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ABSTRACT

Periodic point sets model all solid crystalline materials (crystals) whose atoms
can be considered zero-sized points with or without atomic types. This paper ad-
dresses the fundamental problem of checking whether claimed crystals are novel,
not noisy perturbations of known materials obtained by unrealistic atomic replace-
ments. Such near-duplicates have already skewed ground truth because past com-
parisons relied on discontinuous cells and symmetries. The proposed Lipschitz
continuity under noise is a new essential requirement for machine learning on any
data objects that have ambiguous representations and live in continuous spaces.
For periodic point sets under isometry (any distance-preserving transformation),
we designed the invariants that distinguish all known counter-examples to the
completeness of past descriptors and detect thousands of (near-)duplicates in the
world’s five largest databases in a few minutes on a modest desktop computer.

1 MOTIVATIONS FOR CONTINUOUS INVARIANTS OF PERIODIC CRYSTALS

Real data such as periodic crystals often have ambiguous representations in the sense that experi-
mental databases contain many substantially different entries encoding near-duplicate crystals with
essentially the same properties Peplow (2023). Using descriptors or representations that discontin-
uously change under tiny perturbations of input data can lead to unjustified claims Krämer (2021)
and even to ‘paper mills’ Bimler (2022) reporting thousands of ‘new’ materials without proof. These
public investigations Francis (2023) already led to hundreds of retracted papers Chawla (2022). Ma-
chine learning can avoid such embarrassment by embracing a new continuous approach to data.

Any discovery should be validated by proper measurements, which are formalized by the concept
of a distance metric d satisfying three axioms. The first axiom says that the distance d(S,Q) = 0
between any materials S,Q vanishes if and only if S,Q are the same. What materials should be
called ‘the same’ Sacchi et al. (2020)? The relation of being ‘the same’ is called an equivalence S ∼
Q if the following axioms hold: (1) any object is equivalent to itself S ∼ S, (2) symmetry: if S ∼ Q
then Q ∼ S, (3) transitivity: if S ∼ Q and Q ∼ T then S ∼ T . The transitivity axiom is especially
important by justifying a classification into disjoint equivalence classes [S] = {Q | Q ∼ S}. If two
such classes [S] and [T ] share a common object Q, they should coincide by transitivity: [S] = [T ].

A scientific approach is to first define an equivalence and then look for properties that can distinguish
non-equivalent objects. For example, all crystals form disjoint classes by their chemical composi-
tion, though diamond and graphite composed of pure carbon have vastly different properties.

Because crystal structures are determined in a rigid form, the strongest equivalence (best separat-
ing all crystals) is rigid motion, which is a composition of translations and rotations in Rn from
the group SE(n). Because noise perturbs any rigid structure, all SE(n)-classes of crystals form a
continuous space. The slightly weaker isometry (denoted by S ≃ Q) is defined as any distance-
preserving transformation or, equivalently in Rn, any composition of a rigid motion and a reflection.
All isometries of Rn form the Euclidean group E(n). A classification under isometry suffices in
practice because any mirror images can be distinguished by an extra bit (a sign of orientation).
Definition 1.1 (periodic point set S with a motif M ). Any basis of vectors v1, . . . , vn in Rn defines

the lattice Λ = {
n∑

i=1

civi | ci ∈ Z} and unit cell U = {
n∑

i=1

tivi | 0 ≤ ti < 1}. For a finite set

M ⊂ U (called a motif), the periodic point set is S = M +Λ = {p+ v | p ∈ M, v ∈ Λ} ⊂ Rn. ■
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Figure 1: Left: any periodic point set can be given by many pairs (cell, motif), see Definition 1.1.
Finite subsets of the same lattice within boxes or balls of the same cut-off size can be vastly different.
Right: almost any perturbation of atoms can arbitrarily scale up a unit cell and break the symmetry.

A traditional representation of crystals is ambiguous in the sense that infinitely many pairs (cell,
motif) generate the same periodic set of points, see Fig. 1 (left). Much worse, Fig. 1 (right) shows
that any cell-based representation is inherently discontinuous because almost any perturbation of
atoms (due to ever-present thermal vibrations and measurement noise) can arbitrarily scale up a
minimal (by volume) cell. The past approach to ignore atomic perturbations up to a threshold ε
implies that sufficiently many tiny perturbations can transform any infinite set of points into any
other Zwart et al. (2008), which makes all sets equivalent by the transitivity axiom. Tiny differences
between crystals should be not ignored but quantified by a continuous metric as formalized below.

Problem 1.2. Find a descriptor I of all periodic point sets in Rn satisfying the conditions below.

(a) Invariance: if S ≃ Q are isometric then I(S) = I(Q), i.e. I has no false negatives.

(b) Completeness: for any S,Q ⊂ Rn, if I(S) = I(Q) then S ≃ Q, i.e. I has no false positives.

(c) Metric axioms: there is a distance metrics d on invariant values satisfying three axioms (1)
d(a, b) = 0 if and only if a = b, (2) d(a, b) = d(b, c), (3) d(a, b) + d(b, c) ≥ d(a, c) for all a, b, c.

(d) Continuity: if Q is obtained by perturbing every point of S up to ε, then d(I(S), I(Q)) ≤ λε.

(e) Reconstructability: any periodic set S can be reconstructed from I(S) up to isometry of Rn.

(f) Computability: for a fixed dimension n, the invariant I(S), the metric d in (c), and a reconstruc-
tion of S ⊂ Rn from I(S) in (e) are computable in polynomial time of the motif sizes. ■

The invariant I(S) can be a vector, matrix, or another object in a space where metric computations
should be easier than for isometry classes of S. Invariance condition 1.2(a) is stronger than equivari-
ance saying that a group action f (such as a rotation) changes I(S) to Tf (I(S)), where Tf is a map
depending on f . For example, any linear combination e(S) of point coordinates of S is equivariant
but can allow a false negative that is a pair S ≃ Q with e(S) ̸= e(Q). The invariance means that Tf

is the identity, hence different values I(S) ̸= I(Q) always guarantee that S ̸≃ Q are not isometric.

Completeness 1.2(b) is harder and is practically meaningful only with a Lipschitz continuous metric
in 1.2(d) because any noise makes all real objects at least slightly different as in Fig. 1 (right). This
unresolved discontinuity created a gigantic loophole that allows anyone to disguise known materials
as new by perturbing atomic positions, which scales up a minimal cell, and by changing atomic
types, which makes comparisons by symmetries, unit cells, and chemical compositions unreliable.

The metric axioms are essential for recognizing S ≃ Q by d(I(S), I(Q)) = 0. If the third (triangle)
axiom in 1.2(c) fails with any positive error, clustering may not be trustworthy Rass et al. (2022).

Condition 1.2(e) asks for reconstructable invariants that can be inverted back to original objects and
hence are more practical than a DNA code, which is used for identifying humans in practice (if we
forget about identical twins) but a DNA code alone is insufficient yet to grow a living organism.

Problem 1.2 formalizes all verifiable conditions 1.2(a-d,f) for any discriminative problem (materials
identification) and the first goals 1.2(e-f) of the generative problem (designing new materials).

The contributions to notoriously hard Problem 1.2 are (1) new higher-order invariants, which dis-
tinguished all known counter-examples to the completeness of past descriptors, and (2) the ultra-fast
detection of (near-)duplicates in the world’s largest databases of experimental materials. The pre-
viously unrecognized (near-)duplicates skewed real data but can now be filtered out by continuous
invariants for upholding scientific integrity and improving machine learning of materials properties.
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2 REVIEW OF UNRESOLVED CHALLENGES IN CRYSTAL REPRESENTATIONS

Problem 1.2 makes sense for any objects (finite clouds, graphs) under other practical equivalences
(rigid motion excluding reflections) instead of crystals and isometry, respectively. The graph isomor-
phism problem Grohe & Schweitzer (2020) considers only conditions 1.2(a,b,e,f) without continu-
ous metrics. Boutin & Kemper (2004) proved that pairwise distances distinguish all generic finite
clouds of unordered points in Rn. All singular examples within a subspace of measure 0 among all
point clouds were distinguished in Widdowson & Kurlin (2023) but we focus on periodic sets.

In 1930, Pauling noticed the ambiguity of crystal structures obtained by diffraction Pauling & Shap-
pell (1930), which called for stronger invariants. For n = 1, Theorem 4 in Grünbaum & Moore
(1995) justified complete invariants for periodic sequences given by rational angles of the unit circle
(in the complex plane C) by using 6-factor products of complex numbers. Since the circle (a period)
was fixed, these invariants are discontinuous under perturbations. Indeed, the sequence Z of integers
can be infinitely close to S = {0, 1 + ε, . . . ,m+ ε}+ (m+ 1)Z ⊂ R for small ε > 0, though their
periods 1 and m + 1 are arbitrarily different. The much simpler complete invariant of a periodic
sequence S = {p1, . . . , pm}+ LZ ⊂ R with a period L, where 0 ≤ p1 < · · · < pm < L, is the list
of interpoint distances pi+1 − pi (up to cyclic permutations) for i = 1, . . . ,m and pm+1 = p1 + L.

A continuous metric d(S,Q) on these cyclic classes of distance lists was introduced in Kurlin (2022)
but such a metric requires an expansion to the least common multiple of the sizes |S|, |Q| of motifs
and doesn’t come with a polynomial-time invariant. The brute force invariant for all periodic se-
quences S with motifs up to m points needs an expansion to at least 2m points, see Theorem 5(1)in
Farhi (2007), which violates condition 1.2(e). So Problem 1.2 remained open even for n = 1.

A finite approach to measuring the similarity between periodic point sets is to compare their finite
subsets within a box or a ball of a large but fixed cut-off radius. However, any periodic point set has
many non-isometric finite subsets within differently positioned boxes or balls, see Fig. 1 (left).

Considering local clouds centered at all points in a motif M gives invariants such as MACE Batatia
et al. (2022), which achieved excellent results by training on large datasets. Perturbing a cut-off
radius can discontinuously change these clouds by including new neighbors that were just outside
a smaller cut-off. Even if this cut-off is smoothed out, any fixed size is insufficient Parsaeifard &
Goedecker (2022), Pozdnyakov et al. (2022): “indistinguishable configurations affect the expressive
power of models based on those features, which will be incapable of predicting distinct values for
the corresponding atom-centered properties, even if both structures are used during training.”

Atomic vibrations are natural to measure by deviations of atoms from their initial positions but a sum
of small deviations over infinitely many points can be infinite and also can give different values for
different finite subsets. However, a maximum deviation of atoms is well-defined as the bottleneck
distance between any sets via bijections between atoms, which can be displaced but cannot vanish.

Definition 2.1. The bottleneck distance dB(S,Q) = inf
g:S→Q

sup
p∈S

|p − g(p)| for any sets S,Q ⊂ Rn

of the same cardinality is minimized for all bijections g : S → Q and maximized for all p ∈ S. ■

Here |p−q| denotes Euclidean distance between points p, q ∈ Rn. The bottleneck distance dB(S,Q)
is infinite if periodic point sets S,Q have different point densities (motif size |S| divided by the cell
volume). Also, dB(S,Q) is discontinuous under perturbations of 2D lattices whose primitive cells
have the same minimum volume, see Examples 2.1 and 2.2 in Widdowson & Kurlin (2022). Hence
condition 1.2(d) of a Lipschitz continuous metric made Problem 1.2 exceptionally hard.

