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Abstract. Effective object detection in autonomous vehicles is chal-
lenged by deployment in diverse and unfamiliar environments. Online
Source-Free Domain Adaptation (O-SFDA) offers model adaptation us-
ing a stream of unlabeled data from a target domain in an online manner.
However, not all captured frames contain information beneficial for adap-
tation, especially in the presence of redundant data and class imbalance
issues. This paper introduces a novel approach to enhance O-SFDA for
adaptive object detection through unsupervised data acquisition. Our
methodology prioritizes the most informative unlabeled frames for inclu-
sion in the online training process. Empirical evaluation on a real-world
dataset reveals that our method outperforms existing state-of-the-art
O-SFDA techniques, demonstrating the viability of unsupervised data
acquisition for improving the adaptive object detector.
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1 Introduction

Autonomous vehicles operating in diverse and constantly changing environments
require robust object detection systems. However, the performance of trained de-
tectors significantly drops when they encounter unfamiliar scenarios. The real
world is rarely predictable, with environments varying widely in their character-
istics, leading to domain shifts that can severely compromise the effectiveness of
pre-trained object detection models. This is a challenging task and many existing
approaches focus on addressing this issue [1, 3, 15,18,23,29].

The challenge lies in equipping vehicles with the ability to adapt to new
domains “on-the-fly”, without the need for manually labelling new data or un-
dergoing an exhaustive re-training process. Online source-free domain adapta-
tion (O-SFDA) [20,23,27] offers a promising avenue to address this challenge by
transferring knowledge from a source domain to a target domain in an online
manner. This means that the adaptation occurs concurrently with deployment in
the target domain, contrasting with traditional methods that may require source
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data batches or offline processing [8, 14, 24, 28]. Current O-SFDA methods for
object detection, like those described by [23], utilize a transformer-style memory
bank to store and use information from observed frames for future adaptation.
However, these methods face limitations due to high computational costs and
overreliance on redundant data. Adapting using every frame can result in severe
class imbalances, such as more frequent detection of common objects like cars
and people, and less frequent detection of rare objects like motorbikes, leading
to poorer detection performance for rare classes.

To address these issues, we employ an unsupervised data acquisition strategy
based on incremental online clustering to dynamically identify and integrate both
the most informative unlabeled frames and those containing rare categories. We
augment this strategy by optimizing a dual architecture consisting of a teacher
model and a student model based on the Mean Teacher framework [21]. Our
method aims to reduce computational resource usage while enhancing object
detection adaptivity in previously unencountered deployment environments.

We conducted extensive experiments across four datasets, Cityscapes [2],
Sim10k [6], Cityscapes-Foggy [16], and SHIFT [19] with three domain adaptation
processes that include real-world scenarios with varying complexities. Our results
demonstrate that our method consistently outperforms existing state-of-the-art
O-SFDA techniques in object detection [23] for 2.3 mAP under Cityscapes to
Cityscapes-Foggy, 9.0 mAP under Sim10k to Cityscapes, and 9.3 mAP under
SHIFT to Cityscapes.

In summary, we propose a novel approach to improve O-SFDA for object
detection through an unsupervised data acquisition methodology based on in-
cremental online clustering. This data acquisition strategy selects the most in-
formative and category-rare frames for online training. To solve the overlapping
frame and class imbalance issues, our proposed data acquisition contains two
stages, Acquisition Unsim Frame (AUF) and Acquisition Rare Category (ARC)
where AUF aims at acquiring the dissimilar frame, and ARC aims to acquire
frame that contains the rare category. We evaluate our model based on three do-
main adaptation processes, and the result surpasses the current state-of-the-art
(SOTA) methods. 1

2 Related Work

Unsupervised Domain Adaptation for Object Detection. Unsupervised Domain
Adaptation (UDA) [11, 30] aims to mitigate the domain-shift problem without
requiring labeled target data, by aligning source and target distributions. The
field has seen significant contributions specifically in object detection [1, 15, 24,
26, 31, 32]. For instance, Chen et al. [1] pioneered this space by proposing do-
main adaptation via both image-level and instance-level alignments. Later, Zhu
et al. [31] focused on the alignment of congruent regions between source and
target domains. Xu et al. [26] presented a framework that involves categorical
1 The demonstration video is available at:

https://www.youtube.com/watch?v=3BGsT9iDEGg

https://www.youtube.com/watch?v=3BGsT9iDEGg
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regularization at the image level and consistency regularization for categories to
address complex challenges in this domain. While these approaches have yielded
impressive results, they inherently rely on the availability of source data dur-
ing adaptation, limiting their applicability in real-world scenarios such as au-
tonomous driving where source data may not always be accessible.

