for images, while Qwen-VL-Max (Bai et al., 2023a) is used
for videos1. It quantifies model capability using both absolute and relative metrics: the absolute met-
ric is the conservative score, while the relative metric is the model’s ranking in K-Sort Arena. The
referenced Arena leaderboards are the version updated on Sep 15, 2025, as presented in Appendix E.
In addition to reliability, K-Sort Eval also offers a notable efficiency advantage, as measured by the
number of model runs required for evaluation, which equals the number of VLM calls. For dataset
curation, we set the filtering threshold τ to 0.75. The σ threshold in the stopping criterion is set to
0.75. The coefficients κ and α are set to 5.0 and 0.5, respectively, after a simple grid search.

4.2 VALIDATION OF EVALUATION RELIABILITY AND EFFICIENCY

Evaluation Reliability of K-Sort Eval. We select models from the K-Sort Arena (Li et al., 2025)
leaderboard and evaluate them using K-Sort Eval, including text-to-image and text-to-video models.
These models span different positions on the leaderboard to demonstrate the generalizability of our
dataset and method. The results, including both rankings and scores, are compared with those in
K-Sort Arena, as shown in Table 3. The evaluation results of K-Sort Eval are consistent with those

1GPT-4o API does not natively support video input.
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Table 3: Validation of evaluation reliability of K-Sort Eval for text-to-image/video models. The
model scores and rankings produced by K-Sort Eval are highly consistent with K-Sort Arena.

Text-to-Image
FLUX.1-dev Midjourney-v5.0 Realvisxl-v3.0 Dalle-2 SD-v1.5

Rank Score Rank Score Rank Score Rank Score Rank Score

K-Sort Arena 5 28.83 11 27.44 16 23.93 24 21.74 29 20.10
K-Sort Eval (Ours) 5 28.86 11 27.50 16 24.02 24 21.79 29 20.03

Text-to-Video
Runway-Gen3 CogVideoX-5b KLing-v1.0 Pika-v1.0 VideoCrafter2

Rank Score Rank Score Rank Score Rank Score Rank Score

K-Sort Arena 2 33.93 3 33.60 5 32.80 7 29.17 12 23.65
K-Sort Eval (Ours) 2 33.98 3 33.63 5 32.90 7 29.10 12 23.72
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Figure 2: Visualization of the evaluation processes. With posterior correction, K-Sort Eval achieves
a smoother trajectory and produces more accurate results that are consistent with K-Sort Arena.
of K-Sort Arena, which is entirely based on human preferences. For instance, in the evaluation of
FLUX.1-dev, the score produced by K-Sort Eval differs by only 0.03 from that in K-Sort Arena, with
both methods assigning it the same rank of 5, which highlights the effectiveness of K-Sort Eval.

18%

73%

9%

Image

< 70 Runs
70 90 Runs
> 90 Runs

13%

80%

7%

Video

< 70 Runs
70 90 Runs
> 90 Runs

Figure 3: Number of runs required for the
new model in the evaluation.

Evaluation Efficiency of K-Sort Eval. Thanks to the
proposed dynamic matching strategy, the evaluation
process does not requires traversing the entire dataset,
which significantly improves efficiency. Figure 3 illus-
trates the number of runs required for the new model,
with data from 100 tries covering all models. The vast
majority (91% for images, 93% for videos) complete
the evaluation in less than 90 runs, which is a signifi-
cant efficiency gain over existing methods such as FID
(typically 50,000 runs) (Heusel et al., 2017), GenAI-
Bench (1,600 runs) (Li et al., 2024a).

4.3 COMPARISON WITH PREFERENCE SCORING METHODS

CLIP‐based VLM‐based

Figure 4: Correlations of different methods
with actual human preferences.

We select 100 instance groups to compare the corre-
lations between different methods and actual human
preferences, including CLIP-based scoring methods
(ImageReward (Xu et al., 2023), PickScore (Kirstain
et al., 2023), HPS (Wu et al., 2023), and VQAS-
core (Li et al., 2024a)) and VLM-based methods us-
ing GPT-4o (OpenAI, 2024), as shown in Figure 4.
We also report the result with correction obtained
through λ′ weighting. GPT-4o consistently outper-
forms CLIP-based methods, and introducing correc-
tion significantly improves overall correlation, as it re-
duces the influence of noisy observations.