Definition 2.2 (metrics and pseudo-metrics). A distance d between objects with an equivalence
relation ∼ is called a metric if these axioms hold: (1) d(S,Q) = 0 if and only if S ∼ Q; (2)
d(S,Q) = d(Q,S); (3) d(S,Q)+d(Q,T ) ≥ d(S, T ). If axiom (1) is replaced with (1′) d(S, S) = 0
for any S, then non-equivalent S ̸∼ Q can have d(S,Q) = 0, and d is called a pseudo-metric. ■

Many descriptors are compared by distances (such as Euclidean) that satisfy metric axioms on in-
variant values but define only pseudo-metrics on isometry classes because of incompleteness of the
underlying invariants. If d(S,Q) > 0, then S ̸∼ Q by (1′), so a fast pseudo-metric can distin-
guish between some but not all objects. Pseudo-metrics are weaker than metrics, e.g. the difference
||S| − |Q|| of the set sizes is a pseudo-metric not distinguishing any sets S ̸≃ Q of the same size.
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Metrics (similar to complete invariants) are much more valuable than pseudo-metrics (similar to
non-invariants or incomplete invariants). Any algorithm using an incomplete invariant I cannot
predict different properties of a false positive pair of non-isometric sets S ̸≃ Q with I(S) = I(Q).

Hence the discriminative problem should be solved first by (at least generically) complete and Lips-
chitz continuous invariants before any generative attempts can succeed. Any non-complete invariant
I is not invertible so that different S ̸≃ Q can be randomly chosen if I(S) = I(Q). We recall the
recent invariants that satisfied almost all conditions 1.2(a-f) for finite and periodic point sets.
Definition 2.3 (Pointwise Distance Distribution PDD). Let S ⊂ Rn be a periodic point set with a
motif M of m points. For any integer k ≥ 1 and p ∈ M , let d1(p) ≤ · · · ≤ dk(p) be the list of
Euclidean distances from p to its k nearest neighbors within the whole set S. These lists become
rows of the m× k matrix D(S; k). Any l > 1 identical rows are collapsed into a single row with the
weight l/m, which is written in the extra first column. The resulting matrix PDD(S; k) of unordered
rows with weights is the Pointwise Distance Distribution, see Widdowson & Kurlin (2022). ■

If a unit cell of S is extended by a factor of l, then any point p in the original motif has l transla-
tionally equivalent copies in the extended motif. Then D(S; k) has l times more rows only because
each original row is expanded into l identical rows. The final PDD(S; k) is the same weighted dis-
tribution of rows, independent of an initial cell of S. The equality between weighted distributions
is interpreted as a bijection between unordered sets respecting all weights. This equality is best
checked not by considering all bijections but by a metric that vanishes only on equal distributions by
the first metric axiom. The PDD is Lipschitz continuous, computable in near-linear time (for a fixed
dimension) in both k and motif size m, and distinguishes all non-isometric sets in general position
(away form a measure 0 subspace), see Theorems 3.2, 4.3, 4.4, 5.1 in Widdowson & Kurlin (2022).
Definition 2.4 (homometric sets). Finite or periodic sets S,Q ⊂ Rn are called homometric Pat-
terson (1939) if they have the same Pair Distribution Function (PDF), which is a sequence of all
inter-point distances of S, equivalent to a powder diffraction pattern without a cut-off radius. ■

Figure 2: For any 0 < r ≤ 1, the homometric sets S(r) = {0, r, 2+ r, 4}+8Z ̸∼= Q(r) = {0, r, 2+
r, 4}+8Z have identical PDFs from Definition 2.4 but different PDDs whose first columns we write
as unordered sets: PDD(S(r); 1) = {r, r, 2− r, 2− r} ≠ PDD(Q(r); 1) = {r, r, 2− r, 2 + r}.

Example 2.5 (sets with equal PDDs). The sets S ̸≃ Q in (Pozdnyakov & Ceriotti, 2022, Fig. 4)
were designed to fail all iterations of the Weisfeiler-Leman test Shervashidze et al. (2011). Fig. 3
shows their 2D versions with period 4 in the x-axis and free parameters a, b, c > 0.

Figure 3: The sets S,Q are 1-periodic in the x-axis with period 4, e.g. A denotes both (0, a), (4, a).
Right: the matrices of distances between closest points from classes modulo shifts by 4 in x. Then
PDD(S; k) = PDD(Q; k) by Example 2.5 but PDD{2}(S; 1) ̸= PDD{2}(Q; 1) by Example 3.3.

The distances in Fig. 3 (right) are for the closest representatives of 6 points, so d2 =
√
a2 + b2,

d1 = 2
√
a2 + 1, d3 =

√
a2 + (2− b)2, d4 =

√
1 + (a− c)2, d6 =

√
(1− b)2 + c2,

d9 = 2
√
c2 + 1, d7 =

√
(3− b)2 + c2, d5 =

√
1 + (a+ c)2, d8 =

√
(1 + b)2 + c2.

Then PDD(S; k) = PDD(Q; k) because the coincidences of distances in Fig. 3 (right) hold after
adding any periodic translation, so if d1 = d2 then

√
d21 + (4n)2 =

√
d22 + (4n)2 for n ∈ Z. ■

Pauling & Shappell (1930) described a pair of real homometric crystals, each having 24 atoms in a
cubic cell, with equal PDFs and (as it turned out recently) equal PDDs. The simpler non-isometric
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finite sets in R3 with equal PDDs were distinguished by stronger invariants in Widdowson & Kurlin
(2023), which extended PDD by recording distances to subsets of more than one point. In the
periodic case, pairs of points behave discontinuously under cell extensions in Fig. 1. Doubling a
motif M of m points leads to (2m)2 pairs including new distant neighbors from adjacent cells. This
crucial obstacle motivated a ‘pointwise’ approach to both finite and periodic sets in the next section.

3 THE NEW STRONGER E(n)-INVARIANTS OF FINITE AND PERIODIC SETS

Infinitely many pairs of non-isometric sets S ̸≃ Q with equal PDD(S; k) = PDD(Q; k) in Exam-
ple 2.5 motivated the new stronger invariants PDD{h} below. Definition 3.1 makes sense for a finite
set S = M in any metric space. The invariant PDD in Definition 2.3 is the case of order h = 1.

Definition 3.1 (higher-order PDD(S; k1, . . . , kh)). Let S be a periodic point set with a motif M of
m points in Rn. Fix a point p ∈ M , integers h ≥ 1 and k1, . . . , kh ≥ 1. Consider any h distinct

points p1, . . . , ph ∈ S − {p} and the h-order average
2

h(h+ 1)

∑
0≤i<j≤h

|pi − pj | of pairwise dis-

tances between the points p = p0, p1, . . . , ph ∈ S. Extend the row of p in the m×k1 matrix D(S; k1)
from Definition 2.3 by writing the k2 smallest 2-order averages a(p; 1) ≤ · · · ≤ a(p; k2), then the

k3 smallest 3-order averages and so on up to order h. In the resulting m× (
h∑

i=1

ki)-matrix, collapse

any l > 1 equal rows to one row with the weight l/m written in the extra first column. The final
matrix of rows with weights is the h-order Pointwise Distance Distribution PDD(S; k1, . . . , kh).
If (k1, . . . , kh) = (0, . . . , 0, k), the brief notation is PDD{h}(S; k). If k1 = · · · = kh = k, the
m × (kh)-matrix PDD(h)(S; k) := PDD(S; k, . . . , k) consists of the sequentially written k × h

matrices PDD{1}, . . . ,PDD{h}. Then PDD{1} = PDD(1) is PDD from Definition 2.3. ■

Example 3.2 (PDD{2} for the sequences in Fig. 2). The sum
∑

0≤i<j≤2

|pi − pj | is the perimeter of

the triangle on the points p0 ∈ M and p1, p2 ∈ S. The row of a point p ∈ M in PDD{2}(S; k)
consists of the k smallest perimeters (divided by 3) of triangles at the common vertex p. In Fig. 2,
the point p0 = 0 in the motif of S(r) = {0, r, 2 + r, 4} + 8Z has nearest neighbors p1 = r,
p2 = 2 + r at the distances r, 2 + r, and two smallest averaged perimeters 2(2 + r)/3, 8/3. The
point p0 = 0 in Q(r) = {0, r, 2+ r, 4}+8Z has nearest neighbors at the distances 2+ r, 4− r, and
two smallest averaged perimeters 8

3 ,
8
3 . The computations for other points give PDD(S(r); 2, 2) =

r 2 + r 2(2+r)
3

8
3

r 2 2(2+r)
3

2(4−r)
3

2− r 2 2(2+r)
3

2(4−r)
3

2− r 4− r 2(4−r)
3

8
3

 ̸= PDD(Q(r); 2, 2) =


2 + r 4− r 8

3
8
3

2− r 2 + r 4
3

8
3

r 2− r 4
3

8
3

r 2 4
3

8
3

. ■

The factor
2

h(h+ 1)
was chosen to guarantee the Lipschitz continuity with λ = 2 in (1.2d).

Our experiments use h = 2, 3 to substantially strengthen PDD of order h = 1. Indeed, Exam-
ples 3.3, 3.6 will show that PDD(2) distinguishes all known homometric sets for n = 2, 3. The
numbers k1, . . . , kh are usually chosen equal: k = k1 = · · · = kh. Any increase in this number k
of nearest neighbors only adds larger values to the PDD{h} invariants without changing any of the
previous values. Hence k is considered a degree of approximation, not a parameter like a cut-off
radius whose changes can substantially affect local atomic environments. If an atom has different
neighbors at equal distances (or nearly equal up to ε), the order (hence positions) of these neighbors
can be discontinuously swapped under perturbation but the distances change continuously up to 2ε.

Example 3.3 (PDD{2} distinguishes S,Q in Example 2.5). We start with singular cases. If c = 0,
then C = D, C ′ = D′, so S,Q are identical in Fig. 3. If b ∈ {0, 1, 2}, periodic shifts of B ∪ B′

(hence S,Q) become mirror images with respect to the vertical line x = 2. In all other cases,
Example B.1 in the appendix checks that the smallest perimeter of triangles on points of S differs
from the smallest perimeter for Q. Then PDD{2}(S; 1) ̸= PDD{2}(Q; 1) and hence S ̸≃ Q. ■
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Because PDD{h} has ordered columns (by the index k of neighbors) and unordered rows (repre-
senting points in a motif), all such matrices even with different numbers of rows can be compared
by Earth Mover’s Distance, see Definition 3.5. We can convert any PDD{h} into a fixed-size matrix,
which can be flattened into a vector for easy comparisons, while keeping the continuity and almost
all invariant data. Any distribution of m unordered values can be reconstructed from its m moments
defined below. When all weights wi are rational as in our case, the distribution can be expanded to
equal-weighted values a1, . . . , am. The m moments can recover all a1, . . . , am as roots of a poly-
nomial of degree m whose coefficients are expressed via the m moments Macdonald (1998). For
example, any reals a, b are the roots of t2 − (a+ b)t+ ab, where ab = 1

2 ((a+ b)2 − (a2 + b2)).

Let A be any unordered set of real numbers a1, . . . , am with weights w1, . . . , wm, respectively,

such that
m∑
i=1

wi = 1. For any integer l ≥ 1 , the l-th moment (Keeping, 1995, section 2.7) is

µl(A) = l

√
m1−l

m∑
i=1

wiali, so µ1(A) =
m∑
i=1

wiai is the usual average. For l ≥ 2, we normalize by

the factor m(1/l)−1 to prove the continuity of all moments with the Lipschitz constant λ = 2.

Definition 3.4 (Pointwise Distance Moment PDM[l]). Fix integers l, h ≥ 1. For a column A
of the Pointwise Distance Distribution PDD(S; k1, . . . , kh), which consists of unordered numbers
a1, . . . , am with weights from Definition 3.1, write the new column (µ1(A), . . . , µl(A)). The new

l × (
h∑

i=1

ki) matrix is the Pointwise Distance Moment PDM[l](S; k1, . . . , kh). Then PDM[1](S; k)

is called the vector of Average Minimum Distances AMD(S; k) = (AMD1, . . . ,AMDk). ■

The matrix PDM[l] has ordered rows and columns but is a bit weaker than PDD (with the same
h, k1, . . . , kh) because each column is reconstructable from its moments (for large enough l) only up
to permutation, but PDM[l] more quickly filters distant crystals. We can flatten any matrix PDM[l]
with indexed entries to a vector. Vectors u, v ∈ Rm of distances are compared by L∞(u, v) =
max

i=1,...,m
|ui − vi| which controllably changes under perturbations of interatomic distances.