Source-free Domain Adaptation for Object Detection. In environments where
source data is not readily available, such as in autonomous vehicles, the spe-
cialized domain of Source-Free Unsupervised Domain Adaptation (SFDA) has
garnered interest [12, 17]. SFDA uniquely operates without the source data
during the adaptation phase, and typically focusing on offline model adapta-
tion [5,7,10,21,22]. The significance of online adaptation in such settings is cru-
cial. Vibashan et al. [23] ventured into this area by proposing a cross-attention
transformer-based model for both online and offline SFDA in object detection.
They extended the Mean Teacher framework with a MemXformer that pairs
features between the teacher and student models [21]. However, despite these
advancements, existing methods have not addressed the importance of keyframe
selection for adaptation. Our work fills this gap by emphasizing online adapta-
tion in SFDA for object detection, with a particular focus on selective adaptation
through keyframe selection. This approach enhances both the efficiency of the
adaptation process and the overall adaptation performance.

3 Method

3.1 Problem Formulation

In the domain of O-SFDA for object detection, we consider an online scenario
where access to the original source domain dataset as Ds = {xs, ys}, is restricted,
and only a pre-trained model Θs on Ds is available. The aim is to adapt Θs to a
target domain Dt, which is represented by a stream of unlabeled data {xt}. The
model is updated using only frames from Dt that are deemed adaptation-worthy.

3.2 Base Model

Our method is built upon the framework of online adaptation of the Mean
Teacher model [21], specialized for the Faster-RCNN object detector [13]. The
Mean Teacher framework employs two models: a student model (ΘS) and a
teacher model (ΘT ), both initialized using the pre-trained source model Θs. For
each incoming frame ft, we employ two forms of data augmentation: the weak
augmentation Aw(·) and the strong augmentation As(·). The weakly augmented
frame fw

t is fed through the teacher model to generate pseudo-labels, denoted as
ŷT, while the strongly augmented frame f s

t is processed by the student model to
predict labels yS. To improve the model’s reliability, we consider only pseudo-
labels ŷT that possess a confidence score greater than 0.9, as supported by prior
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Fig. 1: For streaming frames, ft, the data acquisition system continuously evaluates
whether to retain the current frame using a similarity measure. Once ft is detected
as “key frame”, ft will be used to update the model. The condition x refers to the if
statement used to determine whether the current frame contains the rare category after
the warm-up stage.

research [23]. Given this criterion, the loss function within the Faster-RCNN
framework can be defined as:

LFRCNN = LRPN(yS, ŷT) + LRCNN(yS, ŷT), (1)

3.3 Data Acquisition

We present our clustering method to choose frames for adapting the model, es-
pecially when data from the source domain is not available. Our data acquisition
approach targets two types of data: dissimilar frames and frames containing the
rare category. To do this, we divide the process into two stages: the first stage
focuses on identifying dissimilar frames by Acquisition Unsim Frame (AUF), and
the second stage targets the rare category by Acquisition Rare Category (ARC).
Our overall framework is illustrated in Figure 1.
Acquisition Unsim Frame (AUF) Leveraging the image encoder E from
the static teacher model ΘT from the initial teacher parameter, the clustering
starts by initializing the first frame f0 as the centroid p11 of the first cluster m1.
Subsequent frames produce embeddings et, which are compared against existing
centroids {p11, . . . , p1n} using cosine similarity. Based on a predefined similarity
threshold γ, a frame is identified as a keyframe to start a new cluster or is added
to the closest existing cluster, mc, which then updates its centroid by ave(mc).
The AUF similarity score, Scoremax1 is calculated by:

Scoremax1 = max
i∈{1,...,n}

(cos (et, p1i)) (2)
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Frames that meet Scoremax1 < γ are considered as keyframes for model updates.
Acquisition Rare Category (ARC) In an online setting, where the model
adapts to each current frame, it tends to improve at recognizing frequent objects
while performing worse on rarer ones. This issue is known as class imbalance. We
addressed this by using the ARC approach, which employs an additional clus-
tering mechanism to give frames with the rare category, cr a second opportunity
for data acquisition. We aggregate the ŷT{1,...,t} and identify the category with
the smallest aggregated sum as the rare category:

cr = argmin
c

(

t∑
i=0

ŷTi,c for each category c) (3)

Specifically, if Scoremax1 > γ and cr ∈ ŷTt, et will be processed into the ARC
for a second selection. Similar to the operation in AUF, et is compared against
existing ARC centroids {p21, . . . , p2n} using cosine similarity:

Scoremax2 = max
i∈{1,...,n}

(cos (et, p2i)) (4)

Frames meeting the criterion Scoremax2 < γ are considered as keyframes and
trigger model updates. This scheme ensures efficient and effective model adapta-
tion by focusing on frames significantly differ from previous instances. To ensure
the stability of the rare category identified, we propose the implementation of
a warm-up phase. During the warm-up stage, we only activate AUF and collect
the distribution of pseudo labels, ŷT{1,...,t} to identify which category is rare for
ARC. This phase is designed to stabilise the rare category prior to activating
the ARC mechanism. Notably, the ARC cluster operates independently of the
AUF cluster.

3.4 Model Optimization

For the optimization of the teacher model and student model, we first use the ŷT
to supervise the student model for parameter update. After the student model
is updated, we do an Exponential Moving Average (EMA) to update the teacher
model, which transfers the knowledge from the student model to the teacher
model. Specifically, to update the student model, we first apply strong data
augmentation to produce fs

t upon identifying a current frame ft as a keyframe.
This augmented frame is then processed by the student model to predict labels
yS. Given the absence of true labels in the target domain, we employ pseudo-
labels ŷT generated by the teacher model to adapt the student model parameters
ΘS. A Kullback–Leibler divergence loss [23] LS-T is also applied to align the ΘS

classification results, ECLS
S with the ΘT classification results, ECLS

T , based on
teacher model’s proposal, as follows:

LS-T = LKL(E
CLS
S , ECLS

T ) (5)

The final loss function L for the student model’s update is as follows:

L = LFRCNN + LS-T (6)
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After the student model has been updated by minimizing L, we do EMA to
update the teacher model. To update the teacher model’s weights (ΘT ) using
ΘS , we use two key parameters: α1 for the adaptation phase and α2 for the final
update. Specifically, α1 is used in the iterative update during the online process,
while α2 is employed for the final model update:

ΘT,t = α1ΘT,t−1 + (1− α1)ΘS,t−1 (7)
ΘT,final = α2ΘT + (1− α2)ΘS (8)

4 Experiments

4.1 Datasets

We evaluate our model using four rigorously selected datasets: Cityscapes [2],
Cityscapes-Foggy [16], Sim10k [6], and SHIFT [19].

– Cityscapes: Geared towards urban street environments, Cityscapes consists
of 2,975 training images and 500 validation images. An additional sequence
of 106,917 images from Frankfurt allows for comprehensive evaluations in
online sequential adaptation scenarios. We excluded the labelled 267 frames
from the Frankfurt sequence to evaluate our model’s performance in the
target domain. The performance on these 267 frames is reported as “mAP
Frankfurt” in the results section.

– Cityscapes-Foggy: Cityscapes-Foggy augments the original Cityscapes set
with simulated fog, making it an excellent benchmark for evaluating adap-
tation to adverse weather conditions.

– Sim10k: Originating from the video game Grand Theft Auto V, this dataset
comprises 10,000 training frames and tests our model’s ability to adapt to
substantially different source domains.

– SHIFT: Created in a simulator, SHIFT encompasses a variety of weather
conditions, providing an ideal landscape for assessing the robustness of our
model across diverse environments.

