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Abstract

Decoupling has become a new paradigm in Graph Neural Networks (GNNs)
for its effectiveness and scalability. However, this paradigm still faces two
several restrictions: unsatisfying propagation, caused by noisy or confused
edges, could greatly degrade model performance; fixed aggregation schema
with the same propagation steps and the same combination weights for each
node limit achieving optimal performance. To address these problems, we
propose a novel decoupled graph model named LA-DGNN based on label
agreement message propagation and combine the intermediate feature after
each propagation step as input. In our method, we decouple the graph
model which trains a base predictor based on multi-layer perceptrons with
a pre-step to propagate features and a post-step to propagate labels. We
utilize an auxiliary label agreement model to generate proper edge weights
to promote reliable propagation. When training the base predictor, we
concatenate all intermediate features after each propagation step to make
the model dynamically learn information of neighbors at different distances.
Extensive experiments on five real-world datasets demonstrate that our
method achieves superior performance over all baseline methods in terms
of node classification accuracy.

1 Introduction

Graph Neural Networks (GNNs) have achieved great success in a wide range of graph-based
applications, such as node classification, graph classification, link prediction and commu-
nity detection (Li et al., 2018; Knyazev et al., 2019; He et al., 2020; Bakshi et al., 2018).
Most GNNs follow the paradigm that features are transformed and aggregated via graph
convolution layers to generate node representations. Through K graph convolution layers,
nodes obtain information from their K-hop neighborhoods which are called Receptive Field.
However, these models face the challenge of receptive field restriction. The number of GNN
layers grows with the size of receptive field, resulting in high computation and memory cost.
What’s worse, GNNs occur notorious over-smoothing issue while directly applying multiple
layers (Li et al., 2019).
Many recent advancing works try to decouple the feature transformation and neighborhood
aggregation in each convolution layer to access to more scalable and efficient models. For
example, SGC (Wu et al., 2019) successively removes nonlinearities and collapsing weight
matrices between consecutive layers to reduce excess complexity. APPNP (Klicpera et al.,
2019) separates the feature propagation and neural network training to achieve a much
larger receptive field size. They derive an improved propagation schema based on per-
sonalized PageRank to permit the use of far more propagation steps without leading to
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Figure 1: Illustration of LA-DGNN

over-smoothing. On the contrary, C&S (Huang et al., 2021) propagates label messages.
They train a base predictor with node features that ignores graph structure and apply two
post operation based on label propagation (Zhou et al., 2003; Wang & Zhang, 2008) which
propagate residual errors and labels separately.
Both feature propagation and label propagation are based on the homophily hypothesis that
features and labels vary smoothly over the edges of the graph. However, this hypothesis
is not fully matched in practice for graph edges are from noisy sources. Therefore, some
edges’ corresponding labels are not the same. Besides, these models treat each propagation
equally that use a hyper-parameter to mix current information and neighborhood informa-
tion. However, neighbors at different distances have different importance for nodes. To
address these two problems, based on previous advancements, we propose a novel decoupled
graph model named LA-DGNN. In our model, we first train a label agreement model based
on the labels in training set to generate proper edge weight for each edge. Then we propagate
features according to the weighted adjacent matrix and concatenates intermediate features
for each node after every propagation step. The aggregated features serve as input for a
base predictor based on multi-layer perceptrons. After training, a post label propagation is
applied to smooth predictions and leverage known labels.

2 Methodology

We start with notations used through this paper. Let G = (V, E ,X) denotes an undirected
graph with nodes V and edges E . The nodes in G are described by the feature matrix
X ∈ Rn×h, where n is the number of nodes and h is the dimension of features. Only a
subset of nodes VL have observed labels and the goal is to infer the labels of the remaining
nodes VU .
Our model follows the idea of decoupled GNNs, which treats message propagation as pre-
and post- operations. The illustration of LA-DGNN is demonstrated in Figure 1. We train
a classifier based on the augmented features after a feature propagation process. Then, we
apply a label propagation process to smooth the prediction. In order to ensure the correct
propagation paths, we train a label agreement prediction model based on the known labels.
Aiming at getting the best receptive field for each node, we combine the features after every
propagation step into a vector to feed into the base classifier.
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2.1 Label agreement model