Definition 3.5 (Earth Mover’s Distance EMD Rubner et al. (2000)). Let a X be a space with
a base metric d. Any unordered set {(Ri, wi)}mi=1 of objects Ri ∈ X with weights wi > 0

such that
m∑
i=1

wi = 1 is called a (normalized) weighted distribution. For any such distribu-

tions A = {(Ri(A), wi(A))}m(A)
i=1 and B = {(Ri(B), wi(B))}m(B)

i=1 , the Earth Mover’s Distance

EMD(A,B) = min
fij

m(A)∑
i=1

m(B)∑
j=1

fijd(Ri(A), Rj(B)) is minimized for all real fij ≥ 0 (called flows)

subject to the conditions
m(A)∑
i=1

fij ≤ wj(B),
m(B)∑
j=1

fij ≤ wi(A),
m(A)∑
i=1

m(B)∑
j=1

fij = 1. ■

Figure 4: Left: a comparison of Pauling’s homometric crystals P (±u) for u = 0.03 Pauling &
Shappell (1930), by COMPACK Chisholm & Motherwell (2005), which aligns subsets of 15 (de-
fault, left) atoms and 48 (twice the size of the motif, right). The atoms from different P (±0.03)

are shown in green and gray. Right: EMD is between PDD{h} for k = 100 and Pauling’s crystals
P (±u), which continuously depend on u ∈ [0, 0.25] and are identical at the boundary values.
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Example 3.6 (ablation study). Fig. 4 (left) shows a pair of overlaid Pauling crystals P (±0.03) with
24 atoms in a cubic cell Pauling & Shappell (1930). The importance of PDD{2} in comparison with
the past invariants PDD is demonstrated by the infinite series of periodic sets P (±u) ⊂ R3, which
have the same PDD(P (u); k) = PDD(P (−u); k) for all parameters u ∈ (0, 0.25) and k ≥ 1 but
different PDD{2}(S; 100) and PDD{3}(S; 100) due to distances EMD > 0 in Fig. 4 (right). ■

4 LIPSCHITZ CONTINUOUS METRIC, ASYMPTOTIC, AND TIME OF PDD{h}

This section states the key properties of PDD{h}: the important Lipschitz continuity in Theorem 4.1,
Theorem 4.3 solving Problem 1.2 for n = 1, asymptotic Theorem 4.4, and hardest Theorem 4.5.

For any discrete set S, the packing radius r(S) is the minimum half-distance between points of S.
Theorem 4.1 (Lipschitz continuity). Fix integers h, k1, . . . , kh, l ≥ 1. If each point of a finite or
periodic point set S is perturbed up to a distance ε ∈ [0, r(S)), both PDD(S; k1, . . . , kh) and
PDM[l](S; k1, . . . , kh) change by at most 2ε in the metrics EMD and L∞, respectively. ■

Fig. 5 shows how EMD between PDD{2}s continuously changes under perturbations of sets.

Figure 5: Distance metric EMD between PDD{2} for k = 100 and the homometric 1-periodic sets
S,Q with uniformly sampled a, b, c in Fig. 3. These sets S,Q are isometric for b ∈ {0, 1} but
EMD > 0 for all 0 < b < 1, which experimentally confirms the proof that S ̸≃ Q in Example 3.3.

For a finite set S ⊂ R, a simple complete invariant under translations is the ordered sequence of
inter-point distances but its naive extension to periodic sets is discontinuous. Any hopeful attempt
at Problem 1.2 should start from dimension n = 1, which is finally solved by Theorem 4.3 below.

Definition 4.2 (Pointwise Shift Distribution PSD). For any periodic point set (sequence) S ⊂ R
with a motif M of m points, write down distances from each p ∈ M to its k nearest neighbors q > p
in increasing order in a row of an m× k-matrix. Collapse any l > 1 equal rows to one row with the
weight l/m in an extra first column. The resulting matrix PSD(S; k) is called the Pointwise Shift
Distribution, which also makes sense for any finite set S = M ⊂ R of unordered points. ■

Theorem 4.3. For all finite sets M ⊂ R of m unordered points, PSD(M ;m−1) solves Problem 1.2.
For all periodic point sets S ⊂ R with m points in a motif, PSD(S;m) solves Problem 1.2. ■

To analyze PDD{h}(S; k) as k → +∞, for h, k ≥ 1, choose a real b ≥ h such that
(

b
h

)
=

b(b− 1) . . . (b− h+ 1)

h!
belongs to (k − 1, k]. Set b(h, k) = b + 1 e.g. b(1, k) = k + 1, b(2, k) =

1.5+
√
2k. Let Vn be the unit ball volume in Rn. Any periodic set S ⊂ Rn with a motif of m points

and unit cell of volume vol[U ] has the point packing coefficient PPC(S) = n

√
vol[U ]

mVn
.

Theorem 4.4 (asymptotic of PDD{h}). Let a periodic point set S ⊂ Rn have a cell with a longest
diagonal d. For h, k ≥ 1, let a(h, k) be an average sum in the k-th column of PDD{h}(S; k). Then

2

h+ 1

(
PPC(S) n

√
b(h, k)− d

)
≤ a(h, k) ≤ 2h

h+ 1

(
PPC(S) n

√
b(h, k) + d

)
for k ≥ 1. If h = 1,

lim
k→+∞

a(1, k)
n
√
k

= PPC(S). If h = 2,
2

3
PPC(S) ≤ a(2, k)

2n
√
2k

≤ 4

3
PPC(S) for all big enough k. ■

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 4.4 illustrated in Fig. 15 justifies that there is no need to substantially increase the number
k of neighbors since PDD{h}(S; k) largely depends on the point packing coefficient c(S) when k →
+∞. The practical advice is to choose k depending on the size of a motif or constituent molecule so
that all atoms have enough neighbors to capture the periodic connectivity. We consider k a degree of
approximation similar to the number of decimal places on a calculator. Theorem 4.4 implies similar
bounds for all moments from PDM{h}[l] and means that PDD{h}(S; k) and PDM{h}[l](S; k) are
most discriminative for small values of k, so we used k = 100 and l = 10 in our experiments.

Theorem 4.5 (time of PDD{h}). For any h, k ≥ 1 and a periodic point set S ⊂ Rn with a motif of

m points and a unit cell U with a longest diagonal d and skewness ν(U) =
d

n
√
vol[U ]

, the number

of arithmetic operations to compute PDD{h}(S; k) is proportional to at most mN logN with N ≤

2h

h!
(2h+ 3)hn

(
(2h+ 3)hk + (Vnν(U)m)hn

)
, linear in k, polynomial in m for fixed n, h, ν(U).

5 EXPERIMENTS ON THE WORLD’S FIVE LARGEST DATABASES OF CRYSTALS

This section adapts the new invariants to average summaries in Definition 5.1 and report thousands
of previously unknown (near-)duplicates in the five world’s largest public databases Taylor & Wood
(2019); Gražulis et al. (2009); Zagorac et al. (2019); Jain et al. (2013); Merchant et al. (2023). The
sizes in Table 1 below are the numbers of all periodic crystals (no disorder and full geometric data)
in September 2024 (total number 1,818,588), see more details of all experiments in appendix A.

Table 1: Links and sizes (numbers of pure periodic crystals) of the world’s five largest databases.

database crystals web address
CSD : Cambridge Structural Database 831,126 ccdc.cam.ac.uk/solutions/software/csd
COD : Crystallography Open Database 344,127 www.crystallography.net/cod
ICSD : Inorganic Crystal Struct. Database 105,162 icsd.products.fiz-karlsruhe.de/en
MP : Materials Project by the Berkeley lab 153,235 next-gen.materialsproject.org
GNoME : Graph Net. Materials Exploration 384,938 github.com/google-deepmind/materials discovery

To neutralize the effect of increasing distances AMDk with respect to k, Theorem 4.4 motivated
subtract the asymptotic c(S) 3

√
k in Definition 5.1 for the invariants ADA. Fig. 6 shows how the

purely geometric information easily differentiated between organic-vs-inorganic databases. For all
crystals, ADAk decrease to 0 as k → +∞ justifying our computations up to k = 100 below.

Definition 5.1 (Average/Pointwise Deviations from Asymptotic: ADA,PDA). Distances in
PDD(S; k) are increasing in k by Theorem 4.4, to avoid the dominance by the largest value of
k, the vector ADA(S; k) and matrix PDA(S; k) are obtained from AMD(S; k),PDD(S; k) by
subtracting PPC(S) n

√
i from each i-th coordinate/column, respectively, for all i = 1, . . . , k. ■

Figure 6: The averages of ADA(S; k) across a database vs 3
√
k easily differentiate between ma-

jor chemical types. Left: mostly organic crystals (of main elements H,C,O,N,S,P) whose lack of
symmetry makes the ADAk average smooth for k > 10. Right: mostly inorganic crystals (metals)
whose high symmetry (as in cubic table salt NaCl) explains the wiggling of the ADAk average.
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Hierarchical computation. The new higher-order invariants PDD{h} form a natural hierar-
chy starting from the simpler and faster invariants ADA and PDA. We first used the vector
ADA(S; 100) to find nearest neighbors across all databases by kd-trees Gieseke et al. (2014) up to
L∞ ≤ 0.01Å. Since the smallest inter-atomic distances are about 1Å = 10−10m, atomic displace-
ments up to 0.01Å are considered experimental noise. For the closest pairs found by ADA(S; 100),
the stronger PDA(S; 100) can have only larger distances EMD ≥ L∞ by (Cohen & Guibas, 1997,
section 3). The CSD, COD, ICSD are expected to contain only experimental structures, while MP
and GNoME are obtained by simulations. Table 2 shows that the well-curated 59-year-old CSD
has 0.9% near-duplicate crystals, while more than a third of the ICSD consists of near-duplicates
that are geometrically almost identical so that all atoms can be matched by an average perturbation
up to 0.01Å. (Anosova et al., 2024, section 6) described thousands of more embarrassing exact
duplicates, where chemical elements were replaced while keeping all coordinates fixed. These re-
placements are physically impossible without more substantial perturbations of geometry, so several
journals are investigating data integrity Chawla (2024), see more examples in Appendix A.

The bold numbers in Table 2 count near-duplicates within each database, which should be filtered out
for any analysis or machine learning else the ground truth data becomes skewed, see the percentages
for different thresholds in Fig. 2 (right). Other numbers are matches across different databases.

Table 2: Count and percentage of all pure periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by the distance EMD < 0.01Å on matrices PDA(S; 100).

databases CSD COD ICSD MP GNoME
count % count % count % count % count %

CSD 7687 0.9 272649 32.8 4649 0.6 21 0.0 1 0.0
COD 276328 80.3 19231 5.6 36553 10.6 5239 1.52 2705 0.8
ICSD 4736 4.5 48899 46.5 35189 33.5 16386 15.6 9123 8.7
MP 64 0.0 11989 7.82 14312 9.3 19177 12.5 10681 7.0
GNoME 2 0.0 1801 0.5 2459 0.6 3401 0.9 82859 21.5

Figure 7: Left: Times in seconds for PDD{2}(S; 100) vs the motif size m. Black: random periodic
sets with cell sizes in the range [1, 2] and angles in [60◦, 120◦]. Blue: times for real crystals in the
CSD. Right: growing percentages of near-duplicates in 5 databases for different thresholds in Å.

In the past, the (near-)duplicates were impossible to detect at scale, because the traditional compari-
son through iterative alignment of 15 (by default) molecules by the COMPACK algorithm Chisholm
& Motherwell (2005) is too slow for all-vs-all comparisons. Tables 3 and 4 compare the running
times: hours of PDA(S; 100) vs years of RMSD, extrapolated for the same machine from the
median time 117 ms (average 582 ms) on 500 random pairs in the CSD. On the same 500 pairs,
PDA(S; 100) for two crystals per pair and distance EMD took only 7.48 milliseconds on average.
All experiments were done on a typical desktop (AMD Ryzen 5 5600X 6-core, 32GB RAM).