4.4 APPLICATION OF EVALUATION ON COMPRESSED MODELS

K-Sort Eval provides both absolute scores and relative rankings, making it highly promising for
evaluating model compression. It not only assesses the performance degradation after compression,

8
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Table 4: Application of evaluation on compressed models, which reveals not only changes in abso-
lute scores, but also the results of relative rankings. The model size is calculated in FP16 by default.

(a) Distilled models

Model Rank Score Size (GB) Step

SD-v3.5-large 3 28.95 16.2 40

Dalle-3 8 28.25 - -
SD-v3.5-large-turbo 9 27.71 16.2 4
FLUX.1-schnell 10 27.69 24 4

SDXL 32 18.85 5.2 25

SD-v1.5 29 20.11 1.72 50
SDXL-SSD-1b 30 19.40 2.6 25
SD-v2.1 31 18.95 1.73 50

(b) Quantized models

Model Rank Score Size (GB) Step

FLUX.1-dev 5 28.83 24 28

Dalle-3 8 28.27 - -
NF4 (BNB) 9 27.93 6 28
SD-v3.5-large-turbo 9 27.73 16.2 4

FLUX.1-schnell 10 27.71 24 4
W4A4 (SVDQuant) 11 27.66 6 28
Midjourney-v5.0 11 27.44 - -

but also identifies which standard model the compressed model is functionally comparable to.
Distilled Models. Table 4a gives examples of distilled models, with reduced step and model size,
respectively. For SD-v3.5-large-turbo, the number of inference steps is reduced from 40 to 4, result-
ing in a score drop of 1.24 and a ranking shift from 4 to 9. Based on its ranking, we easily conclude
that its performance is comparable to that of Dalle-3 and FLUX.1-schnell.
Quantized Models. Table 4b reports the quantization results of FLUX.1-dev, including
BNB (Dettmers et al., 2023) and SVDQuant (Li et al., 2024c). When quantizing in NF4 format,
the model size is reduced by 4×, while delivering a score decrease of 0.90. Crucially, it offers an
intuitive measure of relative capability and directly points to a benchmark model of similar strength.

4.5 ABLATION STUDIES

Table 5: Ablation studies on effect of the proposed modules and prompt designs. We report the
results of text-to-image model FLUX.1-dev and text-to-video model CogVideoX-5b.

(a) FLUX.1-dev

Method Rank Score #Runs

K-Sort Arena 5 28.83 -
K-Sort Eval (Ours) 5 28.86 81

w/o Posterior Correction 3 29.32 70
w/o Dynamic Matching 5 28.79 500

w/o Wapping Operation 4 28.93 79
w/o Rule Augmentation 9 28.13 119

(b) CogVideoX-5b

Method Rank Score #Runs

K-Sort Arena 3 33.60 -
K-Sort Eval (Ours) 3 33.63 89

w/o Posterior Correction 6 31.86 79
w/o Dynamic Matching 3 33.65 300

w/o Wapping Operation 3 33.55 90
w/o Rule Augmentation 5 33.10 130

Effect of the Proposed Modules. We verify the validity of posterior correction and dynamic match-
ing, as shown in Table 5. When evaluating FLUX.1-dev, without posterior correction, every VLM
judgment is fully accepted, even when misaligned with human preferences. This leads to reduced
evaluation accuracy, with a score deviation of 0.49 and a rank discrepancy of 2 compared to Arena.
Additionally, in the absence of dynamic matching, the entire dataset needs to be traversed, leading
to increased costs. The grid search of coefficients κ and α are shown in Appendix F.

Prompt Designs for VLM. Table 5 further illustrates the impact of prompt designs. In the case of
FLUX.1-dev, for example, the model ranking is shifted when the wrapping operation is removed.
Moreover, without rule augmentation, the VLM lacks clear and uniform principles in the judgment,
resulting in a substantial score difference of 0.70.