Most existing graph learning methods rely on the homophily hypothesis to incorporate
graph structure into model design. Therefore, the noisy edges which connect two nodes with
different labels will damage the performance. Take LP (Zhou et al., 2003) as an example,
its performance on graphs without noisy edges achieves 17.1%, 8.9%, 18.7% improvement
compared with graphs with noisy edges on Cora, Citeseer and Pubmed datasets under
standard division. A series of methods try to reduce the impact of the noisy edges. For
instance, GAT (Velickovic et al., 2018) utilizes the features of two connected nodes to learn
the edge weights for convolution operation.
We borrow the idea from GAM (Stretcu et al., 2019) and utilize the edge weight learning
process. The features of two neighboring nodes are used as input to predict the label
consistency of the two nodes. First, we embed the node features into a hidden space based
on multi-layer perceptrons. ei = mlp(xi), where xi represents the feature vector of node i.
Then, we apply subtraction and square operations between the two embeddings to eliminate
the influence of two nodes’ order, eij = (ei − ej)

2. The calculation of the aggregated
embeddings eij can be considered to measure the distance between node i and node j in
the hidden space, which is an intuitive representation of the agreement probability (Stretcu
et al., 2019). Finally, the aggregated embeddings are fed into a linear classifier to predict
the confidence that the two nodes have the same label, s = cls(ei,j). We use binary cross
entropy loss with logits ℓbce as the loss function of the agreement model defined as:

LLA =
∑

i∈VL,j∈VL,ij∈E

ℓbce(cls(mlp(ei, ej)), Iyi=yj
) (1)

2.2 Confidence-guided feature propagation

The output confidence scores of the label agreement model reflects the similarity of two
connected nodes, which are ideal edge weights on graphs. Appropriate edge weights will
promote closer combination of similar nodes and weaken the effect of noisy edges. We use
the output confidence to build the confidence-guided adjacency matrix Ã in which each
non-zero elements Aij is the sigmoid score predicted by the label agreement model using
the feature of node i and node j, Ã = Sigmoid(LA − Model(X, E)). As the previous
convention, we apply the symmetric normalization adjacency matrix Â from Ã in message
passing process. Â = D̃−1/2ÃD̃−1/2, where D̃−1/2 denotes the diagonal degree matrix of
Ã. The K-step feature propagation is defined as,

X(k) ← ÂX(k−1), ∀k = 1, . . . ,K (2)
where X(0) = X.
After K-step propagation, nodes obtain a vector [X(0),X(1), · · · ,X(K)] that denotes the
original feature and features after each propagation step. As we discuss previously, differ-
ent nodes have different sensitivities to receptive field. In our model, we utilize a simple
but effective approach that concatenates the original feature and propagated features as
the input. The following classifier is available to features at different steps, which is able
to learn the importance of information at different distances automatically and adjust its
concentration to the most important part. The augmented node features are produced as:

X̂ = [X(0)∥X(1)∥ . . .∥X(K)] (3)

2.3 Model training

After feature propagation, each node’s features are augmented by its neighbors. We use the
augmented feature matrix X̂ to train a shallow classifier based on multi-layer perceptrons.
The cross entropy measurement between the predicted label distributions hi = mlp(x̂i) and
the ground truth one-hot label vector is adopted as the loss function:

LCL =
1

L

∑
i∈VL

C∑
c=1

log
exp(hic)∑C
j=1 exp(hij)

yic, (4)
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where L represents the size of training set, C denotes the number of classes and x̂i is the
i-th row of X̂.
In the model training process, the label agreement model and the base predictor can not
only be trained sequentially but also co-trained on small graphs. In the co-trained schema,
the total loss is L = LCL + βLLA, where β is the balancing parameter.

2.4 Confidence-guided label propagation

Label smoothing has been found to be an effective way to incorporate label information
at inference and improve model performance (Huang et al., 2021). In our method, we also
apply a confidence-guided label propagation to further boost the performance. The label
score matrix Z can be obtained by applying a softmax function to the output of the base
predictor. In order to directly incorporate labels at inference, the score of observed nodes are
replaced with their ground truth as ZL = YL. We perform a weighted Q-step confidence-
guided label propagation based on personalized PageRank to obtain the final predicted label
distributions.

Z(k+1) = (1− α)Z(0) + αÂZ(k) (5)
In this equation, Z(0) = Z and α ∈ (0, 1] is the teleport (or restart) probability which allow
the nodes to preserve their own information with a certain probability. The classification
for node i ∈ VU is lj = argmax z

(Q)
j , where z

(Q)
j represents the j-th row of Z(Q)

j .

3 Experiments

We conduct extensive experiments to demonstrate the effectiveness of our methods. The
quantitative results and analysis of different evaluations are presented here.