6 DISCUSSION OF LIMITATIONS, INTEGRITY, AND GROWING SIGNIFICANCE

For more than 100 years, crystallography relied on determining 3D structures from diffraction pat-
terns. Recently, Shen et al. (2022) showed how to convert any crystal into many different homo-
metric structures indistinguishable from the original by diffraction. Earlier Fig. 1 (right) showed
that any known crystal can also be disguised by changing a unit cell, shifting atoms a bit, changing
chemical elements, then claimed as ‘new’, see adversarial Algorithm A.1 in appendix A.
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Table 3: Times in seconds (less than 8.5 hours in total) to find near-duplicates in Table 2 with
EMD ≤ 0.01Å on PDA(S; 100) across five major databases, compare with years in Table 4.

databases CSD COD ICSD MP GNoME sum of times, hrs:min:sec
CSD 403.6 1979.3 42.9 6.2 4.5 0:40:36
COD 1979.3 609.7 2249.8 1525.4 234.5 1:49:59
ICSD 42.9 2249.8 3362.1 4428.1 819.3 2:49:38
MP 6.2 1525.4 4428.1 4431.8 999.9 3:09:51
GNoME 4.5 234.5 819.3 999.9 9436.7 3:11:35

Table 4: These times for all comparisons by COMPACK Chisholm & Motherwell (2005) are ex-
trapolated from the median time of 117 ms on 500 random pairs from the CSD on the same typical
desktop, which completed Table 2 of near-duplicates across all five databases within 8.5 hours.

database periodic crystals all unordered pairs time, milliseconds hours years
CSD 831,126 345,384,798,375 4.04× 1013 11,225,006 1280.5
COD 344,127 59,211,524,001 6.93× 1012 1,924,375 219.7
ICSD 105,162 5,529,470,541 6.47× 1011 179,708 20.5
MP 153,235 11,740,405,995 2.75× 1012 763,126 87.1
GNoME 384,938 74,088,439,453 8.67× 1012 2,407,874 274.8

Such artificially generated structures threaten the integrity of experimental databases Chawla (2024),
which are already skewed by previously undetectable near-duplicates. These challenges motivated
the stronger questions “how much different?” and “what is behind a code?”, which were formalized
in Problem 1.2 aiming for a continuous parametrization of the space of crystals . One limitation is
that a random PDD{h} may not be realizable by a real crystal because inter-atomic distances cannot
be arbitrary. However, these invariants parametrize the ‘universe’ containing all known crystals as
‘shiny stars’ and all not yet discovered crystals hidden in empty spots on the same map, see Fig. 8.

Figure 8: The projections of the five largest databases in the analytically defined invariant coordi-
nates. The color indicates the number of crystals at each location. Experimental crystals occupy the
main hot spot, while simulated crystals appear in sharp lines, see more maps in Appendix A.

The new invariants PDD{h} complete the hierarchy of the simpler and faster invariants AMD and
PDD. While diffraction patterns and PDDs cannot distinguish infinitely many homometric crystals,
PDD{2} distinguished all known (infinitely many) counter-examples. We use PDD{2} only in rare
cases to confirm exact duplicates after much faster filtering by ADA,PDA whose times are near-
linear in k,m by Theorem 4.5 substantially extending (Widdowson & Kurlin, 2022, Theorem 5.1).

By (Widdowson & Kurlin, 2022, Theorem 4.4), PDD and hence the stronger invariant PDD{h}

distinguish all crystals in general position. The full completeness of continuous invariants was open
even in dimension n = 1 Franses & Paap (2004), now complete by Theorem 4.3. The key impact is
the efficient barrier for homometric or noisy disguises of known crystals because the invariants can
quickly find all nearest neighbors of any newly claimed material in the existing databases.

We thank all reviewers for supporting scientific integrity, now guaranteed by the proposed invariants.
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Figure 9: The projection of the world’s five largest databases in the invariants PPC (Point Packing
Coefficient) and ADA1 (Average Deviation from Asymptotic) from Theorem 4.4 and Definition 5.1.

Figure 10: The projections of the GNoME (left) and CSD (right) in the invariants PPC and ADA1.

Figure 11: The projections of the MP (left) and ICSD (right) in the invariants PPC and ADA1.
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Figure 12: The projection of the world’s five largest databases in the invariants ADA2 and ADA3.

Figure 13: The projections of the GNoME (left) and CSD (right) in the invariants ADA2 and ADA3.

Figure 14: The projections of the MP (left) and ICSD (right) in the invariants ADA2 and ADA3.

A APPENDIX: DETAILS OF EXPERIMENTS ON THE FIVE DATABASES

This appendix describes the main experiments in more detail. All sharp lines in Fig. 9 and further
maps indicate families of crystals with a specific geometry, for example, cubic crystals whose full
geometry and hence all invariants depend on a single parameter (the smallest inter-atomic distance).
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Some entries in the CSD and COD are incomplete or disordered (not periodic). After removing such
entries, we were left with 831,126 CSD structures and 344,127 COD structures.

Firstly, we computed PDM[10](S; 100) for all entries, taking 27 min 33 sec for the CSD and 12
mins 15 sec for COD (2 ms per structure on average). To find exact matches between databases by
PDM, we make use of the k-d tree data structure, designed for fast nearest neighbor lookup. A k-d
tree can be constructed from any collection of vectors, which can then be queried for a number of
nearest neighbors of a new vector, using a binary tree style algorithm with logarithmic search time.

We flattened each PDM[10](S; 100) matrix to a vector with 1000 dimensions, constructed a k-d tree
for both CSD and COD, then queried the 10 nearest neighbors for each item in the other. If the most
distant neighbor for any entry is closer than the threshold 10−13Å (within floating point error), we
extend the search and find more neighbors until all pairs within the threshold are found. We were
left with a total of 270,669 matches; an overlap between the databases of one third of the CSD and
almost 80% of COD.

CSD refcode COD ID Notes
LAVFAP 2001334 Mixed types in original CIF
ZAYRUM 2003941 Mixed types in original CIF
FONGAQ01 2005101 Mixed types in original CIF
TIPYOG 2005914 Mixed types in original CIF
HABTAF 2001740 Mixed types in original CIF
AJIRAM01 2100097 Mixed types in original CIF
LABSAI 2001822 Mixed types in COD CIF
DECTAI 4065524 Mixed types in COD CIF
WATMIO 4309447 Mixed types in COD CIF
NAJQUK 4323901 Mixed types in COD CIF
PIHJUL 4030494 Mixed types in COD CIF
ELOJOE 4314231 CSD remarks replaced atom
MARSIH 4321045 CSD remarks replaced atom
KUTWUU 7126770 CSD remarks replaced atom
XAVDEF 4103386 CSD remarks replaced atom
JEMLAP 4101489 CSD remarks replaced atom
QUCXAP 7117360 CSD remarks replaced atom
PIBTAW 1505325 CSD remarks replaced atom
UKAXUB 7234657 CSD remarks replaced atom
POCLOK 2220314 COLYEI is a duplicate
COLYEI 8102533 POCLOK is a duplicate
JEPLIA 2213484 HIFCAB is a duplicate
LALNET 8102594 POPCAA is a duplicate
SELHAU 4027023 One entry is mistaken
PINHUP 1558382 One entry is mistaken
KABHOL 4113866 One entry is mistaken

Table 5: List of 26 matches between the CSD and COD found to have identical geometry but
different chemical compositions.

Of particular interest are the 26 pairs which have different compositions, as the impossibility of
complex organic structures sharing the exact same geometry but not composition implies an error
or labeling issue. The pairs were confirmed as geometric duplicates by the strongest invariants
PDD{h} and found to have different compositions for the reasons in Table 5.

• The original Crystallographic Information File (CIF) has atoms simultaneously labeled as
two types or disagreement with what is reported in the published paper (6 pairs),

• Atoms are labeled as two types in the COD CIF (5 pairs),

• Geometric duplicates known to the CSD gave a match with different compositions (4 pairs),

• A remark in the CSD entry explains that atoms were replaced in the curation process be-
cause the deposited CIF was incorrect (8 pairs),
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• The COD and CSD entries disagree for an unknown reason (3 pairs).

In addition to cross-comparing the CSD and COD, we included the ICSD and Materials Project
database (MP) and compared them all pairwise, as well as searching for duplicates within each.
Tables 6 and 15 below show how many matches were found, and how many also shared the same
composition.

databases matches same composition
CSD vs COD 270,669 270,583
CSD vs ICSD 3,913 3,913
COD vs ICSD 35,051 31,918
COD vs MP 2 2
ICSD vs MP 17 7

Table 6: Number of exact matches (PDM within 10−13Å) between four databases.

databases CSD COD ICSD MP GNoME
count % count % count % count % count %

CSD 36269 4.4 277354 33.4 4947 0.6 103 0.0 3 0.0
COD 277977 80.8 30786 8.9 37233 10.8 6743 2.0 3091 0.9
ICSD 5033 4.8 51604 49.1 42686 40.6 20209 19.2 10605 10.1
MP 152 0.1 14066 9.2 17550 11.5 28806 18.8 13362 8.7
GNoME 9 0.0 2768 0.7 4452 1.2 11124 2.9 197340 51.3

Table 7: Count and percentage of all pure periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by the distance L∞ < 0.01Å on vectors ADA(S; 100).

CSD COD ICSD MP GNoME time (s)
CSD 235.15 180.04 27.28 29.88 13.05 485.40
COD 146.92 66.33 13.38 12.79 9.57 248.99
ICSD 4.21 5.70 5.99 5.37 6.41 27.68
MP 6.30 7.48 10.19 9.32 10.17 43.46
GNoME 6.22 9.66 10.44 9.39 16.83 52.54

Total 541.19

Table 8: Time to find pairs of near-duplicates by ADA(S; 100) within L∞ ≤ 0.01Å between a one
database (left) and another (top). The results are symmetric but times are not.

databases CSD COD ICSD MP GNoME
count % count % count % count % count %

CSD 4019 0.5 266761 32.1 3873 0.5 0 0.0 0 0.0
COD 270455 78.6 11768 3.4 31135 9.1 37 0.0 0 0.0
ICSD 3898 3.7 32566 31.0 9606 9.1 146 0.1 3 0.0
MP 0 0.0 29 0.0 83 0.1 182 0.1 12 0.0
GNoME 0 0.0 0 0.0 3 0.0 12 0.0 4406 1.1

Table 9: Count and percentage of all pure periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by the distance L∞ < 10−6Å on vectors ADA(S; 100).

Table 14 reports the found pairs of close entries that differ by PDA up to 0.01Å meaning that these
structures can be likely matched by perturbing atoms up to 0.01

2 Å on average.

Table 14 was made within 5 hours on AMD Ryzen 5 5600X 6-core RAM 32Gb due to the ultra-fast
search for near-duplicates using the hierarchy AMD,PDD,PDD{2}.

The 2nd row for 0.01Å says that nearly 30% crystals were deposited in the ICSD multiple times
with tiny variations. More than 50% of 0.01-close pairs in all databases (except CSD) differ by
atomic types. In all similar (dozens of) cases found in the CSD, the curators concluded that these
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databases CSD COD ICSD MP GNoME
count % count % count % count % count %

CSD 4013 0.5 266514 32.1 3863 0.5 0 0.0 0 0.0
COD 270205 78.5 11754 3.4 31012 9.0 14 0.0 0 0.0
ICSD 3888 3.7 32455 30.9 9598 9.1 73 0.1 0 0.0
MP 0 0.0 9 0.0 36 0.0 10 0.0 4 0.00
GNoME 0 0.0 0 0.0 0 0.0 4 0.0 3248 0.8

Table 10: Count and percentage of all pure periodic crystals in each database (left) found to have a
near-duplicate in other databases (top) by the distance L∞ < 10−10Å on vectors ADA(S; 100).