5 CONCLUSION

In this work, we propose K-Sort Eval, a scalable and reliable evaluation framework that leverages
vision-language models (VLMs) with posterior correction and dynamic matching strategies to ap-
proximate human preferences in generative model assessment. By utilizing high-quality dataset
from K-Sort Arena and introducing Bayesian correction based on VLM-human consistency, K-Sort
Eval significantly improves alignment with human judgements. Furthermore, the proposed dynamic
matching enhances evaluation efficiency by selecting instances with maximum expected gains. Ex-
perimental results show that K-Sort Eval achieves alignment with human-voted scores and rankings,
while substantially reducing evaluation costs, highlighting its reliability and efficiency.
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A EVALUATION CRITERIA IN K-SORT ARENA

In K-Sort Arena, all crowdsourced participants are professors and graduate students specializing
in visual generation, affiliated with institutions such as University of California Berkeley, Chinese
Academy of Sciences, National University of Singapore, and Nanyang Technological University,
etc. They all complete pre-voting training, particularly on the following evaluation criteria:

▷ Text-to-Image Models The evaluation is based on alignment (50%) and aesthetics (50%). Align-
ment encompasses entity (30%) and style (20%), while aesthetics includes photorealism (30%), light
and shadow rendering (10%), and the absence of artifacts (10%).

▷ Text-to-Video Models The models are also evaluated based on alignment (50%) and aesthet-
ics (50%). Alignment is assessed based on video content matching (20%), movement matching
(15%), and inter-frame consistency (15%), while aesthetics considers photorealism (30%), physical
correctness (10%), and the absence of artifacts (10%).

Additionally, as an open-source project, K-Sort Arena actively encourages contributions from the
public community, with the criteria serving as a guiding reference for their voting as well.

B FILTERING THRESHOLD IN DATASET CURATION

We filter the data by the Spearman’s rank correlation coefficient between the local rankings within
the dataset and the corresponding model’s ranking in the overall leaderboard to prevent preference
contamination. Due to performance fluctuations relative to a model’s true capability and the presence
of ties, even preference-aligned data cannot always guarantee a correlation of 1.0. Therefore, it is
necessary to determine a sufficiently reliable selection threshold.

Table 6: Spearman’s rank correlation coefficients
in different cases, including tie and misordering.

Case Rank Spearman

Ground Truth [0,1,2,3] -

Fully consistent [0,1,2,3] 1.00
Tie between two models [0,1,1,2] 0.95
Tie among three models [0,1,1,1] 0.77
Misordering between two models [0,2,1,3] 0.80
Misordering among three models [0,3,1,2] 0.40

Table 6 lists spearman’s rank correlation coeffi-
cients in different cases, including tie and mis-
ordering cases. In our dataset curation, we con-
sider the cases of tie between two models and
misordering between two models to be valid
samples, while the cases of misordering among
three models is invalid samples. As a result, in
order to balance validity and diversity, we set
the filtering threshold to 0.75.

C DERIVATION OF BAYESIAN UPDATING

We begin by analyzing the case of two competing models, M1 and M2, before generalizing to the
comparison among K models. Suppose the observation D indicates that model M1 outperforms
model M2. The likelihood of this event, conditioned on the latent performance parameters θ1 and
θ2, is given by:

P (D|θ1, θ2) = P (X1 > X2) = Φ

(
θ1 − θ2√
β2
1 + β2

2

)
(18)

where Φ(x) denotes the cumulative distribution function (CDF) of the standard normal distribution,
and ϕ(x) is the corresponding probability density function (PDF):

Φ(x) =

∫ x

−∞
ϕ(u) du, ϕ(x) =

1√
2π

e−x2/2 (19)

Using Bayes’ theorem, we can then derive the joint posterior distribution of (θ1, θ2) given the ob-
servation D as follows:

P (θ1, θ2|D) ∝ P (θ1)P (θ2)P (D|θ1, θ2) = ϕ

(
θ1 − µ1

σ1

)
ϕ

(
θ2 − µ2

σ2

)
Φ

(
θ1 − θ2√
β2
1 + β2

2

)
(20)
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The marginal posterior distribution of θ1 can be obtained by integrating out θ2 from the joint poste-
rior:

P (θ1|D) =

∫ ∞

−∞
P (θ1, θ2|D) dθ2 ∝ ϕ

(
θ1 − µ1

σ1

)
Φ

(
θ1 − µ2√

β2
1 + β2

2 + σ2
2

)
(21)

Given the marginal posterior distribution, the posterior expectation of θ1 can then be computed as:

µ̂1 = E [θ1|D] =

∫∞
−∞ θ1P (θ1|D)dθ1∫∞
−∞ P (θ1|D)dθ1

= µ1 +
σ2
1√∑

(β2
i + σ2

i )

ϕ

(
µ1−µ2√∑
(β2

i +σ2
i )

)

Φ

(
µ1−µ2√∑
(β2

i +σ2
i )

)