Table 1: Sim10k to Sequen-
tial Cityscapes (Car only)

Method Car

Source-Only 31.9

Tent [25] 33.1±0.3
MemCLR [23] 37.0±0.2
Ours 46.0±0.2

Table 2: Shift to Sequential Cityscapes on Frankfurt
Validation Set

Method Person Car Mcycle Bike mAP Frankfurt

Source-Only 16.1 17.1 4.5 6.1 10.9

Tent [25] 16.5±0.3 18.0±0.0 8.1±2.2 6.5±2.4 12.3±1.1
MemCLR [23] 22.1±0.5 25.3±0.5 9.9±1.2 8.7±0.8 16.5±0.4
Ours 30.2±0.8 39.5±0.9 21.9±3.4 11.7±1.2 25.8±0.8
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Table 3: Cityscapes to Foggy Cityscapes

Method Person Rider Car Truck Bus Train Mcycle Bike mAP

Source-Only 29.3 34.1 35.8 15.4 26.0 9.09 22.4 29.7 25.2

Tent [25] 31.2 38.6 37.1 20.2 23.4 10.1 21.7 33.4 26.8
MemCLR [23] 32.1 41.4 43.5 21.4 33.1 11.5 25.5 32.9 29.8
Ours 35.2±0.7 44.3±1.3 50.5±0.4 18.5±3.1 30.7±3.7 16.1±4.3 23.9±1.9 37.6±0.3 32.1±1.3

4.2 Implementation Details

Our implementation builds upon the Faster-RCNN framework [13] with a ResNet50
backbone [4], following the baseline established by MemCLR [23]. The ResNet50
model is pre-trained on ImageNet [9]. We employ a batch size of 1 and run the ex-
periment for 1 epoch to ensure online adaptation capabilities. The student model
relies heavily on the teacher’s predictions for adaptation. To guarantee robust-
ness and keep the same setting with Baseline [23], we only consider teacher-
generated pseudo labels with a confidence score exceeding 0.9 as Ground Truth
for guiding the student model. The Exponential Moving Average (EMA) param-
eter is set to 0.996 for α1 and 0.9 for α2. The learning rate is set to 0.001, and the
warm-up learning rate is set to 0.0001. The optimization is performed using the
SGD optimizer. Our method for acquiring data involves extracting features from
the Fix-Teacher model, using a similarity threshold, γ set at 0.975 for both AUF
and ARC. The warm-up period was adjusted to suit different environments. To
build a category occurrence distribution, we run the warm-up until the ratio
of the rarest category to the most popular reaches 0.3% when the total pseudo
label counts more than 10000.

4.3 Evaluation Scenarios

Online Sequential Adaptation: Our primary objective is an online adap-
tation for autonomous vehicles navigating through sequences of overlapping
frames. We employ datasets SHIFT, Cityscapes and Sim10k to assess this fea-
ture. Detailed evaluation setups include: (1) Sim10k to Seq-Cityscapes with car
category only: Utilizing Sim10k as the source domain, we evaluate our model’s
adaptability using the sequential Frankfurt set of the Cityscapes dataset. Since
there is only one category, we only activate AUF. (2) SHIFT to Seq-Cityscapes
with shared categories: In this experiment, SHIFT serves as the source domain to
evaluate the model on the sequential Cityscapes dataset. The shared categories
for evaluation are person, car, motorcycle, and bicycle.
Weather Adaptation: This scenario scrutinizes the model’s resilience to sud-
den environmental changes, particularly shifts in weather conditions. Cityscapes
and Cityscapes-Foggy serve as key evaluation grounds. In addition, we intro-
duce an extra evaluation set from the Cityscapes validation set to assess the
model’s robustness in unseen urban settings. Another reason for this experi-
ment is that Memclr did not mention the sequential scenario. This table aims
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Table 4: Ablation of Contribution of Each Component

Method Person Car Mcycle Bike mAP Frankfurt

No acquire 0.0±0.0 5.0±6.8 0.0±0.0 0.0±0.0 1.3±1.7
AUF 29.5±1.0 36.0±5.3 16.4±4.0 9.0±1.6 22.7±2.4
AUF+ARC 30.2±0.8 39.5±0.9 21.9±3.4 11.7±1.2 25.8±0.8

for a fair comparison with the existing dataset in MemCLR. We use these re-
sults to demonstrate that data acquisition is also effective in weather adaptation.
Weather adaptation is non-sequential and involves only 500 frames, making it
challenging to stabilize the rare category initially for ARC. Thus, we only con-
sider using AUF.