CSD COD ICSD MP GNoME time (min:sec)
CSD 226.11 176.47 27.20 29.93 12.98 7:53
COD 140.85 63.19 12.72 12.07 9.35 3:58
ICSD 4.04 4.35 3.75 4.28 6.18 0:23
MP 6.11 7.06 8.85 6.94 9.72 0:39
GNoME 6.20 9.46 10.06 8.78 5.44 0:40

Total 8:23

Table 11: Time in seconds to find matches by ADA100 within 10−6 Å between a one database of
crystals (left) and another (top). Total time to find all pairs is bottom-right, note that results are
symmetric but times are not.

Database Duplicates Groups >1 Largest group # Unique % Unique
CSD 36269 14656 406 809513 97.40%
COD 30786 10536 1001 323877 94.12%
ICSD 42686 8081 2606 70557 67.09%
MP 28806 4610 5362 129039 84.21%
GNoME 197340 33442 5607 221040 57.42%

Table 12: Information about duplicates within five databases, by ADA100 within 0.01 Å. From left
to right: number of entries with a duplicate, number of groups of duplicates, size of the largest
group, total number of unqiue structures, percentage of the database which is unique.

Database Duplicates Groups >1 Largest group # Unique % Unique
CSD 4013 1998 5 829111 99.76%
COD 11754 5725 9 338098 98.25%
ICSD 9598 3900 21 99464 94.58%
MP 10 5 2 153230 100.00%
GNoME 3248 1567 9 383257 99.56%

Table 13: Information about duplicates within five databases, by ADA100 within 10−10 Å. From
left to right: number of entries with a duplicate, number of groups of duplicates, size of the largest
group, total number of unique structures, percentage of the database which is unique.

geometric coincidences with different elements are physically impossible, so several journals started
investigating the relevant publications. The MP and GNoME consist of simulated crystals obtained
by atomic replacements and energy optimization from experimental crystals in the ICSD. The last
two rows in Table 14 imply that replacing atoms is easier than genuinely changing crystal geometry.

The CSD and ICSD had a surprisingly large overlap; many of these duplicates are known to the
CSD and are intentionally in both databases. Since COD contains both organic and inorganic struc-
tures, several thousand matches were found with the ICSD. Out of 35,051 pairs of structures whose
geometry matched, 31,918 had the same composition. The others are simple structures where ge-
ometry can be identical by coincidence, generally cubic structures with one symmetrically unique
site. The Materials Project had few matches with any other database; this is explained by the fact
that the geometry of all structures in the Materials Project are changed in the curation process and
hence won’t match identically even if two crystals are from the same publication, as quoted from
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Table 14: Each database has thousands of (near-)duplicates whose all atomic positions can be
matched by tiny perturbations. This duplication is unexpected for different compositions as replac-
ing an atom with a different one should stronger affect the geometry.

near-duplicates database 10−2Å 10−3Å 10−4Å
pairs of
entries

within a
threshold by

EMD on PDA

CSD 8608 2403 2076
COD 46646 10151 6984
ICSD 291268 38351 11315
MP 346909 32793 3333
GNoME 93035 3568 2742

percentage
of all entries
in close pairs

vs the full
database

CSD 0.91 0.56 0.49
COD 5.30 4.07 3.52
ICSD 29.53 15.51 10.03
MP 10.32 5.61 2.70
GNoME 16.80 1.55 1.26

percentage
of close pairs
with different

chemical
compositions

CSD 0.48 0.25 0.25
COD 50.03 23.86 8.99
ICSD 78.73 63.41 56.18
MP 99.94 99.90 99.19
GNoME 95.02 48.99 43.95

their documentation page: “We relax all cell and atomic positions in our calculation two times in
consecutive runs.”

database matches same composition
CSD 2,036 2,031
COD 6,435 5,893
ICSD 9,941 4,149
MP 6 2

Table 15: Number of exact duplicates (PDM within 10−10Å) in four databases.

Several thousand exact duplicates were found in the CSD, COD and ICSD, some of which are known
intentional duplicates. Of the 2,036 duplicates in the CSD, the 5 with different compositions have
been previously reported to the CSD prompting investigation. The duplicates with different compo-
sitions in the COD and ICSD are simple inorganic cubic structures which can match by coincidence.
The relatively few duplicates in the Materials Project database is again explained by their curation
process changing the geometry of structures.

The full tables of matches between and duplicates within all databases can be found in the sup-
plementary materials. The tables of duplicates contain all pairs of structures within a tolerance of
0.01Å, and hence have more matches than the reported in Table 15 above. 100 exact duplicates
within the CSD, COD and ICSD were further compared with by Earth Mover’s distance on the
stronger invariant PDD{h} with h = 2, confirming they were duplicates. The data in the original
database entries of all of these pairs turned out to be the same. Tables of these duplicates can also
be found in the supplementary materials.

COMPACK Chisholm & Motherwell (2005) is a heuristic process that tries to overlay molecules
of two structures and minimize deviations in atomic positions, as such there is large variability in
run time, with some comparisons leaving COMPACK stuck in an infinite loop to eventually time
out. It also depends on crystals having well-defined and separate molecules, rather than applying
to all periodic point sets. Some pairs of crystals such as the CSD entries HIFCAB and JEPLIA are
reported as being distinct by COMPACK despite being geometrically identical. For COMPACK, the
median time of 117 ms per comparison is extrapolated to all comparisons in Table 4.

In November 2023, Nature published two papers attracting a lot of interest Peplow (2023):

• Google’s DeepMind paper Merchant et al. (2023) claimed that “AI tool GNoME finds 2.2 million
new crystals, including 380,000 stable materials that could power future technologies”, and
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• the Berkeley A-lab paper Szymanski et al. (2023) claimed that “ the A-Lab realized 41 novel
compounds ... using large-scale ab initio phase-stability data from Materials Project and Google”.

Rebutting both papers, domain experts found “scant evidence for compounds that fulfill the trifecta
of novelty, credibility, and utility” Cheetham & Seshadri (2024) and concluded that “none of the
materials produced by A-lab were new: the large majority were misclassified, and a smaller number
were correctly identified but already known” Leeman et al. (2024). Here we additionally review the
GNoME database of 384,398 available CIFs goo (2023). The GNoME paper used the Pymatgen
structure matcher pym whose first three steps are quoted below:

“1. Given two structures: s1 and s2

2. Optional: Reduce to primitive cells.

3. If the numbers of sites do not match, return False.”

If step 2 above is optionally missed, step 3 can output False (no match) for identical crystals given
with different non-primitive cells. If step 2 is enforced, step 3 will output False (no match) for any
nearly identical crystals, whose primitive cells differ by scaling due to a tiny atomic displacement
as in Fig. 1 (right). Since many experimental and simulated structures can differ only slightly, a
comparison based on discontinuous properties can miss many near-duplicates.

On another hand, any positive tolerance in all comparisons including Pymatgen (and other software)
mathematically leads to all structures being equivalent due to the transitivity axiom. Hence the
continuity condition(c) in Problem 1.2 is essential for justified comparisons of crystals.

After filtering all CIFs in GNoME by chemical composition and unit cell volume, we found four
CIFs (4135ff7bc7, 6370e8cf86, c6afea2d8e, e1ea534c2c) with equal chemical compositions and
unit cell volumes (within 10−8Å); their CIF files turned out to be identical symbol-for-symbol. In the
quadruple 000ce7959c, 5dbe5a510a, f6bf95267d, f6f12f1f29, all atomic coordinates are identical
but unit cell parameters differ only in the 6th decimal place in Angstroms.

Further, GNoME contains 68 triples and 1367 pairs of CIFs with equal compositions and cell vol-
umes. Among them, 43 triples and 1089 pairs of CIFs are identical texts, see tables in the supple-
mentary materials. We also found 30K+ CIFs that have identical unit cells (with all parameters to
the last digit) to another CIF in GNoME, e.g. two groups of 38 and 39 CIFs with the same unit cells.

The above analysis didn’t require any invariants, only comparisons of geometric data in the given
CIFs without any transformation by rigid motion. In the past, coincidences in different CIFs were
caught manually, e.g. some identical CIFs in GNoME can be found after ordering all CIFs by file
size in bytes.

Crystallography experienced several crises in structure determination from the unexpected form of
ritonavir Morissette et al. (2003) costing the pharmaceutical industry billions of dollars to the mill
of 800 papers Else (2022), which put under investigation nearly 1000 structures in the CSD. These
cases can grow in scale by the algorithm below.

Algorithm A.1 (adversarial generation). One can generate any number of ‘new’ structures as fol-
lows.

1. Take a Crystallographic Information File of a real periodic material from any public database.

2. Change a unit cell by applying any integer matrix with determinant 1 to a given basis.

3. Arbitrarily extend a unit cell by a random integer factor in each direction of the basis.

4. Randomly perturb any cell parameters and atomic coordinates up to a small threshold.

5. Replace some non-common chemical elements with similar ones in the periodic table.

Step 1 can choose a non-famous crystal with at least one non-organic element for a future substi-
tution. Steps 2 and 3 are optional but include many choices to generate more structures. Step 4
is essential because most comparisons miss near-duplicates as in Fig. 1 (right). Step 5 is the final
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disguise to avoid detection by chemical composition. One can also check if a new composition has
not appeared in the main databases. After obtaining a new CIF (or millions of CIFs), can we deposit
these ‘new’ materials and publish a paper?

On the experimental side, some journals and databases now require extra data such as structure
factors from diffraction, which can be perturbed similar to a CIF.

On the computational side, most simulations claim that their materials are ‘stable’ meaning that their
energy is below the convex hull over a spaces of compositions. Hohenberg and Kohn Hohenberg &
Kohn (1964) proved the existence of a universal energy potential but there is no explicit formula.
Since many algorithms calculate different energies, ‘stable’ materials are user-dependent.

Even if we fix one easily computable energy such as the Lennard-Jones potential Jones (1924),
numerical approximations can slightly deviate from a local energy minimum. Hence adding noise
to a real structure might produce near-duplicates that have smaller energies, especially if millions
of dollars can buy longer simulations. Geometrically, sampling many points around a vertex on the
boundary of a convex hull will likely produce many new vertices on the boundary of a perturbed
convex hull. If it is still unclear that Algorithm A.1 can generate millions of plausibly looking ‘new’
materials, we will provide a public implementation. Luckily, mathematics came to the rescue with
the counter-algorithm below, which is now being implemented by the Cambridge Crystallographic
Data Centre for validating any new structures deposited to the CSD.
Algorithm A.2 (fast detection of near-duplicate periodic structures). We find all pairs of periodic
structures that differ by atomic displacements up to a given threshold ε.

1(a). Split a given database of CIFs into groups with equal (or ε-close) unit cell volumes.

1(b). Split each group into subgroups of CIFs with equal (or ε-close) unit cell parameters.

1(c). Split each subgroup into subgroups of CIFs whose motifs are ε-close as sets of unordered
points. Exclude all the found (near-)duplicates from further comparisons.

2. For remaining periodic point sets S, compute PDD(S; k) and AMD(S; k), say for k = 100.

3. Find all pairs of structures with distances L∞ ≤ 2ε between their AMD vectors, which can be
done in near-linear time by fast nearest neighbor search Elkin & Kurlin (2023). If L∞ > 2ε, the
structures cannot be obtained from each other by perturbing all atoms up to ε.

4. For any remaining pair, compute the Eearth Mover’s Distance (EMD) between PDDs, then
between PDD{2}s. If EMD > 2ε, the structures cannot be obtained by perturbing all atoms up to
ε due to Theorem 4.1.

5. The EMD calculation finds an optimal matching between atoms, so we can check the displacement
of any atom to estimate how much structures differ by atomic positions.