= µ1 +
σ2
1

c12
· V
(
µ1 − µ2

c12

)
(22)

where V(x) = ϕ(x)/Φ(x) and c2ij =
∑(

β2
i + σ2

i

)
. The mean µ̂1 of θ1 is updated accordingly

based on the observed outcome. In a similar manner, the posterior variance σ̂1
2 is updated using the

following expression:

σ̂1
2 = V ar[θ1|D] = E[θ21|D]− (E[θ1|D])2 = σ2

1 ·

(
1− σ2

1∑
(β2

i + σ2
i )

· W

(
µ1 − µ2√∑
(β2

i + σ2
i )

))

= σ2
1 ·
(
1− σ2

1

c212
· W

(
µ1 − µ2

c12

))
(23)

where W(x) = V(x)(V(x) + x). The aforementioned process completes the Bayesian updating
for a pairwise comparison between two models. We now extend this framework to a free-for-all
comparison among K models. In this case, the update rules for the performance parameters of the
i-th model are given by the following equations:

µ̂i = µi + σ2
i ·

( ∑
q:rq>rq

1

ciq
· V
(
µi − µq

ciq

)
+

∑
q:ri<rq

−1

ciq
· V
(
µq − µi

ciq

))
(24)

σ̂i
2 = σ2

i ·

(
1−

( ∑
q:ri>rq

σ2
i

c2iq
· W

(
µi − µq

ciq

)
+

∑
q:ri<rq

σ2
i

c2iq
· W

(
µq − µi

ciq

)))
(25)

D RULE AUGMENTATION FOR VLM PROMPT

We adopt the rule augmentation strategy to provide clear and effective guidance for VLM judge-
ments. To ensure consistency with K-Sort Arena, these rules are aligned with the manual voting
criteria used by human annotators. This enhances the interpretability of VLM outputs and improves
their comparability with human preferences. The complete prompt design is illustrated in Figure 5.

VLM Prompt for Text‐to‐Image Models

You will be given 5 images. Your task is to rank them from
best to worst based on visual aesthetics (50%) and
alignmentwith the given description (50%): [prompt].
‐ Aesthetics includes photorealism (30%), light and
shadow (10%), and absence of artifacts (10%);

‐ Alignment includes entity matching (30%) and style
matching (20%);

You MUST respond with only the sorted images in the strict
format: "Image 1, Image 2, Image 3, Image 4, Image 5".

VLM Prompt for Text‐to‐Video Models

You will be given 5 videos. Your task is to rank them from
best to worst based on visual aesthetics (50%) and
alignmentwith the given description (50%): [prompt].
‐ Aesthetics includes photorealism (30%), physical
correctness (10%), and absence of artifacts (10%);

‐ Alignment includes content matching (20%), movement
matching (15%), and inter‐frame consistency (15%);

You MUST respond with only the sorted videos in the strict
format: "video 1, video 2, video 3, video 4, video 5".

Figure 5: Prompt design that provides voting criteria consistent with human voting in K-Sort Arena,
serving as guidance for the VLM Judgement and helping reduce hallucinations.
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E K-SORT ARENA LEADERBOARD

We use the leaderboard provided by K-Sort Arena (Li et al., 2025) as the ground-truth baseline for
human preferences. In this work, all referenced leaderboards are based on the version updated on
Sep 15, 2025, as shown in Table 7.

Table 7: K-Sort Arena leaderboards updated on Sep 15, 2025.

(a) Text-to-Image Models

Rank Model Organization Score (µ/σ)

1 GPT-4o OpenAI 30.86 (33.20 / 0.78)
2 FLUX-1.1-pro Black Forest Labs 29.52 (31.57 / 0.68)
3 SD-v3.5-large Stability AI 28.97 (31.13 / 0.72)
4 FLUX.1-pro Black Forest Labs 28.90 (30.89 / 0.66)
5 FLUX.1-dev Black Forest Labs 28.83 (30.81 / 0.66)
6 Aurora xAI 28.72 (31.05 / 0.78)
7 Midjourney-v6.0 Midjourney 28.64 (30.64 / 0.67)
8 Dalle-3 OpenAI 28.27 (30.26 / 0.67)
9 SD-v3.5-large-turbo Stability AI 27.73 (29.94 / 0.74)