3.1 Datasets and baselines

We adopt five public datasets for evaluation: Cora (Sen et al., 2008), Citeseer (Sen et al.,
2008) and Pubmed (Namata et al., 2012) are three classic citation network graphs; Coauthor-
CS (Shchur et al., 2018) and Coauthor-Physics (Shchur et al., 2018) are two co-authorship
graphs based on the Microsoft Academic Graph. The detailed statistics are summarized
in APPENDIX B. As for the train/valid/test splits, we use 60%/20%/20% random splits
following (Wang & Leskovec, 2020).
In the experiments, we compare our model with a range of representative methods, includ-
ing LP (Zhou et al., 2003), GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018),
JKNet (Xu et al., 2018), APPNP (Klicpera et al., 2019), C&S (Huang et al., 2021), GCN-
LPA (Wang & Leskovec, 2020). LP is a parameter-free method. GCN, GAT and APPNP
are classical graph models. APPNP propagates features in advance while C&S propagate
labels afterwards. GCN-LPA utilizes label propagation output as a regularization.

3.2 Results

We record the accuracy of test set under best performance on valid set. Each experiment is
conducted five times and the mean and standard deviation are demonstrated in Table 1.
From the result table, we have several observations. Our proposed model, LA-DGNN out-
performs all the baseline methods on each dataset under the semi-supervised setting. For
example, our model improves the best-performing baseline model, GCN-LPA, by an absolute
0.84% accuracy on Cora. For the two large coauthor graphs, the accuracy is also improved
though slighter compared to the small graphs. Even though LP is a parameter-free method,
it still demonstrates competitive performance on most datasets. GCN and GAT obtain
worse results for the limited and fixed receptive field. JKNet and APPNP outperform these
shallow GNNs for their access to each propagated feature or large receptive fields. C&S and
GCN-LPA also achieve higher performance on most datasets especially C&S shows compa-
rable performance to our method, which indicates the key to improving performance is to
incorporate label information.
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Cora Citeseer Pubmed Co-CS Co-Physics
LP 86.69 71.88 80.50 91.54 95.58

GCN 87.91± 0.46 74.89± 0.49 86.37± 0.27 92.58± 0.23 96.14± 0.10
GAT 89.20± 0.59 75.94± 0.94 83.33± 0.36 92.44± 0.39 96.23± 0.15

JKNet 89.13± 0.73 76.15± 0.35 86.40± 0.24 93.64± 0.21 96.46± 0.13
APPNP 87.84± 0.95 76.63± 0.72 87.08± 0.43 94.28± 0.18 96.40± 0.15

C&S 87.80± 1.03 76.60± 0.50 87.43± 0.35 94.60± 0.23 96.57± 0.16
GCN-LPA 88.84± 1.07 76.51± 0.27 87.11± 0.10 93.14± 0.19 95.90± 0.29
LA-DGNN 89.68± 0.76 77.23± 0.39 88.06± 0.15 94.97± 0.23 96.97± 0.06

Table 1: Mean and standard deviation of the test set accuracy for all methods and datasets.
Co denotes Coauthor.
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Figure 2: Mean accuracy and standard deviation on Pubmed dataset with different ho-
mophily

3.3 Robustness study

Further experiments are conducted to explore the robustness of our model to noisy edges.
The homophily of a graph characterizes how likely nodes with the same label are near each
other in a graph. Based on Pubmed with 80% homophily, we generate a graph with 50%
homophily by adding noisy edges and a graph with 100% homophily by removing all noisy
edges. We perform our method and other baselines on the three graphs. Each experiment
is conducted three times and the results are shown in Figure 2.
From Figure 2, we observe that the performance of all methods is significantly improved
when all noisy edges are removed and they achieve comparable accuracy. When only half of
the edges satisfy the label agreement, all baselines experience a large drop while our method
still maintains a competitive performance. These experiments demonstrate structure noise
has a dramatic effect on model performance and our model is robust to structure noise.