Step 1 is optional and can save time by filtering out easy duplicates, so all thresholds are not essential.
Chemists in certain areas can agree not to distinguish materials if atomic displacements are within
0.1Å or 0.01Å. Instead of the angle between basis vectors v1, v2, Step 1(b) can use the length
|v1 − v2| of the diagonal for comparisons. Step 1(c) can compare finite sets of unordered points
by SCD invariants Widdowson & Kurlin (2023): if EMD > 2ε between SCDs, the sets cannot be
obtained from each other by perturbing all points up to ε. Algorithm A.2 uses only geometry without
chemical elements to counter-act Step 5 in Algorithm A.1 and finds all pairs of structures that can
be potentially obtained by atomic displacements up to ε. All other pairs are filtered out due to the
Lipschitz continuity of PDD and SCD. The final list of (near-)duplicates might be short enough for
traditional chemistry-based validation.

The International Union of Crystallography (IUCr) still discusses changes to the definition of a
crystal Brock (2021) because the fundamental question “same or different” has never been rigorously
answered. This question was openly asked only in 2020 Sacchi et al. (2020) when the experimental
comparisons by the classical tools such as powder diffractions confirmed the unresolved ambiguities
that were known since 1944 Patterson (1944).

The IUCr online dictionary iso says that “crystals are said to be isostructural if they have the same
structure, but not necessarily the same cell dimensions nor the same chemical composition, and with
a ‘comparable’ variability in the atomic coordinates to that of the cell dimensions and chemical
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composition ... CaCO3, NaNO3, and FeBO3 are isostructural.” Now a crystal structure is defined
as a class of periodic sets under rigid motion in R3 without repeating the same word “structure”,
especially because CaCO3, NaNO3, FeBO3 can be geometrically distinguished.

Despite the steady progress in experimental methods Patterson (1944) and mathematical theory
Rosenblatt & Seymour (1982), the question “same or different” Sacchi et al. (2020) remained open
for homometric structures since 1930 Pauling & Shappell (1930). While the past PDD invariants
cannot distinguish infinitely many homometric crystals, the new higher-order PDD{h} distinguished
all (infinitely many) such structures in dimensions n = 1, 2, 3 by using only order h = 2, see
Theorem 4.3, Examples 3.3, and 3.6.

B APPENDIX: DETAILED PROOFS OF ALL RESULTS

This appendix finishes Example 3.3, illustrates Theorem 4.4 and proves all theorems from section 4.

Example B.1 (detailed argument why PDD{2} distinguishes S,Q in Example 2.5). After consider-
ing the degenerate cases c = 0 and b ∈ {0, 1, 2} in Example 3.3, without loss of generality, we can
assume that 1 < b < 2, then d2 > d3, d5 > max{d4, d6}, min{d7, d8, d9} > d6.

The set S in Fig. 3 has a motif of 6 points, which generate isometric triangles △ABC ≃ △A′B′C ′

with the perimeter d2+d4+d6, see details in Example 2.5. The other potentially smaller perimeters
of triangles on points of S are d3+d5+d6, d3+d4+d7. The smallest perimeter for S is the minimum
of these sums. The smallest perimeter for Q is the minimum of d2+d4+d5, d2+d5+d6, d3+d4+d6.

If t = d2 + d4 + d6 equals one of the last sums, one of the following cases holds. if d2 = d3 then
b = 1, if d4 = d5 then c = 0, if d6 = d7 then b = 2 (or b = 0), so S ≃ Q.

If t = d3 + d5 + d6 is a minimal perimeter for S, then t can’t equal any of the three sums for Q.
Indeed, if t = d2 + d5 + d6 then d2 = d3. If t = d3 + d4 + d6 then d4 = d5. The minimality of t for
S means that d3 + d6 < d2 + d4, so t = d3 + d5 + d6 can’t equal d2 + d4 + d5 for Q.

If t = d3 + d4 + d7 is a minimal perimeter for S, then t can’t equal any of the three sums for Q.
Indeed, if t = d3+d4+d6 then d6 = d7. The minimality of t for S means that d3+d7 < d2+d6 <
d2 + d5, so t = d3 + d4 + d7 < d2 + d4 + d5 for Q. Similarly, d4 + d7 < d5 + d6 implies that
t = d3 + d4 + d7 < d3 + d5 + d6 < d2 + d5 + d6.

In all these cases, S,Q become isometric. Hence the smallest perimeters in PDD{2} for k = 1
distinguish all pairs of the homometric sets S,Q. The same conclusion holds for more general sets
obtained from S,Q by periodic translations in other directions (along the y-axis or even in any
Rn), see Fig. 10 in Pozdnyakov & Ceriotti (2022), when extra periods are large and don’t affect any
triangles with the smallest perimeters.

Since any lattice Λ ⊂ Rn has a single point in a motif, any Pointwise Distance Distribution
PDD{h}(Λ; k) is a single row of the length k, which can be visualized as a polygonal curve de-
pending on k. Fig. 15 illustrates Theorem 4.4 for h = 2, 3 and six basic lattices Λ ⊂ R2, and

supports the conjecture that
a(h, k)

n
√
b(h, k)

has a limit as k → +∞ for any order h > 1.

Fig. 16 shows the six 2D lattices illustrating the asymptotic behaviour of PDD{h} in Fig. 15.

An explicit upper bound for the time complexity in Theorem 4.5 will be proved after Theorem 4.4,
because both results will use Lemmas B.5, B.6, B.7. The proof of Theorem 4.1 is split into the parts
(PDD and PDM) based on Lemmas B.3 and B.4, respectively. We start from Theorem B.2, which
proves the invariance of PDD{h} under isometry and changes of a unit cell, and can be considered
a partial case of Theorem 4.1 for perturbation ε = 0.

Theorem B.2 (invariance of PDD{h}). For a finite unordered set S in any metric space or a periodic
point set S in any Rn, the higher-order Pointwise Distance Distribution PDD{h}(S; k1, . . . , kh)
from Definition 3.1 is an isometry invariant of the set S for any integers h, k1, . . . , kh ≥ 1.
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Figure 15: The asymptotic behaviour of the higher-order PDD{2}(Λ; k) and PDD(3)(Λ; k) for the
six lattices Λ ⊂ R2 in Fig. 16. Left: h = 2. Right: h = 3.

Figure 16: The 2D lattices used in Fig. 15. 1st: a generic black lattice Λ1 with the basis

(1.25, 0.25), (0.25, 0.75) and c(Λ1) =

√
7

8π
≈ 0.525. 2nd: the blue hexagonal lattice Λ2 with

the basis (1, 0), (1/2,
√
3/2) and c(Λ2) =

√√
3

2π
≈ 0.528. 3rd: the orange rhombic lattice Λ3 with

the basis (1, 0.5), (1,−0.5) and c(Λ3) =

√
1

π
≈ 0.564. 4th: the purple rhombic lattice Λ4 with

the basis (1, 1.5), (1,−1.5) and c(Λ4) =

√
3

π
≈ 0.977. 5th: the red square lattice Λ5 with the

basis (1, 0), (0, 1) and c(Λ5) =

√
1

π
≈ 0.564. 6th: the green rectangular lattice Λ6 with the basis

(2, 0), (0, 1) and c(Λ6) =

√
2

π
≈ 0.798.

For a finite set S of m points, if any ki is greater than the number
(
m−1

i

)
of (i + 1)-tuples with a

fixed point p ∈ S, we set all superfluous sums to the last maximum value.

Proof of Theorem B.2. Firstly, for any periodic point set S ⊂ Rn, we show that scaling up a unit
cell U to a non-primitive cell keeps PDD{h} invariant. It suffices to scale up U by a factor l, say
along the first basis vector v1 of U , then the number m of motif points of S is multiplied by l.

Then the matrix DlU (S; k1, . . . , kh) consisting of smallest average sums in Definition 3.1 has the

larger size lm × (
h∑

i=1

ki) in comparison with the original m × (
h∑

i=1

ki) matrix DU (S; k1, . . . , kh)

but each row is repeated l times for the shifted points p+ iv1, where p is any point from the original
motif M = S ∩ U of S, for i = 0, . . . , l − 1.

Secondly, we show that the matrix DU (S; k1, . . . , kh), hence PDD(S; k1, . . . , kh), is independent
of a primitive cell U . Let U, V be any primitive cells of a periodic set S ⊂ Rn with a lattice Λ. Any
point q ∈ S ∩ V can be translated by a vector of Λ to a point p ∈ S ∩ U and vice versa. These
translations preserve distances and establish a bijection between the motifs S ∩ U ↔ S ∩ V , and a
bijection between all rows of DU (S; k1, . . . , kh) ↔ DV (S; k1, . . . , kh).

Thirdly, we prove that PDD{h}(S; k1, . . . , kh) is preserved by any isometry f : S → Q. Any
primitive cell U of S is bijectively mapped by f to the unit cell f(U) of Q, which should be also
primitive. Indeed, if Q is preserved by a translation along a vector v that doesn’t have all integer
coefficients in the basis of f(U), then S = f−1(Q) is preserved by the translation along f−1(v),
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which doesn’t have all integer coefficients in the basis of U , so U was non-primitive. Since U and
f(U) have the same number of points from S and Q = f(S), the isometry f gives a bijection
between the motifs S ∩ U ↔ Q ∩ f(U).

For any finite or periodic sets S,Q, since f maintains distances, the k smallest average sums of
all pairwise distances between any point p ∈ S ∩ U and p1, . . . , ph ∈ S, equal the same sums
for f(p) ∈ Q ∩ f(U) and f(p1), . . . , f(ph) ∈ Q. These coincidences of all sums imply that
PDD{h}(S; k1, . . . , kh) = PDD{h}(Q; k1, . . . , kh) up to a permutation of rows.

Recall that the distance L∞ between ordered lists of k real numbers (or vectors A = (a1, . . . , ak)
and B = (b1, . . . , bk) in Rk) is L∞(A,B) = max

i=1,...,k
|ai − bi|.

Lemma B.3 (perturbation of an ordered list). Let 0 ≤ a1 ≤ · · · ≤ ak be a list A of ordered real
numbers. For some ε ≥ 0, let a map g perturb each ai to g(ai) so that |g(ai) − ai| ≤ ε for
i = 1, . . . , k. Let B be the list obtained by putting g(a1), . . . , g(ak) in increasing order. Then
L∞(A,B) ≤ ε.

Proof. It suffices to prove that the i-th number bi = g(aj) in the ordered list B is ε-close to the
i-th number ai in the original list A, so ai − ε ≤ bi ≤ ai + ε for i = 1, . . . , k. Firstly, assume by
contradiction that bi < ai − ε.

Since every number of A was perturbed by at most ε, the i numbers b1 ≤ · · · ≤ bi < ai − ε can
be obtained only as perturbations of numbers from A that are strictly less than ai. However, the
ordered list A has at most i− 1 numbers that are less ai. This contradiction proves that bi ≥ ai − ε.
The similar argument proves that bi ≤ ai + ε.

Proof of Theorem 4.1 for PDD{h}. Let a map g perturb any point p ∈ S to an ε-close point g(p) ∈
Q so that d(g(p), p) ≤ ε. Here d can denote a base metric (if S is finite) in a metric space containing
S or the Euclidean distance in the case of a periodic set S ⊂ Rn.

In the periodic case, if the perturbation is small enough so that ε < r(S), Lemma 7 from Widdowson
et al. (2022) proves that S,Q have a common lattice with a unit cell U such that S = Λ+(S∩U) and
Q = Λ+(Q∩U). Then S,Q share a unit cell U and have the same number m = m(S) = m(Q) of
points in U . Expand PDD{h} of both S,Q to the matrices with m equally weighted rows. Reorder
m rows of these matrices according to the bijection p 7→ g(p) for p ∈ S ∩ U .