10 FLUX.1-schnell Black Forest Labs 27.71 (29.72 / 0.67)
11 Midjourney-v5.0 Midjourney 27.44 (29.47 / 0.68)
12 SD-v3.0 Stability AI 27.13 (29.10 / 0.66)
13 Pixart-Sigma PixArt-Alpha 26.38 (28.39 / 0.67)
14 Proteus-v0.2 DataAutoGPT3 24.69 (26.68 / 0.67)
15 Open-Dalle-v1.1 DataAutoGPT3 24.65 (26.65 / 0.67)
16 Realvisxl-v3.0 Realistic Vision 23.93 (25.94 / 0.67)
17 Dreamshaper-xl Lykon 23.89 (25.85 / 0.66)
18 Realvisxl-v2.0 Realistic Vision 23.87 (25.87 / 0.67)
19 Kandinsky-v2.2 AI-Forever 23.57 (25.56 / 0.66)
20 Deepfloyd-IF DeepFloyd 23.47 (25.47 / 0.67)
21 Meissonic Alibaba, Skywork AI 22.69 (24.93 / 0.75)
22 Kandinsky-v2.0 AI-Forever 22.51 (24.48 / 0.65)
23 SDXL-turbo Stability AI 21.83 (23.93 / 0.70)
24 Dalle-2 OpenAI 21.74 (23.72 / 0.66)
25 Playground-v2.5 Playground AI 21.60 (23.55 / 0.65)
26 Openjourney-v4 Prompthero 21.41 (23.39 / 0.66)
27 LCM-v1.5 Tsinghua 20.89 (22.90 / 0.67)
28 SD-turbo Stability AI 20.25 (22.36 / 0.70)
29 SD-v1.5 Stability AI 20.10 (22.12 / 0.67)
30 SSD-1b Segmind 19.40 (21.41 / 0.67)
31 SD-v2.1 Stability AI 18.94 (20.93 / 0.66)
32 SDXL Stability AI 18.85 (20.84 / 0.66)
33 Playground-v2.0 Playground AI 18.66 (20.67 / 0.67)
34 SDXL-Lightning ByteDance 18.06 (20.05 / 0.67)
35 Stable-cascade Stability AI 16.69 (18.80 / 0.70)
36 SDXL-Deepcache NUS 16.16 (18.15 / 0.66)

(b) Text-to-Video Models

Rank Model Organization Score (µ/σ)

1 Sora (official) OpenAI 34.66 (37.42 / 0.92)
2 Runway-Gen3 Runway 33.93 (35.94 / 0.67)
3 CogVideoX-5b Tsinghua 33.60 (35.63 / 0.68)
4 Sora (release) OpenAI 33.53 (35.61 / 0.69)
5 KLing-v1.0 Kuaishou 32.80 (34.84 / 0.68)
6 Runway-Gen2 Runway 29.57 (31.63 / 0.69)
7 Pika-v1.0 Pika 29.17 (31.27 / 0.70)
8 LaVie Shanghai AI Lab 28.68 (30.67 / 0.67)
9 OpenSora HPC-AI 27.39 (29.41 / 0.67)

10 Pika-beta Pika 27.38 (29.49 / 0.70)
11 AnimateDiff CUHK etc. 26.46 (28.49 / 0.68)
12 VideoCrafter2 Tencent 23.65 (25.70 / 0.69)
13 StableVideoDiffusion Stability AI 23.01 (25.09 / 0.70)
14 Zeroscope-v2-xl Cerspense 16.96 (19.33 / 0.79)

F GRID SEARCH OF COEFFICIENTS

We perform a simple grid search of coefficients κ and α, as reported in Table 8. Based on the
grid search results, we select κ = 5 and α = 0.5 as the optimal hyperparameters. This setting
achieves a strong alignment with the K-Sort Arena benchmark (rank = 6), while maintaining a
competitive performance score (28.86). Notably, it also results in the lowest number of model runs
(81), indicating high evaluation efficiency. Compared to other settings, this combination provides
the best balance between ranking consistency and evaluation cost.

Table 8: Grid search of coefficients κ and α. We report results for text-to-image model FLUX.1-dev
and they hold for other models.

κ K-Sort Arena 1 3 5 7 9

Rank 6 8 6 6 5 9
Score 28.83 28.58 28.80 28.86 28.90 28.22
#Runs - 110 90 81 74 72

α K-Sort Arena 0.1 0.3 0.5 0.7 0.9

Rank 6 6 6 6 6 5
Score 28.82 28.77 28.80 28.86 28.72 28.93
#Runs - 107 89 81 84 90
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