4 Conclusion

In this paper, we propose a decoupled graph neural networks, LA-DGNN, with pre-
processing feature propagation and post-processing label propagation. In order to address
the structure noise, we train a label agreement model additionally which takes the fea-
tures of two connected nodes as input to predict the probability they have same labels.
The confidence scores of every edge generated by the label agreement model can guide the
information propagation across the edges. Aiming to solve the fixed aggregation schema
problem, we concatenates intermediate features after each propagation step as a whole to
enable our model dynamically adopts importance to neighbors at different distance. Exten-
sive experiments demonstrate LA-DGNN outperforms other classic and SOTA methods on
five benchmark datasets and achieves both effectiveness and robustness.
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A Structure Noise Influence
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Figure 3: Accuracy of LP on Cora, Citeseer and Pubmed with and without structure noise

We conduct experiments on Cora, Citeseer and Pubmed under the standard split to verify
the influence of noisy edges which do not meet label agreement. We apply Label Propagation
separately to the original graph and the clear graph with all the noisy edges removed. The
classification accuracy is demonstrated in Figure 3. The red areas represent the improvement
that the model can obtain on a clean graph compared to a graph containing noisy edges.
We observe LP achieves 17.1%, 8.9%, and 18.7% accuracy improvement respectively. The
experimental results shows that a significant portion of the potential of the graph learning
models is limited by the structure noise.

B Dataset Details

Dataset Nodes Edges Features Classes Homophily
Cora 2,708 5,278 1,433 7 81.0%

Citeseer 3,327 4,552 3,703 6 73.6%
Pubmed 19,717 44,324 500 3 80.2%

Coauthor-CS 18,333 81,894 6,805 15 80.8%
Coauthor-Physics 34,493 247,962 8,415 5 93.1%

Table 2: Statistics of the datasets

We select five representative public graph datasets as our benchmark datasets. Their de-
tailed statistics are shown in Table 2. Cora, Citeseer and Pubmed are three most widely
used citation networks, where each node represents a paper and an edge indicates a citation
relationship. Coauthor-CS and Coauthor-Physics are two co-authorship network with larger
size, where each node represents an author and an edge indicates co-author relationship.
We randomly split these data sets in the ratio of 60%:20%:20% to form the training set,
validation set and test set, which is different from lower label rate settings, in order to
ameliorate sensitivity to hyper-parameters.
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C Compared methods

In this section, we give a detailed description of baseline methods including both classic and
state-of-the-art methods.

• LP (Zhou et al., 2003) Label propagation is a classic semi-supervised learning algo-
rithm that propagates the known labels along the graph to other unlabeled nodes.

• GCN (Kipf & Welling, 2017) Graph Convolutional Network is a widely used ap-
proach for semi-supervised learning on graph-structured data that is based on an
efficient variant of convolutional neural networks.

• GAT (Velickovic et al., 2018) Graph Attention Networks is a novel convolution-style
graph neural networks based on masked self-attentional layers. It specifies fine-
grained weights for neighborhood aggregation while does not depend on knowing
the entire graph structure upfront.

• JKNet (Xu et al., 2018) Jumping Knowledge Networks is a novel technique to
let model flexibly leverages different neighborhood ranges for each node to enable
better structure-aware representation. It leverages several approaches to selectively
exploit information from neighborhoods of differing locality to break the limit of
fixed numbers of neighborhood aggregations.

• APPNP (Klicpera et al., 2019) Approximation Personalized Propagation of Neural
Predictions is derived by considering the relationship between GCN and personal-
ized PageRank. It overcomes the limited range problem of many message passing
models by decoupling prediction and propagation.

• C&S (Huang et al., 2021) Correct And Smooth only utilizes shallow models that
ignore the graph structure with two simple post-processing steps based on label
propagation techniques. In C&S, the graph structure is not used to learn parameters
but instead as a post-processing mechanism, which reduce magnitude parameters.
• GCN-LPA (Wang & Leskovec, 2020) GCN-LPA is an end-to-end model that unifies

GCN and LPA. It serve LPA as regularization to assist the GCN to learn proper
edge weights to improve classification performance.

D Implement Details

Here we provide some more details on the models that we use. For all models, we apply the
Adam optimizer and tune the learning rate. We use ELU as our activation function and
add batch normalization layer after each linear layer. On Cora, Citeseer, the dropout rate
is 0.7 while it equals 0.2 on Pubmed, Coauthor-CS, Coauthor-Physics.
For Label Propagation, we propagate 10 steps with a teleport probability of 0.2. For GCN
and GAT, we build these models with three convolutional layers and 128 hidden channels.
For JKNet, we apply a 3-layer GCN as our base model and use concatenation aggregator.
As for APPNP, we use a 2-layer MLP with 10 steps of propagation.
On Cora, Citeseer and Pubmed, the label agreement model and base prediction model are
trained jointly with a balancing parameter of 2. On Coauthor-CS and Coauther-Physics,
we train label agreement model at first and then train the base predictor based on the
predicting edge weights.
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