4.4 Comparison with SOTA

We evaluate our model’s performance with two SOTA methods Tent [25] and
MemCLR [23] in three specific settings: two types of Online Sequential Adapta-
tion and one Weather Adaptation. Notably, Tent employs entropy minimization
to boost model performance in classification and semantic segmentation tasks.
We deploy the entropy minimization in object detection by disambiguating the
ΘS classification result based on the teacher model’s proposal. For each experi-
ment, we used random seeds run five times, calculating the mean with standard
deviation. We use mAP calculated via the AP50 as the evaluation metric.

As shown in Table 1, when testing the model that was trained on the source
data directly, the average precision (AP) for car detection was 31.9, which was the
lowest score, as expected. Our model demonstrates a marked improvement over
the state-of-the-art method, MemCLR [23], in car detection, achieving an AP
score of 46.0±0.2. This is achieved using 345 frames for adaptation, accounting
for only about 0.32% of the total available frames. As illustrated in Table 2, we
focus on four share categories: person, car, motorcycle, and bicycle, reporting
results in terms of mAP. Our model surpasses MemCLR in performance by 9.3
mAP while utilizing only approximately 384 frames. Significantly, our method
greatly improved the detection of motorcycles, a rare category, by achieving 12
AP higher than MemCLR [23]. As shown in Table 3, our model outperforms
MemCLR with an mAP score of 32.1, improving by 2.3 points. Notably, the
AP score for the car category increased by 7 points compared to MemCLR’s
performance.

4.5 Ablation Study

Our study places significant emphasis on sequential datasets, particularly the
transition from the SHIFT to the Cityscapes dataset, to simulate real-world
conditions more effectively. This section elucidates the effects of various experi-
mental components on the final performance metrics of our model.
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Table 4 illustrates the effects of various configurations on the overall model
performance. The term “No acquire” refers to our method when using all the
frames for adaptation. Resulting in a severe collapse of the performance, likely
due to frame overlaps and redundant information. The configuration labelled
“AUF” involves the use of dissimilar frame acquisition alone and achieved a mean
Average Precision (mAP) of 22.7, which is an improvement of 21.4 mAP over
the “No acquire” setup. The “AUF+ARC” configuration, which incorporates both
dissimilar frame acquisition and rare category acquisition, demonstrated superior
performance compared to “AUF”. Specifically, it showed notable improvement in
the rare category, with motorcycles achieving an AP of 5.5. Moreover, the overall
mAP increased by 3.1 compared to the “AUF” configuration.

4.6 Efficiency and Time Cost

Data acquisition not only enhances model performance in the target domain
but also reduces the time needed for adaptation. We evaluated the performance
speed of MemCLR and our method on the sequential Cityscapes dataset, mea-
suring the average processing time per frame in milliseconds (ms). Our method
demonstrated an efficiency of 12.7 ms per frame, compared to MemCLR’s 21.3
ms, with both methods tested on RTX 4090 GPU. This is because MemCLR
requires both inference and adaptation for each frame, while our method only
performs inference and selects key frames, avoiding constant adaptation.

5 Conclusion

In this work, we introduce an unsupervised data acquisition method in O-SFDA
object detection tailored to autonomous vehicles in diverse and dynamic set-
tings. This approach operates in two stages: initially, it selects highly informa-
tive frames, and then it gives extra attention to those frames that also include
the rare category to reduce class imbalance and frame overlap. Experimental re-
sults on multiple datasets show the effectiveness of our method and outperform
existing methods in terms of object detection performance.
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A Appendix

A.1 Qualitative study

Figure 2 displays the visualization results from the Cityscapes validation set
for Frankfurt city, showing bounding boxes with confidence scores above 0.5. We
compare Source-only, Tent, and MemCLR with our method. Bounding boxes are
colour-coded: red for the person, green for the car, blue for the motorcycle, and
yellow for the bike. The comparison of these four images clearly demonstrates
the superior performance of our model.

Source Only MemCLRTent Ours

Fig. 2: The four qualitative results demonstrate the performance of each baseline and
our method on the Cityscapes validation set. The colours of the bounding boxes indicate
different objects: red for Person , green for Car, blue for Mcycle, and yellow for Bike.
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