Since each point p ∈ S is perturbed up to ε, any distance d(p, q) between p, q ∈ S, hence any
average sum a from Definition 3.1, changes by at most 2ε due to the triangle inequality for the

metric d. Recall that by Definition 3.1 the m × (
h∑

i=1

ki) matrix D(S; k1, . . . , kh) is considered a

concatenation of the h smaller m× kj matrices D{j}(S; kj), one for every order j = 1, . . . , h.

Some of the average sums from each original matrix D{j}(S; kj) can increase up to 2ε and will be
outside the kj smallest average sums in the new matrix D{j}(S; kj) for i = 1, . . . , h. In this case,
for each row i = 1, . . . ,m and j = 1, . . . , h, let k(i, j) ≥ kj be the maximum index such that the
k(i, j)-th smallest average sum (of pairwise distances between j + 1 points including pi ∈ S) for S
is at most 2ε plus the largest average sum on j + 1 points from the original matrix D{j}(S; kj) in
the i-th row.

Set k′j = max
i=1,...,m

k(i, j) ≥ kj for j = 1, . . . , h. Then the i-th row of D{j}(Q; kj) is obtained from

the i-th row of D{j}(S; k′j) of the length k′j by changing every value by at most 2ε, putting them
in increasing order, and taking only the first kj ≤ k′j smallest values. For each i = 1, . . . ,m and
j = 1, . . . , h, Lemma B.3 implies that the i-th rows of the extended length k′j differ in D{j}(S; k′j)
and its 2ε-perturbation by at most 2ε in the metric L∞.

The same conclusion holds for the shorter i-th rows Ri,j(S) and Ri,j(Q) of the original length kj in
the matrices D{j}(S; kj) and D{j}(Q; kj), respectively, so L∞(Ri,j(S), Ri,j(Q)) ≤ 2ε. For each
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of S,Q, concatenate the h rows Ri,1, . . . , Ri,h into one row Ri of the length
h∑

i=1

ki, which maintains

the same upper bound L∞(Ri(S), Ri(Q)) ≤ 2ε for i = 1 . . . ,m.

To prove that EMD ≤ 2ε, define the simple 1-1 partial flows from the m rows of D(S; k1, . . . , kh)

to the m rows of D(Q; k1, . . . , kh) by setting fii =
1

m
and fij = 0 for i ̸= j, where i, j = 1, . . . ,m.

Then
EMD(PDD(S; k1, . . . , kh),PDD(Q; k1, . . . , kh)) ≤

m∑
i,j=1

fijL∞(Ri(S), Rj(Q)) =
1

m

m∑
i=1

L∞(Ri(S), Ri(Q))

≤ 2ε since EMD minimizes the cost over all choices of fij subject to the constraints of Defini-
tion 3.5.

The second part of Theorem 4.1 for PDM needs Lemma B.4 estimating derivatives of moments.

Lemma B.4 (derivatives of moments). For any vector A = (a1, . . . , am) of positive real numbers,

the l-th moment µl(A) = l

√
m1−l

m∑
i=1

wiali with fixed weights w1, . . . , wm > 0 such that
m∑
i=1

wi = 1

has
m∑
i=1

∂µl

∂ai
≤ 1.

Proof. For simplicity, we first remove the factor m(1/l)−1.

∂µl

∂ai
= wia

l−1
i

(
m∑
i=1

wia
l
i

)(1/l)−1

≤ w
1/l
i

 wia
l
i

m∑
i=1

wiali


(l−1)/l

≤ w
1/l
i , where we used wia

l
i ≤

m∑
i=1

wia
l
i for a1, . . . , am > 0. The power means inequality in

section 3.1 of Bullen (2003) implies that

1

m

m∑
i=1

w
1/l
i ≤

(
1

m

m∑
i=1

wi

)1/l

= m−1/l,

so
m∑
i=1

w
1/l
i ≤ m1−(1/l). After reinstating the factor m(1/l)−1, we get

m∑
i=1

∂µl

∂ai
≤

m(1/l)−1
m∑
i=1

w
1/l
i ≤ 1.

Proof of Theorem 4.1 for PDM. To prove the Lipschitz continuity of the l × (
h∑

i=1

ki) matrix

PDM[l](S; k1, . . . , kh), take any column A = (a1, . . . , am) of PDD(S; k1, . . . , kh). Due to the
proved continuity of A in the metric L∞ with the Lipschitz constant λ = 2, it suffices to check

that |µl(B)− µl(A)| ≤ L∞(A,B) for any l-th moment µl(A) = l

√
m1−l

m∑
i=1

wiali and any vectors

A,B ∈ Rm.

Consider the function fl(t) = µl(tB + (1− t)A)− µl(A) for t ∈ [0, 1], so fl(0) = 0 and fl(1) =

µl(B)−µl(A). Mean value Theorem 5.10 in Rudin et al. (1976) says that fl(1)− fl(0) =
dfl
dt

(t0) ·
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(1− 0) for some t0 ∈ [0, 1], so 0 ≤ fl(1) ≤ max
0≤t≤1

∣∣∣∣dfldt
∣∣∣∣. It remains to bound the derivative:∣∣∣∣dfldt

∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

∂µl

∂ai
· (bi − ai)

∣∣∣∣∣ ≤ max
i=1,...,m

|ai − bi|
m∑
i=1

∂µl

∂ai

≤ max
i=1,...,m

|ai − bi| = L∞(A,B) by Lemma B.4.

Proof of Theorem 4.3. For a finite set S ⊂ R of m unordered points, we prove that S can be
reconstructed from PDD(S;m−1) uniquely up to isometry. Indeed, the number m can be assumed
to be known as one plus the number columns in PDD(S;m− 1). Find a row R whose last distance
d is maximal across the whole PDD(S;m− 1).

This maximal distance is achieved exactly for two most distant points of S, otherwise PDD(S;m−
1) is unrealizable by S. These two most distant points can be fixed at the positions 0 and d up to
isometry of R. All other m− 2 points of S are uniquely determined by the first m− 2 distances in
the row R, which should be all distinct.

For a periodic sequence S ⊂ R, the Pointwise Shift Distribution PSD(S; k) similarly to PDD
whose rows are unordered as for PDD(S; k), is invariant under rigid motion, which is a translation
in R. Hence EMD is a metric on PSDs, which we consider weighted distributions of unordered
rows. The Lipschitz continuity of PSD(S; k) is almost identical to Theorem 4.1 for PDD(S; k).

The time to compute PDD(S; k) is quadratic in the size m of a motif and linear in the number k of
neighbors. Indeed, S have a motif M of m points 0 = p0 < p1 < · · · < pm−1 < pm and period
L = pm − p0. For any point pi ∈ M , the distance to its k-th neighbor is pi+k−mN − pi + LN ,
where N = [k/m] is the integer part and pj = pj−m + L for m ≤ j < 2m. So all k neighbors of
pi are computed in linear time in both k,m, hence the total time over m points of M is quadratic in
m.

Now we prove that any periodic point set S ⊂ R can be reconstructed (uniquely up to translation)
from any row a1 < · · · < am−1 < am of PSD(S;m) by writing the points of a motif as pk =
ak+1 − a1 for k = 0, . . . ,m− 1, where p0 = 0, and setting the period of S to dm.

The number m is given as the number of columns of PSD(S;m). The completeness can be stated
as follows: any periodic sequences S,Q ⊂ R whose motifs have at most m points are related
by translation if and only if PSD(S;m) = PSD(Q;m) as weighted distributions of unordered
rows.

The invariant PSD(S; k) can be enhanced to a complete invariant under isometry (including reflec-
tions) in R as follows. Let S̄ be the mirror image of S under reflection x 7→ −x. In any row
a1 < · · · < ak of PSD(S; k) for k ≥ m, we can use the m-th distance am equal to the period L to
write the corresponding row

L− am−1 < · · · < L− a1 < 2L− am−1 < . . .

in the new matrix PSD(S̄; k). Any periodic sequences S,Q are related by isometry in R if and only
if PSD(S;m) = PSD(Q;m) or PSD(S̄;m) = PSD(Q;m).

Lemma B.5 (bounds of distances and their averages). Let S ⊂ Rn be any periodic point set. For any
h, k ≥ 1 and a point p ∈ S, let a(h, k) be the k-th smallest average sum achieved for of all pairwise
distances between p and h other points p1, . . . , ph ∈ S, see Definition 3.1. Set R = max

i=1,...,h
|pi−p|.

Then
2R

h+ 1
≤ a(h, k) ≤ 2hR

h+ 1
.

Proof. After translating p ∈ S to the origin 0 ∈ Rn, one can assume that p = 0. Let p1 ∈ S be
a point such that R = |p1| = max

i=1,...,h
|pi|. For any other point pi ̸= p1, the triangle inequalities

|pi|+ |p1 − pi| ≥ |p1| = R imply that

a(h, k) =
2

h(h+ 1)

∑
0≤i<j≤h

|pi − pj | ≥
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≥ 2

h(h+ 1)

(
|p1|+

h∑
i=2

(|pi|+ |p1 − pi|)

)
≥

≥ 2

h(h+ 1)

(
R+

h∑
i=2

R

)
=

2R

h+ 1
.

For the upper bound of a(h, k), we use |pi| ≤ R and the triangle inequalities |pi−pj | ≤ |pi|+|pj | ≤
2R as follows:

a(h, k) =
2

h(h+ 1)

 h∑
i=1

|pi|+
∑

1≤i<j≤h

|pi − pj |)

 ≤

≤ 2

h(h+ 1)

 h∑
i=1

R+
∑

1≤i<j≤h

2R

 =

=
2

h(h+ 1)

(
hR+

h(h− 1)

2
2R

)
=

2hR

h+ 1
,

which finishes the proof of the upper bound.

For h = 1, the bounds of Lemma B.5 give the exact equality a(1, k) = R. Lemma B.6 was proved
in a slightly more general form in Lemma 11 from Widdowson et al. (2022).

Lemma B.6 (number of points in a ball). Let S ⊂ Rn be any periodic point set with a unit cell
U , which has m points of S and generates a lattice Λ and has a longest diagonal d. For any point
p ∈ S ∩ U and a radius r, consider

U−(p; r) =
⋃
v∈Λ

{(U + v) such that (U + v) ⊂ B̄(p; r)},

U+(p; r) =
⋃
v∈Λ

{(U + v) such that (U + v) ∩ B̄(p; r) ̸= ∅}.

Then the number of points of S in the closed ball B̄(p; r) with the center p and any radius r ≥ d

has the bounds
(
r − d

c(S)

)n

≤ m
vol[U−(p; r)]

vol[U ]
≤ |S ∩ B̄(p; r)| ≤ m

vol[U+(p; r)]

vol[U ]
≤
(
r + d

c(S)

)n

,

where c(S) = n

√
vol[U ]

mVn
, vol[U ]is the volume of U , Vn is the unit ball volume. ■

For Theorem 4.4, we prove the following slightly updated bounds:
2

h+ 1

(
c(S) n

√
b(h, k) − d

)
≤

a(h, k) ≤ 2h

h+ 1

(
c(S) n

√
b(h, k) + d

)
for k ≥ 1, where b(h, k) equals any real number b+ 1 such

that b ≥ h and
(

b
h

)
=

b(b− 1) . . . (b− h+ 1)

h!
∈ (k − 1, k], e.g. one can set b(1, k) = 1 + k

and b(2, k) = 1.5 +
√
2k.

Lemma B.7 (increasing binomial coefficient). For any fixed integer h ≥ 1, the binomial coefficient(
b
h

)
=

b(b− 1) . . . (b− h+ 1)

h!
is strictly increasing for any real b ≥ h so that if h ≤ b < c

then
(

b
h

)
<

(
c
h

)
.

Proof. The derivative
d

dx

(
x
h

)
> 0 for any x ≥ h.
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Proof of Theorem 4.4. To prove the lower bound for the k-th smallest sum a(h, k), set r =
h+ 1

2
a(h, k). For any point p in a motif of S, consider the closed ball B̄(p; r) with the center

p and radius r. By the lower bound of Lemma B.5, all points p1, . . . , ph ∈ S that are used for

computing a(h, k) have R = max
i=1,...,h

|pi − p| ≤ h+ 1

2
a(h, k) = r and hence belong to the ball

B̄(p; r).

By the upper bound of Lemma B.6, if this ball contains l points of S (excluding p), then l + 1 ≤(
r + d

c(S)

)n

. By using one fixed point p and any h of l other distinct points p1, . . . , ph ∈ S∩ B̄(p; r),

we can form
(

l
h

)
=

l(l − 1) . . . (l − h+ 1)

h!
tuples p, p1, . . . , ph whose average sums of all

pairwise distances should include all k smallest values up to the k-th a(h, k). Hence
(

l
h

)
≥ k.

For l ≥ h = 2, the last inequality is
l(l − 1)

2
≥ k, l2− l−2k ≥ 0, l ≥ 1 +

√
1 + 8k

2
≥ 0.5+

√
2k.

For any h ≥ 1, let b(h, k) = b+1 satisfy b ≥ h and
(

b
h

)
=

b(b− 1) . . . (b− h+ 1)

h!
∈ (k−1, k],

e.g. one can set b(2, k) = 1.5 +
√
2k. By Lemma B.7,

(
l
h

)
≥ k for l ≥ h implies that

l ≥ b = b(h, k)− 1. Then(
r + d

c(S)

)n

≥ l + 1 ≥ b(h, k),
r + d

c(S)
≥ n
√

b(h, k),

h+ 1

2
a(h, k) = r ≥ c(S) n

√
b(h, k)− d,

a(h, k) ≥ 2

h+ 1

(
c(S) n

√
b(h, k)− d

)
.

To prove the upper bound for the k-th sum a(h, k), set R =
h+ 1

2h
a(h, k) and consider any r < R.

By the upper bound of Lemma B.5, p with any other h points p1, . . . , ph ∈ S∩ B̄(p; r) have average

sums that are at most
2hr

h+ 1
<

2hR

h+ 1
= a(h, k), so less than the k-th smallest sum a(h, k). If the

ball B̄(p; r) contains l points of S (excluding p), then these points can form at most k − 1 tuples

consisting of p and h of l other vertices, so
(

l
h

)
≤ k−1. By Lemma B.7 for b = b(h, k)−1 ≥ h,(

b
h

)
=

b(b− 1) . . . (b− h+ 1)

h!
∈ (k− 1, k] implies that l < b = b(h, k)− 1. Lemma B.6 gives

us (
r − d

c(S)

)n

≤ l + 1 < b(h, k),
r − d

c(S)
< n
√

b(h, k).

Since the resulting inequality r < c(S) n
√
b(h, k) + d holds for all r < R, where R =

h+ 1

2h
a(h, k)

is fixed, we get
h+ 1

2h
a(h, k) = R ≤ c(S) n

√
b(h, k) + d,

a(h, k) ≤ 2h

h+ 1

(
c(S) n

√
b(h, k) + d

)
.

If h = 1, both bounds have the same main term:

c(S) n
√
b(1, k)− d ≤ a(h, k) ≤ c(S) n

√
b(1, k) + d.
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If we divide both sides by n
√
k and k → +∞, we get lim

k→+∞

a(1, k)
n
√
k

= c(S). We replaced k + 1

with k in b(1, k) because lim
k→+∞

n
√
k + 1
n
√
k

= 1 for any fixed dimension n.

For similar reasons and h = 2, the ratio
a(2, k)
2n
√
2k

has the asymptotic bounds
2

3
c(S) and

4

3
c(S) as

k → +∞.

We conjecture that lim
k→+∞

a(h, k)
hn
√
hk

exists for any h ≥ 2. If yes and this limit differs from c(S) =

n

√
vol[U ]

mVn
, it can be named the h-order point packing coefficient c(S;h).

Corollary B.8 (bounds for distances to neighbors). Let a periodic point set S ⊂ Rn have a unit cell
with a longest diagonal d. For any point p ∈ S, the distance a(1, k) to its k-th nearest neighbor in
S has the bounds

c(S)
n
√
k + 1− d ≤ a(1, k) ≤ c(S)

n
√
k + 1 + d for k ≥ 1.

Proof. Use Theorem 4.4 for h = 1, b(1, k) = n
√
k + 1.

Lemma B.9 (upper bound of a binom). For any integer n ≥ 1 and real a, b ≥ 0, we have (a+b)n ≤
2n(an + bn).

Proof. Due to aibn−i ≤ (max{a, b})n ≤ an + bn, the binomial formula gives (a + b)n =
n∑

i=0

(
n
i

)
aibn−i ≤ (an + bn)

n∑
i=0

(
n
i

)
= 2n(an + bn).

Theorem 4.5 will be proved in the following explicit form. Let a periodic set S ⊂ Rn have m points
in a unit cell U whose longest diagonal has a length d. Recall that Vn is the unit ball volume in

Rn and introduce the skewness ν(U) =
d

n
√
vol[U ]

of the cell U . For any h, k ≥ 1, the number of

operations to compute PDD{h}(S; k) will be proved to be proportional to at most mN logN , where

N ≤ 2h

h!
(2h+ 3)hn

(
(2h+ 3)hk + (Vnν(U)m)hn

)
.

If h = 1, the simpler estimate will be N ≤ 2n(k + 2) + (5Vnν(U)m)n. The time mN logN is
near-linear in the number k of neighbors and polynomial of degree hn+1 in the motif size m (with
logarithmic factors) for any h ≥ 1.

Proof of Theorem 4.5. Let the origin 0 ∈ Rn be at the center of the unit cell U . If d is the length of
a longest diagonal of U , then any point p ∈ M = S∩U is covered by the closed ball B̄(0, 0.5d). By
Corollary B.8, the distance a(1, k) from any point p ∈ M to its k-th nearest neighbor in S has the
upper bound a(1, k) ≤ c(S) n

√
k + 1 + d. Then all k neighbors of p in S are covered by the single

ball B̄(0; r(1, k)) of the radius r(1, k) = c(S) n
√
k + 1 + 1.5d.

For a fixed point p and any h > 1, to find a similar ball including all points that are needed to
compute the k smallest average sums a(h, 1) ≤ · · · ≤ a(h, k), we start from the integer number
l = ⌈b(h, k)−1⌉ of closest neighbors p1, . . . , pl of p, where b(h, k) is any real b+1 such that b ≥ h

and
(

b
h

)
∈ (k − 1, k]. Then

(
l
h

)
≥ k by Lemma B.7. Since the l+ 1 points p, p1, . . . , pl are

covered by the ball B̄(p;R) of the radius R = max
i=1,...,l

|pi− p|, the lower bound of Lemma B.6 gives(
R− d

c(S)

)n

≤ l + 1 ≤ b(h, k) + 1, so R ≤ c(S) n
√

b(h, k) + 1 + d.
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All
(

l
h

)
≥ k average sums of pairwise distances between p and any h of l points from S ∩

B̄(p;R) have the upper bound
2hR

h+ 1
by Lemma B.5. If the k smallest values of these sums are not

greater than
2R

h+ 1
, which clearly holds for h = 1, these k smallest values form the required row

a(h; 1) ≤ · · · ≤ a(h; k) of the point p = p0 in PDD{h}(S; k). Indeed, in this case for any h points
p1, . . . , ph ∈ S with at least one distance (say) |ph − p0| > R, the lower bound of Lemma B.5

implies that the average sum
2

h(h+ 1)

∑
0≤i<j≤h

|pi−pj | >
2R

h+ 1
cannot be among the sought after

k smallest values.

If we could not find k smallest sums not greater than
2R

h+ 1
, we extend the radius R to hR. Similar

to the above argument for the smaller radius R, the lower bound of Lemma B.5 guarantees than any

average sum involving at least one point at a distance |ph − p0| > hR is greater than
2hR

h+ 1
and

hence cannot be among k ≤
(

l
h

)
smallest sums that were already considered for the smaller ball

B̄(p;R). Hence the larger ball B̄(p;hR) is guaranteed to contain the required k smallest sums.

To cover necessary neighbors of all points p from a motif M = S ∩ U , we further increase the
radius hR by 0.5d and will use the earlier upper bound R ≤ c(S) n

√
b(h, k) + 1 + d. Let the

ball B̄(p;hR + 0.5d) contain l points of S in addition to its center p. The upper bound l + 1 ≤(
hR+ 1.5d

c(S)

)n

from Lemma B.6 and the earlier upper bound R ≤ c(S) n
√

b(h, k) + 1 + 1.5d, we

get

l ≤
(
hR+ 1.5d

c(S)

)n

≤
(
h n
√

b(h, k) + 1 +
(h+ 1.5)d

c(S)

)n

.

Lemma B.9 simplifies the last bound to

l ≤ (2h)n(b(h, k) + 1) +

(
(2h+ 3)d

c(S)

)n

.

Substituting c(S) = n

√
vol[U ]

mVn
, we get

d

c(S)
= Vnν(U)m, where ν(U) =

d
n
√
vol[U ]

is called the

skewness of the unit cell U . To find l nearest neighbors of all m points p from the motif M = S∩U ,
we gradually extend the cell U in spherical layers by adding shifted copies of U until we get the
upper union from Lemma B.6:

U+ = U+(0;hc(S)
n
√
b(h, k) + 1 + 1.5d) ⊃ B̄(0;hR+ 0.5d).

If h = 1 then b(1, k) = k+1 and l = k. The k nearest neighbors of each of m points p ∈ M can be
found by sorting the distances from p to all other l ≤ 2n(k+2)+ (5Vnν(U)m)n points in U+ ∩ S.
The total number of operations is at most ml log l as required.

Now consider only h ≥ 2 and simplify the last bound:

l ≤ (2h)n(b(h, k) + 1) + (2h+ 3)n(Vnν(U)m)n ≤

≤ (2h+ 3)n
(
b(h, k) + (Vnν(U)m)n

)
.

For each of m points p ∈ M , we consider all
(

l
h

)
≤ lh

h!
average sums of pairwise distances

between p and any h of l points p1, . . . , ph ∈ U+. By Lemma B.9, the previous upper bound of l
gives the number of average sums(

l
h

)
≤ lh

h!
≤ (2h+ 3)hn

h!
2h
(
b(h, k)h + (Vnν(U)m)hn

)
.
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Since b(h, k) = b + 1, where k ≥
(

b
h

)
≥ (b− h)h

h!
, Lemma B.9 gives the following upper

bound.
b(h, k)h = (b+ 1)h ≤ 2h((b− h)h + (h+ 1)h) ≤

≤ 2h(h!k + (h+ 1)h), so
b(h, k)h

h!
< 2hk +

(2h+ 2)h

h!
.

Then the earlier upper bound is simplified to(
l
h

)
≤ (2h+ 3)hn2h

(
2hk +

(2h+ 2)h

h!
+

(Vnν(U)m)hn

h!

)
=

(2h+ 3)hn2h

h!

(
2hh!k + (2h+ 2)h + (Vnν(U)m)hn

)
.

Estimate the first two terms inside the brackets as follows:

2hh!k + (2h+ 2)h ≤ (2hh! + (2h+ 2)h)k ≤ (2h+ 3)hk.

The last inequality follows from the difference of powers:

2hh! ≤ (2h+ 3)h − (2h+ 2)h =

h−1∑
i=0

(2h+ 3)i(2h+ 2)h−1−i.

The right hand side is greater than

h(2h+ 2)h−1 = h2h−1(h+ 1)h−1 ≥ 2hh!

because (h+ 1)h−1 ≥ 2(h− 1)! for any h ≥ 2. Then the total number of points in U+ ∩ S has the
upper bound

N ≤ 2h

h!
(2h+ 3)hn

(
(2h+ 3)hk + (Vnν(U)m)hn

)
.

For each of m points p ∈ M , we find their k smallest sums by sorting at most N values. The total
number of operations for computing PDD{h}(S; k) is at most mN logN .

Thank you for reading all the proofs!
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